Solutions for Midterm exam 2

1. (10 points) Mark the boxes that are followed by correct statements.

□ The intersection $H \cap K$ of normal subgroups H and K of G is normal in G.

True. The intersection $H \cap K$ is a subgroup of G, and $g(H \cap K)g^{-1} = (gHg^{-1}) \cap (gKg^{-1}) = H \cap K$, implying normality.

□ Any abelian group of order 8 contains an element of order 4.

False. $C_2 \times C_2 \times C_2$ is abelian of order 8, but without an order 4 element.

□ The centralizer of (12) in S_3 has order 3.

False. The centralizer is an order two group, $\{\text{id}, (12)\}$.

□ Any group of order 10 is abelian.

False. Dihedral group D_5 is not abelian.

□ If an abelian group G has an element of order 3, then G has at least 3 characters.

True. Number of characters equals the order of finite abelian group.

2. (10 points) Classify homomorphisms from (a) the cyclic group C_4 to S_3; (b) the cyclic group C_5 to S_3; (c) the group S_3 to C_2. Explain why these are all the homomorphisms.

Homomorphisms from C_n to H correspond to elements h of H with $h^n = 1$. For (a), there are four homomorphisms, taking a generator g of C_n to id, (12), (13), (23), correspondingly. For (b), there is only the trivial homomorphism, since the only permutation σ in S_3 with $\sigma^5 = 1$ is the trivial permutation id. For (c), any homomorphism from S_3 to an abelian group will take the commutator subgroup $A_3 = S_3'$ to identity. This gives only two homomorphisms from S_3 to C_2: either take all S_3 to the unit element, or take even permutations to the unit element and all odd ones to the nontrivial element of C_2.

3. (10 points) For each of the following groups G determine whether H is a normal subgroup of G.

(a) $G = S_4$ and $H \cong S_3$ is the subgroup of permutations that fix 4.

Not normal. We need to find an element h of H and element g of G such that ghg^{-1} is not in H. For instance, take $h = (12)$ and $g = (14)$. Then
\[g h g^{-1} = (14)(12)(14)^{-1} = (14)(12)(14) = (24), \text{ not in } H. \]

(b) \(G = A_4 \) and \(H = \{1, (12)(34)\} \).

Not normal. Conjugate \((12)(34)\) by something in \(A_4 \), for instance \((123)\), to get
\((123)(12)(34)(132) = (14)(23)\), which is not in \(H \).

(c) \(G = D_n \), the dihedral group, and \(H = C_n \), the subgroup of rotations in \(G \).

Normal, for instance since \(C_n \) has index 2 in \(D_n \), and any index 2 subgroup is normal.

4. (10 points) Write down the character table of the group \(C_2 \times C_2 \).

Characters of finite abelian groups are homomorphisms to the circle group \(T \). The number of homomorphisms equals the order of the group, in this case 4. Group \(C_2 \times C_2 \) consists of elements of order 1 and 2 only, so under a homomorphism these elements can only go to the elements 1 and \(-1\) of \(T \). If we denote generators of \(C_2 \times C_2 \) by \(a \) and \(b \), we have four choices: send \(a \) either to 1 or \(-1\), and, independently, send \(b \) either to 1 or \(-1\). Then \(ab \) will go to the corresponding product, and 1 always goes to one. The character table is

<table>
<thead>
<tr>
<th>(\chi)</th>
<th>1</th>
<th>(a)</th>
<th>(b)</th>
<th>(ab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\chi_1)</td>
<td>1</td>
<td>(-1)</td>
<td>1</td>
<td>(-1)</td>
</tr>
<tr>
<td>(\chi_2)</td>
<td>1</td>
<td>1</td>
<td>(-1)</td>
<td>(-1)</td>
</tr>
<tr>
<td>(\chi_3)</td>
<td>1</td>
<td>(-1)</td>
<td>(-1)</td>
<td>1</td>
</tr>
</tbody>
</table>

Columns are labelled by elements of the groups, rows - by characters. The first character \(\chi_0 \) is the trivial character.

5. (10 points) Write down a proof that, given two subgroups \(K, H \) of \(G \) with \(K \) normal, the set \(KH = \{kh : k \in K, h \in H\} \) is a subgroup of \(G \).

The set \(KH \) contains the unit element, since \(1 = 1 \cdot 1 \in K \cdot H \). It’s closed under taking inverses: if \(k \in K, h \in H \), then

\[(kh)^{-1} = h^{-1}k^{-1} = (h^{-1}k^{-1}h)h^{-1}.\]

Since \(h^{-1}k^{-1}h \) is in \(h^{-1}Kh = K \), by normality of \(K \), we see that \((kh)^{-1} \in KH \). Finally, \(KH \) is closed under taking products: given \(k_1, k_2 \in K, h_1, h_2 \in K \), \((k_1h_1)(k_2h_2) = k_1(k_2h_1h_2) \in KH \).
so that \(k_1 h_1, k_2 h_2 \in KH \), we have

\[
k_1 h_1 \cdot k_2 h_2 = k_1 (h_1 k_2 h_1^{-1})(h_1 h_2) \in KH,
\]

since \(k_1 (h_1 k_2 h_1^{-1}) \in KK = K \) and \(h_1 h_2 \in H \).

6. (20 points) (a) Find all subgroups of \(Q_8 \).

\(Q_8 \) has order 8, and can only have subgroups of orders 1, 2, 4, 8. The trivial subgroup has order 1, \(Q_8 \) itself has order 8. Elements \(-1, i, j, k\) each generate a subgroup, of order 2, 4, 4, 4, respectively:

- \(\langle -1 \rangle = \{1, -1\} \).
- \(\langle i \rangle = \{1, i, -1, -i\} \).
- \(\langle j \rangle = \{1, j, -1, -j\} \).
- \(\langle k \rangle = \{1, k, -1, -k\} \).

It’s easy to see that there are no other subgroups. For instance, if a subgroup \(H \) contains at least one of the six elements \(\{\pm i, \pm j, \pm k\} \) of order four, it has order at least four, so it’s either the cyclic group generated by that element or all of \(Q_8 \). If it contains none of these six elements, it’s either trivial of the center \(\{1, -1\} \) of \(Q_8 \). Thus, \(Q_8 \) has six subgroups.

(b) Show that all subgroups of \(Q_8 \) are normal.

The three subgroup of order 4 are normal, since they have index 2. The center of any group is a normal subgroup in it. The trivial group and all of \(Q_8 \) are normal.

(c) Write down definition of a solvable group.

\(G \) is solvable if there is a chain of subgroups \(G = G_n \supset G_{n-1} \supset \cdots \supset G_1 \supset G_0 = 1 \) such that \(G_{i-1} \) is normal in \(G_i \) for \(i = 1, \ldots, n \) and \(G_i/G_{i-1} \) is abelian.

(d) Use this definition to prove directly that \(Q_8 \) is solvable (We proved in class that any group of order \(p^n \) is solvable; don’t use this result).

As a chain of subgroups, we can take, for instance,

\[
Q_8 \supset \{1, i, -1, -i\} \supset \{1, -1\} \supset \{1\}.
\]

Each subgroup has index two in the previous group, thus normal in it and the quotient group has order 2, hence abelian.