Extension Fields II: Derivatives and Multiple Roots

3 Derivatives and multiple roots

We begin by recalling the definition of a repeated root.

Definition 3.1. Let I’ be a field and let o« € F. Then there is a unique
integer m > 0 such that (z — )™ divides f but (z — a)™*! does not divide
f- We define this integer m to be the multiplicity of the root v in f. Note
that, by the correspondence between roots of a polynomial and its linear
factors, o has multiplicity 0 in f, i.e. m = 0 above, <= f(«a) # 0. More
generally, if a has multiplicity m in f, then f = (z — a)™g with g(a) # 0,
and conversely.

If o has multiplicity 1 in f, we call a a simple root of f. If a has
multiplicity m > 2 in f, then we call a a multiple root or repeated root of

f.

We would like to find conditions when a nonconstant polynomial does,
or does not have a multiple root in F' or in some extension field £ of F'. To
do so, we introduce the formal derivative:

Definition 3.2. Let F' be a field. Define the function D: F|x| — F[x] by

the formula N .
D(Z a;zt) = Z ia;rtTL.
i=0 i=1

Here the notation ¢a; means the ring element i - a; = a; + - - - + a;, with the
~—_———
7 times
convention that O0ag = 0. We usually write D(f) as Df. Note that either
Df=0ordegDf <degf —1.

Clearly, the function D is compatible with field extension, in the sense
that, if F < E, then we have D: Fx] — F[z] and D: E[z] — FElxz], and
given f € Flz|, Df is the same whether we view f as an element of F[z] or
of Ex]. Also, an easy calculation shows that:
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Proposition 3.3. D: Fx] — F|x] is F-linear. O]

This result is equivalent to the sum rule: for all f,g € F[z], D(f +g) =
Df 4 Dg as well as the constant multiple rule: for all f € F[z] and ¢ € F,
D(cf) = eDf. Once we know that D is F-linear, it is specified by the fact
D(1) = 0 and, that, for all i > 0, Da' = iz'~!. Also, viewing D as a
homomorphism of abelian groups, we can try to compute

KerD ={f € Flz|: Df = 0}.

Our expectation from calculus is that a function whose derivative is 0 is
a constant. But if char ' = p > 0, something strange happens:

Proposition 3.4. If Ker D = {f € Fz] : Df = 0}, then

Ker D — F, if char F' = 0;
F[zP], ifcharF =p> 0.

Here F[aP] = {31 ja;z'™ : a; € F} is the subring of all polynomials in xP.

Proof. Clearly, f = > ja;x’ is in Ker D <= for every i such that the
coefficient a; is nonzero, the monomial iz'~' = 0. In case char F = 0, this
is only possible if ¢ = 0, in other words f € F' is a constant polynomial. In
case char F' = p > 0, this happens exactly when pl|i for every i such that
a; # 0. This is equivalent to saying that f is a polynomial in z?. O

As is well-known in calculus, D is not a ring homomorphism. In other
words, the derivative of a product of two polynomials is not in general the
product of the derivatives. Instead we have:

Proposition 3.5 (The product rule). For all f,g € F[z],
D(f-9)=Df-g+f-Dy.
Proof. If f = 2® and ¢g = z°, then we can verify this directly:
D(2%2) = D(z9+?) = (a + b1,
(Dz%)z’ + 2%(Da’) = az® 12’ + ba®2® = (a + b)z? 071

The general case follows from this by writing f and g as sums of monomials
and expanding (but is a little messy to write down). Another approach using
formal difference quotients is in the HW. O
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If R is a ring, a function d: R — R which is an additive homomorphism
(i.e. d(r +s) = d(r) + d(s) for all r,s € R) satisfying d(rs) = d(r)s + rd(s)
for all 7, s € R is called a derivation of R. Thus, D is a derivation of F'[z].

As a corollary of the product rule, we obtain:

Corollary 3.6 (The power rule). For all f € Flz] and n € N,
D(f)" =n(f)""'Df.

Proof. This is an easy induction using the product rule and starting with
the case n =1 (or 0). O

The connection between derivatives and multiple roots is as follows:

Lemma 3.7. Let f € Flz]| be a nonconstant polynomial and let E be an
extension field of F. Then o € E is a multiple root of f <— f(a) =
Df(a)=0.

Proof. Write f = (z — a)™g with m equal to the multiplicity of o in f and
g € Flz] a polynomial such that g(«) # 0. If m = 0, then f(a) = g(a) # 0.
Otherwise,

Df =m(z —a)™" g+ (z — a)™Dg.

If m = 1, then Df(a) = g(a) # 0. If m > 2, then f(a) = Df(a) = 0.
Thus we see that a € F' is a multiple root of f <— m > 2
f(a) = Df(a) = 0. O

In practice, an (unknown) root of f will only exist in some (unknown)
extension field F of F'. We would like to have a criterion for when a polyno-
mial f has some multiple root « in some extension field E of F', without
having to know what E and « are explicitly. In order to find such a criterion,
we begin with the following lemma, which says essentially that divisibility,
greatest common divisors, and relative primality are unchanged after passing
to extension fields.

Lemma 3.8. Let E be an extension field of a field F, and let f,g € Flz],
not both 0.

(i) f|g in Flz] <~ f‘g in Elx].

(ii) The polynomial d € F[z] is a ged of f,g in Flx] <= d is a ged of
f,g in E[z].

(iii) The polynomials f,g are relatively prime in Fx] <= f,g are rela-
tiwely prime in E[z].
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Proof. (i): == : obvious. <= : We can assume that f # 0, since
otherwise f’g (in either Fx] or E[z]) <= ¢ = 0. Suppose that f‘g in
E[z], i.e. that ¢ = fh for some h € E[x]. We must show that h € F[z].
By long division with remainder in F'[z], there exist ¢, € F[z] with either
r =0 or degr < deg f, such that g = fg + r. Now, in E[z], we have both
g = fh and g = fq+ r. By uniqueness of long division with remainder in
E[z], we must have h = ¢ (and r = 0). In particular, h = ¢ € F[z], as
claimed.

(ii): = : Let d € Fx] be a ged of f, g in F[z]. Then, by (i), since d‘f,
d|lg in F[z], d|f, d|g in E[z]. Moreover, there exist a,b € F[z] such that
d = af + bg. Now suppose that e € E[z| and that e|f, e’g in E[z]. Then
e‘a f+bg = d. It follows that d satisfies the properties of being a ged in
Elz]. <= : Let d € F|x] be a gcd of f,g in E[x]. Then d|f, d‘g in Elz],
hence by (i) d|f, d|g in F[z]. Suppose that e € F[z] and that e|f, e|g in
F[z]. Then e|f, e‘g in Elz]. Hence e‘d in E[x]. Since both e,d € F[x], it
again follows by (i) that e|d in F[z]. Thus d is a gcd of f, g in Flz].

(iii): The polynomials f, g are relatively prime in F|x] <= 1€ F[x] is
agedof fand gin Flz] <= 1€ Flx]is a ged of f and g in F[z], by (ii),
< f,g are relatively prime in E[x]. O

Corollary 3.9. Let f € F[z] be a nonconstant polynomial. Then there
exists an extension field E of F' and a multiple root of f in E <— [ and
Df are not relatively prime in Fx].

Proof. = : If E and « exist, then, by Lemma 3.7, f and Df have a
common factor z — o in E[z]| and hence are not relatively prime. Thus by
Lemma 3.8 f and D f are not relatively prime in F[z].

<= : Suppose that f and Df are not relatively prime in F[z], and let
g be a common nonconstant factor of f and Df. There exists an extension
field F of F and an a € E which is a root of g. Then « is a common root
of f and D f, and hence a multiple root of f. O

We now apply the above to an irreducible polynomial f € F[z].

Corollary 3.10. Let f € F[x] be an irreducible polynomial. Then there
exists an extension field E of F' and a multiple root of f in E <— Df = 0.

Proof. = : By the previous corollary, if there exists an extension field
E of F and a multiple root of f in E, then f and Df are not relatively
prime in F[z|. In this case, since f is irreducible, it must be that f divides
Df. Hence, if Df # 0, then deg Df > deg f. But we have seen that either
deg Df < deg f or Df = 0. Thus, we must have Df = 0.

16



<= Clearly, if Df =0, then f is a gcd of f and Df, hence f and D f
are not relatively prime in F'[z]. O

Corollary 3.11. Let F be a field of characteristic 0 and let f € Flx| be an
wrreducible polynomial. Then there does not exist an extension field E of F
and a multiple root of f in E. In particular, if E is an extension field of F
such that f factors into linear factors in E, say

f=cdz—a)(z—an),
then the «; are distinct, i.e. for i # j, oy # o. O

If char ' = p > 0, then it is possible for an irreducible polynomial
[ € Flx] to have a multiple root in some extension field, but it takes a little
effort to produce such examples. For example, it is not possible to find such
an example for a finite field. The basic example arises as follows: consider
the field Fj,(t), where ¢ is an indeterminate (here we could replace F, by
any field of characteristic p). Then ¢ is not a p'® power in F,(¢), and in fact
one can show that the polynomial 2P — ¢ is irreducible in F,(¢)[z]. Let E
be an extension field of F,,(¢) which contains a root « of 2P —t, so that by
definition o = ¢. Then

2P —t=2aP —aof = (v —a)?,

because we are in characteristic p. Thus « is a multiple root of 2P — ¢, of
multiplicity p.

The key property of the field F,(¢) which made the above example work
was that ¢ was not a p'" power in F,(t). More generally, define a field F
of characteristic p to be perfect if every element of F is a p'" power, or
equivalently if the Frobenius homomorphism o,: F' — F' is surjective. For
example, we shall show below that a finite field is perfect. An algebraically
closed field is also perfect. We also declare every field of characteristic zero
to be perfect. By a problem on HW, if F' is a perfect field and f € Flx] is
an irreducible polynomial, then there does not exist an extension field E of
F and a multiple root of f in E.
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