Notes on Galois Theory III

5 The main theorem of Galois theory

Let E be a finite extension of F. Then we have defined the Galois group $\operatorname{Gal}(E / F)$ (although it could be very small). If H is a subgroup of $\operatorname{Gal}(E / F)$, we have defined the fixed field

$$
E^{H}=\{\alpha \in E: \sigma(\alpha)=\alpha \text { for all } \sigma \in H\} .
$$

Clearly $F \leq E^{H} \leq E$.
On the other hand, given an intermediate field K between F and E, i.e. a subfield of E containing F, so that $F \leq K \leq E$, we can define $\operatorname{Gal}(E / K)$ and $\operatorname{Gal}(E / K)$ is clearly a subgroup of $\operatorname{Gal}(E / F)$, since if $\sigma(a)=a$ for all $a \in K$, then $\sigma(a)=a$ for all $a \in F$. Thus we have two constructions: one associates an intermediate field to a subgroup of $\operatorname{Gal}(E / F)$, and the other associates a subgroup of $\operatorname{Gal}(E / F)$ to an intermediate field. In general, there is not much that we can say about these two constructions. But if E is a Galois extension of F, they turn out to set up a one-to-one correspondence between subgroups of $\operatorname{Gal}(E / F)$ and intermediate fields K between F and E, i.e. fields K with $F \leq K \leq E$.

Theorem 5.1 (Main Theorem of Galois Theory). Let E be a Galois extension of a field F. Then:
(i) There is a one-to-one correspondence between subgroups of $\operatorname{Gal}(E / F)$ and intermediate fields K between F and E, given as follows: To a subgroup H of $\operatorname{Gal}(E / F)$, we associate the fixed field E^{H}, and to an intermediate field K between F and E we associate the subgroup $\operatorname{Gal}(E / K)$ of $\operatorname{Gal}(E / F)$. These constructions are inverses, in other words

$$
\begin{aligned}
\operatorname{Gal}\left(E / E^{H}\right) & =H ; \\
E^{\operatorname{Gal}(E / K)} & =K .
\end{aligned}
$$

In particular, the fixed field of the full Galois group $\operatorname{Gal}(E / F)$ is F and the fixed field of the identity subgroup is E :

$$
E^{\mathrm{Gal}(E / F)}=F \quad \text { and } \quad E^{\{\mathrm{Id}\}}=E .
$$

Finally, since there are only finitely many subgroups of $\operatorname{Gal}(E / F)$, there are only finitely many intermediate fields K between F and E.
(ii) The above correspondence is order reversing with respect to inclusion.
(iii) For every subgroup H of $\operatorname{Gal}(E / F),\left[E: E^{H}\right]=\#(H)$, and hence $\left[E^{H}: F\right]=(\operatorname{Gal}(E / F): H)$. Likewise, for every intermediate field K between F and $E, \#(\operatorname{Gal}(E / K))=[E: K]$.
(iv) For every intermediate field K between F and E, the field is a normal extension of F if and only if $\operatorname{Gal}(E / K)$ is a normal subgroup of $\operatorname{Gal}(E / F)$. In this case, K is a Galois extension of F, and

$$
\operatorname{Gal}(K / F) \cong \operatorname{Gal}(E / F) / \operatorname{Gal}(E / K)
$$

Example 5.2.1) Let $F=\mathbb{Q}$ and $E=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. We keep the notation of 4) of Example 1.11. If $G=\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q})$, then $G=\left\{1, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$. The subgroups of G are the trivial subgroups $\{1\}$ and G and the subgroups $\left\langle\sigma_{i}\right\rangle$ of order 2, hence of index 2. As always, $E^{\{1\}}=E$ and $E^{G}=F=\mathbb{Q}$. Clearly $\sigma_{1}(\sqrt{3})=\sqrt{3}$. Thus $\mathbb{Q}(\sqrt{3}) \leq E^{\left\langle\sigma_{1}\right\rangle}$. But since $[\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=2=$ $\left(G:\left\langle\sigma_{1}\right\rangle\right)$, in fact $\mathbb{Q}(\sqrt{3})=E^{\left\langle\sigma_{1}\right\rangle}$. Similarly $\mathbb{Q}(\sqrt{2})=E^{\left\langle\sigma_{2}\right\rangle}$. As for $E^{\left\langle\sigma_{3}\right\rangle}$, since $\sigma_{3}(\sqrt{2})=-\sqrt{2}$ and $\sigma_{3}(\sqrt{3})=-\sqrt{3}$, it follows that $\sigma_{3}(\sqrt{6})=\sqrt{6}$. Thus $\mathbb{Q}(\sqrt{6})=E^{\left\langle\sigma_{3}\right\rangle}$.

It is also interesting to look at this example from the viewpoint of $\mathbb{Q}(\alpha)$, where $\alpha=\sqrt{2}+\sqrt{3}$. Using the notation $\alpha=\beta_{1}=\sqrt{2}+\sqrt{3}, \beta_{2}=-\sqrt{2}+\sqrt{3}$, $\beta_{3}=\sqrt{2}-\sqrt{3}$, and $\beta_{4}=-\sqrt{2}-\sqrt{3}$ identifies σ_{1} with (12)(34), σ_{2} with $(13)(24)$, and σ_{3} with $(14)(23) \in S_{4}$. It is then clear that $\beta_{1}+\beta_{2}$ is fixed by σ_{1}. (Of course, so is $\beta_{3}+\beta_{4}$, but it is easy to check that $\beta_{3}+\beta_{4}=-\left(\beta_{1}+\beta_{2}\right)$.) Hence $\mathbb{Q}\left(\beta_{1}+\beta_{2}\right) \leq E^{\left\langle\sigma_{1}\right\rangle}$. On the other hand, $\beta_{1}+\beta_{2}=2 \sqrt{3}$, and degree arguments as above show that

$$
E^{\left\langle\sigma_{1}\right\rangle}=\mathbb{Q}\left(\beta_{1}+\beta_{2}\right)=\mathbb{Q}(2 \sqrt{3})=\mathbb{Q}(\sqrt{3}) .
$$

Likewise using the element $\beta_{1}+\beta_{3}=2 \sqrt{2}$ which is fixed by σ_{2}, corresponding to (13)(24) gives $E^{\left\langle\sigma_{2}\right\rangle}=\mathbb{Q}(\sqrt{2})$. If we try to do the same thing with $\sigma_{3}=(14)(23)$, however, we find that $\beta_{1}+\beta_{4}=0$, since $\sigma_{3}\left(\beta_{1}\right)=-\beta_{4}$,
and hence we obtain the useless information that $\mathbb{Q}(0) \leq E^{\left\langle\sigma_{3}\right\rangle}$. To find a nonzero, in fact a nonrational element of E fixed by σ_{3}, note that as $\sigma_{3}\left(\beta_{1}\right)=-\beta_{1}, \sigma_{3}\left(\beta_{1}^{2}\right)=\left(-\beta_{1}\right)^{2}=\beta_{1}^{2}$. Now $\beta_{1}^{2}=(\sqrt{2}+\sqrt{3})^{2}=5+2 \sqrt{6}$, and $\mathbb{Q}(5+2 \sqrt{6})=\mathbb{Q}(\sqrt{6})$. Thus as before $\mathbb{Q}(\sqrt{6})=E^{\left\langle\sigma_{3}\right\rangle}$.
2) Take $F=\mathbb{Q}$ and $E=\mathbb{Q}(\sqrt[3]{2}, \omega)$. List the roots of $x^{3}-2$ as $\alpha_{1}=\sqrt[3]{2}$, $\alpha_{2}=\omega \sqrt[3]{2}, \alpha_{3}=\omega^{2} \sqrt[3]{2}$. Let $G=\operatorname{Gal}(E / F) \cong S_{3}$. Now S_{3} has the trivial subgroups S_{3} and $\{1\}$, as well as $A_{3}=\langle(123)\rangle$ and three subgroups of order $2,\langle(12)\rangle,\langle(13)\rangle$, and $\langle(23)\rangle$. Clearly $\alpha_{3} \in \mathbb{Q}(\sqrt[3]{2}, \omega)^{\langle(12)\rangle}$. Since

$$
\left[\mathbb{Q}\left(\alpha_{3}\right): \mathbb{Q}\right]=3=\left(S_{3}:\langle(12)\rangle\right)
$$

$\mathbb{Q}(\sqrt[3]{2}, \omega)^{\langle(12)\rangle}=\mathbb{Q}\left(\alpha_{3}\right)$. Similarly $\mathbb{Q}(\sqrt[3]{2}, \omega)^{\langle(13)\rangle}=\mathbb{Q}\left(\alpha_{2}\right)$ and $\mathbb{Q}(\sqrt[3]{2}, \omega)^{\langle(23)\rangle}=$ $\mathbb{Q}\left(\alpha_{1}\right)$. The remaining fixed field is $\mathbb{Q}(\sqrt[3]{2}, \omega)^{A_{3}}$, which is a degree 2 extension of \mathbb{Q}. Since we already know a subfield of $\mathbb{Q}(\sqrt[3]{2}, \omega)$ which is a degree 2 extension of \mathbb{Q}, namely $\mathbb{Q}(\omega)$ it must be equal to $\mathbb{Q}(\sqrt[3]{2}, \omega)^{A_{3}}$ by the Main Theorem. However, let us check directly that $\omega \in \mathbb{Q}(\sqrt[3]{2}, \omega)^{A_{3}}$. It suffices to check that the element φ of the Galois group corresponding to (123) satisfies $\varphi(\omega)=\omega$. Note that $\omega=\alpha_{2} / \alpha_{1}=\alpha_{3} / \alpha_{2}$. Thus

$$
\varphi(\omega)=\varphi\left(\alpha_{2} / \alpha_{1}\right)=\varphi\left(\alpha_{2}\right) / \varphi\left(\alpha_{1}\right)=\alpha_{3} / \alpha_{2}=\omega
$$

as claimed.
One can also try to describe $\mathbb{Q}(\sqrt[3]{2}, \omega)^{\langle(12)\rangle}$ as follows: Clearly $\alpha_{1}+\alpha_{2} \in$ $\mathbb{Q}(\sqrt[3]{2}, \omega)^{\langle(12)\rangle}$. But

$$
\alpha_{1}+\alpha_{2}=\sqrt[3]{2}+\omega \sqrt[3]{2}=(1+\omega) \sqrt[3]{2}=-\omega^{2} \sqrt[3]{2}
$$

since ω is a root of $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$, and hence $\omega^{2}+\omega+1=0$. Thus $\omega^{2} \sqrt[3]{2} \in \mathbb{Q}(\sqrt[3]{2}, \omega)^{\langle(12)\rangle}$, and both fields have degree 3 over \mathbb{Q}, hence they are equal.

Finally, we describe the more complicated example of $\operatorname{Gal}(\sqrt[4]{2}, i) / \mathbb{Q})$:
Elements of $D_{4}: 1,(1234),(1234)^{2}=(13)(24),(1234)^{3}=(1432) ;(13)$, $(24),(12)(34),(14)(23)$.

Subgroups of $D_{4}:\{1\}$ (order 1), D_{4} (order 8). The three subgroups of order 4 , all automatically normal:

$$
\begin{aligned}
& H_{1}=\langle(1234)\rangle \\
& H_{2}=\{1,(13)(24),(12)(34),(14)(23)\} \\
& H_{3}=\{1,(13)(24),(13),(24)\}
\end{aligned}
$$

The five subgroups of order 2: $\langle(13)(24)\rangle,\langle(13)\rangle,\langle(24)\rangle,\langle(12)(34)\rangle,\langle(14)(23)\rangle$. Of these, only $\langle(13)(24)\rangle$ is normal (it is the center of $\left.D_{4}\right)$.

The fixed fields: Label the roots of $x^{4}-2$ as

$$
\alpha_{1}=\sqrt[4]{2} ; \quad \alpha_{2}=i \sqrt[4]{2} ; \quad \alpha_{3}=-\sqrt[4]{2} ; \quad \alpha_{4}=-i \sqrt[4]{2}
$$

corresponding to the labeling of elements of D_{4} above. Then the fixed field of $\{1\}$ is $E=\mathbb{Q}(\sqrt[4]{2}, i)$ and the fixed field of D_{4} is \mathbb{Q}. As for the subgroups of order 2 , they correspond to subfields K of E such that $[K: \mathbb{Q}]=4$. For example, it is clear that $\sqrt[4]{2} \in E^{\langle(24)\rangle}$ and hence by counting degrees that

$$
E^{\langle(24)\rangle}=\mathbb{Q}(\sqrt[4]{2})
$$

Likewise $E^{\langle(13)\rangle}=\mathbb{Q}(i \sqrt[4]{2})$. As for $E^{\langle(13)(24)\rangle}$, note that $\sqrt{2}=(\sqrt[4]{2})^{2}=$ $(-\sqrt[4]{2})^{2}$ is fixed by $(13)(24)$, and also i is fixed by $(13)(24)$ since if $\sigma(\sqrt[4]{2})=$ $-\sqrt[4]{2}$ and $\sigma(i \sqrt[4]{2})=-i \sqrt[4]{2}$, then

$$
\sigma(i)=\sigma(i \sqrt[4]{2} / \sqrt[4]{2})=\sigma(i \sqrt[4]{2}) / \sigma(\sqrt[4]{2})=(-i \sqrt[4]{2}) /(-\sqrt[4]{2})=i
$$

Thus $\mathbb{Q}(\sqrt{2}, i) \subseteq E^{\langle(13)(24)\rangle}$, so again by counting degrees they are equal. As for $E^{\langle(12)(34)\rangle}$, note that $\sqrt[4]{2}+i \sqrt[4]{2}=\alpha_{1}+\alpha_{2} \in E^{\langle(12)(34)\rangle}$. In particular, this forces $\mathbb{Q}(\sqrt[4]{2}+i \sqrt[4]{2}) \neq F$. While it may not be obvious how to compute the degree $[\mathbb{Q}(\sqrt[4]{2}+i \sqrt[4]{2}): \mathbb{Q}]$, note that

$$
(\sqrt[4]{2}+i \sqrt[4]{2})^{2}=(1+i)^{2}(\sqrt[4]{2})^{2}=2 i \sqrt{2}
$$

Thus $[\mathbb{Q}(\sqrt[4]{2}+i \sqrt[4]{2}): \mathbb{Q}(i \sqrt{2})]=2$ since $\sqrt[4]{2}+i \sqrt[4]{2} \notin \mathbb{Q}(i \sqrt{2})$, and since $[\mathbb{Q}(i \sqrt{2}): \mathbb{Q}]=2$ since $i \sqrt{2}=\sqrt{-2}$, it follows that

$$
[\mathbb{Q}(\sqrt[4]{2}+i \sqrt[4]{2}): \mathbb{Q}]=[\mathbb{Q}(\sqrt[4]{2}+i \sqrt[4]{2}): \mathbb{Q}(i \sqrt{2})][\mathbb{Q}(i \sqrt{2}): \mathbb{Q}]=4
$$

Hence, again by counting degrees, $E^{\langle(12)(34)\rangle}=\mathbb{Q}(\sqrt[4]{2}+i \sqrt[4]{2})$. Similarly, $E^{\langle(14)(23)\rangle}=\mathbb{Q}(\sqrt[4]{2}-i \sqrt[4]{2})$.
Finally, there are the 3 fields $E^{H_{1}}, E^{H_{2}}, E^{H_{3}}$. A computation shows that $i \in E^{H_{1}}$, hence $E^{H_{1}}=\mathbb{Q}(i)$. As for the others, clearly $E^{H_{2}}=E^{\langle(13)(24)\rangle} \cap$ $E^{\langle(12)(34)\rangle}$. Since $E^{\langle(13)(24)\rangle}=\mathbb{Q}(\sqrt{2}, i)$ and $i \sqrt{2} \in E^{\langle(12)(34)\rangle}, i \sqrt{2} \in E^{H_{2}}$ and hence $E^{H_{2}}=\mathbb{Q}(i \sqrt{2})$. The other equality $E^{H_{3}}=\mathbb{Q}(\sqrt{2})$ is similar.

Picture of the subgroups of D_{4} :

Picture of the intermediate subfields between E and \mathbb{Q} :

6 Proofs

For simplicity, we shall always assume that F has characteristic zero, or more generally is perfect. In particular, every irreducible polynomial $f \in F[x]$ has only simple zeroes in any extension field of F, and every finite extension of F is automatically separable.

We begin with a proof of the primitive element theorem:
Theorem 6.1. Let F be a perfect field and let E be a finite extension of F. Then there exists $\alpha \in E$ such that $E=F(\alpha)$.

Proof. If F is finite we have already proved this. So we may assume that F is infinite. We begin with the following:

Claim 6.2. Let L be an extension field of the field K, and suppose that $p, q \in K[x]$. If the $g c d$ of p and q in $L[x]$ is of the form $x-\xi$, then $\xi \in K$.

Proof of the claim. We have seen that the gcd of p, q in $K[x]$ is a gcd of p, q in $L[x]$, and hence they are the same if they are both monic. It follows that $x-\xi$ is the gcd of p, q in $K[x]$ and in particular that $\xi \in K$.

Returning to the proof of the theorem, it is clearly enough by induction to prove that $F(\alpha, \beta)=F(\gamma)$ for some $\gamma \in F(\alpha, \beta)$. Let $f=\operatorname{irr}(\alpha, F)$ and let $g=\operatorname{irr}(\beta, F)$. There is an extension field L of $F(\alpha, \beta)$ such that f factors into distinct linear factors in L, say $f=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$, with $\alpha=\alpha_{1}$, and likewise g factors into distinct linear factors in L, say $g=\left(x-\beta_{1}\right) \cdots\left(x-\beta_{m}\right)$, with $\beta=\beta_{1}$. Since F is infinite, we can choose a $c \in F$ such that, for all i, j with $j \neq 1$,

$$
c \neq \frac{\alpha-\alpha_{i}}{\beta-\beta_{j}}
$$

(Notice that we need to take $j \neq 1$ so that the denominator is not zero.) In other words, for all i and j with $j \neq 1, \alpha-\alpha_{i} \neq c\left(\beta-\beta_{j}\right)$. Set $\gamma=\alpha-c \beta$. Then

$$
\gamma=\alpha-c \beta \neq \alpha_{i}-c \beta_{j}
$$

for all i and j with $j \neq 1$. Thus $\gamma+c \beta=\alpha=\alpha_{1}$, but for all $j \neq 1$, $\gamma+c \beta_{j} \neq \alpha_{i}$ for any i.

We are going to construct a polynomial $h \in F(\gamma)[x]$ such that $h(\beta)=0$ but, for $j \neq 1, h\left(\beta_{j}\right) \neq 0$. Once we have done so, consider the gcd of g and h in L (which contains all of the roots $\beta=\beta_{1}, \ldots, \beta_{m}$ of g). The only irreducible factor of g which divides h is $x-\beta$, which divides g only to the first power. Thus the gcd of g and h in $L[x]$ is $x-\beta$. Since $h \in F(\gamma)[x]$ by construction and $g \in F[x] \leq F(\gamma)[x]$, both g and h are elements of $F(\gamma)[x]$. Then Claim 6.2 implies that $\beta \in F(\gamma)$. But then $\alpha=\gamma+c \beta \in F(\gamma)$ also (recall $c \in F$ by construction). So $\alpha, \beta \in F(\gamma)$, but clearly $\gamma \in F(\alpha, \beta)$. Hence $F(\alpha, \beta)=F(\gamma)$.

Finally we construct $h \in F(\gamma)[x]$. Take $h=f(\gamma+c x)$, where $f=$ $\operatorname{irr}(\alpha, F)$. Clearly the coefficients of h lie in $F(\gamma)$. Note that $h(\beta)=f(\gamma+$ $c \beta)=f(\alpha)=0$, but for $j \neq 1, h\left(\beta_{j}\right)=f\left(\gamma+c \beta_{j}\right)$. By construction, for $j \neq 1, \gamma+c \beta_{j} \neq \alpha_{i}$ for any i, hence $\gamma+c \beta_{j}$ is not a root of f and so $h\left(\beta_{j}\right) \neq 0$. This completes the construction of h and the proof of the theorem.

Remark 6.3. For fields F which are not perfect, there can exist simple extensions of F which are not separable as well as finite extensions which
are not simple. One can show that a finite extension E of a field F is a simple extension \Longleftrightarrow there are only finitely many fields K with $F \leq K \leq E$.

Next we turn to a proof of the Main Theorem of Galois Theory. Let E be a Galois extension of F. Recall that the correspondence given in the Main Theorem between intermediate fields K (i.e. $F \leq K \leq E$ and subgroups H of $\operatorname{Gal}(E / F)$ is as follows: given K, we associate to it the subgroup $\operatorname{Gal}(E / K)$ of $\operatorname{Gal}(E / F)$, and given $H \leq \operatorname{Gal}(E / F)$, we associate to it the fixed field $E^{H} \leq E$. Both of these constructions are clearly order-reversing with respect to inclusion, in other words

$$
H_{1} \leq H_{2} \Longrightarrow E^{H_{2}} \leq E^{H_{1}}
$$

and

$$
F \leq K_{1} \leq K_{2} \leq E \Longrightarrow \operatorname{Gal}\left(E / K_{2}\right) \leq \operatorname{Gal}\left(E / K_{1}\right)
$$

This is (ii) of the Main Theorem.
Next we prove (i) and (iii). First, suppose that K is an intermediate field. We will show that $E^{\operatorname{Gal}(E / K)}=K$. Clearly, $K \leq E^{\operatorname{Gal}(E / K)}$. It thus suffices to show that, if $\alpha \in E$ but $\alpha \notin K$, then there exists a $\sigma \in \operatorname{Gal}(E / K)$ such that $\sigma(\alpha) \neq \alpha$, i.e. $\alpha \notin E^{\operatorname{Gal}(E / K)}$. (This says that $E^{\operatorname{Gal}(E / K)} \leq K$ and hence $E^{\mathrm{Gal}(E / K)}=K$.) If $\alpha \notin K$, then $f=\operatorname{irr}(\alpha, K)$ is an irreducible polynomial in $K[x]$ of degree $k>1$. Since E is a normal extension of F and hence of K and the root α of the irreducible polynomial $f \in K[x]$ lies in E, all roots $\alpha=\alpha_{1}, \ldots, \alpha_{k}$ of f lie in E. Choose some $i>1$. Then there is an injective homomorphism $\psi: K(\alpha) \rightarrow E$ such that $\psi \mid K=\operatorname{Id}$ but $\psi(\alpha)=\alpha_{i} \neq \alpha$. By the isomorphism extension theorem, there exists an extension L of E such that the homomorphism ψ extends to a homomorphism $\sigma: E \rightarrow L$. Since E is a normal extension of F and $\sigma \mid F=\operatorname{Id}, \sigma(E)=E$ and thus $\sigma \in \operatorname{Gal}(E / F)$. Since $\sigma|K=\psi| K=\mathrm{Id}$, in fact $\sigma \in \operatorname{Gal}(E / K)$. We have thus found the desired σ. Note further that, as E is a Galois extension of K, we must have $\#(\operatorname{Gal}(E / K))=[E: K]$.

Now suppose that H is a subgroup of $\operatorname{Gal}(E / F)$. We claim that

$$
\operatorname{Gal}\left(E / E^{H}\right)=H
$$

Clearly, $H \leq \operatorname{Gal}\left(E / E^{H}\right)$ by definition. Thus, $\#(H) \leq \#\left(\operatorname{Gal}\left(E / E^{H}\right)\right)$. To prove that $\overline{\operatorname{Gal}}\left(E / E^{H}\right)=H$, it thus suffices to show that $\#\left(\operatorname{Gal}\left(E / E^{H}\right)\right) \leq$ $\#(H)$. This will follow from:

Claim 6.4. For all $\alpha \in E$, $\operatorname{deg}_{E^{H}} \alpha \leq \#(H)$.

First let us see that Claim 6.4 implies that $\#\left(\operatorname{Gal}\left(E / E^{H}\right)\right) \leq \#(H)$. By the Primitive Element Theorem, there exists an $\alpha \in E$ such that $E=$ $E^{H}(\alpha)$, and hence $\operatorname{deg}_{E^{H}} \alpha=\left[E: E^{H}\right]$. For this α, Claim 6.4 implies that

$$
\#\left(\operatorname{Gal}\left(E / E^{H}\right)\right)=\left[E: E^{H}\right]=\operatorname{deg}_{E^{H}} \alpha \leq \#(H)
$$

Thus $\#(H) \geq \#\left(\operatorname{Gal}\left(E / E^{H}\right)\right)$. But $H \leq \operatorname{Gal}\left(E / E^{H}\right)$ and hence $\#(H) \leq$ $\#\left(\operatorname{Gal}\left(E / E^{H}\right)\right)$. Clearly we must have $\operatorname{Gal}\left(E / E^{H}\right)=H$ and $\#(H)=$ $\#\left(\operatorname{Gal}\left(E / E^{H}\right)\right)$, proving the rest of (i) and (iii).

To prove Claim 6.4, given $\alpha \in E$ consider the polynomial

$$
f=\prod_{\sigma \in H}(x-\sigma(\alpha)) .
$$

The number of linear factors of f is $\#(H)$, so that $f \in E[x]$ is a polynomial of degree $\#(H)$. We claim that in fact $f \in E^{H}[x]$, in other words that all coefficients of f lie in the fixed field E^{H}. It suffices to show that, for all $\psi \in H, \psi(f)=f$. Now, using the fact that ψ is an automorphism, it is easy to see that

$$
\psi(f)=\prod_{\sigma \in H}(x-\psi \sigma(\alpha)) .
$$

As $\psi \in H$, the function $\sigma \in H \mapsto \psi \sigma$ is a permutation of the group H (cf. the proof of Cayley's theorem!) and so the product $\prod_{\sigma \in H}(x-\psi \sigma(\alpha))$ is the same as the product $\prod_{\sigma \in H}(x-\sigma(\alpha))$ (but with the order of the factors changed, if $\psi \neq \mathrm{Id})$. Hence $\psi(f)=f$ for all $\psi \in H$, so that $f \in E^{H}[x]$. It follows that $\operatorname{irr}\left(\alpha, E^{H}\right)$ divides f, and hence that $\operatorname{deg}_{E^{H}} \alpha \leq \operatorname{deg} f=\#(H)$.

Finally we must prove (iv) of the Main Theorem. Let $F \leq K \leq E$. The first statement of (iv) is the statement that K is a normal (hence Galois) extension of $F \Longleftrightarrow \operatorname{Gal}(E / K)$ is a normal subgroup of $\operatorname{Gal}(E / F)$. A slight variation of the proof of Theorem 3.5 shows that K is a normal extension of $F \Longleftrightarrow$ for all $\sigma \in \operatorname{Gal}(E / F), \sigma(K)=K$. More generally, for K an arbitrary intermediate field, given $\sigma \in \operatorname{Gal}(E / F)$, we can ask for a description of the image subfield $\sigma(K)$ of E. By Part (i) of the Main Theorem (already proved), it is equivalent to describe the corresponding subgroup $\operatorname{Gal}(E / \sigma(K))$ of $\operatorname{Gal}(E / F)$.
Claim 6.5. In the above notation, $\operatorname{Gal}(E / \sigma(K))=\sigma \cdot \operatorname{Gal}(E / K) \cdot \sigma^{-1}=$ $i_{\sigma}(\operatorname{Gal}(E / K))$, where i_{σ} is the inner automorphism of $\operatorname{Gal}(E / F)$ given by conjugation by the element σ.

Proof. If $\varphi \in \operatorname{Gal}(E / F)$, then $\varphi \in \operatorname{Gal}(E / \sigma(K)) \Longleftrightarrow$ for all $\alpha \in K$, $\varphi(\sigma(\alpha))=\sigma(\alpha) \Longleftrightarrow$ for all $\alpha \in K, \sigma^{-1} \varphi \sigma(\alpha)=\alpha \Longleftrightarrow \sigma^{-1} \varphi \sigma \in$ $\operatorname{Gal}(E / K) \Longleftrightarrow \varphi \in \sigma \cdot \operatorname{Gal}(E / K) \cdot \sigma^{-1}$.

Now apply the remarks above: K is a normal extension of $F \Longleftrightarrow$ for all $\sigma \in \operatorname{Gal}(E / F), \sigma(K)=K \Longleftrightarrow$ for all $\sigma \in \operatorname{Gal}(E / F), \operatorname{Gal}(E / \sigma(K))=$ $\operatorname{Gal}(E / K)$ (by (i) of the Main Theorem) \Longleftrightarrow for all $\sigma \in \operatorname{Gal}(E / F)$, $\operatorname{Gal}(E / K)=\sigma \cdot \operatorname{Gal}(E / K) \cdot \sigma^{-1} \Longleftrightarrow \operatorname{Gal}(E / K)$ is a normal subgroup of $\operatorname{Gal}(E / F)$. This proves the first statement of (iv). We must then show that $\operatorname{Gal}(K / F) \cong \operatorname{Gal}(E / F) / \operatorname{Gal}(E / K)$. To see this, given $\sigma \in \operatorname{Gal}(E / F)$, we have seen that $\sigma(K)=K$, and hence that $\sigma \mapsto \sigma \mid K$ defines a function from $\operatorname{Gal}(E / F)$ to $\operatorname{Gal}(K / F)$. Clearly, this is a homomorphism, and by definition its kernel is just the subgroup of $\sigma \in \operatorname{Gal}(E / F)$ such that $\sigma \mid K=\mathrm{Id}$, which by definition is $\operatorname{Gal}(E / K)$. To see that $\operatorname{Gal}(K / F) \cong \operatorname{Gal}(E / F) / \operatorname{Gal}(E / K)$, by the fundamental homomorphism theorem, it suffices to show that the homomorphism $\sigma \mapsto \sigma \mid K$ is a surjective homomorphism from $\operatorname{Gal}(E / F)$ to $\operatorname{Gal}(K / F)$. This says that, given a $\psi: K \rightarrow K$ such that $\psi \mid F=\mathrm{Id}$, there exists an extension of ψ to a $\sigma \in \operatorname{Gal}(E / F)$. But it follows from the Isomorphism Extension Theorem that, given ψ, there exists an extension field L of E and an extension of ψ to a homomorphism $\sigma: E \rightarrow L$. Since E is a normal extension of $F, \sigma(E)=E$, and hence $\sigma \in \operatorname{Gal}(E / F)$ is such that $\sigma \mapsto \psi \in \operatorname{Gal}(K / F)$. It follows that restriction defines a surjective homomorphism $\operatorname{Gal}(E / F) \rightarrow \operatorname{Gal}(K / F)$ with kernel $\operatorname{Gal}(E / K)$, so that $\operatorname{Gal}(K / F) \cong \operatorname{Gal}(E / F) / \operatorname{Gal}(E / K)$. This concludes the proof of the Main Theorem.

