Autornorphisms of fields is a rigid situation (not many automorphisms).

Autornorphisms of

\[b: R \rightarrow R \text{ bijection, respects any structure} \]

Example

\[\text{Aut}(\mathbb{R}) = \{1\} \text{ identity is only ring isomorphism} \]

\[\mathbb{Z} \text{ is both a ring & abelian group, specify which structure you consider} \]

\[\text{Example} \quad \text{Aut}(\mathbb{Z} \times \mathbb{Z}) = C_2 \quad \text{id, perumute terms, direct product of rings} \]

2) \[\text{Aut}(\mathbb{Z} \times \mathbb{Q}) = \{1\} \text{ check that } b(e) = e \text{ if } e \text{ is an identity} \]

\[\text{classify identity in } \mathbb{Z} \times \mathbb{Q} \]

\[(1,0), (0,1), (0,0), (0,1) \]

\[\text{prove any automorphism fixes each of them} \]

\[\text{zero identity} \]

Consider group \(R^* \) of invertible elements of \(R \).

Suppose \(R \) is a non-commutative ring

Then each \(c \in R^* \) acts on \(R \) by conjugation

\[a \mapsto cac^{-1}, \quad a \in R \]

Check this is a homomorphism

Get a homomorphism \(R^* \xrightarrow{\phi} \text{Aut}(R) \)

\[\text{by } (a) \quad \phi_c(a) = cac^{-1} \]

Remark: Center of \(R \), denoted \(Z(R) \), is \{ \(a \mid a = ba \text{ for all } b \in R \} \)

\[\text{Example} \quad Z(R) \text{ is a commutative ring } ZR, \text{ for any ring } R \text{ a subring} \]

\[Z(R) = R \text{ if } R \text{ is commutative} \]

Check that \(\text{ker } \phi = R^* \cap Z(R) \)

\[\phi \text{ is given by (a) } \]

\[\text{Subgroup of } R^* \]
Exercises. Let $M_n(R)$ be the matrix algebra, R commutative.

Then $\mathbb{Z}(M_n(R)) = R \cdot \text{Id}$, multiples of identity matrix.

For general, noncommutative, R, $\mathbb{Z}(M_n(R)) \neq \mathbb{Z}(R)$.

Often consider F-algebras, F a field. (Assume $R \neq 0$)

Def. An F-algebra R is any R with a homomorphism $F \rightarrow R$. ϕ is injective, field F is a subring of R.
R acquires a structure of F-vector space, can be linear algebra, convenient.

Examples. $R = F, R = F/F$ - field that contains F, $F[x], F[x, y], \ldots$

F/I, where I is any ideal, R an F-algebra.

$F[x]/I = F[x]/(f(x))$, some polynomial $f(x)$.

If f is reducible, $R = F[x]/(f)$ is not a field.

Example. $R = F[x]/(x^2)$, $\text{but } (R/F) \neq 0$.
"not a field" all divisors of x

$b(x)$ satisfies $b(x) = b(x^2) = 0$.
$b(x) = \lambda x^k$, $\lambda \in F^*$, $k = 0$ not an automorphism.

$\Rightarrow \text{not } (R/F) \neq F^k$ if $|F| > 0$, get ∞ many automorphisms.

Holds true for rigid, thus cannot happen.
$[F:F] = 2 \Rightarrow \text{Gal } (E/F) = C_2$ or $\{1\}$

Dual.

Exercise. Let $R = F[x]/(x^3)$, $b(x)$ must satisfy $b(x^3) = 0$.

$\Rightarrow b(x) = u(x) + v(x^2)$, $u, v \in F$, not an automorphism.

get a large group of automorphisms of R
Reminder: \(E/F \) field extension \(b \in \text{Gal}(E/F) \),

take algebraic \(Z \in E \), \(a_0 + a_1 x + \ldots + a_n x^n = 0 \), \(a_i \in F \), \(f(x) = 0 \)

\(f(x) = \text{irr}(d, F) = a_n x^n + a_0 \)

\(E \rightarrow \bar{E} \)

\(\overline{\text{Gal}(E/F)} \)

\(b(x) \) has the same irreducible polynomial \(\text{irr}(d, F) = \text{irr}(d', F) = f(x) \).

\(f \) has at most \(n \) roots \(d_1, \ldots, d_m \) in \(E \).

at most \(n \) choices for \(b(x) \in \{ d_1, \ldots, d_m \} \).

If \(E = E(d) \), look at homomorphisms into \(K/F \)

\(F(K) = E \rightarrow K \)

\(b(E) \subset K \) subfield \(b|F = \text{id} \) at most \(n \) homomorphisms

where \(m \) is the \# of roots of \(f \) in \(K \).

\(E \rightarrow K \), \(b|F = \text{id} \)

\(\text{such homomorphisms, } b, \text{ are in a bijection } \leftrightarrow \text{roots of } f(x) \text{ in } K. \)

\(\downarrow \)

got a bound on \# of homomorphisms, at most \(n = \deg f \).

\([F(E):E] = n = \deg f \)

Can trick, if we have

\(E = F(d_1, d_2) \)

\(n_1 \)

\(\text{at most } [F(d_1):F] = n_1 \) homomorphisms (extension)

\(n_2 \)

\(\text{Fix } d_1, \text{ at most } n_2 = [F(d_1, d_2):F(d_1)] \)

\(\text{extensions to } d_2 \)

\(d_1 \in \text{irr}(d_1, F) \) \(\deg_{F(d_1)} b_1 = n_1 \)

\(d_2 \in \text{irr}(d_2, F(d_1)) \) \(\deg_{F(d_1)} b_2 = n_2 \)

\(n_1, n_2 = [F(d_1, d_2):F(d_1)] [F(d_1):F] = [F(d_1, d_2):F] = [E:F] \) if \(E = F(d_1, d_2) \). Otherwise repeat.
To make the argument rigorous, phase if or

\[E \rightarrow F \quad \quad F \rightarrow F_1 \]

\[E/F, K/F_1 \] field extensions

\[\phi: F \rightarrow F_1 \] isomorphism of fields

\# of extension \(b : E \rightarrow K \) homomorphisms,

\[b \mid F = \phi \] is at most \([E:F] \).

\# of extensions is no more \([E:F]\) in favorable circumstances:

\(K = K_0 \) is a splitting field of \(f(x) \in F(x), f \) is separable

(always so in char 0)

E-field, \(b \) is but \((E)\) an automorphism

Def \(E^b \subset E \) is the fixed field of \(b \)

\[E^b = \{ a \in E \mid b(a) = a \} \]

Exercise: \(E^b \) is a subfield of \(E \). \(E^b \) always contains no prime field, \(E \) or \(E(\mathbb{Q} \cup \mathbb{F}_p) \)

\[X \subset \text{Aut}(E) \text{ a subset} \quad E^X := \{ a \in E \mid b(a) = a \quad \forall b \in X \} \]

\(E^X \subset E \) is a subfield, \(E^X = \cap E^b \) intersection of subfields.

\[b \in X \]

Let \(H = \langle X \rangle \) be the subgroup of \(\text{Aut}(E) \) generated by \(X \) (smallest subgroup containing \(E \)).

\(H \) consists of arbitrary products of \(E \)'s of \(X \) and their inverses.

\(\forall b \in E^X = EH \) - subfield, \(E \)'s fixed by all automorphisms in \(H \).

Note As \(H \) gets bigger, \(E^H \) becomes smaller

\[H_1 \subset H_2 \Rightarrow E^{H_2} \subset E^{H_1} \]

\[H = \{ b \} \text{ smallest} \quad E^{\{b\}} = E \]

smaller bigger
Example 1) Subgroups of S_3

Index is written on edges.

2) Subgroups of $C_{12} = \{ g | g^{12} = 1 \} = \mathbb{Z}(12, +)$

$C_6 \subseteq C_{12}$ \quad \text{with} \quad C_6/C_2 \cong C_3$

$\{1, g^3, g^6\} \cong \{1, 2, 4\}$
If $H \subseteq \text{Gal}(E/F)$, get a subfield E^H, $F \subseteq E^H \subseteq E$.

If $F \subseteq K \subseteq E$, have a subgroup $\text{Gal}(E/K)$ - automorphisms of E that fix each element of K.

In favorable circumstances, get a bijection:

intermediate subfields K \quad \longleftrightarrow \quad subgroups $H \subseteq \text{Gal}(E/F)$

$F \subseteq K \subseteq E$ \quad $H = \text{Gal}(E/K)$, $K = E^H$.

Remark: (Friedman, Gruenberg 1.8) Notes on Galois Theory I, p. 5

Let E be an extension field of F, $f(x) \in F[x]$. Let d_1, \ldots, d_n be distinct roots of f in E.

$\{d_1, \ldots, d_n\} = \{x \in E : f(x) = 0\}$. $d_i \neq d_j$ if $i \neq j$.

Then $\text{Gal}(E/F)$ acts on $\{d_1, \ldots, d_n\}$ & there is a homomorphism

$\varphi : \text{Gal}(E/F) \rightarrow S_n$, S_n - symmetric group

If, in addition, $E = F(d_1, \ldots, d_n)$, then φ is injective and

$\text{Gal}(E/F) \subseteq S_n$. Then also $|\text{Gal}(E/F)| \leq n!$ and

the order is a divisor of $n!$.

Proof: If E/F is a finite extension, then $|\text{Gal}(E/F)|$ is finite,

$|\text{Gal}(E/F)| \leq [E:F]$.

Proof: Use our techniques on extending field homomorphisms.
$E = \mathbb{Q}$ \hspace{1cm} $\mathbb{Q}(\sqrt{2}) = (\mathbb{Q}^2)(\sqrt{2} - 3)$

$E = \mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$ splitting field

$G = \text{Gal}(E/\mathbb{Q}) = \text{Aut}(E)$
Prime field

\[\{ \pm \sqrt{2}, \pm \sqrt{3} \} \text{ roots of } f \]

$\sqrt{2}, -\sqrt{2}, \sqrt{3}, -\sqrt{3}$ label roots

$G \rightarrow S_4 = \text{permutations (4 roots)}'$ is injective, since roots generate F. What's the image $\text{Im}(\varphi)$ in S_4?

$E \supset \mathbb{Q}(\sqrt{2}) \supset \mathbb{Q} \quad \sqrt{3} \notin \mathbb{Q}(\sqrt{2})$.

\[
\begin{array}{c}
E \\
\mathbb{Q}(\sqrt{2}) \\
\mathbb{Q}
\end{array}
\xrightarrow{\varphi}
\begin{array}{c}
E \\
\mathbb{Q}(\sqrt{2}) \\
\mathbb{Q}
\end{array}
\]

2 automorphisms: $\sqrt{2} \rightarrow \sqrt{2}$ \& $\sqrt{2} \rightarrow -\sqrt{2}$

$\varphi|_{\mathbb{Q}(\sqrt{2})}$ is an ext. of \mathbb{Q}

$\sqrt{3} \notin \mathbb{Q}(\sqrt{2}) \Rightarrow \text{Gal}(E/\mathbb{Q}(\sqrt{2})) \cong C_2$

$\sqrt{2} \rightarrow -\sqrt{2}$ \quad identity \&

$\sqrt{3} \rightarrow \sqrt{3}$

$\sqrt{2} \rightarrow \sqrt{2}$ independently

$\sqrt{3} \rightarrow -\sqrt{3}$

$\text{Im}(\varphi) \cap \{1, (12)\} \cap \{1, (34)\} = C_2 \times C_2$

$G = \{1, (12), (34), (1234)\}$ Klein 4 group

This is a special case

\[
\begin{array}{c}
E \\
\mathbb{Q}(\sqrt{2}) \\
\mathbb{Q}
\end{array}
\xrightarrow{\varphi}
\begin{array}{c}
E \\
\mathbb{Q}(\sqrt{2}) \\
\mathbb{Q}
\end{array}
\]

both fields are fixed by φ's of G

$\text{Gal}(E/\mathbb{Q}) \cong \text{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) \times \text{Gal}(\mathbb{Q}(\sqrt{3})/\mathbb{Q})$

$= C_2 \times C_2$
\[f = x^4 - 2 \quad \text{irreducible (Eisenstein)} \]

splitting field \(E \subseteq \mathbb{Q} \), roots \(\sqrt{2}, i\sqrt{2}, -\sqrt{2}, -i\sqrt{2} \)

\[G = \text{Gal}(E/\mathbb{Q}) \rightarrow S_4 \text{ permutations, subgroup} \]

Proof

\(E/F \) splitting field of irreducible \(f \in F[x] \rightarrow \)

\(\text{Gal}(E/F) \) acts transitively on \(\text{roots of } f \) in \(E \)

Proof

\[f(x) = c(x - d_1) \ldots (x - d_n) \] (separable case; inseparable case)

distinct \(d_1, \ldots, d_n \), terms are \((x - d_i)^m\)

\[b \text{ is an isomorphism. } b \text{ extends to an automorphism} \]

\[\overline{b} : E \rightarrow E, \overline{b} \in \text{Gal}(E/F) \]

Back to example

\(G \rightarrow S_4 \), action on roots is transitive

Complex conjugation yields automorphism of \(E \)

\[\begin{array}{cccc}
\sqrt{2} & \quad & i\sqrt{2} \\
-\sqrt{2} & \quad & -i\sqrt{2} \\
\end{array} \]

\[\begin{array}{cccc}
1 & \quad & 2 & \quad & 3 \\
& \rightarrow & & \rightarrow & \\
& \text{conjugation} & & \text{conjugation} & \\
& \text{exchanging} & & \text{exchanging} & \\
\end{array} \]

execute: \(H \subseteq S_4, |H| = 8, H \not\cong C_2 \times C_2 \)

\(H \) acts transitively on \(\{1, 2, 3, 4\} \implies \)

\(H \) is the dihedral group \(D_4 \subset S_4 \)

but \(E \cong \text{Gal}(E/\mathbb{Q}) = D_4 \).
Remark. Automorphisms of E do not come from automorphisms of C.

C has "topology" and has only two symmetries that preserve its
topology: identity & complex conjugation.

Denote C. Forget about C, think of E as extension of Q.

Degree 8: E is a vec. space over Q of dimenson 8, basis

$$
\left\{ 1, \sqrt{2}, \sqrt{2}, i, \sqrt{2}i, i, \sqrt{2}i, \sqrt{2}i, \sqrt{2}i \right\}
$$

basis for $E \cong \mathbb{R} = Q(\sqrt{2})$.

Most symmetries of E extend to "bad" symmetries of C that do not respect distance on topology on C and cannot be written down explicitly.

We only use embedding in C do get partial information about E.

Think of E as an 8-dimensional \mathbb{R} vec. with multiplication

$$E = \mathbb{R}^8 + \text{extra structure (multiplication \otimes group of symmetries).}$$