Name: ______ UNI: ___

Modern algebra I, Spring 2017. Practice Final Exam.

1. Which of the following are equivalence relations on the set \mathbb{R} of real numbers?

(a) $x \equiv y$ iff $x - y \in \mathbb{Q}$,

(b) $x \equiv y$ iff $x \leq y$,

(c) $x \equiv y$ iff |x| = |y|.

1.5. Consider the group of invertible residues \mathbb{Z}_{20}^* . What is the order of this group? Is this group cyclic?

2. (a) State the definition of a group.

(b) Write down the multiplication table for the Klein four group V_4 .

3. (a) Is the set of all even permutations in S_6 that fix 4 a subgroup of S_6 ? What about all odd permutations that fix 1? (b) Is the set of all rational numbers with the binary operation x * y = 2(x + y) a group?

4. (a) Simplify the following permutations and write them as products of disjoint cycles:

(a) (1354)(264)(254), (b) $(1532)^{22}$, (c) $((132)(23))^{-17}$.

(b) Decompose (16354) as a product of transpositions.

(c) What are the possible cycle types of permutations in A_5 ? In A_6 ?

5. State the 2nd Isomorphism Theorem. What does it tell you for in case when the group is D_4 , the normal subgroup is C_4 of all rotations in D_4 , and the other subgroup is generated by the reflection s about a diagonal. For this case compute all groups that appear in the diagram describing the theorem.

6. Describe all homomorphisms (a) from S_3 to C_4 , (b) from C_4 to $C_2 \times C_2$, (c) from $C_2 \times C_2$ to S_3 .

7. If H and K are normal subgroups of G and $H \cap K = \{e\}$, prove that G is isomorphic to a subgroup of $G/H \times G/K$.

8. Prove that any subgroup of Q_8 is normal. Are there any groups of order 8 with a non-normal subgroup?

9. List all isomorphism classes of abelian groups of order (a) 16,(b) 40.

10. Can you realize C_7 as a subgroup of S_7 ? of S_6 ? of A_7 ?

11. (a) Define the notion of a Sylow p-subgroup. State the Sylow Theorems.

(b) Classify groups of order 175.

(c) Give an example of a Sylow 2-subgroup of A_5 .

12. How any elements are in the conjugacy class of (234) in S_5 ? What is the centralizer of that element in S_5 ?

13. In how many ways can you color the faces of a cube using 5 colors, up to rotational symmetries? Use the counting theorem.

14. What is the order of the group Rot(C) of rotations of the cube? This group acts on the set of faces of the cube. Is this a transitive action? Choose a face of a cube and find the stabilizer subgroup of the face. For the action of Rot(C) on faces, what are possible numbers of fixed points of $g \in Rot(C)$?

15. Mark the boxes that are followed by correct statements.

 \Box The empty set is a subgroup of any group G.

 \Box The composition of injective group homomorphisms is an injective group homomorphism.

 $\hfill\square$ Any homomorphism from $\mathbbm Z$ to a finite group has a non-trivial kernel.

 $\Box \quad \text{Group } S_4 \times S_3 \text{ has an abelian Sylow 3-subgroup.}$

 \Box The quaternion group Q_8 is not isomorphic to a subgroup of S_5 .

 \Box Any solvable group is finite.