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1 First remarks

Definition 1.1. Let E be a field. An automorphism of E is a (ring) isomor-
phism from E to itself. The set of all automorphisms of E forms a group
under function composition, which we denote by AutE. Let E be a finite
extension of a field F . Define the Galois group Gal(E/F ) to be the subset
of AutE consisting of all automorphisms σ : E → E such that σ(a) = a for
all a ∈ F . We write this last condition as σ|F = Id. It is easy to check
that Gal(E/F ) is a subgroup of AutE (i.e. that it is closed under com-
position, Id ∈ Gal(E/F ), and, if σ ∈ Gal(E/F ), then σ−1 ∈ Gal(E/F )).
Note that, if F0 is the prime subfield of E (F0 = Q or F0 = Fp depending
on whether the characteristic is 0 or a prime p), then AutE = Gal(E/F0).
In other words, every σ ∈ AutE satisfies σ(1) = 1 and hence σ(a) = a
for all a ∈ F0. If we have a sequence of fields F ≤ K1 ≤ K2 ≤ E, then
Gal(E/K2) Gal(E/K1) ≤ Gal(E/F ) (the order is reversed). As with the
symmetric group, we shall usually write the product in Gal(E/F ) as a prod-
uct, i.e. the product of σ1 and σ2 is σ1σ2, instead of writing σ1 ◦ σ2, and
shall often write 1 for the identity automorphism Id.

A useful fact, which was a homework problem, is that if E is a finite
extension of a field F and σ : E → E is a ring homomorphism such that
σ(a) = a for all a ∈ F , then σ is surjective, hence an automorphism, hence
is an element of Gal(E/F ).

Example 1.2. (1) If σ : C→ C is complex conjugation, then σ ∈ Gal(C/R),
and in fact we shall soon see that Gal(C/R) = {Id, σ}.
(2) The group Aut R = Gal(R/Q), surprisingly, is trivial: Gal(R/Q) = {Id}.
The argument roughly goes by showing first that every automorphism of R
is continuous and then that a continuous automorphism of R is the identity.
In the case of C, however, the only continuous automorphisms of C are the
identity and complex conjugation. Nonetheless, Aut C and Aut Qalg turn
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out to be very large groups! Most elements of Aut C are therefore (very
badly) discontinuous.
(3) We have seen in the homework that Gal(Q(

√
2)/Q) = {Id, τ}, where

τ(
√

2) = −
√

2 and hence τ(a+ b
√

2) = a− b
√

2 for all a, b ∈ Q.
(4) We have seen in the homework that Gal(Q( 3

√
2)/Q) = {Id}.

Let σ ∈ AutE. We define the fixed field

Eσ = {α ∈ E : σ(α) = α}.

It is straightforward to check that Eσ is a subfield of E (since, if α, β ∈ Eσ,
then by definition σ(α ± β) = σ(α) ± σ(β) = α ± β, and similarly for
multiplication and division (if β 6= 0), so that Eσ is closed under the field
operations. Clearly Eσ ≤ E, and, if F0 is the prime subfield of E, then
F0 ≤ Eσ. We can extend this definition as follows: if X is any subset of
AutE, we define the fixed field

EX = {α ∈ E : σ(α) = α for all σ ∈ X}.

Since EX =
⋂
σ∈X E

σ, it is easy to see that EX is again a subfield of
E. We are usually interested in the case where X = H is a subgroup of
AutE. It is easy to see that, if H is the subgroup generated by a set
X, then EH = EX . In particular, for a given element σ ∈ AutE, if 〈σ〉
is the cyclic subgroup generated by σ, then E〈σ〉 = Eσ: this is just the
statement that σ(α) = α ⇐⇒ for all n ∈ Z, σn(α) = α. More generally,
if σ1, σ2 ∈ X and α ∈ EX , then by definition σ1(α) = σ2(α) = α, and thus
σ1σ2(α) = σ1(σ2(α)) = σ1(α) = α. Since 〈X〉, the subgroup generated by
X, is just the set of all products of powers of elements of X, we see that
α ∈ EX =⇒ α ∈ E〈X〉, and hence that EX ≤ E〈X〉. On the other hand, as
X ⊆ 〈X〉, clearly E〈X〉 ≤ EX , and hence EX = E〈X〉.

We shall usual apply this in the following situation: given a subgroup H
of Gal(E/F ), we have defined the fixed field

EH = {α ∈ E : σ(α) = α for all σ ∈ H}.

Then EH is a subfield of E and by definition F ≤ EH for every H. Thus
F ≤ EH ≤ E. Finally, this construction is order reversing in the sense that,
if H1 ≤ H2 ≤ Gal(E/F ), then

F ≤ EH2 ≤ EH1 ≤ E.
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Thus, given a field K with F ≤ K ≤ E, we have a subgroup Gal(E/K)
of Gal(E/F ), and given a subgroup H ≤ Gal(E/F ) we get a field EH

with F ≤ EH ≤ E. In general, there is not much one can say about the
relationship between these two constructions beyond the straightforward
fact that

H ≤ Gal(E/EH);

K ≤ EGal(E/K).

Here, to see the first inclusion, note that

EH = {α ∈ E : σ(α) = α for all σ ∈ H }.

Thus, for σ ∈ H, σ ∈ Gal(E/EH) by definition, hence H ≤ Gal(E/EH).
The inclusion K ≤ EGal(E/K) is similar.

Our first goal in these notes is to study finite extensions E of a field
F , and to find conditions which enable us to conclude that Gal(E/F ) is as
large as possible (we will see that the maximum size is [E : F ]). This study
has two parts: First, we describe how to find homomorphisms σ : E → L,
where L is some extension of F , with the property that σ(a) = a for all
a ∈ F . Then we give a condition where, in case E is a subfield of L, the
image of σ is automatically contained in E, and thus σ is an automorphism
of E. We will discuss the motivation for Galois theory shortly, once we have
established a few more basic properties of the Galois group.

Recall the following basic fact about complex roots of polynomials with
real coefficients, which says that complex roots of a real polynomial occur
in conjugate pairs:

Lemma 1.3. Let f(x) ∈ R[x] is a polynomial with real coefficients and let
α be a complex root of f(x). Then f(ᾱ) = 0 as well.

Proof. Suppose that f(x) =
∑n

i=0 aix
i with ai ∈ R. Then, for all α ∈ C,

0 = 0̄ = f(α) =
n∑
i=0

aiαi =
n∑
i=0

āi(ᾱ)i =
n∑
i=0

ai(ᾱ)i = f(ᾱ).

Hence f(ᾱ)) = 0.

As a result, assuming the Fundamental Theorem of Algebra, we can
describe the irreducible elements of R[x]:

Corollary 1.4. The irreducible polynomials f(x) ∈ R[x] are either linear
polynomials or quadratic polynomials with no real roots.
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Proof. Let f(x) ∈ R[x] be a non constant polynomial which is an irreducible
element of R[x]. By the Fundamental Theorem of Algebra, there exists a
complex root α of f(x). If α ∈ R, then x − α is a factor of f(x) in R[x]
and hence f(x) = c(x−α) for some c ∈ R∗. Thus f(x) is linear. Otherwise,
α /∈ R, and hence ᾱ 6= α. Then (x− α)(x− ᾱ) divides f(x) in C[x]. But

(x− α)(x− ᾱ) = x2 − (α+ ᾱ)x+ αᾱ = x2 − (2 Reα)x+ |α|2 ∈ R[x],

hence (x− α)(x− ᾱ) divides f(x) in R[x]. Thus f(x) = c(x− α)(x− ᾱ) for
some c ∈ R∗ and f(x) is an irreducible quadratic polynomial.

We can generalize Lemma 1.3 as follows:

Lemma 1.5. Let E be an extension field of a field F , and let f(x) ∈ F [x].
Suppose that α ∈ E and that f(α) = 0. Then, for every σ ∈ Gal(E/F ),
f(σ(α)) = 0 as well.

Proof. If f(x) =
∑n

i=0 aix
i with ai ∈ F for all i, then

0 = σ(0) = σ

(
n∑
i=0

aiα
i

)
=

n∑
i=0

ai(σ(α))i,

hence σ(α) is a root of f(x) as well.

In fact, it will be useful to prove a more general version. We suppose
that we are given the following situation: E is an extension field of a field F ,
K is another field, and ϕ : E → K is an injective field homomorphism. Let
F ′ = ϕ(F ) and let ψ : F → F ′ be the corresponding isomorphism. Another
way to think of this is as follows:

Definition 1.6. Suppose that E is an extension field of the field F , that K
is an extension field of the field F ′, and that ψ : F → F ′ is a homomorphism.
An extension of ψ is a homomorphism ϕ : E → K such that, for all a ∈ F ,
ϕ(a) = ψ(a). We also say that the restriction of ϕ to F is ψ, and write this
as ϕ|F = ψ.

The situation is summarized in the following diagram:

E
ϕ // K

F
ψ // F ′
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Given f(x) =
∑n

i=0 aix
i ∈ F [x], define a new polynomial ψ(f)(x) ∈ F ′[x]

by the formula

ψ(f)(x) =
n∑
i=0

ψ(ai)xi.

In other words, ψ(f)(x) is the polynomial obtained by applying the isomor-
phism ψ to the coefficients of f(x).

Lemma 1.7. In the above situation, α ∈ E is a root of f(x) ∈ F [x] if and
only if ϕ(α) ∈ K is a root of ψ(f)(x) ∈ F ′[x].

Proof. In fact, for α an arbitrary element of E, and using the definitions
and the fact that ϕ is a field automorphism, we see that

ϕ(f(α)) = ϕ(
n∑
i=0

aiα
i) =

n∑
i=0

ϕ(ai)ϕ(α)i =
n∑
i=0

ψ(ai)ϕ(α)i = ψ(f)(ϕ(α)).

Thus, as ϕ is injective, f(α) = 0 ⇐⇒ ϕ(f(α)) = 0 ⇐⇒ ψ(f)(ϕ(α)) =
0.

A second basic observation is then the following:

Corollary 1.8. Let E be an extension field of the field F and let f(x) ∈
F [x]. Suppose that α1, . . . , αn are the (distinct) roots of f(x) that lie in E,
i.e. {α ∈ E : f(α) = 0} = {α1, . . . , αn} and, for i 6= j, αi 6= αj. Then
Gal(E/F ) acts on the set {α1, . . . , αn}, and hence there is a homomorphism
ρ : Gal(E/F )→ Sn, where Sn is the symmetric group on n letters. If more-
over E = F (α1, . . . , αn), then ρ is injective, and hence identifies Gal(E/F )
with a subgroup of Sn. In particular, in this case #(Gal(E/F )) ≤ n!.

Proof. It follows from Lemma 1.5 that Gal(E/F ) acts on the set {α1, . . . , αn},
and hence that there is a homomorphism ρ : Gal(E/F ) → Sn. To see that
ρ is injective if E = F (α1, . . . , αn), it suffices to show that, if σ ∈ Gal(E/F )
and σ(αi) = αi for all i, then σ = Id. To see this, recall that Eσ is the
fixed field of σ. Since σ ∈ Gal(E/F ), F ≤ Eσ. If in addition σ(αi) = αi
for all i, then Eσ is a subfield of E containing F and αi for all i, and hence
E = F (α1, . . . , αn) ≤ Eσ ≤ E. It follows that Eσ = E, i.e. that σ(α) = α
for all α ∈ E. This says that σ = Id.

It is not hard to check that every finite extension E of a field F is of the
form E = F (α1, . . . , αn), where the αi are the roots in E of some polynomial
f(x) ∈ F [x]. Thus
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Corollary 1.9. Let E be a finite extension of the field F . Then Gal(E/F )
is finite.

We shall give an explicit bound for the order of Gal(E/F ) later.

Remark 1.10. The homomorphism ρ : Gal(E/F ) → Sn given in Corol-
lary 1.8 depends on a choice of labeling of the roots of f(x) as α1, . . . , αn.
A different choice of labeling the roots corresponds to an element τ ∈ Sn,
and it is easy to check that listing the roots as ατ(1), . . . , ατ(n) replaces ρ
by τ · ρ · τ−1, i.e. by iτ ◦ ρ, where ig : Sn → Sn is the inner automorphism
given by conjugation by τ . In particular, the image of ρ is well-defined up
to conjugation.

Important comment: Returning to the motivation for Galois theory, con-
sider the case where the characteristic of F is 0, or more generally F is per-
fect, E is a finite extension of F , and assume that there exists a polynomial
f(x) ∈ F [x] such that

1. If α1, . . . , αn are the roots of f(x) lying in E, then E = F (α1, . . . , αn).

2. The polynomial f(x) is a product of linear of linear factors in E[x],
i.e. “all” of the roots of f(x) lie in E.

The first condition says that the Galois group Gal(E/F ) can be identified
with a subgroup of Sn. The main point of Galois theory is that, if Condition
(2) also holds, then the complexity of the polynomial f(x), and in particular
the difficulty in describing its roots, is mirrored in the complexity of the
Galois group, both as an abstract group and as a subgroup of Sn.

Example 1.11. (1) In case F = R and E = C, let f(x) = x2 + 1 with roots
±i. Since C = R(i), there is an injective homomorphism Gal(C/R) → S2,
where S2 is viewed as the set of permutations of the two element set {i,−i}.
Hence #(Gal(C/R)) ≤ 2. Since complex conjugation σ is an element of
Gal(C/R) which exchanges i and −i, Gal(C/R) has order two and is equal
to {1, σ}.

(2) Similarly, with F = Q and E = Q(
√

2), Gal(Q(
√

2)/Q) is isomorphic to
a subgroup of S2, where S2 is now viewed as the set of permutations of the
two element set {

√
2,−
√

2}. Hence #(Gal(Q(
√

2)/Q)) ≤ 2, and since (as
we have seen) σ(a+ b

√
2) = a− b

√
2 is an automorphism of Q(

√
2) which is

the identity on Q, Gal(Q(
√

2)/Q) has order two and is equal to {1, σ}.

(3) More generally, let F be any field of characteristic not equal to 2 and
suppose that t ∈ F is not a perfect square in F , i.e. that the polynomial
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x2 − t has no root in F and hence is irreducible in F [x]. Let E = F (
√
t) be

the degree two extension of F obtained by adding a root of x2 − t, which
we naturally write as

√
t. Then as in (1) and (2) above, Gal(F (

√
t)/F ) is

isomorphic to a subgroup of S2, and in fact Gal(F (
√
t)/F ) has two elements.

As in (2), it suffices to show that there is an element σ of Gal(F (
√
t)/F )such

that σ(
√
t) = −

√
t; since the characteristic of F is not 2,

√
a 6= −

√
a,

so σ 6= Id. To see this, it suffices to show that, since every element of
F (
√
t) can be uniquely written as a + b

√
t with a, b ∈ F , and we define

σ(a+b
√
t) = a−b

√
t, then σ is an automorphism of F (

√
t) fixing F . Clearly

σ is a bijection, in fact σ−1 = σ, and σ(a) = a for all a ∈ F . To see that
σ ∈ Gal(F (

√
t)/F ), it suffices to check that σ is a ring homomorphism, i.e.

that σ preserves addition and multiplication. The first of these is easy, and,
as for the second,

σ((a1 + b1
√
t)(a2 + b2

√
t)) = σ((a1a2 + tb1b2) + (a1b2 + a2b1)

√
t)

= (a1a2 + tb1b2)− (a1b2 + a2b1)
√
t

= (a1 − b1
√
t)(a2 − b2

√
t)

= σ(a1 + b1
√
t)σ(a2 + b2

√
t).

Hence σ ∈ Gal(F (
√
t)/F ) with σ(

√
t) = −

√
t.

(4) Let F = Q and E = Q(
√

2,
√

3). Every element of Gal(Q(
√

2,
√

3)/Q)
permutes the roots of (x2 − 2)(x2 − 3), i.e. the set {±

√
2,±
√

3}. Since
Q(
√

2,
√

3) = Q(±
√

2,±
√

3), Gal(Q(
√

2,
√

3)/Q) is isomorphic to a sub-
group of S4. Explicitly, let us label α1 =

√
2, α2 = −

√
2, α3 =

√
3, and

α4 = −
√

3. Since Gal(Q(
√

2,
√

3)/Q) actually permutes the set {±
√

2}
and {±

√
3} individually, we see that the image of Gal(Q(

√
2,
√

3)/Q) is
contained in the subgroup {1, (12), (34), (12)(34)} ∼= S2 × S2 of S4. In
fact, we claim that Gal(Q(

√
2,
√

3)/Q) is isomorphic to the full subgroup
{1, (12), (34), (12)(34)}. To see this, apply (3) above to the case F = Q(

√
3)

and t = 2. We have seen in the homework that
√

2 /∈ Q(
√

3), i.e. that
the polynomial x2 − 2 is irreducible in Q(

√
3)[x]. Then by (3) there is

an element σ1 ∈ Gal(Q(
√

2,
√

3)/Q(
√

3)) ≤ Gal(Q(
√

2,
√

3)/Q) such that
σ1(
√

2) = −
√

2, and σ1(
√

3) =
√

3 by construction. Thus σ1 corresponds
to the permutation (12) ∈ S4. Exchanging the roles of 2 and 3, we see
that there is a σ2 ∈ Gal(Q(

√
2,
√

3)/Q(
√

2)) ≤ Gal(Q(
√

2,
√

3)/Q) such
that σ2(

√
2) =

√
2, and σ2(

√
3) = −

√
3. Thus σ2 corresponds to the per-

mutation (34). Finally, the product σ3 = σ1σ2 satisfies: σ3(
√

2) = −
√

2,
σ3(
√

3) = −
√

3, and thus corresponds to the permutation (12)(34).

(5) For a very closely related example, let α =
√

2 +
√

3 with irr(α,Q, x) =
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x4 − 10x2 + 1. Then we have seen that Q(α) = Q(
√

2,
√

3). By (4) above,
Gal(Q(

√
2,
√

3)/Q) = Gal(Q(α)/Q) = {1, σ1, σ2, σ3}, where

σ1(
√

2) = −
√

2; σ1(
√

3) =
√

3;

σ2(
√

2) =
√

2; σ2(
√

3) = −
√

3;

σ3(
√

2) = −
√

2; σ3(
√

3) = −
√

3.

Applying σi to α and using Lemma 1.5, we see that all of the elements
±
√

2 ±
√

3 of Q(
√

2,
√

3) are roots of irr(α,Q, x) = x4 − 10x2 + 1. Since
there are four such elements and x4 − 10x2 + 1 has degree four, the roots of
irr(α,Q, x) = x4− 10x2 + 1 are exactly α = β1 =

√
2 +
√

3, β2 = −
√

2 +
√

3,
β3 =

√
2−
√

3, and β4 = −
√

2−
√

3. The action of the Galois group on the
set {β1, β2, β3, β4} then identifies the group

Gal(Q(
√

2,
√

3)/Q) = Gal(Q(α)/Q) = {1, σ1, σ2, σ3}

with the subgroup

{1, (12)(34), (13)(24), (14)(23)}

of S4. We can thus identify the same Galois group Gal(Q(
√

2,
√

3)/Q) =
Gal(Q(α)/Q) with two different (but of course isomorphic) subgroups of
S4.

(6) Let F = Q and E = Q( 3
√

2). There is just one root of x3 − 2 in Q( 3
√

2),
namely 3

√
2, and hence (as we have already seen) Gal(Q( 3

√
2)/Q) = {1}. On

the other hand, if ω = 1
2(−1 +

√
−3), then ω3 = 1, hence ω2 = ω−1 = ω̄,

and we have seen that the roots of x3− 2 in C are α1 = 3
√

2, α2 = ω 3
√

2, and
α3 = ω2 3

√
2. Moreover Q(α1, α2, α3) = Q( 3

√
2, ω). By Corollary 1.8, there

is an injective homomorphism from Gal(Q( 3
√

2, ω)/Q) to S3. As we shall
see, this homomorphism is in fact an isomorphism. Here we just note that
complex conjugation defines a nontrivial element σ of Gal(Q( 3

√
2, ω)/Q) of

order 2. In fact as 3
√

2 is real, σ(α1) = α1, and σ(α2) = ω̄ 3
√

2 = ω2 3
√

2 = α3.
Thus σ corresponds to (23) ∈ S3.

(7) Again let F = Q and E = Q( 4
√

2). There are two roots of x4 − 2 in
Q( 4
√

2), namely ± 4
√

2. Thus Gal(Q( 4
√

2)/Q) has order at most 2 and in
fact has order 2 by applying (4) to the case F = Q(

√
2) and t =

√
2 with√

t = 4
√

2. To improve this situation, consider the field Q( 4
√

2, i), which
contains all four roots α1, α2, α3, α4 of the polynomial x4 − 2, namely ± 4

√
2

and ±i 4
√

2. Since clearly Q(α1, α2, α3, α4) = Q( 4
√

2, i), Gal(Q( 4
√

2, i)/Q) is
isomorphic to a subgroup of S4. However, it cannot be all of S4. In fact, if
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σ ∈ Gal(Q( 4
√

2, i)/Q, then there are at most 4 possibilities for σ( 4
√

2), since
σ( 4
√

2) has to be a root of x4−2 and hence can only be αi for 1 ≤ i ≤ 4. But
there are also at most 2 possibilities for σ(i), which must be a root of x2 + 1
and hence can only be ±i. Since σ is specified by its values on 4

√
2 and on i,

there are at most 8 possibilities for σ and hence #(Gal(Q( 4
√

2, i)/Q)) ≤ 8.
We will see that in fact #(Gal(Q( 4

√
2, i)/Q)) = 8 and Gal(Q( 4

√
2, i)/Q) ∼=

D4, the dihedral group of order 8.

2 The isomorphism extension theorem

We begin by interpreting Lemma 1.5 as follows: suppose that E = F (α) is
a simple extension of F and let f(x) = irr(α, F, x). Then, given an element
σ ∈ Gal(E/F ), σ(α) is a root of f(x) in E. The following is a converse to
this statement.

Lemma 2.1. Let F be a field, let E = F (α) be a simple extension of F ,
where α is algebraic over F , and let K be an extension field of E = F (α). Let
f(x) = irr(α, F, x). Then there is a bijection from the set of homomorphisms
σ : E → K such that σ(a) = a for all a ∈ F to the set of roots of the
polynomial f(x) in K.

Proof. Let σ : E → K be a homomorphism such that σ(a) = a for all a ∈ F .
We have seen that σ(α) is a root of f(x) in E. Since every element of
E = F (α) is of the form β =

∑
i aiα

i with ai ∈ F , σ(β) =
∑

i σ(aiαi) =∑
i σ(ai)σ(αi) =

∑
i ai(σ(α))i. Hence σ is determined by its value σ(α) on

α. The above says that here is a well-defined, injective function from the
set of homomorphisms σ : E → K such that σ(a) = a for all a ∈ F to the
set of roots of the polynomial f(x) in K, defined by mapping σ to its value
σ(α) on α. We must show that this function is surjective, in other words
that, given a root β ∈ K of f(x), there exists a homomorphism σ : E → K
such that σ(a) = a for all a ∈ F and such that σ(α) = β.

Thus, let β be a root of f(x) in K. We know that F (α) ∼= F [x]/(f(x)),
and in fact evα : F [x] → F (α) defines an isomorphism from F [x]/(f(x)) to
F (α), which we denote by êvα, with the property that êvα(x+ (f(x))) = α
and êvα(a) = a for all a ∈ F (where we identify a ∈ F with the coset
a + (f(x)) ∈ F [x]/(f(x))). On the other hand, f(β) = 0 by hypothesis,
so that irr(β, F, x) divides f(x). Since both irr(β, F, x) and f(x) are monic
irreducible polynomials, irr(β, F, x) = f(x). Thus the subfield F (β) of K is
also isomorphic to F [x]/(f(x)), and in fact the evaluation homomorphism
evβ : F [x]→ F (β) defines an isomorphism from F [x]/(f(x)) to F (β), which
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we denote by êvβ, with the property that êvβ(x+(f(x))) = β and êvβ(a) = a
for all a ∈ F . Taking the composition σ = êvβ ◦ êv−1

α , σ is an isomorphism
from F (α) to F (β) ≤ K, with the property that σ(α) = β and σ(a) = a for
all a ∈ F . Viewing the range of σ as K (instead of the subfield F (β)) gives
a homomorphism as desired.

It will be useful (for example in certain induction arguments) to prove
the following generalization of the previous lemma.

Lemma 2.2. Let F be a field, let E = F (α) be a simple extension of F ,
where α is algebraic over F , and let ψ : F → K be a homomorphism from
F to a field K. Let f(x) = irr(α, F, x). Then there is a bijection from the
set of homomorphisms σ : E → K such that σ(a) = ψ(a) for all a ∈ F to
the set of roots of the polynomial ψ(f)(x) in K, where ψ(f)(x) ∈ K[x] is
the polynomial obtained by applying the homomorphism ψ to coefficients of
f(x).

Proof. Let σ : E → K be a homomorphism such that σ(a) = ψ(a) for all
a ∈ F . By Lemma 1.7, σ(α) ∈ K is a root of ψ(f)(x). Thus σ determines a
root σ(α) of ψ(f)(x). Since E = F (α), every element ξ of E is of the form
ξ =

∑n−1
i=0 ciα

i, where ci ∈ F . Thus

σ(ξ) = σ(
n−1∑
i=0

ciα
i) =

n−1∑
i=0

σ(ci)σ(α)i =
n−1∑
i=0

ψ(ci)σ(α)i.

It follows that that σ is uniquely determined by σ(α) and the condition that
σ(a) = ψ(a) for all a ∈ F ,

Conversely, suppose that we are given a root β ∈ K of ψ(f)(x). Then
F (α) ∼= F [x]/(f(x)). Let evψ,β be the homomorphism F [x] → K de-
fined as follows: given a polynomial p(x) ∈ F [x], let (as above) ψ(p)(x)
be the polynomial obtained by applying ψ to the coefficients of p(x), and let
evψ,β(p(x)) = ψ(p)(x)(β) be the evaluation of ψ(p)(x) at β. Then evψ,β is
a homomorphism from F [x] to K, and f(x) ∈ Ker evψ,β, since ψ(f)(β) = 0.
Thus (f(x)) ⊆ Ker evψ,β and hence (f(x)) = Ker evψ,β since (f(x)) is a max-
imal ideal. The rest of the proof is identical to the proof of Lemma 2.1.

Corollary 2.3. Let E be a finite extension of a field F , and suppose that
E = F (α) for some α ∈ E, i.e. E is a simple extension of F . Let K be a
field and let ψ : F → K be a homomorphism. Then:

(i) There exist at most [E : F ] homomorphisms σ : E → K extending ψ,
i.e. such that σ(α) = ψ(α) for all α ∈ F .
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(ii) There exists an extension field L of K and a homomorphism σ : E → L
extending ψ.

(iii) If F has characteristic zero (or F is finite or more generally perfect),
then there exists an extension field L of K such that there are exactly
[E : F ] homomorphisms σ : E → L extending ψ.

Proof. If E = F (α) is a simple extension of F , then Lemma 2.2 implies that
the extensions of ψ to a homomorphism σ : F (α) → K are in one-to-one
correspondence with the β ∈ K such that β is a root of ψ(f)(x), where
f(x) = irr(α, F, x). In this case, since ψ(f)(x) has at most n = [F (α) : F ]
roots, there are at most n extensions of ψ, proving (i). To see (ii), choose
an extension field L of K such that ψ(f)(x) has a root β in L. Thus there
will be at least one homomorphism σ : F (α)→ L extending ψ. To see (iii),
choose an extension field L of K such that ψ(f)(x) factors into a product
of linear factors in L. Under the assumption that the characteristic of F is
zero, or F is finite or perfect, the irreducible polynomial f(x) ∈ F [x] has
no multiple roots in any extension field, and the same will be true of the
polynomial ψ(f)(x) ∈ ψ(F )[x], where ψ(F ) is the image of F in K, since
ψ(f)(x) is also irreducible. Thus there are n distinct roots of ψ(f)(x) in L,
and hence n different extensions of ψ to a homomorphism σ : F (α)→ L.

The situation of fields in the second and third statements of the corollary
can be summarized by the following diagram:

L

E

σ
>>}

}
}

}
K

F
ψ // F ′

Let us give some examples to show how one can use Lemma 2.2, espe-
cially in case the homomorphism ψ is not the identity:

Example 2.4. (1) Consider the sequence of extensions Q ≤ Q(
√

2) ≤
Q(
√

2,
√

3). As we have seen, there are two different automorphisms of
Q(
√

2), Id and σ, where σ(a + b
√

2) = a − b
√

2. We have seen that
f(x) = x2 − 3 is irreducible in Q(

√
2)[x]. Since in fact f(x) ∈ Q[x],

σ(f)(x) = f(x), and clearly Id(f)(x) = f(x). In particular, the roots of
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σ(f)(x) = f(x) are ±
√

3. Applying Lemma 2.2 to the case F = Q(
√

2),
E = F (

√
3) = Q(

√
2,
√

3) = K, and ψ = Id or ψ = σ, we see that there
are two extensions of Id to a homomorphism (necessarily an automorphism)
ϕ : E → E. One of these satisfies: ϕ(

√
3) =

√
3), hence ϕ = Id, and the

other satisfies ϕ(
√

3) = −
√

3), hence ϕ = σ2 in the notation of 4) of Ex-
ample 1.11. Likewise, there are two extensions of σ to an automorphism)
ϕ : E → E. One of these satisfies: ϕ(

√
3) =

√
3), hence ϕ = σ1, and the

other satisfies ϕ(
√

3) = −
√

3), hence ϕ = σ3 in the notation of 4) of Exam-
ple 1.11. In particular, we see that Gal(Q(

√
2,
√

3)/Q) has order 4, giving
another argument for (4) of Example 1.11.

(2) Taking F = Q, E = Q( 3
√

2), and K = Q( 3
√

2, ω), we see that there are
three injective homomorphisms from E to K since there are three roots in
K of the polynomial x3 − 2 = irr( 3

√
2,Q, x), namely 3

√
2, ω 3
√

2, and ω2 3
√

2.
On the other hand, consider also the sequence Q ≤ Q(ω) ≤ Q( 3

√
2, ω). As

we have seen, if the roots of x3− 2 in C are labeled as α1 = 3
√

2, α2 = ω 3
√

2,
and α3 = ω2 3

√
2 and σ is complex conjugation, then σ corresponds to the

permutation (23). We claim that f(x) = x3 − 2 is irreducible in Q(ω). In
fact, since deg f(x) = 3, f(x) is reducible in Q(ω) ⇐⇒ there exists a
root α of f(x) in Q(ω). But then Q ≤ Q(α) ≤ Q(ω) and we would have
3 = [Q(α) : Q] dividing 2 = [Q(ω) : Q], which is impossible. Hence x3 − 2 is
irreducible in Q(ω)[x]. (Alternatively, note that ω /∈ Q( 3

√
2) since ω is not

real but Q( 3
√

2) ≤ R, hence

[Q( 3
√

2, ω) : Q] = [Q( 3
√

2, ω) : Q( 3
√

2)][Q( 3
√

2) : Q] = 6

= [Q( 3
√

2, ω) : Q(ω)][Q(ω) : Q],

and so [Q( 3
√

2, ω) : Q(ω)] = 3.)
Considering the simple extension K = Q( 3

√
2, ω) of Q(ω), we see that

the homomorphisms of K into K (necessarily automorphisms) which are the
identity on Q(ω), i.e. the elements of Gal(K/Q(ω), correspond to the roots
of x3−2 in K. Thus for example, there is an automorphism ρ : Q( 3

√
2, ω)→

Q( 3
√

2, ω) such that ρ(ω) = ω and ρ( 3
√

2) = ω 3
√

2. This completely specifies
ρ. For example, the above says that ρ(α1) = α2. Also,

ρ(α2) = ρ(ω 3
√

2) = ρ(ω)ρ( 3
√

2) = ω · ω 3
√

2 = ω2 3
√

2 = α3.

Similarly ρ(α3) = α1. So ρ corresponds to the permutation (123). Then
Gal(Q( 3

√
2, ω)/Q) is isomorphic to a subgroup of S3 containing a 2-cycle

and a 3-cycle and hence is isomorphic to S3.
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(3) Consider the case of Gal(Q( 4
√

2, i)/Q), with β1 = 4
√

2, β2 = i 4
√

2,
β3 = − 4

√
2, and β4 = −i 4

√
2. Then if ϕ ∈ Gal(Q( 4

√
2, i)/Q), it follows

that ϕ(β1) = βk for some k, 1 ≤ k ≤ 4 and ϕ(i) = ±i. In particular
#(Gal(Q( 4

√
2, i)/Q)) ≤ 8. As in (3), complex conjugation σ is an element of

Gal(Q( 4
√

2, i)/Q) corresponding to (24) ∈ S4. Next we claim that x4 − 2 is
irreducible in Q(i). In fact, there is no root of x4 − 2 in Q(i) by inspection
(the βi are not elements of Q(i)) or because x4 − 2 is irreducible in Q[x]
and 4 = deg(x4 − 2 does not divide 2 = [Q(i) : Q]. If x4 − 2 factors into a
product of quadratic polynomials in Q(i)[x], then a homework problem says
that ±2 is a square in Q(i). But 2 = (a+ bi)2 implies either a or b is 0 and
2 = a2 or 2 = −b2 where a or b are rational, both impossible. Hence x4 − 2
is irreducible in Q(i). (Here is another argument that x4 − 2 is irreducible
in Q(i): As in (2), we could note that i /∈ Q( 4

√
2) since i is not real but

Q( 4
√

2) ≤ R, hence

[Q( 4
√

2, i) : Q] = [Q( 4
√

2, i) : Q( 4
√

2)][Q( 4
√

2) : Q] = 8

= [Q( 4
√

2, i) : Q(i)][Q(i) : Q],

and so [Q( 4
√

2, i) : Q(i)] = 4.)
As Q( 4

√
2, i) is then a simple extension of Q(i) corresponding to the poly-

nomial x4−2 which is irreducible in Q(i)[x], a homomorphism from Q( 4
√

2, i)
to Q( 4

√
2, i) which is the identity on Q(i) corresponds to the choice of a root

of x4 − 2 in Q( 4
√

2, i). In particular, there exists ρ ∈ Gal(Q( 4
√

2, i)/Q(i)) ≤
Gal(Q( 4

√
2, i)/Q) such that ρ(i) = i and ρ(β1) = β2. Then ρ(β2) = ρ(iβ1) =

iβ2 = β3 and likewise ρ(β3) = ρ(−β1) = −ρ(β1) = −β2 = β4 and ρ(β4) = β1.
It follows that ρ corresponds to (1234) ∈ S4. From this it is easy to see that
the image of the Galois group in S4 is the dihedral group D4.

Another way to see that, unlike in the previous example, the Galois group
is not all of S4 is as follows: the roots β1, β2, β3, β4 satisfy: β3 = −β1 and
β4 = −β2. Thus, if σ ∈ Gal(Q( 4

√
2, i)/Q), then σ(β3) = −σ(β1) and σ(β4) =

−σ(β2). This says that not all permutations of the set {β1, β2, β3, β4} can
arise; for example, (1243) is not possible.

The following is one of many versions of the isomorphism extension the-
orem for finite extensions of fields. It eliminates the hypothesis that E is a
simple extension of F .

Theorem 2.5 (Isomorphism Extension Theorem). Let E be a finite exten-
sion of a field F . Let K be a field and let ψ : F → K be a homomorphism.
Then:
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(i) There exist at most [E : F ] homomorphisms σ : E → K extending ψ,
i.e. such that σ(α) = ψ(α) for all α ∈ F .

(ii) There exists an extension field L of K and a homomorphism σ : E → L
extending ψ.

(iii) If F has characteristic zero (or F is finite or more generally perfect),
then there exists an extension field L of K such that there are exactly
[E : F ] homomorphisms σ : E → L extending ψ.

Proof. Since E is a finite extension of F , E = F (α1, . . . , αn) for some αi ∈ E.
The proof is by induction on n. The case n = 1, i.e. the case of a simple
extension, is true by Corollary 2.3.

In the general case, with E = F (α1, . . . , αn) for some αi ∈ E, let F1 =
F (α1, . . . , αn−1) and let α = αn, so that E = F1(α). We thus have a
sequence of extensions F ≤ F1 ≤ E. Notice that, given an extension of ψ to
a homomorphism σ : F1 → K and an extension τ of σ to a homomorphism
E → K, the homomorphism τ is also an extension of ψ to a homomorphism
E → K. Conversely, a homomorphism τ : E → K extending ψ defines an
extension σ of ψ to F1, by taking σ(α) = τ(α) for α ∈ F1 (i.e. σ is the
restriction of τ to F1), and clearly τ is an extension of σ to F1.

By assumption, E = F1(α) and the inductive hypothesis applies to the
extension F1 of F . Given a homomorphism ψ : F → K, where K is a field, by
induction, there exist at most [F1 : F ] extensions of ψ to a homomorphism
F1 → K. Suppose that the set of all such homomorphisms is {σ1, . . . , σd},
with d ≤ [F1 : F ]. Fix one such homomorphism σi. Applying Corollary 2.3
to the simple extension F1(α) = E and the homomorphism σi : F1 → K,
there are at most e extensions of σi to a homomorphism τ : F1(α) → K,
where e = [F1(α) : F1] = [E : F1]. In all, since each of the d extensions
σi has at most e extensions to a homomorphism from E to K, there are
at most de extensions of ψ to a homomorphism E → K. As d ≤ [F1 : F ]
and e = [E : F1], we see that there are at most [F1 : F ][E : F1] = [E : F ]
extensions of ψ to a homomorphism E → K. This completes the inductive
step for the proof of (i).

The proofs of (ii) and (iii) are similar. To see (ii), use the inductive
hypothesis to find a field L1 containing K and an extension of ψ to a ho-
momorphism ψ1 : F1 → L1. Let f1(x) = irr(α, F1, x). Adjoining a root of
ψ1(f1)(x) to L1 if necessary, to obtain an extension field L of L1 containing
a root of ψ1(f1)(x), it follows from Corollary 2.3 that there exists a homo-
morphism σ : F1(α) = E → L extending ψ1, and hence extending ψ. This
completes the inductive step for the proof of (ii).
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Finally, to see (iii), we examine the proof of the inductive step for (i) more
carefully. Let F be a field of characteristic zero (or more generally a field
such that every irreducible polynomial in F [x] does not have a multiple root
in any extension field of F ). Given the homomorphism ψ : F → K, where
K is a field, by the inductive hypothesis, after enlarging the field K to some
extension field L1 if need be, there exist exactly [F1 : F ] extensions of ψ to a
homomorphism F1 → L1. Suppose that the set of all such homomorphisms
is {σ1, . . . , σd}, with d = [F1 : F ]. As before, we let f1(x) = irr(α, F1, x).
There exists a finite extension L of the field L1 such that every one of
the (not necessarily distinct) irreducible polynomials σi(f1)(x) ∈ σi(F1)[x]
splits into linear factors in L, and hence has e distinct roots in L, where
e = deg f1(x) = [F1(α) : F1] = [E : F1]. Fix one such homomorphism
σi. Again applying Corollary 2.3 to the simple extension F1(α) = E and
the homomorphism σi : F1 → L, there are exactly e extensions of σi to a
homomorphism τij : F1(α)→ L. In all, since each of the d extensions σi has e
extensions to a homomorphism from E to L, there are exactly de extensions
of ψ to a homomorphism E → L. As d = [F1 : F ] and e = [E : F1], we see
that there are exactly

[F1 : F ][E : F1] = [E : F ]

extensions of ψ to a homomorphism E → L. This completes the inductive
step for the proof of (iii), and hence the proof of the theorem.

Clearly, the first statement of the Isomorphism Extension Theorem im-
plies the following (take K = E in the statement):

Corollary 2.6. Let E be a finite extension of F . Then

#(Gal(E/F )) ≤ [E : F ].

Definition 2.7. Let E be a finite extension of F . Then E is a separable
extension of F if, for every extension field K of F , there exists an extension
field L of K such that there are exactly [E : F ] homomorphisms σ : E → L
with σ(a) = a for all a ∈ F .

For example, if F has characteristic zero or is finite or more generally is
perfect, then every finite extension of F is separable. It is not hard to show
that, if E is a finite extension of F , then E is a separable extension of F
⇐⇒ for all α ∈ E, the polynomial irr(α, F, x) does not have multiple roots.

One basic fact about separable extensions, which we shall prove later, is:
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Theorem 2.8 (Primitive Element Theorem). Let E be a finite separable
extension of a field F . Then there exists an element α ∈ E such that E =
F (α). In other words, every finite separable extension is a simple extension.

There are two reasons why, in the situation of Corollary 2.6, we might
have strict inequality, i.e. #(Gal(E/F )) < [E : F ]. The first is that the
extension might not be separable. As we have seen, this situation does not
occur if F has characteristic zero, and is in general somewhat anomalous.
More importantly, though, we might, in the situation of the Isomorphism
Extension Theorem, be able to construct [E : F ] homomorphisms σ : E → L,
where L is some extension field of E, without being able to guarantee that
σ(E) = E. For example, let F = Q and E = Q( 3

√
2), with [E : F ] = 3.

Let L be an extension field of Q which contains the three cube roots of 2,
namely 3

√
2, ω 3
√

2, and ω2 3
√

2, where ω = 1
2(−1 +

√
−3). For example, we

could take L = Q( 3
√

2, ω). Then there are three homomorphisms σ : E → L,
but only one of these has image equal to E. We will fix this problem in the
next section.

3 Splitting fields

Definition 3.1. Let F be a field and let f(x) ∈ F [x] be a polynomial of
degree at least 1. Then an extension field E of F is a splitting field for f(x)
over F if the following two conditions hold:

(i) In E[x], there is a factorization f(x) = c
∏n
i=1(x−αi). In other words,

f(x) factors in E[x] into a product of linear factors.

(ii) With the notation of (i), E = F (α1, . . . , αn). In other words, E is
generated as an extension field of F by the roots of f(x).

Here the name “splitting field” means that, in E[x], the polynomial f(x)
splits into linear factors.

Remark 3.2. (i) Clearly, E is a splitting field of f(x) over F if (i) holds
(f(x) factors in E[x] into a product of linear factors) and there exist some
subset {α1, . . . , αk} of the roots of f(x) such that E = F (α1, . . . , αk) (be-
cause, if αk+1, . . . , αn are the remaining roots, then they are in E by (i) and
thus E = E(αk+1, . . . , αn) = F (α1, . . . , αk)(αk+1, . . . , αn) = F (α1, . . . , αn)).

(ii) If E is a splitting field of f(x) over F and K is an intermediate field,
i.e. F ≤ K ≤ E, then E is also a splitting field of f(x) over K.
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One can show that any two splitting fields of f(x) over F are isomorphic,
via an isomorphism which is the identity on F , and we sometimes refer
incorrectly to the splitting field of f(x) over F .

Example 3.3. 1. The splitting field of x2 − 2 over Q is Q(
√

2,−
√

2) =
Q(
√

2). More generally, if F is any field, f(x) ∈ F [x] is an irreducible
polynomial of degree 2, and E = F (α), where α is a root of f(x), then
E is a splitting field of f(x), since in E[x], f(x) = (x− α)g(x), where
g(x) has degree one, hence is linear, and E is clearly generated over F
by the roots of f(x).

2. The splitting field of x3− 2 over Q is Q( 3
√

2, ω 3
√

2, ω2 3
√

2) = Q( 3
√

2, ω).
However, Q( 3

√
2) is not a splitting field of x3 − 2 over Q, since x3 − 2

is not a product of linear factors in Q( 3
√

2)[x].

3. The splitting field of x4 − 2 over Q is Q(± 4
√

2,±i 4
√

2) = Q( 4
√

2, i).

4. The splitting field of (x2−2)(x2−3) over Q is Q(
√

2,−
√

2,
√

3,−
√

3) =
Q(
√

2,
√

3). Note in particular that, in the definition of a splitting field,
we do not assume that f(x) is irreducible. Also, Q(

√
2,
√

3) is not a
splitting field of x2 − 2 over Q, since Q(

√
2,
√

3) 6= Q(±
√

2).

5. The splitting field of x4−10x2 +1 over Q is Q(
√

2+
√

3) = Q(
√

2,
√

3),
because all of the roots ±

√
2±
√

3 lie in Q(
√

2+
√

3) = Q(
√

2,
√

3), and
Q(
√

2 +
√

3) = Q(
√

2,
√

3) is generated by the roots of x4 − 10x2 + 1.

6. The splitting field of x5− 1 over Q is the same as the splitting field of
x4 + x3 + x2 + x+ 1 = Φ5(x) over Q, namely Q(ζ), where ζ = e2πi/5.
This follows since every root of x5− 1 is a 5th root of unity and hence
equal to ζi for some i. Note that, as Φ5(x) is irreducible in Q[x],
[Q(ζ) : Q] = 4. More generally, if ζ is any generator of µn, the group
of nth roots of unity, for example if ζ = e2πi/n, then µn = 〈ζ〉 and

xn − 1 =
n−1∏
i=0

(x− ζi).

Hence Q(ζ) is a splitting field for xn − 1 over Q.

7. With F = Fp and q = pn (p a prime number), the splitting field of the
polynomial xq − x over Fp is Fq.

Remark 3.4. In a sense, examples 3, 5 and 6 are misleading, in the sense
that for a “random” irreducible polynomial f(x) ∈ Q[x] of degree n, the
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expectation is that the degree of a splitting field of f(x) will be n!. In
other words, if f(x) ∈ Q[x] is a “random” irreducible polynomial and α1 is
some root of f(x) in an extension field of Q, then we know that, in Q(α1)[x],
f(x) = (x−α1)f1(x) with deg f1(x) = n−1. But there is no reason in general
to expect that Q(α1) contains any other root of f(x), or equivalently a root
of f1(x), or even to expect that f1(x) is reducible in Q(α1). Thus we would
expect in general that, if α2 is a root of f1(x) in some extension field of
Q(α1), then [Q(α1)(α2) : Q(α1)] = [Q(α1, α2) : Q(α1)] = n − 1 and hence
[Q(α1, α2) : Q] = n(n− 1). Then f(x) = (x−α1)(x−α2)f2(x) ∈ Q(α1, α2).
Continuing in this way, our expectation is that a splitting field for f(x) over
Q is of the form Q(α1, . . . , αn) with [Q(α1, . . . , αn) : Q] = n(n−1) · · · 2 ·1 =
n!.

The following relates the concept of a splitting field to the problem of
constructing automorphisms:

Theorem 3.5. Let E be a finite extension of a field F . Then the following
are equivalent:

(i) There exists a polynomial f(x) ∈ F [x] of degree at least one such that
E is a splitting field of f(x).

(ii) For every extension field L of E, if σ : E → L is a homomorphism
such that σ(a) = a for all a ∈ F , then σ(E) = E, and hence σ is an
automorphism of E.

(iii) For every irreducible polynomial p(x) ∈ F [x], if there is a root of
p(x) in E, then p(x) factors into a product of linear factors in E[x].

Proof. (i) =⇒ (ii): We begin with a lemma:

Lemma 3.6. Let L be an extension field of a field F and let α1, . . . , αn ∈
L. If σ : E = F (α1, . . . , αn) → L is a homomorphism, then σ(E) =
σ(F )(σ(α1), . . . , σ(αn)).

Proof. The proof is by induction on n. If n = 1 and α = α1, then every
element of F (α) is of the form

∑
i aiα

i. Then σ(
∑

i aiα
i) =

∑
i σ(ai)(σ(α))i

and hence

σ(F (α)) = {
∑
i

σ(ai)(σ(α))i : ai ∈ F} = σ(F )(σ(α)).
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For the inductive step, applying the case n = 1 to the field F (α1, . . . , αn−1),
we see that

σ(F (α1, . . . , αn)) = σ(F (α1, . . . , αn−1)(αn)) = σ(F (α1, . . . , αn−1))(σ(αn))
= σ(F )(σ(α1), . . . , σ(αn−1))(σ(αn)) = σ(F )(σ(α1), . . . , σ(αn)),

completing the proof of the inductive step.

Returning to the proof of the theorem, by assumption, E = F (α1, . . . , αn),
where f(x) = c

∏n
i=1(x− αi). In particular, every root of f(x) in L already

lies in E. If σ : E → L is a homomorphism such that σ(a) = a for all
a ∈ F , then σ(αi) = αj for some j, hence σ({α1, . . . , αn}) ⊆ {α1, . . . , αn}.
Since {α1, . . . , αn} is finite set and σ is injective, it induces a surjective map
from {α1, . . . , αn} to itself, i.e. σ permutes the roots of f(x) in E ≤ L. By
Lemma 3.6, σ(E)) = σ(F )(σ(α1), . . . , σ(αn)) = F (α1, . . . , αn) = E. Thus σ
is an automorphism of E.

(ii) =⇒ (iii): Let p(x) ∈ F [x] be irreducible, and suppose that there exists
a β ∈ E such that p(β) = 0. There exists an extension field K of E such that
p(x) is a product c

∏
j(x− βj) of linear factors in K[x], where β = β1, say.

For any j, since β = β1 and βj are both roots of the irreducible polynomial
p(x), there exists an isomorphism ψ : F (β1)→ F (βj) ≤ K. Applying (ii) of
the Isomorphism Extension Theorem to the homomorphism ψ : F (β1)→ K
and the extension field E of F (β1), there exists an extension field L of K
(hence L is an extension of E and of F , since E and F are subfields of K),
and a homomorphism σ : E → L such that σ(a) = ψ(a) for all a ∈ F (β1).
In particular, σ(a) = a for all a ∈ F . By the hypothesis of (ii), it follows
that σ(E) = E. But by construction σ(β1) = ψ(β1) = βj , so βj ∈ E for
every root βj of p(x). It follows that p(x) is a product c

∏
j(x−βj) of linear

factors in E[x].

(iii) =⇒ (i): Since E is in any case a finite extension of F , there ex-
ist α1, . . . , αn ∈ E such that E = F (α1, . . . , αn). For each i, let pi(x) =
irr(αi, F, x). Then pi(x) is an irreducible polynomial with a root in E. By
the hypothesis of (iii), pi(x) is a product of linear factors in E[x]. Let f(x)
be the product p1(x) · · · pn(x). Then f(x) is a product of linear factors in
E[x], since each of its factors pi(x) is a product of linear factors, and E is
generated over F by some subset of the roots of f(x) and hence by all of
the roots (see the comment after the definition of a splitting field). Thus E
is a splitting field of f(x).
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Definition 3.7. Let E be a finite extension of F . If any one of the equivalent
conditions of the preceding theorem is fulfilled, we say that E is a normal
extension of F .

Corollary 3.8. Let E be a finite extension of a field F . Then the following
are equivalent:

(i) E is a separable extension of F (this is automatic if the characteristic
of F is 0 or F is finite or perfect) and E is a normal extension of F .

(ii) #(Gal(E/F )) = [E : F ].

Proof. We shall just prove that (i) =⇒ (ii). Applying the definition that
E is a separable extension of F to the case where K = E, we see that there
exists an extension field L of E and [E : F ] homomorphisms σ : E → L
such that σ(a) = a for all a ∈ F . By the (easy) implication (i) =⇒
(ii) of Theorem 3.5, σ(E) = E, i.e. σ is an automorphism of E and hence
σ ∈ Gal(E/F ). Conversely, every element of Gal(E/F ) is a homomorphism
from E to L which is the identity on F . Hence #(Gal(E/F )) = [E : F ].

Definition 3.9. A finite extension E of a field F is a Galois extension of
F if and only if #(Gal(E/F )) = [E : F ]. Thus, the preceding corollary can
be rephrased as saying that E is a Galois extension of F if and only if E is
a normal and separable extension of F .

Example 3.10. We can now redo the determination of the Galois groups
Gal(Q( 3

√
2, ω)/Q) and Gal(Q( 4

√
2, i)/Q) much more efficiently. For example,

since [Q( 3
√

2, ω) : Q] = 6 and Q( 3
√

2, ω) is a splitting field for the polynomial
x3 − 2, we know that the order of Gal(Q( 3

√
2, ω)/Q) is 6. Since there is

an injective homomorphism from Gal(Q( 3
√

2, ω)/Q) to S3, this implies that
Gal(Q( 3

√
2, ω)/Q) ∼= S3 and that every permutation of the roots {α1, α2, α3}

(notation as in Example 2.4(2)) arises via an element of the Galois group.
In addition, for every i, 1 ≤ i ≤ 3, there exists a unique element σ1 of
Gal(Q( 3

√
2, ω)/Q) such that σ1(α1) = αi and σ1(ω) = ω, and a unique

element σ2 of Gal(Q( 3
√

2, ω)/Q) such that σ2(α1) = αi and σ2(ω) = ω̄.
A very similar argument handles the case of Gal(Q( 4

√
2, i)/Q): Setting

β1 = 4
√

2; β2 = i
4
√

2; β3 = − 4
√

2; β4 = −i 4
√

2,

every σ ∈ Gal(Q( 4
√

2, i)/Q) takes β1 = 4
√

2 to some βi and takes i to ±i, and
every possibility has to occur since the order of Gal(Q( 4

√
2, i)/Q) is 8. Thus
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for example there exists a ρ ∈ Gal(Q( 4
√

2, i)/Q) such that ρ( 4
√

2) = i 4
√

2 and
ρ(i) = i. It follows that

ρ(β2) = ρ(i 4
√

2) = ρ(i)ρ( 4
√

2) = i2
4
√

2 = − 4
√

2 = ρ(β3),

and similarly that ρ(β3) = β4 and that ρ(β4) = β1. Hence ρ corresponds
to the permutation (1234), and as before it is easy to check from this that
Gal(Q( 4

√
2, i)/Q) ∼= D4.

Example 3.11. If p is a prime number and q = pn, then Fq is a separable
extension of Fp since Fp is perfect and it is normal since it is a splitting
field of xq − x over Fp. Thus Fq is a Galois extension of Fp. The order of
the Galois group Gal(Fq/Fp) is thus [Fq : Fp] = n. On the other hand, we
claim that, if σp is the Frobenius automorphism, then the order of σp in
Gal(Fq/Fp) is exactly n: Clearly, σkp = Id ⇐⇒ σpk(α) = α for all α ∈ Fq.
Moreover, by our computations on finite fields, (σp)k = σpk , and σpk(α) = α

⇐⇒ α is a root of the polynomial xp
k−x, which has at most pk roots. But,

if k < n, then pk < pn = q, so that σkp 6= Id for k < n. Finally, as we have
seen, (σp)n = σpn = σq = Id, so that the order of σp in Gal(Fq/Fp) is n.

Hence Gal(Fq/Fp) is cyclic and σp is a generator, i.e. Gal(Fq/Fp) ∼= 〈σp〉.
More generally, if Fq′ is a subfield of Fq, so that q = (q′)d and [Fq : Fq′ ] = d,
similar arguments show that Gal(Fq/Fq′) is cyclic and σq′ is a generator, i.e.
Gal(Fq/Fq′) ∼= 〈σq′〉.

Remark 3.12. One important point about normal extensions is the follow-
ing: unlike the case of finite or algebraic extensions, there exist sequences
of extensions F ≤ K ≤ E where K is a normal extension of F and E is a
normal extension of K, but E is not a normal extension of F . For exam-
ple, consider the sequence Q ≤ Q(

√
2) ≤ Q( 4

√
2). Then we have seen that

Q(
√

2) is a normal extension of Q, and likewise Q( 4
√

2) is a normal extension
of Q(

√
2) (it is the splitting field of x2−

√
2 over Q(

√
2)). But Q( 4

√
2) is not

a normal extension of Q, since it does not satisfy the condition (iii) of the
theorem: x4 − 2 is an irreducible polynomial with coefficients in Q, there is
one root of x4 − 2 in Q( 4

√
2), but Q( 4

√
2) does not contain the root i 4

√
2 of

x4 − 2.
Likewise, there exist sequences of extensions F ≤ K ≤ E where E is

a normal extension of F , but K is not a normal extension of F . (It is
automatic that E is a normal extension of K, since if E is a splitting field
of f(x) ∈ K[x], then it is still a splitting field of f(x) when we view f(x)
as an element of K[x].) For example, consider the sequence Q ≤ Q( 3

√
2) ≤

Q( 3
√

2, ω), where as usual ω = 1
2(−1 +

√
−3). Then we have seen that
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Q( 3
√

2, ω) is a normal extension of Q (it is the splitting field of x3 − 2), but
Q( 3
√

2) is not a normal extension of Q (the irreducible polynomial x3−2 has
one root in Q( 3

√
2), but it does not factor into linear factors in Q( 3

√
2)[x]).

A useful consequence of the characterization of splitting fields and the
isomorphism extension theorem is the following:

Proposition 3.13. Suppose that E is a splitting field of the polynomial
f(x) ∈ F [x], where f(x) is irreducible in F [x]. Then Gal(E/F ) acts tran-
sitively on the roots of f(x).

Proof. Suppose that the roots of f(x) in E are α1, . . . , αn. Fixing one
root α = α1 of f(x), it suffices to prove that, for all j, there exists a
σ ∈ Gal(E/F ) such that σ(α1) = αj . By Lemma 2.1, there exists an iso-
morphism ψ : F (α1) → F (αj) such that ψ(α1) = αj . By the Isomorphism
Extension Theorem, there exists an extension field L of E and a homomor-
phism σ : E → L of ψ; in particular, σ(α1) = αj . Finally, by the implication
(i) =⇒ (ii) of Theorem 3.5, the image of σ is E, i.e. in fact an element of
Gal(E/F ).

Example 3.14. Considering the example of Gal(Q( 3
√

2, ω)/Q) again, the
proposition says that, since x3 − 2 is irreducible in Q[x], Gal(Q( 3

√
2, ω)/Q)

is isomorphic to a subgroup of S3 which acts transitively on the set {1, 2, 3}.
There are only two subgroups of S3 with this property: S3 itself and A3 =
〈(123)〉. Since every nontrivial element of A3 has order 3 and complex conju-
gation is an element of Gal(Q( 3

√
2, ω)/Q) of order 2, Gal(Q( 3

√
2, ω)/Q) ∼= S3.

Corollary 3.15. Suppose that E is a splitting field of the polynomial f(x) ∈
F [x], where f(x) is an irreducible polynomial in F [x] of degree n with n dis-
tinct roots (automatic if F is perfect). Then n divides the order of Gal(E/F )
and the order of Gal(E/F ) divides n!.

Proof. Let α1, . . . , αn be the n distinct roots of f(x) in E. We have sent
that there is an injective homomorphism from Gal(E/F ) to Sn, and hence
that Gal(E/F ) is isomorphic to a subgroup of Sn. By Lagrange’s theorem,
the order of Gal(E/F ) divides the order of Sn, which is n!. To get the
other divisibility, note that {α1, . . . , αn} is a single orbit for the action of
Gal(E/F ) on the set {α1, . . . , αn}. By our work on group actions from
last semester, the order of an orbit of a finite group acting on a set divides
the order of the group (this is another application of Lagrange’s theorem).
Hence n divides the order of Gal(E/F ).
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4 The main theorem of Galois theory

Let E be a finite extension of F . Then we have defined the Galois group
Gal(E/F ) (although it could be very small). IfH is a subgroup of Gal(E/F ),
we have defined the fixed field

EH = {α ∈ E : σ(α) = α for all σ ∈ H}.

Clearly F ≤ EH ≤ E.
On the other hand, given an intermediate field K between F and E, i.e.

a subfield of E containing F , so that F ≤ K ≤ E, we can define Gal(E/K)
and Gal(E/K) is clearly a subgroup of Gal(E/F ), since if σ(a) = a for all
a ∈ K, then σ(a) = a for all a ∈ F . Thus we have two constructions: one
associates an intermediate field to a subgroup of Gal(E/F ), and the other
associates a subgroup of Gal(E/F ) to an intermediate field. In general, there
is not much that we can say about these two constructions. But if E is a
Galois extension of F , they turn out to set up a one-to-one correspondence
between subgroups of Gal(E/F ) and intermediate fields K between F and
E, i.e. fields K with F ≤ K ≤ E.

Theorem 4.1 (Main Theorem of Galois Theory). Let E be a Galois ex-
tension of a field F . Then:

(i) There is a one-to-one correspondence between subgroups of Gal(E/F )
and intermediate fields K between F and E, given as follows: To
a subgroup H of Gal(E/F ), we associate the fixed field EH , and to
an intermediate field K between F and E we associate the subgroup
Gal(E/K) of Gal(E/F ). These constructions are inverses, in other
words

Gal(E/EH) = H;

EGal(E/K) = K.

In particular, the fixed field of the full Galois group Gal(E/F ) is F
and the fixed field of the identity subgroup is E:

EGal(E/F ) = F and E{Id} = E.

Finally, since there are only finitely many subgroups of Gal(E/F ),
there are only finitely many intermediate fields K between F and E.

(ii) The above correspondence is order reversing with respect to inclusion.
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(iii) For every subgroup H of Gal(E/F ), [E : EH ] = #(H), and hence
[EH : F ] = (Gal(E/F ) : H). Likewise, for every intermediate field K
between F and E, #(Gal(E/K)) = [E : K].

(iv) For every intermediate field K between F and E, the field is a nor-
mal extension of F if and only if Gal(E/K) is a normal subgroup of
Gal(E/F ). In this case, K is a Galois extension of F , and

Gal(K/F ) ∼= Gal(E/F )
/

Gal(E/K).

Example 4.2. 1) Let F = Q and E = Q(
√

2,
√

3). We keep the notation
of 4) of Example 1.11. If G = Gal(Q(

√
2,
√

3)/Q), then G = {1, σ1, σ2, σ3}.
The subgroups of G are the trivial subgroups {1} and G and the subgroups
〈σi〉 of order 2, hence of index 2. As always, E{1} = E and EG = F = Q.
Clearly σ1(

√
3) =

√
3. Thus Q(

√
3) ≤ E〈σ1〉. But since [Q(

√
3) : Q] = 2 =

(G : 〈σ1〉), in fact Q(
√

3) = E〈σ1〉. Similarly Q(
√

2) = E〈σ2〉. As for E〈σ3〉,
since σ3(

√
2) = −

√
2 and σ3(

√
3) = −

√
3, it follows that σ3(

√
6) =

√
6.

Thus Q(
√

6) = E〈σ3〉.
It is also interesting to look at this example from the viewpoint of Q(α),

where α =
√

2+
√

3. Using the notation α = β1 =
√

2+
√

3, β2 = −
√

2+
√

3,
β3 =

√
2 −
√

3, and β4 = −
√

2 −
√

3 identifies σ1 with (12)(34), σ2 with
(13)(24), and σ3 with (14)(23) ∈ S4. It is then clear that β1 + β2 is fixed by
σ1. (Of course, so is β3+β4, but it is easy to check that β3+β4 = −(β1+β2).)
Hence Q(β1 + β2) ≤ E〈σ1〉. On the other hand, β1 + β2 = 2

√
3, and degree

arguments as above show that

E〈σ1〉 = Q(β1 + β2) = Q(2
√

3) = Q(
√

3).

Likewise using the element β1+β3 = 2
√

2 which is fixed by σ2, corresponding
to (13)(24) gives E〈σ2〉 = Q(

√
2). If we try to do the same thing with

σ3 = (14)(23), however, we find that β1 + β4 = 0, since σ3(β1) = −β4,
and hence we obtain the useless information that Q(0) ≤ E〈σ3〉. To find
a nonzero, in fact a nonrational element of E fixed by σ3, note that as
σ3(β1) = −β1, σ3(β2

1) = (−β1)2 = β2
1 . Now β2

1 = (
√

2 +
√

3)2 = 5 + 2
√

6,
and Q(5 + 2

√
6) = Q(

√
6). Thus as before Q(

√
6) = E〈σ3〉.

2) Take F = Q and E = Q( 3
√

2, ω). List the roots of x3 − 2 as α1 = 3
√

2,
α2 = ω 3

√
2, α3 = ω2 3

√
2. Let G = Gal(E/F ) ∼= S3. Now S3 has the trivial

subgroups S3 and {1}, as well as A3 = 〈(123)〉 and three subgroups of order
2, 〈(12)〉, 〈(13)〉, and 〈(23)〉. Clearly α3 ∈ Q( 3

√
2, ω)〈(12)〉. Since [Q(α3) :

Q] = 3 = (S3 : 〈(12)〉), Q( 3
√

2, ω)〈(12)〉 = Q(α3). Similarly Q( 3
√

2, ω)〈(13)〉 =
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Q(α2) and Q( 3
√

2, ω)〈(23)〉 = Q(α1). The remaining fixed field is Q( 3
√

2, ω)A3 ,
which is a degree 2 extension of Q. Since we already know a subfield of
Q( 3
√

2, ω) which is a degree 2 extension of Q, namely Q(ω) it must be equal
to Q( 3

√
2, ω)A3 by the Main Theorem. However, let us check directly that

ω ∈ Q( 3
√

2, ω)A3 . It suffices to check that the element ϕ of the Galois group
corresponding to (123) satisfies ϕ(ω) = ω. Note that ω = α2/α1 = α3/α2.
Thus

ϕ(ω) = ϕ(α2/α1) = ϕ(α2)/ϕ(α1) = α3/α2 = ω,

as claimed.

We will describe the more complicated example of Gal( 4
√

2, i)/Q) is a
separate handout.

5 Proofs

For simplicity, we shall always assume that F has characteristic zero, or more
generally is perfect. In particular, every irreducible polynomial f(x) ∈ F [x]
has only simple zeroes in any extension field of F , and every finite extension
of F is automatically separable.

We begin with a proof of the primitive element theorem:

Theorem 5.1. Let F be a perfect field and let E be a finite extension of F .
Then there exists α ∈ E such that E = F (α).

Proof. If F is finite we have already proved this. So we may assume that F
is infinite. We begin with the following:

Claim 5.2. Let L be an extension field of the field K, and suppose that
p(x), q(x) ∈ K[x]. If the gcd of p(x) and q(x) in L[x] is of the form x − ξ,
then ξ ∈ K.

Proof of the claim. We have seen that the gcd of p(x), q(x) in K[x] is a gcd
of p(x), q(x) in L[x], and hence they are the same if they are both monic.
It follows that x − ξ is the gcd of p(x), q(x) in K[x] and in particular that
ξ ∈ K.

Returning to the proof of the theorem, it is clearly enough by induction
to prove that F (α, β) = F (γ) for some γ ∈ F (α, β). Let f(x) = irr(α, F, x)
and let g(x) = irr(β, F, x). There is an extension field L of F (α, β) such that
f(x) factors into distinct linear factors in L, say f(x) = (x−α1) · · · (x−αn),
with α = α1, and likewise g(x) factors into distinct linear factors in L, say
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g(x) = (x− β1) · · · (x− βm), with β = β1. Since F is infinite, we can choose
a c ∈ F such that, for all i, j with j 6= 1,

c 6= α− αi
β − βj

.

(Notice that we need to take j 6= 1 so that the denominator is not zero.) In
other words, for all i and j with j 6= 1, α− αi 6= c(β − βj). Set γ = α− cβ.
Then

γ = α− cβ 6= αi − cβj
for all i and j with j 6= 1. Thus γ + cβ = α = α1, but for all j 6= 1,
γ + cβj 6= αi for any i.

We are going to construct a polynomial h(x) ∈ F (γ)[x] such that h(β) =
0 but, for j 6= 1, h(βj) 6= 0. Once we have done so, consider the gcd of g(x)
and h(x) in L (which contains all of the roots β = β1, . . . , βm of g(x)). The
only irreducible factor of g(x) which divides h(x) is x−β, which divides g(x)
only to the first power. Thus the gcd of g(x) and h(x) in L[x] is x−β. Since
h(x) ∈ F (γ)[x] by construction and g(x) ∈ F [x] ≤ F (γ)[x], both g(x) and
h(x) are elements of F (γ)[x]. Then Claim 5.2 implies that β ∈ F (γ). But
then α = γ+ cβ ∈ F (γ) also (recall c ∈ F by construction). So α, β ∈ F (γ),
but clearly γ ∈ F (α, β). Hence F (α, β) = F (γ).

Finally we construct h(x) ∈ F (γ)[x]. Take h(x) = f(γ + cx), where
f(x) = irr(α, F, x). Clearly the coefficients of h(x) lie in F (γ). Note that
h(β) = f(γ + cβ) = f(α) = 0, but for j 6= 1, h(βj) = f(γ + cβj). By
construction, for j 6= 1, γ + cβj 6= αi for any i, hence γ + cβj is not a root
of f(x) and so h(βj) 6= 0. This completes the construction of h(x) and the
proof of the theorem.

Remark 5.3. For fields F which are not perfect, there can exist simple
extensions of F which are not separable as well as finite extensions which
are not simple. One can show that a finite extension E of a field F is a simple
extension ⇐⇒ there are only finitely many fields K with F ≤ K ≤ E.

Next we turn to a proof of the Main Theorem of Galois Theory. Let E be
a Galois extension of F . Recall that the correspondence given in the Main
Theorem between intermediate fields K (i.e. F ≤ K ≤ E and subgroups
H of Gal(E/F ) is as follows: given K, we associate to it the subgroup
Gal(E/K) of Gal(E/F ), and given H ≤ Gal(E/F ), we associate to it the
fixed field EH ≤ E. Both of these constructions are clearly order-reversing
with respect to inclusion, in other words

H1 ≤ H2 =⇒ EH2 ≤ EH1
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and
F ≤ K1 ≤ K2 ≤ E =⇒ Gal(E/K2) ≤ Gal(E/K1).

This is (ii) of the Main Theorem.
Next we prove (i) and (iii). First, suppose that K is an intermediate

field. We will show that EGal(E/K) = K. Clearly, K ≤ EGal(E/K). It thus
suffices to show that, if α ∈ E but α /∈ K, then there exists a σ ∈ Gal(E/K)
such that σ(α) 6= α, i.e. α /∈ EGal(E/K). (This says that EGal(E/K) ≤ K and
hence EGal(E/K) = K.) If α /∈ K, then f(x) = irr(α,K, x) is an irreducible
polynomial in K[x] of degree k > 1. Since E is a normal extension of
F and hence of K and the root α of the irreducible polynomial f(x) ∈
K[x] lies in E, all roots α = α1, . . . , αk of f(x) lie in E. Choose some
i > 1. Then there is an injective homomorphism ψ : K(α) → E such that
ψ|K = Id but ψ(α) = αi 6= α. By the isomorphism extension theorem,
there exists an extension L of E such that the homomorphism ψ extends
to a homomorphism σ : E → L. Since E is a normal extension of F and
σ|F = Id, σ(E) = E and thus σ ∈ Gal(E/F ). Since σ|K = ψ|K = Id, in
fact σ ∈ Gal(E/K). We have thus found the desired σ. Note further that,
as E is a Galois extension of K, we must have #(Gal(E/K)) = [E : K].

Now suppose that H is a subgroup of Gal(E/F ). We claim that

Gal(E/EH) = H.

Clearly, H ≤ Gal(E/EH) by definition. Thus, #(H) ≤ #(Gal(E/EH)). To
prove that Gal(E/EH) = H, it thus suffices to show that #(Gal(E/EH)) ≤
#(H). This will follow from:

Claim 5.4. For all α ∈ E, degEH α ≤ #(H).

First let us see that Claim 5.4 implies that #(Gal(E/EH)) ≤ #(H).
By the Primitive Element Theorem, there exists an α ∈ E such that E =
EH(α), and hence degEH α = [E : EH ]. For this α, Claim 5.4 implies that

#(Gal(E/EH)) = [E : EH ] = degEH α ≤ #(H).

Thus #(H) ≥ #(Gal(E/EH)). But H ≤ Gal(E/EH) and hence #(H) ≤
#(Gal(E/EH)). Clearly we must have Gal(E/EH) = H and #(H) =
#(Gal(E/EH)), proving the rest of (i) and (iii).

To prove Claim 5.4, given α ∈ E consider the polynomial

f(x) =
∏
σ∈H

(x− σ(α)).
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The number of linear factors of f(x) is #(H), so that f(x) ∈ E[x] is a
polynomial of degree #(H). We claim that in fact f(x) ∈ EH [x], in other
words that all coefficients of f(x) lie in the fixed field EH . It suffices to
show that, for all ψ ∈ H, ψ(f)(x) = f(x). Now, using the fact that ψ is an
automorphism, it is easy to see that

ψ(f)(x) =
∏
σ∈H

(x− ψσ(α)).

As ψ ∈ H, the function σ ∈ H 7→ ψσ is a permutation of the group H
(cf. the proof of Cayley’s theorem!) and so the product

∏
σ∈H(x − ψσ(α))

is the same as the product
∏
σ∈H(x − σ(α)) (but with the order of the

factors changed, if ψ 6= Id). Hence ψ(f)(x) = f(x) for all ψ ∈ H, so that
f(x) ∈ EH [x]. It follows that irr(α,EH , x) divides f(x), and hence that
degEH α ≤ deg f(x) = #(H).

Finally we must prove (iv) of the Main Theorem. Let F ≤ K ≤ E. The
first statement of (iv) is the statement that K is a normal (hence Galois)
extension of F ⇐⇒ Gal(E/K) is a normal subgroup of Gal(E/F ). A slight
variation of the proof of Theorem 3.5 shows that K is a normal extension
of F ⇐⇒ for all σ ∈ Gal(E/F ), σ(K) = K. More generally, for K an
arbitrary intermediate field, given σ ∈ Gal(E/F ), we can ask for a descrip-
tion of the image subfield σ(K) of E. By Part (i) of the Main Theorem
(already proved), it is equivalent to describe the corresponding subgroup
Gal(E/σ(K)) of Gal(E/F ).

Claim 5.5. In the above notation, Gal(E/σ(K)) = σ · Gal(E/K) · σ−1 =
iσ(Gal(E/K)), where iσ is the inner automorphism of Gal(E/F ) given by
conjugation by the element σ.

Proof. If ϕ ∈ Gal(E/F ), then ϕ ∈ Gal(E/σ(K)) ⇐⇒ for all α ∈ K,
ϕ(σ(α)) = σ(α) ⇐⇒ for all α ∈ K, σ−1ϕσ(α) = α ⇐⇒ σ−1ϕσ ∈
Gal(E/K) ⇐⇒ ϕ ∈ σ ·Gal(E/K) · σ−1.

Now apply the remarks above: K is a normal extension of F ⇐⇒ for
all σ ∈ Gal(E/F ), σ(K) = K ⇐⇒ for all σ ∈ Gal(E/F ), Gal(E/σ(K)) =
Gal(E/K) (by (i) of the Main Theorem) ⇐⇒ for all σ ∈ Gal(E/F ),
Gal(E/K) = σ · Gal(E/K) · σ−1 ⇐⇒ Gal(E/K) is a normal subgroup of
Gal(E/F ). This proves the first statement of (iv). We must then show that
Gal(K/F ) ∼= Gal(E/F )

/
Gal(E/K). To see this, given σ ∈ Gal(E/F ), we

have seen that σ(K) = K, and hence that σ 7→ σ|K defines a function from
Gal(E/F ) to Gal(K/F ). Clearly, this is a homomorphism, and by definition
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its kernel is just the subgroup of σ ∈ Gal(E/F ) such that σ|K = Id, which by
definition is Gal(E/K). To see that Gal(K/F ) ∼= Gal(E/F )

/
Gal(E/K),

by the fundamental homomorphism theorem, it suffices to show that the
homomorphism σ 7→ σ|K is a surjective homomorphism from Gal(E/F )
to Gal(K/F ). This says that, given a ψ : K → K such that ψ|F = Id,
there exists an extension of ψ to a σ ∈ Gal(E/F ). But it follows from the
Isomorphism Extension Theorem that, given ψ, there exists an extension
field L of E and an extension of ψ to a homomorphism σ : E → L. Since
E is a normal extension of F , σ(E) = E, and hence σ ∈ Gal(E/F ) is such
that σ 7→ ψ ∈ Gal(K/F ). It follows that restriction defines a surjective
homomorphism Gal(E/F ) → Gal(K/F ) with kernel Gal(E/K), so that
Gal(K/F ) ∼= Gal(E/F )

/
Gal(E/K). This concludes the proof of the Main

Theorem.
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