Extension Fields II: Derivatives and Multiple Roots

3 Derivatives and multiple roots

We begin by recalling the definition of a repeated root.
Definition 3.1. Let F be a field and let $\alpha \in F$. Then there is a unique integer $m \geq 0$ such that $(x-\alpha)^{m}$ divides f but $(x-\alpha)^{m+1}$ does not divide f. We define this integer m to be the multiplicity of the root α in f. Note that, by the correspondence between roots of a polynomial and its linear factors, α has multiplicity 0 in f, i.e. $m=0$ above, $\Longleftrightarrow f(\alpha) \neq 0$. More generally, if α has multiplicity m in f, then $f=(x-\alpha)^{m} g$ with $g(\alpha) \neq 0$, and conversely.

If α has multiplicity 1 in f, we call α a simple root of f. If α has multiplicity $m \geq 2$ in f, then we call α a multiple root or repeated root of f.

We would like to find conditions when a nonconstant polynomial does, or does not have a multiple root in F or in some extension field E of F. To do so, we introduce the formal derivative:

Definition 3.2. Let F be a field. Define the function $D: F[x] \rightarrow F[x]$ by the formula

$$
D\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=1}^{n} i a_{i} x^{i-1} .
$$

Here the notation $i a_{i}$ means the ring element $i \cdot a_{i}=\underbrace{a_{i}+\cdots+a_{i}}_{i \text { times }}$, with the convention that $0 a_{0}=0$. We usually write $D(f)$ as $D f$. Note that either $D f=0$ or $\operatorname{deg} D f \leq \operatorname{deg} f-1$.

Clearly, the function D is compatible with field extension, in the sense that, if $F \leq E$, then we have $D: F[x] \rightarrow F[x]$ and $D: E[x] \rightarrow E[x]$, and given $f \in F[x], D f$ is the same whether we view f as an element of $F[x]$ or of $E[x]$. Also, an easy calculation shows that:

Proposition 3.3. $D: F[x] \rightarrow F[x]$ is F-linear.
This result is equivalent to the sum rule: for all $f, g \in F[x], D(f+g)=$ $D f+D g$ as well as the constant multiple rule: for all $f \in F[x]$ and $c \in F$, $D(c f)=c D f$. Once we know that D is F-linear, it is specified by the fact $D(1)=0$ and, that, for all $i>0, D x^{i}=i x^{i-1}$. Also, viewing D as a homomorphism of abelian groups, we can try to compute

$$
\operatorname{Ker} D=\{f \in F[x]: D f=0\} .
$$

Our expectation from calculus is that a function whose derivative is 0 is a constant. But if char $F=p>0$, something strange happens:

Proposition 3.4. If $\operatorname{Ker} D=\{f \in F[x]: D f=0\}$, then

$$
\operatorname{Ker} D= \begin{cases}F, & \text { if } \operatorname{char} F=0 \\ F\left[x^{p}\right], & \text { if } \operatorname{char} F=p>0\end{cases}
$$

Here $F\left[x^{p}\right]=\left\{\sum_{i=0}^{n} a_{i} x^{i p}: a_{i} \in F\right\}$ is the subring of all polynomials in x^{p}.
Proof. Clearly, $f=\sum_{i=0}^{n} a_{i} x^{i}$ is in Ker $D \Longleftrightarrow$ for every i such that the coefficient a_{i} is nonzero, the monomial $i x^{i-1}=0$. In case char $F=0$, this is only possible if $i=0$, in other words $f \in F$ is a constant polynomial. In case char $F=p>0$, this happens exactly when $p \mid i$ for every i such that $a_{i} \neq 0$. This is equivalent to saying that f is a polynomial in x^{p}.

As is well-known in calculus, D is not a ring homomorphism. In other words, the derivative of a product of two polynomials is not in general the product of the derivatives. Instead we have:

Proposition 3.5 (The product rule). For all $f, g \in F[x]$,

$$
D(f \cdot g)=D f \cdot g+f \cdot D g .
$$

Proof. If $f=x^{a}$ and $g=x^{b}$, then we can verify this directly:

$$
\begin{aligned}
D\left(x^{a} x^{b}\right) & =D\left(x^{a+b}\right)=(a+b) x^{a+b-1} ; \\
\left(D x^{a}\right) x^{b}+x^{a}\left(D x^{b}\right) & =a x^{a-1} x^{b}+b x^{a} x^{b-1}=(a+b) x^{a+b-1} .
\end{aligned}
$$

The general case follows from this by writing f and g as sums of monomials and expanding (but is a little messy to write down). Another approach using formal difference quotients is in the HW.

If R is a ring, a function $d: R \rightarrow R$ which is an additive homomorphism (i.e. $d(r+s)=d(r)+d(s)$ for all $r, s \in R$) satisfying $d(r s)=d(r) s+r d(s)$ for all $r, s \in R$ is called a derivation of R. Thus, D is a derivation of $F[x]$.

As a corollary of the product rule, we obtain:
Corollary 3.6 (The power rule). For all $f \in F[x]$ and $n \in \mathbb{N}$,

$$
D(f)^{n}=n(f)^{n-1} D f
$$

Proof. This is an easy induction using the product rule and starting with the case $n=1$ (or 0).

The connection between derivatives and multiple roots is as follows:
Lemma 3.7. Let $f \in F[x]$ be a nonconstant polynomial and let E be an extension field of F. Then $\alpha \in E$ is a multiple root of $f \Longleftrightarrow f(\alpha)=$ $D f(\alpha)=0$.

Proof. Write $f=(x-\alpha)^{m} g$ with m equal to the multiplicity of α in f and $g \in F[x]$ a polynomial such that $g(\alpha) \neq 0$. If $m=0$, then $f(\alpha)=g(\alpha) \neq 0$. Otherwise,

$$
D f=m(x-\alpha)^{m-1} g+(x-\alpha)^{m} D g .
$$

If $m=1$, then $D f(\alpha)=g(\alpha) \neq 0$. If $m \geq 2$, then $f(\alpha)=D f(\alpha)=0$. Thus we see that $\alpha \in F$ is a multiple root of $f \Longleftrightarrow m \geq 2 \Longleftrightarrow$ $f(\alpha)=D f(\alpha)=0$.

In practice, an (unknown) root of f will only exist in some (unknown) extension field E of F. We would like to have a criterion for when a polynomial f has some multiple root α in some extension field E of F, without having to know what E and α are explicitly. In order to find such a criterion, we begin with the following lemma, which says essentially that divisibility, greatest common divisors, and relative primality are unchanged after passing to extension fields.

Lemma 3.8. Let E be an extension field of a field F, and let $f, g \in F[x]$, not both 0 .
(i) $f \mid g$ in $F[x] \Longleftrightarrow f \mid g$ in $E[x]$.
(ii) The polynomial $d \in F[x]$ is a gcd of f, g in $F[x] \Longleftrightarrow d$ is a gcd of f, g in $E[x]$.
(iii) The polynomials f, g are relatively prime in $F[x] \Longleftrightarrow f, g$ are relatively prime in $E[x]$.

Proof. (i): \Longrightarrow : obvious. \Longleftarrow : We can assume that $f \neq 0$, since otherwise $f \mid g$ (in either $F[x]$ or $E[x]) \Longleftrightarrow g=0$. Suppose that $f \mid g$ in $E[x]$, i.e. that $g=f h$ for some $h \in E[x]$. We must show that $h \in F[x]$. By long division with remainder in $F[x]$, there exist $q, r \in F[x]$ with either $r=0$ or $\operatorname{deg} r<\operatorname{deg} f$, such that $g=f q+r$. Now, in $E[x]$, we have both $g=f h$ and $g=f q+r$. By uniqueness of long division with remainder in $E[x]$, we must have $h=q$ (and $r=0$). In particular, $h=q \in F[x]$, as claimed.
(ii): \Longrightarrow : Let $d \in F[x]$ be a gcd of f, g in $F[x]$. Then, by (i), since $d \mid f$, $d \mid g$ in $F[x], d|f, d| g$ in $E[x]$. Moreover, there exist $a, b \in F[x]$ such that $d=a f+b g$. Now suppose that $e \in E[x]$ and that $e|f, e| g$ in $E[x]$. Then $e \mid a f+b g=d$. It follows that d satisfies the properties of being a gcd in $E[x] . \Longleftarrow$: Let $d \in F[x]$ be a gcd of f, g in $E[x]$. Then $d|f, d| g$ in $E[x]$, hence by (i) $d|f, d| g$ in $F[x]$. Suppose that $e \in F[x]$ and that $e|f, e| g$ in $F[x]$. Then $e|f, e| g$ in $E[x]$. Hence $e \mid d$ in $E[x]$. Since both $e, d \in F[x]$, it again follows by (i) that $e \mid d$ in $F[x]$. Thus d is a gcd of f, g in $F[x]$.
(iii): The polynomials f, g are relatively prime in $F[x] \Longleftrightarrow 1 \in F[x]$ is a gcd of f and g in $F[x] \Longleftrightarrow 1 \in F[x]$ is a gcd of f and g in $F[x]$, by (ii), $\Longleftrightarrow f, g$ are relatively prime in $E[x]$.

Corollary 3.9. Let $f \in F[x]$ be a nonconstant polynomial. Then there exists an extension field E of F and a multiple root of f in $E \Longleftrightarrow f$ and $D f$ are not relatively prime in $F[x]$.

Proof. \Longrightarrow : If E and α exist, then, by Lemma 3.7, f and $D f$ have a common factor $x-\alpha$ in $E[x]$ and hence are not relatively prime. Thus by Lemma $3.8 f$ and $D f$ are not relatively prime in $F[x]$.
\Longleftarrow : Suppose that f and $D f$ are not relatively prime in $F[x]$, and let g be a common nonconstant factor of f and $D f$. There exists an extension field E of F and an $\alpha \in E$ which is a root of g. Then α is a common root of f and $D f$, and hence a multiple root of f.

We now apply the above to an irreducible polynomial $f \in F[x]$.
Corollary 3.10. Let $f \in F[x]$ be an irreducible polynomial. Then there exists an extension field E of F and a multiple root of f in $E \Longleftrightarrow D f=0$.

Proof. $\Longrightarrow:$ By the previous corollary, if there exists an extension field E of F and a multiple root of f in E, then f and $D f$ are not relatively prime in $F[x]$. In this case, since f is irreducible, it must be that f divides $D f$. Hence, if $D f \neq 0$, then $\operatorname{deg} D f \geq \operatorname{deg} f$. But we have seen that either $\operatorname{deg} D f<\operatorname{deg} f$ or $D f=0$. Thus, we must have $D f=0$.
$\Longleftarrow:$ Clearly, if $D f=0$, then f is a gcd of f and $D f$, hence f and $D f$ are not relatively prime in $F[x]$.

Corollary 3.11. Let F be a field of characteristic 0 and let $f \in F[x]$ be an irreducible polynomial. Then there does not exist an extension field E of F and a multiple root of f in E. In particular, if E is an extension field of F such that f factors into linear factors in E, say

$$
f=c\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right),
$$

then the α_{i} are distinct, i.e. for $i \neq j, \alpha_{i} \neq \alpha_{j}$.
If char $F=p>0$, then it is possible for an irreducible polynomial $f \in F[x]$ to have a multiple root in some extension field, but it takes a little effort to produce such examples. For example, it is not possible to find such an example for a finite field. The basic example arises as follows: consider the field $\mathbb{F}_{p}(t)$, where t is an indeterminate (here we could replace \mathbb{F}_{p} by any field of characteristic p). Then t is not a $p^{\text {th }}$ power in $\mathbb{F}_{p}(t)$, and in fact one can show that the polynomial $x^{p}-t$ is irreducible in $\mathbb{F}_{p}(t)[x]$. Let E be an extension field of $\mathbb{F}_{p}(t)$ which contains a root α of $x^{p}-t$, so that by definition $\alpha^{p}=t$. Then

$$
x^{p}-t=x^{p}-\alpha^{p}=(x-\alpha)^{p},
$$

because we are in characteristic p. Thus α is a multiple root of $x^{p}-t$, of multiplicity p.

The key property of the field $\mathbb{F}_{p}(t)$ which made the above example work was that t was not a $p^{\text {th }}$ power in $\mathbb{F}_{p}(t)$. More generally, define a field F of characteristic p to be perfect if every element of F is a $p^{\text {th }}$ power, or equivalently if the Frobenius homomorphism $\sigma_{p}: F \rightarrow F$ is surjective. For example, we shall show below that a finite field is perfect. An algebraically closed field is also perfect. We also declare every field of characteristic zero to be perfect. By a problem on HW, if F is a perfect field and $f \in F[x]$ is an irreducible polynomial, then there does not exist an extension field E of F and a multiple root of f in E.

