1. (a) Define what it means for a group G to act on a ring R. Prove that the set of G-invariants (the set of G-fixed elements)

$$R^G = \{ a \in R : g(a) = a \ \forall g \in G \}$$

is a subring of R.

(b) Generator g of the cyclic group C_2 acts on $\mathbb{Z}[x]$ by taking x to $-x$. Explain why this indeed extends to an action of C_2 on $\mathbb{Z}[x]$. Can you write down this action succinctly, in terms of action on an arbitrary polynomial $f(x)$? Determine the invariant subring of $\mathbb{Z}[x]$ with respect to this action.

(c) Generator g of the cyclic group C_n acts on $\mathbb{C}[x]$ by identity on all $z \in \mathbb{C}$ and takes x to ωx, where ω is an n-th primitive root of unity. How goes g act on x^k? Determine the C_n-invariant subring of $\mathbb{C}[x]$ with respect to this action.

2. Draw all partitions of 5 and determine the lexicographic order on these partitions.

3. For 2 variables x_1, x_2 write down monomial symmetric functions $m_{(3,1)}$ and $m_{(4,0)}$. Express these functions as polynomials in elementary symmetric functions s_1 and s_2. Write functions s_1^3, s_1^4, s_1^5 as linear combinations of monomial symmetric functions m_{λ} for partitions λ of 3, 4, 5 respectively.

4. For 3 variables x_1, x_2, x_3 express functions $s_1^3, s_1 s_2$ and s_3 as linear combinations of monomial functions m_{λ}, for λ a partition of 3. Then express m_{λ}, for each partition λ of 3, as a linear combination of $s_1^3, s_1 s_2, s_3$.

5. (also see Remark 4.5 in Friedman on page 7) Suppose $f(x) \in \mathbb{R}[x]$ is a cubic polynomial with real coefficients. Explain why f is reducible over \mathbb{R}. Show that the discriminant of f is strictly positive (a real number greater than 0) if and only if f has three distinct real roots.

6. For each of the following cubic polynomials determine whether it is irreducible over \mathbb{Q} and find its Galois group (you should determine
the Galois group even for reducible polynomials).
(a) \(x^3 - 3x - 1 \)
(b) \(x^3 - 2x + 1 \)
(c) \(x^3 - 4x - 1 \)
(d) \(x^3 - 7x - 6 \)