1. (10 points) Mark the boxes that are followed by correct statements.

□ The intersection \(H \cap K \) of normal subgroups \(H \) and \(K \) of \(G \) is normal in \(G \).

□ Any abelian group of order 8 contains an element of order 4.

□ The centralizer of \((12)\) in \(S_3 \) has order 3.

□ Any group of order 10 is abelian.

□ If an abelian group \(G \) has an element of order 3, then \(G \) has at least 3 characters.

2. (10 points) Classify homomorphisms from (a) the cyclic group \(C_4 \) to \(S_3 \), (b) the cyclic group \(C_5 \) to \(S_3 \), (c) the group \(S_3 \) to \(C_2 \). Explain why these are all the homomorphisms.

3. (10 points) For each of the following groups \(G \) determine whether \(H \) is a normal subgroup of \(G \).
 (a) \(G = S_4 \) and \(H \cong S_3 \) is the subgroup of permutations that fix 4.
 (b) \(G = A_4 \) and \(H = \{1, (12)(34)\} \).
 (c) \(G = D_n \), the dihedral group, and \(H = C_n \), the subgroup of rotations in \(G \).

4. (10 points) Write down the character table of the group \(C_2 \times C_2 \).

5. (10 points) Write down a proof that, given two subgroups \(K, H \) of \(G \) with \(K \) normal, the set \(KH = \{kh : k \in K, h \in H\} \)
is a subgroup of G.

6. (20 points) (a) Find all subgroups of Q_8.
(b) Show that all subgroups of Q_8 are normal.
(c) Write down definition of a solvable group.
(d) Use this definition to prove directly that Q_8 is solvable (We proved in class that any group of order p^n is solvable; don’t use this result).