Modern Algebra II, Spring 2015

Homework 7, due Wednesday March 25

1. Which of the following statements are true? (By algebraic number below we mean a complex number that is algebraic over \mathbb{Q}).
 (a) The sum of an algebraic and a transcendental complex number is always transcendental.
 (b) The product of two transcendental numbers is always transcendental.
 (c) An element of the field $F(x)$ of rational functions is transcendental over F if and only if it is not in F.
 (d) For a field extension E/F, if $\alpha, \beta \in E$ are transcendental over F then fields $F(\alpha), F(\beta)$ are isomorphic.
 (e) Any polynomial over the field \mathbb{Q} is separable.

2. Prove that an n-th root $\sqrt[n]{\alpha}$ of an algebraic number $\alpha \in \mathbb{C}$ is algebraic. (By an n-th root of a complex number z we mean any complex number w such that $w^n = z$. If $z \neq 0$, there are n such numbers. A complex number is algebraic if it’s a root of a polynomial $x^m + a_{m-1}x^{m-1} + \cdots + a_0$ with rational coefficients.)

3. Let $f(x) \in F[x]$ be an irreducible polynomial of degree n, and let E/F be a splitting field of $f(x)$.
 (a) Prove that $n \mid [E : F]$.
 (b) Prove that if $f(x)$ is separable, $n \mid |Gal(E/F)|$.

4. Consider the splitting field E of $x^4 - 3$ over \mathbb{Q}. Determine the degree of the extension $[E : \mathbb{Q}]$. Mimic the arguments we used in class in a similar problem for the polynomial $x^4 - 2$ (Start with a real root of this polynomial, consider the extension generated by that root, determine its degree over \mathbb{Q} and see whether other roots of $x^4 - 3$ are missing from that extension). What can you say about the Galois group $Gal(E/\mathbb{Q})$?

5. Let t be a formal variable and $\mathbb{F}_p(t)$ the field of rational functions in t with coefficients in \mathbb{F}_p. Prove that the polynomial $x^p - t$ is irreducible in $\mathbb{F}_p(t)$. (Hint: use the field extension of $\mathbb{F}_p(t)$ we introduced in class in the example of inseparability.)