Modern Algebra I, Spring 2017

Homework 8, due Wednesday March 22 before class.

Read Sections 11.1, 11.2, and 5.2. Solve the following problems.

1. Describe all homomorphisms from the group \mathbb{Z} to the group \mathbb{Z}_4 . Find the kernel and image of each homomorphism. Which of these homomorphisms are surjective?

2. Find all homomorphisms from the group \mathbb{Z}_6 to the group \mathbb{Z}_8 . (Hint: the generator 1 of \mathbb{Z}_6 must go to some element m of \mathbb{Z}_8 . What is the condition on m?) For each homomorphism list its kernel and image.

3. (a) More generally, show that homomorphisms from \mathbb{Z}_n to a group G are in a bijection with elements g of G such that $g^n = 1$, that is, the order of g is a divisor of n.

(b) Use (a) to prove that there's only the trivial homomorphism from \mathbb{Z}_n to \mathbb{Z}_m if (n, m) = 1.

4. Use the result in 3(a) to describe all homomorphisms from \mathbb{Z}_3 to S_3 and from \mathbb{Z}_4 to S_3 . Don't forget about the trivial homomorphism!

5. Judson exercise 7abcd in Section 11.3 (page 130).

6. Judson exercise 8 in Section 11.3 (page 130).

7. Judson exercise 19 in Section 5.3 (page 68).

8. Show that the subgroup H of rotations is normal in the dihedral group D_n . Find the quotient group D_n/H .