Modern Algebra I, fall 2014

Practice quiz solutions

Mark the squares that are followed by correct statements.

1. ■ Composition of two injective maps is injective.
 True

2. □ There exists only one set with one element.
 False. For instance, any integer \(n \) gives rise to a one-element set \(\{n\} \); they are distinct sets for different \(n \).

3. ■ The empty set is a subset of any set.
 True

4. ■ Given any surjective map \(f : A \to B \) of sets, subsets \(f^{-1}(b) \), over all \(b \in B \), constitute a partition of set \(A \).
 True

5. □ \((A \setminus B) \cup (B \setminus A) = A \cup B\) for any subsets \(A, B \) of a universal set \(X \).
 False. For a counterexample, choose any sets \(A \) and \(B \) with nonempty intersection.

6. □ 57 is a prime number.

7. ■ Any common divisor of natural numbers \(n \) and \(m \) divides the greatest common divisor \(\gcd(n, m) \).
 True. Decompose \(n \) and \(m \) as products of primes to see this.

8. ■ There are positive integers \(n \) and \(m \) such that \(\gcd(n, m) = \text{lcm}(n, m) \).
 True. Just take any \(n = m \).

9. □ Two consecutive numbers \(n, n+1 \) for \(n > 2 \) can both be primes.
False. One of them will be even and strictly greater than 2, hence not a prime.

10. ■ The set of strictly positive real numbers $\mathbb{R}_{>0} = \{x \in \mathbb{R} : x > 0\}$ is a group under multiplication.

True

In problems below, e denotes the identity of a group G, and g, h denote elements of G.

11. ■ $g^{-1} = e$ if and only if $g = e$.

True, since the inverse of identity is the identity.

12. ■ Equality $hg = g$ implies that $h = e$.

True. Write $g = eg$, convert $hg = g$ to the equality $hg = eg$, and use the right cancellation law to cancel g.

13. □ g is the identity if and only if $g^{-1} = g$.

False, condition $g^{-1} = g$ is equivalent to the condition $g^2 = e$ which is weaker than $g = e$. Any reflection r satisfies $r^2 = e$, but it’s not the identity.

14. □ The symmetric group S_3 is abelian.

False. In class, we gave examples of two elements of S_3 that do not commute.