Rings \((R, +, \cdot) \)

1. \((R, +)\) abelian group, \(0, (-a) + a = 0\)
2. \(\cdot\) is associative, has identity \(1\), \(1 \cdot a = a \cdot 1 = a\) (unital rings)
3. Distributivity \((a+b) \cdot c = ac + bc\), \(a(b+c) = ab + ac\)

\(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, M_n(R), \mathbb{Z}[\frac{1}{n}], \mathbb{Z}/n\)

Matrices \(M_n(R)\) are rings under matrix addition and multiplication.

Residues \(\mathbb{Z}/n\) under addition.

Commutative rings: \(ab = ba\) for all \(a, b \in R\)

\(M_n(R)\) is a commutative ring.

Ring of polynomials \(R[x]\)

\[R[x] = \{ \sum_{i=0}^{n} a_i x^i | a_i \in R \} \]

- \(a_0\) constants
- \(a_0 + a_1 x\) linear
- \(a_0 + a_1 x + a_2 x^2\) quadratic
- \(a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots\)
- \(a_0 + a_1 x + \ldots + a_n x^n\) degree \(n\) if \(a_n \neq 0\)

How to turn \(R[x]\) into a ring?

Need addition, multiplication of polynomials

Addition should be term-wise

\[f(x) = a_0 + a_1 x + a_2 x^2 \]
\[g(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 \]

\[f(x) + g(x) = (a_0 + b_0) + (a_1 + b_1) x + (a_2 + b_2) x^2 + (a_3 + b_3) x^3 \]

Exercise:

\[\deg(f(x) + g(x)) \leq \max(\deg(f(x)), \deg(g(x))) \]

In this example:

\[\deg f = 2, \quad \deg g = 3 \]

\[\deg(f + g) = 3 \]

If \(\deg f \neq \deg g\) then \(\deg(f + g) = \max(\deg f, \deg g)\) is \(\deg f\) or \(\deg g\) bigger than the other?

What if \(\deg f = \deg g\)?

Convenient to pad \(f(x), g(x)\) by zeros for uniform definition.
\[f(x) = a_0 + a_1 x + a_2 x^2 \rightarrow \hat{f} = (a_0, a_1, a_2, 0, 0, 0, \ldots) \]

append in finitely many zeros

\[g(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 \rightarrow \hat{g} = (b_0, b_1, b_2, b_3, 0, 0, \ldots) \]

\[f(x) = a_0 + a_1 x + \ldots + a_n x^n \rightarrow \hat{f} = (a_0, a_1, \ldots, a_n, 0, 0, 0, \ldots) \]

\[g = (b_0, b_1, \ldots, b_m, 0, 0, \ldots) \]

\[f + g = (a_0 + b_0, a_1 + b_1, a_2 + b_2, \ldots, 0, 0, \ldots) \]

\[\text{Eventually all zeros} \]

\[f(x) = \sum_{i=0}^{n} a_i x^i , \quad g(x) = \sum_{j=0}^{m} b_j x^j \]

\[f(x) + g(x) = \sum_{i=0}^{\max(n,m)} (a_i + b_i^*) x^i \]

Eventually all zeros at either a's or b's.

Addition

Addition turns \(R[x] \) into an abelian group.

\[f(x) = 0 \quad \text{additive identity}, \quad 0 + g(x) = g(x) \]

Term-wise addition

How to multiply?

Should have \(x^n \cdot x^m = x^{n+m} \)

Then extend using distributive laws

\[(a_0 + a_3 x^3) x^2 = a_0 x^2 + a_3 x^5 \quad \text{example} \]

\[(a_0 + a_1 x + a_n x^n) (b_0 + b_1 x + b_m x^m) = a_0 b_0 + a_0 b_1 x + a_0 b_m x^m + a_1 b_0 x + a_1 b_m x^m + a_n b_m x^{n+m} \]

\[a_n x^n \text{ - a monomial.} \]
\[
\left(\sum_{i=0}^{n} a_i x^i \right) \left(\sum_{j=0}^{m} b_j x^j \right) = \sum_{i=0}^{n} \sum_{j=0}^{m} a_i b_j x^{i+j} =
\]
\[\delta(x) \quad g(x)\]

\[
= \sum_{k=0}^{n+m} \left(\sum_{i=0}^{k} a_i b_{k-i} \right) x^k =
\]

\[
= \sum_{k=0}^{n} \sum_{i+j=k} \left(\sum_{j=0}^{k} a_i b_{i-j} \right) x^k
\]

\[\text{Exercise: write this down for } n=2, \quad m=3 \text{ and think through the form of coefficients of } x^k \]

and what these sums look like

\[k=4: \quad a_0b_4 + a_1b_3 + a_2b_2 + a_3b_1 + a_4b_0 \quad k+1 \text{ terms (5 terms)}\]

\[\text{why is multiplication associative?} \quad (fg)h = f(gh) \]

\[
\sum a_i x^i \cdot g(x) = \sum b_j x^j \quad h(x) = \sum c_k x^k
\]

\[
(fg)h = \sum_{e} \left(\sum_{i+j=k} (a_i b_j) c_k \right) x^e
\]

\[
a_i x^i \cdot b_j x^j \cdot c_k x^k \rightarrow a_i b_j c_k x^{i+j+k}
\]

\[
(fgh) = \sum_{e} \left(\sum_{i+j=k} a_i (b_j c_k) \right) x^e
\]

\[
(a_i b_j c_k) x^{i+j+k} \rightarrow (a_i b_j c_k) x^{i+j+k}
\]

\[
(a_i b_j c_k) x^{i+j+k} \rightarrow (a_i b_j c_k) x^{i+j+k}
\]

\[
\text{true for monomials, then distributivity}
\]

\[
(a_i b_j c_k) = a_i (b_j c_k)
\]
Exercise) \(R \) is a subring of \(R[x] \), \(R \subseteq R[x] \), of constant polynomials.

2) \(R[x] \) is commutative iff (if and only if) \(R \) is.

(anyway, we’ll study only commutative rings for most of this course)

Noncommutative rings have even higher complexity. You’ve spent an entire semester course (linear algebra) studying elements of matrix rings \(M_n (R), M_n (C) \) and some variations (nxm matrices, linear maps \(V \rightarrow W \) between different vector spaces) + elements there + applications.

Group of invertible elements of a ring

\[R^* = \{ a \in R : \exists b, \ ab = ba = 1 \} \quad b = a^{-1} \]

Prop \(R^* \) is a group under multiplication

1) Contains \(1 \), \(1^{-1} = 1 \) \(1 \cdot 1 = 1 \).

2) If \(a_1, a_2 \in R^* \Rightarrow \exists b_1, b_2 \ a_1 b_1 = b_1 a_1 = 1 \quad a_2 b_2 = b_2 a_2 = 1 \)
 \[a_1 a_2 \mapsto b_2 b_1 \quad a_1 a_2 b_2 b_1 = a_1 b_1 = 1 \]
 \[b_2 b_1 a_1 a_2 = b_2 a_2 = 1 \]

3) If \(a \in R^* \) take \(b \), declare \(a^{-1} \).

Why is \(b \) unique?

We result that the inverse in a group is unique or prove.

\(R^* \) is not all of \(R \), \(0 \in R^* \) unless up to date R was

\[R = \{ 0 \} \]
Examples 1) \(\mathbb{Z}^* = \{ \pm 1 \} \)

2) \(\mathbb{Q}^* = \) all nonzero rationals, \(\left(\frac{a}{m} \right)^{-1} = \frac{m}{a} \), \(\mathbb{Q}^* = \mathbb{Q} \setminus \{0\} \)

3) \(\mathbb{R}^* = \) all nonzero reals, \(\mathbb{R}^* = \mathbb{R} \setminus \{0\} \)

4) \(\mathbb{C}^* = \) all nonzero complex numbers, \(\mathbb{C}^* = \mathbb{C} \setminus \{0\} \)

5) \(M_n(\mathbb{R})^* = \mathbb{GL}(n, \mathbb{R}) \) or \(\mathbb{GL}(n, \mathbb{R}) \) - invertible n x n matrices

Examples 2), 3), 4) above are special (all nonzero elements are invertible)

Definition: A commutative ring \(R \) is called a field if \(R^* = R \setminus \{0\} \).

That is, if every nonzero element of \(R \) is invertible.

\(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) are fields.

(soon we'll see that linear algebra can be done over any field)

\(\mathbb{Z} \) is not a field.

\(\mathbb{Z}/n \) is sometimes a field.

\(n = 5 \) \(\mathbb{Z}/5 \) residues \(0, 1, 2, 3, 4 \)

Invertible \(\{1, 2, 3, 4\} \)

\(\left(\mathbb{Z}/5 \right)^* = \{1, 2, 3, 4\} \)

\(2 \cdot 3 \equiv 6 \equiv 1 \pmod{5} \)

4 \equiv -1 \pmod{5} \)

\((-1)(-1) = 1 \)

\(2^{-1} \equiv 3 \pmod{5} \)

Theorem: \(\mathbb{Z}/n \) is a field if and only if \(n \) is prime.

(try to prove, will discuss soon)

\(\mathbb{Z}/2, \mathbb{Z}/3, \mathbb{Z}/5, \mathbb{Z}/7, \mathbb{Z}/11 \) fields.

Common notation for a field: \(F \)
Let R, S be rings.

Definition. A **ring homomorphism** $\phi : R \to S$ is a map (or function) from set R to set S such that:

1. $\phi(a + b) = \phi(a) + \phi(b)$ for all $a, b \in R$.
2. $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in R$.
3. $\phi(1) = 1$.

It takes identity in R to identity in S.

In some books, (3) is omitted. We keep it.

Examples.

- **a)** Inclusions of rings $R \subseteq S$.
 \[R \hookrightarrow S \quad \phi(1) = 1. \]

 \[\varphi \quad \begin{array}{c} \text{a) Inclusions of rings } R \subseteq S \quad R \hookrightarrow S \quad \varphi(1) = 1. \end{array} \]

- **b)** $\varphi : R \to \{0\}$ is a ring homomorphism.

- **c)** $\varphi : \mathbb{Z} \to \mathbb{Z}/n$ is a ring homomorphism.

 \[\varphi(a + n\mathbb{Z}) = a + n\mathbb{Z} \quad \text{residue mod } n \quad \varphi(a) = a \]

 \[\varphi(a + b) = a + b + n\mathbb{Z} = (a + n\mathbb{Z}) + (b + n\mathbb{Z}) \]

 \[\varphi(ab) = ab + n\mathbb{Z} = (a + n\mathbb{Z})(b + n\mathbb{Z}) \quad \text{matches our definition of product of cosets.} \]

 \[\varphi(1) = 1 \mod(n) \]

 \[\varphi \text{ is a surjective homomorphism. Not an isomorphism.} \]
Direct product of rings \(R_1, R_2 \) rings

\(R_1 \times R_2 \) Cartesian product of sets

\[R_1 \times R_2 = \{ (a, b) \mid a \in R_1, b \in R_2 \} \]

addition, multiplication term-wise

\[(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)\]

\[(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, b_1 b_2)\]

\((1, 1)\) is identity

\((0, 0)\) is zero

Exercise 1) \(R_1 \times R_2 \) is a ring

2) \(R_1 \times R_2 \) is commutative if both \(R_1, R_2 \) are commutative

3) \(R_1 \times R_2 \xrightarrow{\alpha} R_1 \)

\((a, b) \xrightarrow{\alpha} a\)

\(\alpha\) is a homomorphism

\(R_1 \times R_2 \xrightarrow{\beta} R_2 \)

\((a, b) \xrightarrow{\beta} b\)

\(\beta\) is a homomorphism

but \(R_1 \rightarrow R_1 \times R_2 \)

\(a \mapsto (a, 0)\)

is not a homomorphism. Why?

Elements \((1, 0), (0, 1)\) are special

\((1, 0)^2 = (1, 0) (1, 0) = (1, 0)\) itself

\((0, 1)^2 = (0, 1)\)

\((1, 1) = (1, 0) + (0, 1)\)

\(e \in R\) is called an idempotent

If \(e^2 = e\), \(0, 1\) are idempotents
e in R is called an idempotent if $e^2 = e$.

0, 1 are idempotents. Sometimes, a ring may have additional idempotents.

(a) In direct product $R_1 \times R_2$, $(1,0), (0,1)$ are idempotents.

Exercise. e is an idempotent \Rightarrow $1-e$ is an idempotent.

Note: e and $(1-e)$ annihilate each other.

\[
e(1-e) = e - e^2 = e - e = 0
\]

\[
(1-e)e = e - e^2 = 0
\]

Complementary idempotents

(b) In $\mathbb{Z}/6\mathbb{Z}$ have usual idempotents 0, 1. Also

$3^2 = 9 \equiv 3 \pmod{6}$

$4^2 = 16 \equiv 4 \pmod{6}$.

$3 + 4 = 1$ complementary idempotents

(Continued. Note's due to $\mathbb{Z}/6 = \mathbb{Z}/2 \times \mathbb{Z}/3$ as rings)

(c) $M_n(\mathbb{R})$ projection operators $P : P^2 = P$

are idempotents

\[
\begin{array}{c}
\downarrow \quad \downarrow P \\
W \quad \uparrow P
\end{array}
\]

$P(w) = 0$

$P(w) = w$

$\forall w \in W$