Extension Fields II: Derivatives and Multiple Roots

3 Derivatives and multiple roots

We begin by recalling the definition of a repeated root.

Definition 3.1. Let F be a field and let $\alpha \in F$. Then there is a unique integer $m \ge 0$ such that $(x - \alpha)^m$ divides f but $(x - \alpha)^{m+1}$ does not divide f. We define this integer m to be the *multiplicity* of the root α in f. Note that, by the correspondence between roots of a polynomial and its linear factors, α has multiplicity 0 in f, i.e. m = 0 above, $\iff f(\alpha) \neq 0$. More generally, if α has multiplicity m in f, then $f = (x - \alpha)^m g$ with $g(\alpha) \neq 0$, and conversely.

If α has multiplicity 1 in f, we call α a simple root of f. If α has multiplicity $m \geq 2$ in f, then we call α a multiple root or repeated root of f.

We would like to find conditions when a nonconstant polynomial does, or does not have a multiple root in F or in some extension field E of F. To do so, we introduce the *formal derivative*:

Definition 3.2. Let F be a field. Define the function $D: F[x] \to F[x]$ by the formula

$$D(\sum_{i=0}^{n} a_i x^i) = \sum_{i=1}^{n} i a_i x^{i-1}$$

Here the notation ia_i means the ring element $i \cdot a_i = \underbrace{a_i + \cdots + a_i}_{i \text{ times}}$, with the convention that $0a_0 = 0$. We usually write D(f) as Df. Note that either Df = 0 or deg $Df \leq \deg f - 1$.

Clearly, the function D is compatible with field extension, in the sense that, if $F \leq E$, then we have $D: F[x] \to F[x]$ and $D: E[x] \to E[x]$, and given $f \in F[x]$, Df is the same whether we view f as an element of F[x] or of E[x]. Also, an easy calculation shows that:

Proposition 3.3. $D: F[x] \to F[x]$ is *F*-linear.

This result is equivalent to the sum rule: for all $f, g \in F[x]$, D(f+g) = Df + Dg as well as the constant multiple rule: for all $f \in F[x]$ and $c \in F$, D(cf) = cDf. Once we know that D is F-linear, it is specified by the fact D(1) = 0 and, that, for all i > 0, $Dx^i = ix^{i-1}$. Also, viewing D as a homomorphism of abelian groups, we can try to compute

$$Ker D = \{ f \in F[x] : Df = 0 \}.$$

Our expectation from calculus is that a function whose derivative is 0 is a constant. But if char F = p > 0, something strange happens:

Proposition 3.4. *If* Ker $D = \{f \in F[x] : Df = 0\}$, *then*

$$\operatorname{Ker} D = \begin{cases} F, & \text{if char } F = 0; \\ F[x^p], & \text{if char } F = p > 0. \end{cases}$$

Here $F[x^p] = \{\sum_{i=0}^n a_i x^{ip} : a_i \in F\}$ is the subring of all polynomials in x^p .

Proof. Clearly, $f = \sum_{i=0}^{n} a_i x^i$ is in Ker $D \iff$ for every i such that the coefficient a_i is nonzero, the monomial $ix^{i-1} = 0$. In case char F = 0, this is only possible if i = 0, in other words $f \in F$ is a constant polynomial. In case char F = p > 0, this happens exactly when p|i for every i such that $a_i \neq 0$. This is equivalent to saying that f is a polynomial in x^p . \Box

As is well-known in calculus, D is **not** a ring homomorphism. In other words, the derivative of a product of two polynomials is **not** in general the product of the derivatives. Instead we have:

Proposition 3.5 (The product rule). For all $f, g \in F[x]$,

$$D(f \cdot g) = Df \cdot g + f \cdot Dg.$$

Proof. If $f = x^a$ and $g = x^b$, then we can verify this directly:

$$D(x^{a}x^{b}) = D(x^{a+b}) = (a+b)x^{a+b-1};$$

$$(Dx^{a})x^{b} + x^{a}(Dx^{b}) = ax^{a-1}x^{b} + bx^{a}x^{b-1} = (a+b)x^{a+b-1}.$$

The general case follows from this by writing f and g as sums of monomials and expanding (but is a little messy to write down). Another approach using formal difference quotients is in the HW.

If R is a ring, a function $d: R \to R$ which is an additive homomorphism (i.e. d(r+s) = d(r) + d(s) for all $r, s \in R$) satisfying d(rs) = d(r)s + rd(s)for all $r, s \in R$ is called a *derivation* of R. Thus, D is a derivation of F[x].

As a corollary of the product rule, we obtain:

Corollary 3.6 (The power rule). For all $f \in F[x]$ and $n \in \mathbb{N}$,

$$D(f)^n = n(f)^{n-1}Df.$$

Proof. This is an easy induction using the product rule and starting with the case n = 1 (or 0).

The connection between derivatives and multiple roots is as follows:

Lemma 3.7. Let $f \in F[x]$ be a nonconstant polynomial and let E be an extension field of F. Then $\alpha \in E$ is a multiple root of $f \iff f(\alpha) = Df(\alpha) = 0$.

Proof. Write $f = (x - \alpha)^m g$ with m equal to the multiplicity of α in f and $g \in F[x]$ a polynomial such that $g(\alpha) \neq 0$. If m = 0, then $f(\alpha) = g(\alpha) \neq 0$. Otherwise,

$$Df = m(x - \alpha)^{m-1}g + (x - \alpha)^m Dg.$$

If m = 1, then $Df(\alpha) = g(\alpha) \neq 0$. If $m \geq 2$, then $f(\alpha) = Df(\alpha) = 0$. Thus we see that $\alpha \in F$ is a multiple root of $f \iff m \geq 2 \iff f(\alpha) = Df(\alpha) = 0$.

In practice, an (unknown) root of f will only exist in some (unknown) extension field E of F. We would like to have a criterion for when a polynomial f has **some** multiple root α in **some** extension field E of F, without having to know what E and α are explicitly. In order to find such a criterion, we begin with the following lemma, which says essentially that divisibility, greatest common divisors, and relative primality are unchanged after passing to extension fields.

Lemma 3.8. Let E be an extension field of a field F, and let $f, g \in F[x]$, not both 0.

- (i) $f \mid g \text{ in } F[x] \iff f \mid g \text{ in } E[x].$
- (ii) The polynomial $d \in F[x]$ is a gcd of f, g in $F[x] \iff d$ is a gcd of f, g in E[x].
- (iii) The polynomials f, g are relatively prime in $F[x] \iff f, g$ are relatively prime in E[x].

Proof. (i): \implies : obvious. \Leftarrow : We can assume that $f \neq 0$, since otherwise f|g (in either F[x] or E[x]) $\iff g = 0$. Suppose that f|g in E[x], i.e. that g = fh for some $h \in E[x]$. We must show that $h \in F[x]$. By long division with remainder in F[x], there exist $q, r \in F[x]$ with either r = 0 or deg $r < \deg f$, such that g = fq + r. Now, in E[x], we have both g = fh and g = fq + r. By uniqueness of long division with remainder in E[x], we must have h = q (and r = 0). In particular, $h = q \in F[x]$, as claimed.

(ii): \implies : Let $d \in F[x]$ be a gcd of f, g in F[x]. Then, by (i), since d|f, d|g in F[x], d|f, d|g in E[x]. Moreover, there exist $a, b \in F[x]$ such that d = af + bg. Now suppose that $e \in E[x]$ and that e|f, e|g in E[x]. Then e|af + bg = d. It follows that d satisfies the properties of being a gcd in E[x]. \Leftarrow : Let $d \in F[x]$ be a gcd of f, g in E[x]. Then d|f, d|g in E[x], hence by (i) d|f, d|g in F[x]. Suppose that $e \in F[x]$ and that e|f, e|g in F[x], it again follows by (i) that e|d in F[x]. Thus d is a gcd of f, g in F[x].

(iii): The polynomials f, g are relatively prime in $F[x] \iff 1 \in F[x]$ is a gcd of f and g in $F[x] \iff 1 \in F[x]$ is a gcd of f and g in F[x], by (ii), $\iff f, g$ are relatively prime in E[x].

Corollary 3.9. Let $f \in F[x]$ be a nonconstant polynomial. Then there exists an extension field E of F and a multiple root of f in $E \iff f$ and Df are not relatively prime in F[x].

Proof. \implies : If E and α exist, then, by Lemma 3.7, f and Df have a common factor $x - \alpha$ in E[x] and hence are not relatively prime. Thus by Lemma 3.8 f and Df are not relatively prime in F[x].

 \Leftarrow : Suppose that f and Df are not relatively prime in F[x], and let g be a common nonconstant factor of f and Df. There exists an extension field E of F and an $\alpha \in E$ which is a root of g. Then α is a common root of f and Df, and hence a multiple root of f.

We now apply the above to an **irreducible** polynomial $f \in F[x]$.

Corollary 3.10. Let $f \in F[x]$ be an irreducible polynomial. Then there exists an extension field E of F and a multiple root of f in $E \iff Df = 0$.

Proof. \implies : By the previous corollary, if there exists an extension field E of F and a multiple root of f in E, then f and Df are not relatively prime in F[x]. In this case, since f is irreducible, it must be that f divides Df. Hence, if $Df \neq 0$, then deg $Df \geq \deg f$. But we have seen that either deg $Df < \deg f$ or Df = 0. Thus, we must have Df = 0.

 \Leftarrow : Clearly, if Df = 0, then f is a gcd of f and Df, hence f and Df are not relatively prime in F[x].

Corollary 3.11. Let F be a field of characteristic 0 and let $f \in F[x]$ be an irreducible polynomial. Then there does not exist an extension field E of F and a multiple root of f in E. In particular, if E is an extension field of F such that f factors into linear factors in E, say

$$f = c(x - \alpha_1) \cdots (x - \alpha_n),$$

then the α_i are distinct, i.e. for $i \neq j$, $\alpha_i \neq \alpha_j$.

If char F = p > 0, then it is possible for an irreducible polynomial $f \in F[x]$ to have a multiple root in some extension field, but it takes a little effort to produce such examples. For example, it is not possible to find such an example for a finite field. The basic example arises as follows: consider the field $\mathbb{F}_p(t)$, where t is an indeterminate (here we could replace \mathbb{F}_p by any field of characteristic p). Then t is not a p^{th} power in $\mathbb{F}_p(t)$, and in fact one can show that the polynomial $x^p - t$ is irreducible in $\mathbb{F}_p(t)[x]$. Let E be an extension field of $\mathbb{F}_p(t)$ which contains a root α of $x^p - t$, so that by definition $\alpha^p = t$. Then

$$x^p - t = x^p - \alpha^p = (x - \alpha)^p,$$

because we are in characteristic p. Thus α is a multiple root of $x^p - t$, of multiplicity p.

The key property of the field $\mathbb{F}_p(t)$ which made the above example work was that t was not a p^{th} power in $\mathbb{F}_p(t)$. More generally, define a field Fof characteristic p to be perfect if every element of F is a p^{th} power, or equivalently if the Frobenius homomorphism $\sigma_p \colon F \to F$ is surjective. For example, we shall show below that a finite field is perfect. An algebraically closed field is also perfect. We also declare every field of characteristic zero to be perfect. By a problem on HW, if F is a perfect field and $f \in F[x]$ is an irreducible polynomial, then there does not exist an extension field E of F and a multiple root of f in E.