Modern algebra II, spring 2015.

Practice quiz 3

Mark the boxes that are followed by correct statements.

☐ Polynomial $x^{100} - 27x^3 - 6$ is irreducible over \mathbb{Q}.
☐ There exists a field of order 100.
☐ There exists an irreducible polynomial of degree 20 over \mathbb{F}_2.
☐ Field \mathbb{F}_8 is a subfield of \mathbb{F}_{256}.
☐ Polynomial $x^6 + x^4 + x^2 + 1$ is irreducible over \mathbb{F}_4.
☐ Field $F(x)$, where x is a formal variable and F is a field, admits an automorphism that takes x to $x + 1$.
☐ Field \mathbb{F}_{128} has no subfields other than \mathbb{F}_2 and itself.
☐ Product $f(x)g(x)$ is separable iff both $f(x)$ and $g(x)$ are separable.
☐ Polynomial $x^p - 3$ is separable over any field.
☐ Any finite extension of fields in characteristic 0 is simple.
☐ Any finite inseparable extension is simple.
☐ $\text{Gal}(\mathbb{C}/\mathbb{R}) \cong C_2$.
☐ If E/F is Galois and K is an intermediate field, $F \subset K \subset E$, then E/K is Galois.
☐ If E is a finite field and F a subfield, $\text{Gal}(E/F)$ is an abelian group.
☐ If K/F is normal and E/K is normal, then E/F is normal.
☐ $\text{Gal}(\mathbb{Q}(\sqrt{5})/\mathbb{Q}) \cong C_5$.
☐ If K/F is simple and E/K is simple, then E/F is simple.
☐ There exists a degree 3 field extension E/F with $\text{Gal}(E/F)$
a cyclic group of order 6.