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Problem 1.

Fact: If p < q are primes and q is not congruent to 1 modulo p, then the only
group of order pq up to isomorphism is Cqp. This is 15.10 in Judson.

(a) By the above fact, the only group of order 35 = 5 · 7 up to isomorphism is
C35.

(b) 59 is prime so the only group of order 59 up to isomorphism is C59 by
Lagrange’s theorem.

(c) The fact above shows that the only group of order 77 = 7 · 11 up to
isomorphism is C77.

(d) We factor 26 = 2·13. The only abelian group of order 26 up to isomorphism
is C26. Suppose now that our group G is non-abelian. Let P be a 13-Sylow
subgroup and Q = {1, g} a 2-Sylow subgroup. Since P has prime order,
it is cyclic, say with generator x. Note that P is normal in G, since
[G : P ] = 2. Consider the element gx ∈ G; it isn’t an element of P
since g /∈ P , and in particular gx 6= 1. Also, gx can’t have order 13 since
P is the only subgroup of G of order 13 (since it’s a normal Sylow 13-
subgroup), nor can it have order 26 since we assumed G was not abelian
(and in particular not cyclic). By process of elimination, we have found
(gx)2 = 1. Thus, G is a group of order 26 with generators x, g satisfying
the relations x13 = g2 = gxgx = 1. These relations should be familiar
from our work with the dihedral group; r, s in the usual presentation of
D13 satisfy analogous relations and this defines D13. These relations tell
us that there is a well-defined homomorphism D13 → G taking r to x
and s to g, which is necessarily surjective. But a surjective map between
finite sets of the same size is a bijection, so we conclude that there is an
isomorphism between D13 and G.

Remark 1. For p < q primes and q ≡ 1 mod q, there is exactly one
non-abelian group of order pq up to isomorphism. This is most easily seen
using the concept of the semi-direct product, to be introduced later in the
class.
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(e) Let G be a group of order 325. We factor 325 = 52 · 13. The number of
Sylow 5-subgroups is 1 modulo 5 and divides 13. The only natural number
satisfying these constraints is 1, so there is exactly one order 25 subgroup
of G, say P . Similarly, the number of Sylow 13-subgroups is 1 modulo 13
and divides 25, so it must be 1- call the Sylow 13-subgroup Q. Now, P
and Q are normal subgroups of G that intersect trivially (because they
have coprime orders) and by comparing orders, we find G = PQ. So, G
is an internal direct product of P and Q. We have Q ∼= C13 and P can
be isomorphic to either C5 × C5 or C25. So, up to isomorphism, the only
groups of order 325 are C13 × C25 and C13 × C5 × C5.

Problem 2. If H is a normal subgroup of a finite group G and |H| = pk, show
that H is contained in every Sylow p-subgroup of G

By Sylow’s theorems, H is contained in some p-Sylow subgroup P . Let P ′ be
any other p-Sylow subgroup. By Sylow’s theorems again, P ′ is a conjugate of
P , say P ′ = gPg−1. But H ⊂ P implies gHg−1 ⊂ P ′. Since H is normal, we
have gHg−1 = H and hence H ⊂ P ′, as required.

Problem 3. What are the orders of Sylow p-subgroups of A4 for p = 2, 3, 5?
For each of these p, give an example of a Sylow p-subgroup of A4. Which of
your examples are normal subgroups of A4?

We have |A4| = 12 = 22 · 3; the highest powers of 2, 3, 5 that divide 12 are 4, 3,
and 1 respectively, so these are the orders of the Sylow p-subgroups.

• p = 2: From an earlier homework, we know that the only order 4 subgroup
of A4 is H = {1, (12)(34), (13)(24), (14)(23)}. Since any conjugate of H is
a subgroup of order 4 and hence equal to H, we see that H is normal.

• p = 3: Take the subgroup generated by a 3-cycle, say K = {1, (123), (132)}.
It is not normal because, for instance, (134)(123)(143) = (243) /∈ K

• p = 5 The trivial subgroup {1} is the only subgroup of order 1.

Problem 4. What is the order of a Sylow p-subgroup of the symmetric group
S5 for p = 2, 3, 5? For each of these p, give an example of a Sylow p-subgroup
of S5.

We factor |S5| = 5! = 23 · 3 · 5. It follows that a Sylow p-subgroup has order
8, 3, 5 for p = 2, 3, 5 respectively.

• p = 2: We may view D4 as a subgroup of S4 and hence of S5. Ex-
plicitly, if we label the vertices of a square by 1, 2, 3, 4, then the di-
hedral group of order 8 is generated by the permutations (1234) (ro-
tation) and (14)(23) (reflection). This subgroup is 〈(1234), (14)(23)〉 =
{1, (13), (24), (12)(34), (14)(23), (12)(34), (1234), (1432)}.
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• p = 3: As in the previous problem, we may use the subgroup generated
by a 3-cycle, say {1, (123), (132)}

• p = 5: We may use the cyclic subgroup generated by a 5-cycle, say
〈(12345)〉 = {1, (12345), (13524), (14253), (15432)}

Problem 5. Show that every group of order 45 has a normal subgroup of order
9.

Let G be a group of order 45. Since 45 = 9 · 5, a Sylow 3-subgroup of G must
have order 9. The number n3 of such subgroups is 1 modulo 3 and divides
45/9 = 5. The only natural number with this property is 1, so G has only
one Sylow 3-subgroup; call it H. For any g ∈ G, we see that gHg−1 is also a
subgroup of order 9 and hence a Sylow 3-subgroup, but by the above this means
gHg−1 = H. So, H is an order 9 normal subgroup of G

Problem 6. Suppose that G is a finite group of order pnk, where k < p and p
is a prime. Show that G must contain a normal subgroup.

As the problem becomes trivial if we allow the normal subgroup to be G itself
or the trivial subgroup, we disallow these cases. But with these restrictions, we
also require n > 1, as otherwise taking G to be the cyclic group of order p would
give a counterexample. We separate into the cases k > 1 and k = 1.

• k > 1: In this case, the proof is analogous to the previous problem. A
p-Sylow subgroup has order pn since p - k follows from k < p. The number
of p-Sylow subgroups is 1 mod p and divides k. Since k < p, this means
that there is only one p-Sylow subgroup, which is necessarily normal by
the reasoning in the previous problem.

• k = 1. The above arguments no longer work because a subgroup of order
pn is no longer proper ( |G| = pn). To deal with this case, we separate
into the cases that G is abelian and G is nonabelian.

G is abelian: Any subgroup of G is normal in this case. Let g ∈ G be
any element other than 1. If g doesn’t generate G, then 〈g〉 is a nontrivial,
proper normal subgroup of G. Otherise, if g is a generator of G (so G is
cyclic of order pn), then gp generates a subgroup of order pn−1 which is
normal, proper, and nontrivial (since pn−1 > 1 comes from n > 1).

G is nonabelian: The center Z(G) is a normal subgroup of G. It is
nontrivial since G is a p-group and is not all of G because G is not abelian.
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