Extension Fields III: Finite Fields

4 Finite fields

Our goal in this section is to classify finite fields up to isomorphism and, given two finite fields, to describe when one of them is isomorphic to a subfield of the other. We begin with some general remarks about finite fields.

Let \mathbb{F} be a finite field. As the additive group $(\mathbb{F},+)$ is finite, char $\mathbb{F}=$ $p>0$ for some prime p. Thus \mathbb{F} contains a subfield isomorphic to the prime field \mathbb{F}_{p}, which we will identify with \mathbb{F}_{p}. Since \mathbb{F} is finite, it is clearly a finite-dimensional vector space over \mathbb{F}_{p}. Let $n=\operatorname{dim}_{\mathbb{F}_{p}} \mathbb{F}=\left[\mathbb{F}: \mathbb{F}_{p}\right]$. Then $\#(\mathbb{F})=p^{n}$. It is traditional to use the letter q to demote a prime power p^{n} in this context.

We note that the multiplicative group $\left(\mathbb{F}^{*}, \cdot\right)$ is cyclic. If γ is a generator, then every nonzero element of \mathbb{F} is a power of γ. In particular, $\mathbb{F}=\mathbb{F}_{p}(\gamma)$ is a simple extension of \mathbb{F}_{p}.

With $\#(\mathbb{F})=p^{n}=q$ as above, by Lagrange's theorem, since \mathbb{F}^{*} is a finite group of order $q-1$, for every $\alpha \in \mathbb{F}^{*}, \alpha^{q-1}=1$. Hence $\alpha^{q}=\alpha$ for all $\alpha \in \mathbb{F}$, since clearly $0^{q}=0$. Thus every element of \mathbb{F} is a root of the polynomial $x^{q}-x$. (Warning: although $\alpha^{q}=\alpha$ for every $\alpha \in \mathbb{F}$, it is not true that $x^{q}-x \in \mathbb{F}[x]$ is the zero polynomial.)

Define the function $\sigma_{p}: \mathbb{F} \rightarrow \mathbb{F}$ by: $\sigma_{p}(\alpha)=\alpha^{p}$. Since char $\mathbb{F}=p$, the function σ_{p} is a homomorphism, the Frobenius homomorphism. Clearly Ker $\sigma_{p}=\{0\}$ since $\alpha^{p}=0 \Longleftrightarrow \alpha=0$, and hence σ_{p} is injective. (In fact, by a HW problem, this is always true for homomorphisms from a field to a nonzero ring.) As \mathbb{F} is finite, since σ_{p} is injective, it is also surjective and hence an isomorphism (by the pigeonhole principle). Thus, every element of \mathbb{F} is a $p^{\text {th }}$ power, so that \mathbb{F} is perfect as previously defined. Note that every power σ_{p}^{k} is also an isomorphism. We have

$$
\sigma_{p}^{2}(\alpha)=\sigma_{p}\left(\sigma_{p}(\alpha)\right)=\sigma_{p}\left(\alpha^{p}\right)=\left(\alpha^{p}\right)^{p}=\alpha^{p^{2}}
$$

and so $\sigma_{p}^{2}=\sigma_{p^{2}}$, where by definition $\sigma_{p^{2}}(\alpha)=\alpha^{p^{2}}$. An easy induction shows that $\sigma_{p}^{k}=\sigma_{p^{k}}$, where by definition $\sigma_{p^{k}}(\alpha)=\alpha^{p^{k}}$: Clearly, the result holds for $k=1$ since both sides are then σ_{p}. Assuming the result inductively for a positive integer k, we have

$$
\sigma_{p}^{k+1}(\alpha)=\sigma_{p}\left(\sigma_{p}^{k}(\alpha)\right)=\left(\alpha^{p^{k}}\right)^{p}=\alpha^{p^{k+1}}=\sigma_{p^{k+1}}(\alpha) .
$$

In particular, taking $k=n$, where $\#(\mathbb{F})=q=p^{n}$, we see that $\sigma_{q}(\alpha)=$ $\alpha^{q}=\alpha$. Thus $\sigma_{q}=$ Id.

More generally, for every positive integer r, we can define $\sigma_{r}: \mathbb{F} \rightarrow \mathbb{F}$ by: $\sigma_{r}(\alpha)=\alpha^{r}$. Then the same induction argument shows that $\sigma_{r}^{k}=\sigma_{r^{k}}$. (However, σ_{r} is a ring homomorphism $\Longleftrightarrow r$ is a power of p.)

With this said, we can now state the classification theorem for finite fields:

Theorem 4.1 (Classification of finite fields). Let p be a prime number.
(i) For every $n \in \mathbb{N}$, there exists a field \mathbb{F}_{q} with $q=p^{n}$ elements.
(ii) If \mathbb{F} and \mathbb{F}^{\prime} are two finite fields, then \mathbb{F} and \mathbb{F}^{\prime} are isomorphic \Longleftrightarrow $\#\left(\mathbb{F}_{1}\right)=\#\left(\mathbb{F}_{2}\right)$.
(iii) Let \mathbb{F} and \mathbb{F}^{\prime} be two finite fields, with $\#(\mathbb{F})=q=p^{n}$ and $\#\left(\mathbb{F}^{\prime}\right)=q^{\prime}=$ p^{m}. Then \mathbb{F}^{\prime} is isomorphic to a subfield of $\mathbb{F} \Longleftrightarrow m$ divides $n \Longleftrightarrow$ $q=\left(q^{\prime}\right)^{d}$ for some positive integer d.

Proof. First, we prove (i). Viewing the polynomial $x^{q}-x$ as a polynomial in $\mathbb{F}_{p}[x]$, we know that there exists an extension field E of \mathbb{F}_{p} such that $x^{q}-x$ is a product of linear factors in $E[x]$, say

$$
x^{q}-x=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{q}\right)
$$

where the $\alpha_{i} \in E$. We claim that the α_{i} are all distinct: $\alpha_{i}=\alpha_{j}$ for some $i \neq j \Longleftrightarrow x^{q}-x$ has a multiple root in $E \Longleftrightarrow x^{q}-x$ and $D\left(x^{q}-x\right)$ are not relatively prime in $\mathbb{F}_{p}[x]$. But $D\left(x^{q}-x\right)=q x^{q-1}-1=-1$, since q is a power of p and hence divisible by p. Thus the gcd of $x^{q}-x$ and $D\left(x^{q}-x\right)$ divides -1 and hence is a unit, so that $x^{q}-x$ and $D\left(x^{q}-x\right)$ are relatively prime. It follows that $x^{q}-x$ does not have any multiple roots in E.

Now define the subset \mathbb{F}_{q} of E by

$$
\mathbb{F}_{q}=\left\{\alpha_{1}, \ldots, \alpha_{q}\right\}=\left\{\alpha \in E: \alpha^{q}-\alpha=0\right\}=\left\{\alpha \in E: \sigma_{q}(\alpha)=\alpha\right\} .
$$

By what we have seen above, $\#\left(\mathbb{F}_{q}\right)=q$. Moreover, we claim that \mathbb{F}_{q} is a subfield of E, and hence is a field with q elements. Clearly $1 \in \mathbb{F}_{q}$,
and more generally $\mathbb{F}_{p} \subseteq \mathbb{F}_{q}$. It suffices to show that \mathbb{F}_{q} is closed under addition, subtraction, multiplication, and division. This follows since σ_{q} is a homomorphism: If $\alpha, \beta \in \mathbb{F}_{q}$, i.e. if $\alpha^{q}=\alpha$ and $\beta^{q}=\beta$, then $(\alpha \pm \beta)^{q}=\alpha^{q} \pm$ $\beta^{q}=\alpha \pm \beta,(\alpha \beta)^{q}=\alpha^{q} \beta^{q}=\alpha \beta$, and, if $\beta \neq 0$, then $(\alpha / \beta)^{q}=\alpha^{q} / \beta^{q}=\alpha / \beta$. In other words, then $\alpha \pm \beta, \alpha \beta$, and (for $\beta \neq 0$) α / β are all in \mathbb{F}_{q}. Hence \mathbb{F}_{q} is a subfield of E, and in particular it is a field with q elements. (Remark: \mathbb{F}_{q} is the fixed field of σ_{q}, i.e. $\mathbb{F}=\left\{\alpha \in E: \sigma_{q}(\alpha)=\alpha\right\}$.)

Next we prove (iii) in the special case that $\mathbb{F}=\mathbb{F}_{q}$. More generally, let \mathbb{F} and \mathbb{F}^{\prime} be two finite fields with $\#(\mathbb{F})=q=p^{n}$ and $\#\left(\mathbb{F}^{\prime}\right)=q^{\prime}=p^{m}$. Clearly, if \mathbb{F}^{\prime} is isomorphic to a subfield of \mathbb{F}, which we can identify with \mathbb{F}^{\prime}, then \mathbb{F} is an \mathbb{F}^{\prime}-vector space. Since \mathbb{F} is finite, it is finite-dimensional as an \mathbb{F}^{\prime}-vector space. Let $d=\operatorname{dim}_{\mathbb{F}^{\prime}} \mathbb{F}=\left[\mathbb{F}: \mathbb{F}^{\prime}\right]$. Then $p^{n}=q=\#(\mathbb{F})=\left(q^{\prime}\right)^{d}=p^{m d}$, proving that m divides n and that q is a power of q^{\prime}. Conversely, suppose that \mathbb{F}_{q} is the finite field with $q=p^{n}$ elements constructed in the proof of (i), so that $x^{q}-x$ factors into linear factors in $\mathbb{F}[x]$. Let \mathbb{F}^{\prime} be a finite field with $\#\left(\mathbb{F}^{\prime}\right)=q^{\prime}=p^{m}$ and suppose that $q=p^{n}=\left(q^{\prime}\right)^{d}$, or equivalently $n=m d$. We shall show first that \mathbb{F}_{q} contains a subfield isomorphic to \mathbb{F}^{\prime} and then that every field with q elements is isomorphic to \mathbb{F}_{q}, proving the converse part of (iii) as well as (ii).

As we saw in the remarks before the statement of Theorem 4.1, there exists a $\beta \in \mathbb{F}^{\prime}$ such that $\mathbb{F}^{\prime}=\mathbb{F}_{p}(\beta)$. Since $\beta \in \mathbb{F}^{\prime}, \sigma_{q^{\prime}}(\beta)=\beta^{q^{\prime}}=\beta$, and hence

$$
\beta^{q}=\beta^{\left(q^{\prime}\right)^{d}}=\left(\sigma_{q^{\prime}}\right)^{d}(\beta)=\beta
$$

Thus β is a root of $x^{q}-x$. Hence $\operatorname{irr}\left(\beta, \mathbb{F}_{p}\right)$ divides $x^{q}-x$ in $\mathbb{F}_{p}[x]$, say $x^{q}-x=$ $\operatorname{irr}\left(\beta, \mathbb{F}_{p}\right) \cdot h$, with $\operatorname{deg} h<q=\operatorname{deg}\left(x^{q}-x\right)=q$ since $\operatorname{deg} \operatorname{irr}\left(\beta, \mathbb{F}_{p}\right) \geq 1$. On the other hand, $x^{q}-x$ factors into linear factors in $\mathbb{F}_{q}[x]$, so that there is an equality in $\mathbb{F}_{q}[x]$

$$
\operatorname{irr}\left(\beta, \mathbb{F}_{p}\right) \cdot h=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{q}\right) .
$$

Thus, for all i, α_{i} is a root of either $\operatorname{irr}\left(\beta, \mathbb{F}_{p}\right)$ or of h. But since the α_{i} are all distinct and the number of roots of h is at $\operatorname{most} \operatorname{deg} h<q$, at least one of the α_{i} must be a root of $\operatorname{irr}\left(\beta, \mathbb{F}_{p}\right)$. Hence $\operatorname{irr}\left(\alpha_{i}, \mathbb{F}_{p}\right)$ divides $\operatorname{irr}\left(\beta, \mathbb{F}_{p}\right)$. But both $\operatorname{irr}\left(\alpha_{i}, \mathbb{F}_{p}\right)$ and $\operatorname{irr}\left(\beta, \mathbb{F}_{p}\right)$ are monic irreducible polynomials, so we must have $\operatorname{irr}\left(\alpha_{i}, \mathbb{F}_{p}\right)=\operatorname{irr}\left(\beta, \mathbb{F}_{p}\right)$. Let $f=\operatorname{irr}\left(\alpha_{i}, \mathbb{F}_{p}\right)=\operatorname{irr}\left(\beta, \mathbb{F}_{p}\right)$. Then since $\mathbb{F}^{\prime}=\mathbb{F}_{p}(\beta)$, ev $_{\beta}$ induces an isomorphism $\widehat{\mathrm{ev}}_{\beta}: \mathbb{F}_{p}[x] /(f) \cong \mathbb{F}^{\prime}$. On the other hand, we have $\operatorname{ev}_{\alpha_{i}}: \mathbb{F}_{p}[x] \rightarrow \mathbb{F}_{q}$, with $\operatorname{Ker~ev}_{\alpha_{i}}=(f)$ as well, so there is an induced injective homomorphism $\hat{\mathrm{ev}}_{\alpha_{i}}: \mathbb{F}_{p}[x] /(f) \rightarrow \mathbb{F}_{q}$. The situation
is summarized in the following diagram:

$$
\begin{gathered}
\mathbb{F}_{p}[x] /(f) \xrightarrow{\widehat{\operatorname{ev}} \alpha_{i}} \mathbb{F}_{q} \\
\widehat{\operatorname{ev}}_{\beta} \downarrow \cong \\
\mathbb{F}^{\prime}
\end{gathered}
$$

The homomorphism $\widehat{\mathrm{ev}}_{\alpha_{i}} \circ\left(\widehat{\mathrm{ev}}_{\beta}\right)^{-1}$ is then an injective homomorphism from \mathbb{F}^{\prime} to \mathbb{F}_{q} and thus identifies \mathbb{F}^{\prime} with a subfield of \mathbb{F}_{q}. This proves the converse direction of (iii), for the specific field \mathbb{F}_{q} constructed in (i), and hence for any field which is isomorphic to \mathbb{F}_{q}.

To prove (ii), note that, if \mathbb{F} and \mathbb{F}^{\prime} are isomorphic, then clearly $\#(\mathbb{F})=$ $\#\left(\mathbb{F}^{\prime}\right)$. Conversely, suppose that \mathbb{F}_{q} is the specific field with q elements constructed in the proof of (i) and that \mathbb{F} is another finite field with q elements. By what we have proved so far above, since $q=(q)^{1}, \mathbb{F}$ is isomorphic to a subfield of \mathbb{F}_{q}, i.e. there is an injective homomorphism $\rho: \mathbb{F} \rightarrow \mathbb{F}_{q}$. But since \mathbb{F} and \mathbb{F}_{q} have the same number of elements, ρ is necessarily an isomorphism, i.e. $\mathbb{F} \cong \mathbb{F}_{q}$. Hence, if \mathbb{F}^{\prime} is yet another field with q elements, then also $\mathbb{F}^{\prime} \cong \mathbb{F}_{q}$ and hence $\mathbb{F} \cong \mathbb{F}^{\prime}$, proving (ii). Finally, the converse direction of (iii) now holds for every field with q elements, since every such field is isomorphic to \mathbb{F}_{q}.

If $q=p^{n}$, we often write \mathbb{F}_{q} to denote any field with q elements. Since any two such fields are isomorphic, we often speak of the field with q elements.

Remark 4.2. Let $q=p^{n}$. The polynomial $x^{q}-x$ is reducible in $\mathbb{F}_{p}[x]$. For example, for every $a \in \mathbb{F}_{p}, x-a$ is a factor of $x^{q}-x$. Using Theorem 4.1, one can show that the irreducible monic factors of $x^{q}-x$ are exactly the irreducible monic polynomials in $\mathbb{F}_{p}[x]$ of degree d, where d divides n. From this, one can show the following beautiful formula: let $N_{p}(m)$ be the number of irreducible monic polynomials in $\mathbb{F}_{p}[x]$ of degree m. Then

$$
\sum_{d \mid n} d N_{p}(d)=p^{n}
$$

