DEF Let $X \& Y$ be sets. The cartesian product $X \times Y$ is the set of all ordered pairs (x,y) with $x \in X, y \in Y$. Ordered here means x first, y second. Thus e.g. in $X \times X$ $(x_1,x_2) = (x_2,x_1)$ unless $x_1 = x_2$. The corresponding (unordered) set is $\{x_1,x_2\} = \{x_2,x_1\}$.

EXAMPLE $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ is the set of all points in the xy plane.

DEF A monoid is a set M, together with a map $\cdot : M \times M \to M$ called multiplication, whose value at (a,b) is denoted by ab or $a \cdot b$, called the product of $a \& b$; this multiplication is required to satisfy:

1. $ab, c = a \cdot (bc)$ for all $a, b, c \in M$;
2. $\exists 1 \in M$ so that $1a = a1 = a, \forall a \in M$.

Condition (1) is called associativity; an element 1 satisfying (2) is an identity element for M. Thus, a monoid is a set M, together with an associative multiplication for which there is an identity element.

DEF Let $a \& b$ be elements of a monoid M. If $ab = ba$, then $a \& b$ commute. This doesn't always happen, e.g. in (V) below.

EXAMPLES of monoids:

1. \mathbb{N}^* with its usual multiplication, and $1 = \text{the number } 1$, is a monoid.
2. $\mathbb{Z}^*, \mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$ similarly.
3. \mathbb{Z}^+ with $+$ instead of \cdot and 0 instead of 1 is an "additive monoid.
 Here (1) & (2) are $(x+y)+z = x+(y+z)$ & $0+x = x+0 = x, \forall x,y,z \in \mathbb{Z}$.
4. For each set X, the set $\mathcal{P}(X)$ of all subsets of X, with \cup (or \cap) as multiplication and \emptyset (or X) as identity element is a monoid. This gives two examples (if $X \neq \emptyset$).

*) $a \cdot b \cdot c$ means "first multiply $a \& b$, then $ab \& c"; a \cdot b \cdot c$ means "first multiply $b \& c$, then $a \& bc."
(v) For each set X, the set $M(X) = \{ \text{all maps } f: X \to X \}$, with composition of maps as multiplication, and $1_X \circ f = f$ is a monoid, since composition, which is always defined for $f, g \in M(X)$, is associative, and $1_X \circ f = f$ for each $f \in M(X)$.

NON-EXAMPLES of monoids:

(i) \mathbb{N} with + instead of \circ; no identity element.

(ii) \mathbb{R}^2 with dot product \circ of vectors; the products are scalars, not vectors.

(iii) \mathbb{R}^3 with cross product \circ of vectors; associativity fails, and no identity element.

NOTATION. Let a, b, c be elements of a monoid M. Because of associativity, we may write simply abc for $ab \circ c$ or $a \circ b \circ c$. Using associativity several times, we obtain:

\[
\begin{align*}
 a(bcd) &= a((bc)d) = (ab)(cd) = (a \circ b) \circ (c \circ d) = (abc) \circ d \\
 &\quad \quad \ quarterly

THM A. For each monoid M and $n \geq 2$, we define inductively

\[
 a_1, a_2, \ldots, a_n = (a_1, a_2, \ldots, a_{n-1}) \cdot a_n \quad \text{for } a_1, a_2, \ldots, a_n \in M.
\]

Then for $n \geq 2$,

\[
 a_1(a_2 \cdots a_n) = (a_1 a_2)(a_3 \cdots a_n) = \cdots = (a_1 a_2 \cdots a_{n-1}) a_n = (a_1 \cdots a_n).
\]

Proof. \(\Box_2\) is clear, \(\Box_3\) is the associativity law, and \(\Box_4\) is contained in the big display above. Suppose \(n > 1\), and \(\Box_n\) has been proved for \(2 \leq n < \ell\). Then for \(1 \leq m \leq \ell - 2\),

\[
 (a_1 \cdots a_m)(a_{m+1} \cdots a_\ell) = (a_1 \cdots a_m)(a_{m+1} \cdots a_{\ell-1}) a_\ell = (a_1 \cdots a_m)(a_{m+1} \cdots a_{\ell-1}) a_\ell,
\]

the second by associativity, and the first and third by \(\Box_{m+1}\) and \(\Box_{\ell-1}\). Then \(\Box_\ell\) is true.\[\square\]

\(\Box\) For vectors u, v, w in \mathbb{R}^3, $(u \times v) \times w = u \times (v \times w) \iff u \parallel w \lor v \perp u \land w$. We end the proof.
Theorem B. Let M be a monoid. Then M has only one identity element.

Proof. If \tilde{i} and I are identity elements for M, then

$$\tilde{i} = \tilde{i}, \quad I = I$$

Since I is an identity element, since \tilde{i} is an identity element.

Definition. Let M be a monoid, and let $a \in M$. An inverse for a is any $a' \in M$ satisfying

$$aa' = I \text{ and } a'a = I$$

Theorem C. Let M be a monoid. Then each $a \in M$ has at most one inverse.

Proof. If a and a' are inverses for a, then

$$\tilde{a} = \tilde{a} \cdot \tilde{I} = \tilde{a} \cdot a \cdot a' = \tilde{a} \cdot a' = I \cdot a' = a'$$

Property of I, definition of inverse, associativity, definition of inverse, property of I.

Notation. The inverse of a, if there is any, is denoted by a^{-1} (not a' or \tilde{a}).

Theorem D. Let M be a monoid, let I be its identity element, and let $a, b \in M$. Then:

1. I has an inverse, and $I^{-1} = I$.
2. If a has an inverse, so does \tilde{a}, and $(a^{-1})^{-1} = a$.
3. If a and b have inverses, so does ab, and $(ab)^{-1} = b^{-1}a^{-1}$.

Proof (1) The equation $I \cdot I = I$ says $I = I^{-1}$.

(2) The equations $a \cdot a^{-1} = I$ and $a^{-1} \cdot a = I$ say not only that a^{-1} is the inverse of a, but also that a is the inverse of a^{-1}.

(3) By associativity and properties of inverses and identity elements,

$$ab(a^{-1}b^{-1}) = a(ab^{-1})a^{-1} = a \cdot a^{-1} = a = a^{-1} = I$$

Similarly, $(a^{-1}b^{-1})(ab) = I$. Therefore $a^{-1}b^{-1}$ is an (the?) inverse for ab.

DEF A group is a monoid \(G \) in which each element has an inverse.

DEF An abelian group is a group \(G \) in which \(ab = ba \) for all \(a, b \in G \).

EXAMPLES of groups.

(i) \(\mathbb{Z}_+^+ \) with +, and 0 for identity element, and -n for the inverse of \(n \), is an abelian group.

(ii) Similarly for \(\mathbb{Q}_+^+ \), \(\mathbb{R}_+^+ \), \(\mathbb{C}_+^+ \).

THM E For each monoid \(M \), the set \(M^* \) of \(M \) which have inverses, i.e., the set of invertible elements, or more briefly the units of \(M \), is a group with the same multiplication and the same identity element. \(M^* \) is the unit group of the monoid \(M \).

Proof By THM D, if \(a \cdot b \in M^* \), then \(a \cdot b \in M^* \). Clearly \(a \cdot b \cdot c = a \cdot (b \cdot c) \) for all \(a, b, c \in M^* \), \(1 \in M^* \) and clearly \(1 \cdot a = a \cdot 1 = a \) for all \(a \in M^+ \), so \(M^* \) is a monoid. Each \(a \in M^* \) has an inverse \(a^{-1} \) in \(M \). Since \(a^{-1} \) also has an inverse \((a^{-1})^{-1} \) in \(M \), we have \(a^{-1} \in M^* \), and \(a \cdot a^{-1} = a^{-1} \cdot a = 1 \) shows that \(a^{-1} \) is the inverse for \(a \) in \(M^* \). Since \(M^* \) is a monoid on which each element has an inverse, \(M^* \) is a group.

EXAMPLES of unit groups of monoids.

(i) \(\mathbb{Q}^* = \mathbb{Q} \) except for 0, with \(\cdot \) and 1 and \(\frac{a}{b} \) for \((\frac{a}{b}) \) for integer \(a, b \in \mathbb{Z} \).

(ii) \(\mathbb{R}^* \) & \(\mathbb{C}^* \) (the nonzero elements of \(\mathbb{R} \) and \(\mathbb{C} \) are the unit groups of the monoids \(\mathbb{R} \) & \(\mathbb{C} \)).

(iii) For each set \(X \), \(\mathcal{M}(X)^* \) consists of the bijective maps \(f : X \to X \).

EXERCISE 1: Prove statement (iii), and show that for \(f \in \mathcal{M}(X)^* \), the inverse \(f^{-1} \) is the inverse map.

NON-EXAMPLES of groups.

(i) \(\mathbb{N}^* \) with \(\cdot \), because, e.g., 2 has no inverse \((\frac{1}{2} \in \mathbb{Q} \) but \(\frac{1}{2} \notin \mathbb{N} \)).

(ii) \(\mathcal{A}(X) \) with \(\cup \) (or \(\cap \)) with \(X \neq \emptyset \), because \(X \cup A = X \) (or \(\phi \cap A = \emptyset \)) for no \(A \subset X \).
NOTATION The bijections \(f : X \to X \) are also called permutations of \(X \), and \(M(X)^* \) is also called the symmetric group on \(X \), and denoted by \(S_X \).

Thm F. If \(|X| = n \in \mathbb{N} \), then \(|S_X| = n! \).

Proof. It is more convenient to prove by induction that if \(|X| = |Y| = n \), there are exactly \(n! \) bijections from \(X \) to \(Y \). The case \(n = 1 \) is clear, so let \(n > 1 \) and assume this is true for \(n-1 \). Pick any \(x \in X \). Each bijection \(f : X \to Y \) sends \(x \) to some \(y \in Y \), and is determined by this \(y \), together with the bijection, gotten from \(f \), from \(X - \{x\} \) to \(Y - \{y\} \). Since there are \(n \) choices for \(y \), and, by induction, \((n-1)! \) bijections from \(X - \{x\} \) to \(Y - \{y\} \), there are \(n \cdot (n-1)! = n! \) bijections from \(X \) to \(Y \).

Exercise 2. Let \(G \) be a group, and let \(a, b, c \in G \) with \(ac = bc \). Prove \(a = b \).

Exercise 3. Let \(M \) be a monoid, let \(n \in \mathbb{N} \), and suppose \(a_1, \ldots, a_n \in M^* \). Prove that \((a_1 \ldots a_n)^{-1} = a_n^{-1} \ldots a_1^{-1} \).

Exercise 4. There are 5 ways (boxed in the big display on 7.2) of writing abcd, using multiplication \(\times \) factors "two at a time." More generally, Catalan in 1838 proved that the analogous number \(c_n \) for \(a \ldots a_n \) is given by

\[
\begin{align*}
\star & \\
\star & \mathcal{C}_n = \frac{(2n-2)!}{(n-1)! \cdot n!}.
\end{align*}
\]

Verify that \(\star \) is correct for \(n = 4 \), and show that, in agreement with \(\star \), \(\mathcal{C}_5 = 14 \) by making a complete list of all 14 ways of writing abcd analogous to the 5 ways of writing abcd. Setting \(c_1 = 1 \) and \(c_2 = 2 \) prove that for all \(n \geq 2 \),

\[
\star \star \mathcal{C}_n = c_1 \mathcal{C}_{n-1} + c_2 \mathcal{C}_{n-2} + \cdots + c_{n-1} \mathcal{C}_1.
\]

Optional (not to be graded): By considering \(C(x) = \sum_{n=1}^{\infty} \mathcal{C}_n x^n \), use \(\star \star \) to express \(C(x) \) as an elementary function, then use Taylor's coefficient formula to get \(\star \).