Extension Fields III: Finite Fields

4 Finite fields

Our goal in this section is to classify finite fields up to isomorphism and, given two finite fields, to describe when one of them is isomorphic to a subfield of the other. We begin with some general remarks about finite fields.

Let \mathbb{F} be a finite field. As the additive group $(\mathbb{F}, +)$ is finite, char $\mathbb{F} = p > 0$ for some prime p. Thus \mathbb{F} contains a subfield isomorphic to the prime field \mathbb{F}_p , which we will identify with \mathbb{F}_p . Since \mathbb{F} is finite, it is clearly a finite-dimensional vector space over \mathbb{F}_p . Let $n = \dim_{\mathbb{F}_p} \mathbb{F} = [\mathbb{F} : \mathbb{F}_p]$. Then $\#(\mathbb{F}) = p^n$. It is traditional to use the letter q to demote a prime power p^n in this context.

We note that the multiplicative group (\mathbb{F}^*, \cdot) is cyclic. If γ is a generator, then every nonzero element of \mathbb{F} is a power of γ . In particular, $\mathbb{F} = \mathbb{F}_p(\gamma)$ is a simple extension of \mathbb{F}_p .

With $\#(\mathbb{F}) = p^n = q$ as above, by Lagrange's theorem, since \mathbb{F}^* is a finite group of order q-1, for every $\alpha \in \mathbb{F}^*$, $\alpha^{q-1} = 1$. Hence $\alpha^q = \alpha$ for all $\alpha \in \mathbb{F}$, since clearly $0^q = 0$. Thus every element of \mathbb{F} is a root of the polynomial $x^q - x$. (Warning: although $\alpha^q = \alpha$ for every $\alpha \in \mathbb{F}$, it is not true that $x^q - x \in \mathbb{F}[x]$ is the zero polynomial.)

Define the function $\sigma_p: \mathbb{F} \to \mathbb{F}$ by: $\sigma_p(\alpha) = \alpha^p$. Since char $\mathbb{F} = p$, the function σ_p is a homomorphism, the Frobenius homomorphism. Clearly Ker $\sigma_p = \{0\}$ since $\alpha^p = 0 \iff \alpha = 0$, and hence σ_p is injective. (In fact, by a HW problem, this is always true for homomorphisms from a field to a nonzero ring.) As \mathbb{F} is **finite**, since σ_p is injective, it is also surjective and hence an isomorphism (by the pigeonhole principle). Thus, every element of \mathbb{F} is a p^{th} power, so that \mathbb{F} is perfect as previously defined. Note that every power σ_p^k is also an isomorphism. We have

$$\sigma_p^2(\alpha) = \sigma_p(\sigma_p(\alpha)) = \sigma_p(\alpha^p) = (\alpha^p)^p = \alpha^{p^2},$$

and so $\sigma_p^2 = \sigma_{p^2}$, where by definition $\sigma_{p^2}(\alpha) = \alpha^{p^2}$. An easy induction shows that $\sigma_p^k = \sigma_{p^k}$, where by definition $\sigma_{p^k}(\alpha) = \alpha^{p^k}$: Clearly, the result holds for k = 1 since both sides are then σ_p . Assuming the result inductively for a positive integer k, we have

$$\sigma_p^{k+1}(\alpha) = \sigma_p(\sigma_p^k(\alpha)) = (\alpha^{p^k})^p = \alpha^{p^{k+1}} = \sigma_{p^{k+1}}(\alpha).$$

In particular, taking k = n, where $\#(\mathbb{F}) = q = p^n$, we see that $\sigma_q(\alpha) = \alpha^q = \alpha$. Thus $\sigma_q = \text{Id}$.

More generally, for every positive integer r, we can define $\sigma_r \colon \mathbb{F} \to \mathbb{F}$ by: $\sigma_r(\alpha) = \alpha^r$. Then the same induction argument shows that $\sigma_r^k = \sigma_{r^k}$. (However, σ_r is a ring homomorphism $\iff r$ is a power of p.)

With this said, we can now state the classification theorem for finite fields:

Theorem 4.1 (Classification of finite fields). Let p be a prime number.

- (i) For every $n \in \mathbb{N}$, there exists a field \mathbb{F}_q with $q = p^n$ elements.
- (ii) If \mathbb{F} and \mathbb{F}' are two finite fields, then \mathbb{F} and \mathbb{F}' are isomorphic $\iff \#(\mathbb{F}_1) = \#(\mathbb{F}_2)$.
- (iii) Let \mathbb{F} and \mathbb{F}' be two finite fields, with $\#(\mathbb{F}) = q = p^n$ and $\#(\mathbb{F}') = q' = p^m$. Then \mathbb{F}' is isomorphic to a subfield of $\mathbb{F} \iff m$ divides $n \iff q = (q')^d$ for some positive integer d.

Proof. First, we prove (i). Viewing the polynomial $x^q - x$ as a polynomial in $\mathbb{F}_p[x]$, we know that there exists an extension field E of \mathbb{F}_p such that $x^q - x$ is a product of linear factors in E[x], say

$$x^q - x = (x - \alpha_1) \cdots (x - \alpha_q)$$

where the $\alpha_i \in E$. We claim that the α_i are all distinct: $\alpha_i = \alpha_j$ for some $i \neq j \iff x^q - x$ has a multiple root in $E \iff x^q - x$ and $D(x^q - x)$ are not relatively prime in $\mathbb{F}_p[x]$. But $D(x^q - x) = qx^{q-1} - 1 = -1$, since q is a power of p and hence divisible by p. Thus the gcd of $x^q - x$ and $D(x^q - x)$ divides -1 and hence is a unit, so that $x^q - x$ and $D(x^q - x)$ are relatively prime. It follows that $x^q - x$ does not have any multiple roots in E.

Now define the subset \mathbb{F}_q of E by

$$\mathbb{F}_q = \{\alpha_1, \dots, \alpha_q\} = \{\alpha \in E : \alpha^q - \alpha = 0\} = \{\alpha \in E : \sigma_q(\alpha) = \alpha\}.$$

By what we have seen above, $\#(\mathbb{F}_q) = q$. Moreover, we claim that \mathbb{F}_q is a subfield of E, and hence is a field with q elements. Clearly $1 \in \mathbb{F}_q$,

and more generally $\mathbb{F}_p \subseteq \mathbb{F}_q$. It suffices to show that \mathbb{F}_q is closed under addition, subtraction, multiplication, and division. This follows since σ_q is a homomorphism: If $\alpha, \beta \in \mathbb{F}_q$, i.e. if $\alpha^q = \alpha$ and $\beta^q = \beta$, then $(\alpha \pm \beta)^q = \alpha^q \pm \beta^q = \alpha \pm \beta$, $(\alpha\beta)^q = \alpha^q\beta^q = \alpha\beta$, and, if $\beta \neq 0$, then $(\alpha/\beta)^q = \alpha^q/\beta^q = \alpha/\beta$. In other words, then $\alpha \pm \beta$, $\alpha\beta$, and (for $\beta \neq 0$) α/β are all in \mathbb{F}_q . Hence \mathbb{F}_q is a subfield of E, and in particular it is a field with q elements. (Remark: \mathbb{F}_q is the fixed field of σ_q , i.e. $\mathbb{F} = \{\alpha \in E : \sigma_q(\alpha) = \alpha\}$.)

Next we prove (iii) in the special case that $\mathbb{F} = \mathbb{F}_q$. More generally, let \mathbb{F} and \mathbb{F}' be two finite fields with $\#(\mathbb{F}) = q = p^n$ and $\#(\mathbb{F}') = q' = p^m$. Clearly, if \mathbb{F}' is isomorphic to a subfield of \mathbb{F} , which we can identify with \mathbb{F}' , then \mathbb{F} is an \mathbb{F}' -vector space. Since \mathbb{F} is finite, it is finite-dimensional as an \mathbb{F}' -vector space. Let $d = \dim_{\mathbb{F}'} \mathbb{F} = [\mathbb{F} : \mathbb{F}']$. Then $p^n = q = \#(\mathbb{F}) = (q')^d = p^{md}$, proving that m divides n and that q is a power of q'. Conversely, suppose that \mathbb{F}_q is the finite field with $q = p^n$ elements constructed in the proof of (i), so that $x^q - x$ factors into linear factors in $\mathbb{F}[x]$. Let \mathbb{F}' be a finite field with $\#(\mathbb{F}') = q' = p^m$ and suppose that $q = p^n = (q')^d$, or equivalently n = md. We shall show first that \mathbb{F}_q contains a subfield isomorphic to \mathbb{F}' and then that every field with q elements is isomorphic to \mathbb{F}_q , proving the converse part of (iii) as well as (ii).

As we saw in the remarks before the statement of Theorem 4.1, there exists a $\beta \in \mathbb{F}'$ such that $\mathbb{F}' = \mathbb{F}_p(\beta)$. Since $\beta \in \mathbb{F}'$, $\sigma_{q'}(\beta) = \beta^{q'} = \beta$, and hence

$$\beta^q = \beta^{(q')^d} = (\sigma_{q'})^d (\beta) = \beta.$$

Thus β is a root of $x^q - x$. Hence $\operatorname{irr}(\beta, \mathbb{F}_p)$ divides $x^q - x$ in $\mathbb{F}_p[x]$, say $x^q - x = \operatorname{irr}(\beta, \mathbb{F}_p) \cdot h$, with deg $h < q = \operatorname{deg}(x^q - x) = q$ since deg $\operatorname{irr}(\beta, \mathbb{F}_p) \ge 1$. On the other hand, $x^q - x$ factors into linear factors in $\mathbb{F}_q[x]$, so that there is an equality in $\mathbb{F}_q[x]$

$$\operatorname{irr}(\beta, \mathbb{F}_p) \cdot h = (x - \alpha_1) \cdots (x - \alpha_q).$$

Thus, for all i, α_i is a root of either $\operatorname{irr}(\beta, \mathbb{F}_p)$ or of h. But since the α_i are all distinct and the number of roots of h is at most deg h < q, at least one of the α_i must be a root of $\operatorname{irr}(\beta, \mathbb{F}_p)$. Hence $\operatorname{irr}(\alpha_i, \mathbb{F}_p)$ divides $\operatorname{irr}(\beta, \mathbb{F}_p)$. But both $\operatorname{irr}(\alpha_i, \mathbb{F}_p)$ and $\operatorname{irr}(\beta, \mathbb{F}_p)$ are monic irreducible polynomials, so we must have $\operatorname{irr}(\alpha_i, \mathbb{F}_p) = \operatorname{irr}(\beta, \mathbb{F}_p)$. Let $f = \operatorname{irr}(\alpha_i, \mathbb{F}_p) = \operatorname{irr}(\beta, \mathbb{F}_p)$. Then since $\mathbb{F}' = \mathbb{F}_p(\beta)$, ev_β induces an isomorphism $\widehat{\operatorname{ev}}_\beta \colon \mathbb{F}_p[x]/(f) \cong \mathbb{F}'$. On the other hand, we have $\operatorname{ev}_{\alpha_i} \colon \mathbb{F}_p[x] \to \mathbb{F}_q$, with $\operatorname{Ker} \operatorname{ev}_{\alpha_i} = (f)$ as well, so there is an induced injective homomorphism $\widehat{\operatorname{ev}}_{\alpha_i} \colon \mathbb{F}_p[x]/(f) \to \mathbb{F}_q$. The situation is summarized in the following diagram:

$$\mathbb{F}_p[x]/(f) \xrightarrow{\operatorname{\acute{ev}}_{\alpha_i}} \mathbb{F}_q$$

$$\operatorname{\acute{ev}}_{\beta} \bigsqcup_{\cong}$$

$$\mathbb{F}'$$

The homomorphism $\widehat{\operatorname{ev}}_{\alpha_i} \circ (\widehat{\operatorname{ev}}_{\beta})^{-1}$ is then an injective homomorphism from \mathbb{F}' to \mathbb{F}_q and thus identifies \mathbb{F}' with a subfield of \mathbb{F}_q . This proves the converse direction of (iii), for the specific field \mathbb{F}_q constructed in (i), and hence for any field which is isomorphic to \mathbb{F}_q .

To prove (ii), note that, if \mathbb{F} and \mathbb{F}' are isomorphic, then clearly $\#(\mathbb{F}) = \#(\mathbb{F}')$. Conversely, suppose that \mathbb{F}_q is the specific field with q elements constructed in the proof of (i) and that \mathbb{F} is another finite field with q elements. By what we have proved so far above, since $q = (q)^1$, \mathbb{F} is isomorphic to a subfield of \mathbb{F}_q , i.e. there is an injective homomorphism $\rho \colon \mathbb{F} \to \mathbb{F}_q$. But since \mathbb{F} and \mathbb{F}_q have the same number of elements, ρ is necessarily an isomorphism, i.e. $\mathbb{F} \cong \mathbb{F}_q$. Hence, if \mathbb{F}' is yet another field with q elements, then also $\mathbb{F}' \cong \mathbb{F}_q$ and hence $\mathbb{F} \cong \mathbb{F}'$, proving (ii). Finally, the converse direction of (iii) now holds for every field with q elements, since every such field is isomorphic to \mathbb{F}_q .

If $q = p^n$, we often write \mathbb{F}_q to denote any field with q elements. Since any two such fields are isomorphic, we often speak of **the** field with q elements.

Remark 4.2. Let $q = p^n$. The polynomial $x^q - x$ is reducible in $\mathbb{F}_p[x]$. For example, for every $a \in \mathbb{F}_p$, x - a is a factor of $x^q - x$. Using Theorem 4.1, one can show that the irreducible monic factors of $x^q - x$ are exactly the irreducible monic polynomials in $\mathbb{F}_p[x]$ of degree d, where d divides n. From this, one can show the following beautiful formula: let $N_p(m)$ be the number of irreducible monic polynomials in $\mathbb{F}_p[x]$ of degree m. Then

$$\sum_{d|n} dN_p(d) = p^n.$$