1. Which of the following statements are true? Give a brief justification for each answer.
(a) Given $E \supset B \supset F$ a chain of field extensions, if E/F is algebraic then B/F is algebraic.
(b) Field extension $\mathbb{Q}(\sqrt[3]{5})/\mathbb{Q}$ is algebraic.
(c) Extension E/E is algebraic for any field E.
(d) If field F is a countable set and extension E/F is algebraic, then field E is a countable set.
(e) Field extension \mathbb{C}/\mathbb{R} is algebraic.

2. Suppose we are given field extensions E/B and B/F and the degree $[E:F]$ is a prime number. Show that either $B = E$ or $B = F$.

3. Suppose p and q are distinct prime numbers. Let $\alpha = \sqrt[p]{p} + \sqrt[q]{q}$. Generalize arguments done in class for $p = 2$ and $q = 3$ to show that $\mathbb{Q}(\alpha)/\mathbb{Q}$ is a degree 4 extension that contains $\sqrt[p]{p}$ and $\sqrt[q]{q}$. Write down the irreducible polynomial for α over \mathbb{Q}. (You can use that $\sqrt[q]{q} \notin \mathbb{Q}(\sqrt[p]{p})$ and vice versa.)

4. Determine the minimum (irreducible) polynomial of $\sqrt{2} + \sqrt{5}$ over (a) \mathbb{Q}, (b) $\mathbb{Q}[\sqrt{2}]$, (c) $\mathbb{Q}[\sqrt{5}]$, (d) $\mathbb{Q}[\sqrt{2}, \sqrt{5}]$, (e) \mathbb{R}.

5. Factor polynomial $x^{10} + 2x^5 + 3$ into irreducible polynomials over the the field \mathbb{F}_5. (Hint: review class material on separability).

6. The element $1 + \sqrt{2} + \sqrt{3} + \sqrt{6}$ belongs to the field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Compute its multiplicative inverse. (Hint: start by computing multiplicative inverse of $1 + \sqrt{2}$ in the field $\mathbb{Q}(\sqrt{2})$ and the inverse of $1 + \sqrt{3}$ in the field $\mathbb{Q}(\sqrt{3})$. How are elements $1 + \sqrt{2}, 1 + \sqrt{3}, 1 + \sqrt{2} + \sqrt{3} + \sqrt{6}$ related?)

7. Show that $f(x) = x^3 + x + 1$ is irreducible over \mathbb{Q}. Let α be a root of f in \mathbb{C}. Express

$$\frac{1}{\alpha} \quad \text{and} \quad \frac{1}{\alpha + 2}$$
as linear combinations of \(\{1, \alpha, \alpha^2\} \).

Additional practice problems, won’t be graded:

1. Prove the following technical lemma we used to show that the set of algebraic complex numbers \(\mathbb{A} \) is countable:
 If \(f : X \rightarrow Y \) is a map of sets, set \(Y \) is countable, and \(f^{-1}(y) \) is a finite set for any \(y \in Y \), then \(X \) is countable.
 If you need a refresher on sets and cardinalities, consult Hammack’s ”Book of proof”; there is a link to it on our website for Modern Algebra I.

2. Show that the polynomial \(x^3 + 2x^2 - 3x + 5 \) is irreducible over \(\mathbb{Q} \). (Hint: same methods as in problem 3 homework 5).

Howie, pages 63-64, problems 3.4-3.6, 3.8-3.11, 3.13, 3.14, 3.15,