Some notes on linear algebra

Throughout these notes, k denotes a field (often called the scalars in this context). Recall that this means that there are two binary operations on k, denoted + and \cdot, that $(k,+)$ is an abelian group, \cdot is commutative and associative and distributes over addition, there exists a multiplicative identity 1 , and, for all $t \in k, t \neq 0$, there exists a multiplicative inverse for t, denoted t^{-1}. The main example in this course will be $k=\mathbb{C}$, but we shall also consider the cases $k=\mathbb{R}$ and $k=\mathbb{Q}$. Another important case is $k=\mathbb{F}_{q}$, a finite field with q elements, where $q=p^{n}$ is necessarily a prime power (and p is a prime number). For example, for $q=p, \mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. If we drop the requirement that multiplication be commutative, then such a k is called a division algebra or skew field. It is hard to find noncommutative examples of division rings, though. For example, by a theorem of Wedderburn, a finite division ring is a field. One famous example is the quaternions

$$
\mathbb{H}=\mathbb{R}+\mathbb{R} \cdot i+\mathbb{R} \cdot j+\mathbb{R} \cdot k
$$

A typical element of \mathbb{H} is then of the form $a_{0}+a_{1} i+a_{2} j+a_{3} k$. Here $i^{2}=j^{2}=k^{2}=-1$, and

$$
i j=k=-j i ; \quad j k=i=-k j ; \quad k i=j=-i k .
$$

These rules then force the rules for multiplication for \mathbb{H}, and a somewhat lengthy check shows that \mathbb{H} is a (noncommutative) division algebra.

We shall occasionally relax the condition that every nonzero element has a multiplicative inverse. Thus a ring R is a set with two binary operations + and \cdot, that $(R,+)$ is an abelian group, \cdot is associative and distributes over addition, and there exists a multiplicative identity 1 . If \cdot is commutative as well, we call R a commutative ring. A standard example of a noncommutative ring is the ring $\mathbb{M}_{n}(\mathbb{R})$ of $n \times n$ matrices with coefficients in \mathbb{R} with the usual operations of matrix addition and multiplication, for $n>1$, and with multiplicative identity the $n \times n$ identity matrix I. (For $n=1$, it is still a ring but in fact it is isomorphic to \mathbb{R} and hence is commutative.) More
generally, if k is any field, for example $k=\mathbb{C}$ and $n>1$, then the set $\mathbb{M}_{n}(k)$ of $n \times n$ matrices with coefficients in k with the usual operations of matrix addition and multiplication is a noncommutative ring.

1 Definition of a vector space

Definition 1.1. A k-vector space or simply a vector space is a triple $(V,+, \cdot)$, where $(V,+)$ is an abelian group (the vectors), and there is a function $k \times V \rightarrow V$ (scalar multiplication), whose value at (t, v) is just denoted $t \cdot v$ or $t v$, such that

1. For all $s, t \in k$ and $v \in V, s(t v)=(s t) v$.
2. For all $s, t \in k$ and $v \in V,(s+t) v=s v+t v$.
3. For all $t \in k$ and $v, w \in V, t(v+w)=t v+t w$.
4. For all $v \in V, 1 \cdot v=v$.

A vector subspace W of a k-vector space V is a subgroup W of $(V,+)$ such that, for all $t \in k$ and $w \in W, t w \in W$, i.e. W is a subgroup closed under scalar multiplication. It is then straightforward to check that W is again a k-vector space. For example, $\{0\}$ and V are always vector subspaces of V.

It is a straightforward consequence of the axioms that $0 v=0$ for all $v \in V$, where the first 0 is the element $0 \in F$ and the second is $0 \in V$, that, for all $t \in F, t 0=0$ (both 0 's here are the zero vector), and that, for all $v \in V,(-1) v=-v$. Hence, W is a vector subspace of $V \Longleftrightarrow W$ is nonempty and is closed under addition and scalar multiplication.

Example 1.2. (0) The set $\{0\}$ is a k-vector space.
(1) The n-fold Cartesian product k^{n} is a k-vector space, where k^{n} is a group under componentwise addition and scalar multiplication, i.e.

$$
\begin{aligned}
\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right) & =\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right) \\
t\left(a_{1}, \ldots, a_{n}\right) & =\left(t a_{1}, \ldots, t a_{n}\right) .
\end{aligned}
$$

(2) If X is a set and k^{X} denotes the group of functions from X to k, then k^{X} is a k-vector space. Here addition is defined pointwise: $(f+g)(x)=$ $f(x)+g(x)$, and similarly for scalar multiplication: $(t f)(x)=t f(x)$.
(3) With X a set as in (2), we consider the subset $k[X] \subseteq k^{X}$ of functions $f: X \rightarrow k$ such that the set $\{x \in X: f(x) \neq 0\}$ is a finite subset of X, then $k[X]$ is easily seen to be a vector space under pointwise addition and scalar multiplication of functions, so that $k[X]$ is a vector subspace of k^{X}. Of course, $k[X]=k^{X}$ if and only if X is finite. In general, for a function $f: X \rightarrow k$, we define the support of f or $\operatorname{Supp} f$ by:

$$
\text { Supp } f=\{x \in X: f(x) \neq 0\} .
$$

Then $k[X]$ is the subset of k^{X} consisting of all functions whose support is finite.

Given $x \in X$, let $\delta_{x} \in k[X]$ be the function defined by

$$
\delta_{x}(y)= \begin{cases}1, & \text { if } y=x \\ 0, & \text { otherwise }\end{cases}
$$

The function δ_{x} is often called the delta function at x. Then clearly, for every $f \in k[X]$,

$$
f(x)=\sum_{x \in X} f(x) \delta_{x}
$$

where in fact the above sum is finite (and therefore meaningful). We will often identify the function δ_{x} with the element $x \in X$. In this case, we can view X as a subset of $k[X]$, and every element of $k[X]$ can be uniquely written as $\sum_{x \in X} t_{x} \cdot x$, where the $t_{x} \in k$ and $t_{x}=0$ for all but finitely many x. The case $X=\{1, \ldots, n\}$ corresponds to k^{n}, and the element δ_{i} to the vector $e_{i}=(0, \ldots, 1, \ldots, 0)$ (the $i^{\text {th }}$ component is 1 and all other components are 0).

For a general ring R, the analogue of a vector space is an R-module, with some care if R is not commutative:

Definition 1.3. A left R-module M is is a triple $(M,+, \cdot)$, where $(M,+)$ is an abelian group and there is a function $R \times M \rightarrow M$, whose value at (r, m) is just denoted $r \cdot m$ or $r m$, such that

1. For all $r, s \in R$ and $m \in M, r(s m)=(r s) m$.
2. For all $r, s \in R$ and $m \in M,(r+s) m=r m+s m$.
3. For all $r \in R$ and $m, n \in M, r(m+n)=r m+r n$.
4. For all $m \in M, 1 \cdot m=m$.

Left submodules of an R-module M are defined in the obvious way. A right R-module is an abelian group M with a multiplication by R on the right, i.e. a function $R \times M \rightarrow M$ whose value at (r, m) is denoted $m r$, satisfying $(m s) r=m(s r)$ and the remaining analogues of (2), (3), (4) above. Thus, if R is commutative, there is no difference between left and right R-modules.

Example 1.4. (1) The n-fold Cartesian product R^{n} is a left R-module, where R^{n} is a group under componentwise addition and scalar multiplication, i.e.

$$
\begin{aligned}
\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right) & =\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right) \\
r\left(a_{1}, \ldots, a_{n}\right) & =\left(r a_{1}, \ldots, r a_{n}\right) .
\end{aligned}
$$

Of course, it can also be made into a right R-module.
(2) If X is a set and R^{X} denotes the group of functions from X to R, then R^{X} is a left R-module using pointwise addition and scalar multiplication. Similarly the subset $R[X]$, defined in the obvious way, is a submodule.
(3) Once we replace fields by rings, there are many more possibilities for R-modules. For example, if I is an ideal in R (or a left ideal if R is not commutative), then I is an R-submodule of R and the quotient ring R / I (in the commutative case, say) is also an R-module. For example, $\mathbb{Z} / n \mathbb{Z}$ is a \mathbb{Z}-module, but it looks very different from a \mathbb{Z}-module of the form \mathbb{Z}^{n}. For another example, which will be more relevant to us, if $R=\mathbb{M}_{n}(k)$ is the (noncommutative) ring of $n \times n$ matrices with coefficients in the field k, then k^{n} is a left R-module, by defining $A \cdot v$ to be the usual multiplication of the matrix A with the vector v (viewed as a column vector).

2 Linear maps

Linear maps are the analogue of homomorphisms and isomorphisms:
Definition 2.1. Let V_{1} and V_{2} be two k-vector spaces and let $F: V_{1} \rightarrow V_{2}$ be a function (= map). Then F is linear or a linear map if it is a group homomorphism from $\left(V_{1},+\right)$ to $\left(V_{2},+\right)$, i.e. is additive, and satisfies: For all $t \in k$ and $v \in V_{1}, F(t v)=t F(v)$. The composition of two linear maps is again linear. For example, for all V_{1} and V_{2}, the constant function $F=0$ is linear. If $V_{1}=V_{2}=V$, then the identity function Id: $V \rightarrow V$ is linear.

The function F is a linear isomorphism or briefly an isomorphism if it is both linear and a bijection; in this case, it is easy to check that F^{-1} is
also linear. We say that V_{1} and V_{2} are isomorphic, written $V_{1} \cong V_{2}$, if there exists an isomorphism F from V_{1} to V_{2}.

If $F: V_{1} \rightarrow V_{2}$ is a linear map, then we define
Ker $F=\left\{v \in V_{1}: F(v)=0\right\} ;$
$\operatorname{Im} F=\left\{w \in V_{2}:\right.$ there exists $v \in V_{1}$ such that $F(v)=w$.
Lemma 2.2. Let $F: V_{1} \rightarrow V_{2}$ be a linear map. Then $\operatorname{Ker} F$ is a subspace of V_{1} and $\operatorname{Im} F$ is a subspace of V_{2}. Moreover, F is injective $\Longleftrightarrow \operatorname{Ker} F=\{0\}$ and F is surjective $\Longleftrightarrow \operatorname{Im} F=V_{2}$.

To find examples of linear maps, we use the following:
Lemma 2.3. Let W be a vector space and let $w_{1}, \ldots, w_{n} \in W$. There is a unique linear map $F: k^{n} \rightarrow W$ defined by $F\left(t_{1}, \ldots, t_{n}\right)=\sum_{i=1}^{n} t_{i} w_{i}$. It satisfies: For every $i, F\left(e_{i}\right)=w_{i}$.

This lemma may be generalized as follows:
Lemma 2.4. Let X be a set and let V be a vector space. For each function $f: X \rightarrow V$, there is a unique linear map $F: k[X] \rightarrow V$ defined by $F\left(\sum_{x \in X} t_{x} \cdot x\right)=\sum_{x \in X} t_{x} f(x)$ (a finite sum). In particular, F is specified by the requirement that $F(x)=f(x)$ for all $x \in X$. Finally, every linear function $k[X] \rightarrow V$ is of this form.

For this reason, $k[X]$ is sometimes called the free vector space on the set X.

3 Linear independence and span

Let us introduce some terminology:
Definition 3.1. Let V be a k-vector space and let $v_{1}, \ldots, v_{d} \in V$ be a sequence of vectors. A linear combination of v_{1}, \ldots, v_{d} is a vector of the form $t_{1} v_{1}+\cdots+t_{d} v_{d}$, where the $t_{i} \in k$. The span of $\left\{v_{1}, \ldots, v_{d}\right\}$ is the set of all linear combinations of v_{1}, \ldots, v_{d}. Thus

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{d}\right\}=\left\{t_{1} v_{1}+\cdots+t_{d} v_{d}: t_{i} \in k \text { for all } i\right\} .
$$

By definition (or logic), span $\emptyset=\{0\}$.
With V and v_{1}, \ldots, v_{d} as above, we have the following properties of span:
(i) $\operatorname{span}\left\{v_{1}, \ldots, v_{d}\right\}$ is a vector subspace of V containing v_{i} for every i. In fact, it is the image of the linear map $F: k^{d} \rightarrow V$ defined by $F\left(t_{1}, \ldots, t_{d}\right)=\sum_{i=1}^{d} t_{i} v_{i}$ above.
(ii) If W is a vector subspace of V containing v_{1}, \ldots, v_{d}, then

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{d}\right\} \subseteq W
$$

In other words, $\operatorname{span}\left\{v_{1}, \ldots, v_{d}\right\}$ is the smallest vector subspace of V containing v_{1}, \ldots, v_{d}.
(iii) For every $v \in V, \operatorname{span}\left\{v_{1}, \ldots, v_{d}\right\} \subseteq \operatorname{span}\left\{v_{1}, \ldots, v_{d}, v\right\}$, and equality holds if and only if $v \in \operatorname{span}\left\{v_{1}, \ldots, v_{d}\right\}$.

Definition 3.2. A sequence of vectors v_{1}, \ldots, v_{d} such that

$$
V=\operatorname{span}\left\{v_{1}, \ldots, v_{d}\right\}
$$

will be said to span V. Thus, v_{1}, \ldots, v_{d} span $V \Longleftrightarrow$ the linear map $F: k^{d} \rightarrow V$ defined by $F\left(t_{1}, \ldots, t_{d}\right)=\sum_{i=1}^{d} t_{i} v_{i}$ is surjective.

Definition 3.3. A k-vector space V is a finite dimensional vector space if there exist $v_{1}, \ldots, v_{d} \in V$ such that $V=\operatorname{span}\left\{v_{1}, \ldots, v_{d}\right\}$. The vector space V is infinite dimensional if it is not finite dimensional.

For example, k^{n} is finite-dimensional. But, if X is an infinite set, then $k[X]$ and hence k^{X} are not finite-dimensional vector spaces.

Definition 3.4. A sequence $w_{1}, \ldots, w_{r} \in V$ is linearly independent if the following holds: if there exist $t_{i} \in k$ such that

$$
t_{1} w_{1}+\cdots+t_{r} w_{r}=0,
$$

then $t_{i}=0$ for all i. The sequence w_{1}, \ldots, w_{r} is linearly dependent if it is not linearly independent. Note that $w_{1}, \ldots, w_{r} \in V$ are linearly independent $\Longleftrightarrow \operatorname{Ker} F=\{0\}$, where $F: k^{n} \rightarrow V$ is the linear map defined by $F\left(t_{1}, \ldots, t_{r}\right)=\sum_{i=1}^{r} t_{i} w_{i} \Longleftrightarrow$ the map F defined above is injective. It then follows that the vectors w_{1}, \ldots, w_{r} are linearly independent if and only if, given $t_{i}, s_{i} \in k, 1 \leq i \leq r$, such that

$$
t_{1} w_{1}+\cdots+t_{r} w_{r}=s_{1} w_{1}+\cdots+s_{r} w_{r}
$$

then $t_{i}=s_{i}$ for all i.

Note that the definition of linear independence does not depend only on the set $\left\{w_{1}, \ldots, w_{r}\right\}$-if there are any repeated vectors $w_{i}=w_{j}$, then we can express 0 as the nontrivial linear combination $w_{i}-w_{j}$. Likewise if one of the w_{i} is zero then the set is linearly dependent.

Definition 3.5. Let V be a k-vector space. The vectors v_{1}, \ldots, v_{d} are a basis of V if they are linearly independent and $V=\operatorname{span}\left\{v_{1}, \ldots, v_{d}\right\}$. Equivalently, the vectors v_{1}, \ldots, v_{d} are a basis of $V \Longleftrightarrow$ the linear map $F: k^{d} \rightarrow V$ defined by $F\left(t_{1}, \ldots, t_{d}\right)=\sum_{i=1}^{d} t_{i} v_{i}$ is an isomorphism.

Remark 3.6. There are analogous notions of linear independence, span, and basis for an infinite dimensional vector space V : If $\left\{v_{i}: i \in I\right\}$ is a collection of vectors in V indexed by a set I, then $\left\{v_{i}: i \in I\right\}$ is linearly independent if the following holds: if there exist $t_{i} \in k$ such that $t_{i}=0$ for all but finitely many $i \in I$ and $\sum_{i \in I} t_{i} v_{i}=0$, then $t_{i}=0$ for all i. The span of $\left\{v_{i}: i \in I\right\}$ is the subset

$$
\left\{\sum_{i \in I} t_{i} v_{i}: t_{i} \in k, t_{i}=0 \text { for all but finitely many } i \in I\right\},
$$

and $\left\{v_{i}: i \in I\right\}$ spans V if its span is equal to V. Finally, $\left\{v_{i}: i \in I\right\}$ is a basis of V if it is linearly independent and spans V, or equivalently if every $v \in V$ can be uniquely expressed as $\sum_{i \in I} t_{i} v_{i}$, where $t_{i} \in k$ and $t_{i}=0$ for all but finitely many $i \in I$.

With this definition, the set X (or equivalently the set $\left\{\delta_{x}: x \in X\right\}$) is a basis for $k[X]$.

We summarize the salient facts about span, linear independence, and bases as follows:

1. Suppose that $V=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ and that w_{1}, \ldots, w_{ℓ} are linearly independent vectors in V. Then $\ell \leq n$.
2. If V is a finite dimensional k-vector space, then every two bases for V have the same number of elements - call this number the dimension of V which we write as $\operatorname{dim} V$ or $\operatorname{dim}_{k} V$ if we want to emphasize the field k. Thus for example $\operatorname{dim} k^{n}=n$, and, more generally, if X is a finite set, then $\operatorname{dim} k[X]=\#(X)$.
3. If $V=\operatorname{span}\left\{v_{1}, \ldots, v_{d}\right\}$ then some subsequence of v_{1}, \ldots, v_{d} is a basis for V. Hence $\operatorname{dim} V \leq d$, and if $\operatorname{dim} V=d$ then v_{1}, \ldots, v_{d} is a basis for V.
4. If V is a finite-dimensional vector space and w_{1}, \ldots, w_{ℓ} are linearly independent vectors in V, then there exist vectors

$$
w_{\ell+1}, \ldots, w_{r} \in V
$$

such that $w_{1}, \ldots, w_{\ell}, w_{\ell+1}, \ldots, w_{r}$ is a basis for V. Hence $\operatorname{dim} V \geq \ell$, and if $\operatorname{dim} V=\ell$ then w_{1}, \ldots, w_{ℓ} is a basis for V.
5. If V is a finite-dimensional vector space and W is a vector subspace of V, then $\operatorname{dim} W \leq \operatorname{dim} V$. Moreover $\operatorname{dim} W=\operatorname{dim} V$ if and only if $W=V$.
6. If V is a finite-dimensional vector space and $F: V \rightarrow V$ is linear, then F is injective $\Longleftrightarrow F$ is surjective $\Longleftrightarrow F$ is an isomorphism.

Remark 3.7. If V is a finite dimensional k-vector space and $W \subseteq V$, then W is a vector subspace of V if and only if it is of the form $\operatorname{span}\left\{v_{1}, \ldots, v_{d}\right\}$ for some $v_{1}, \ldots, v_{d} \in V$. This is no longer true if V is not finite dimensional.

4 The group algebra

We apply the construction of $k[X]$ to the special case where $X=G$ is a group (written multiplicatively). In this case, we can view $k[G]$ as functions $f: G \rightarrow k$ with finite support or as formal sums $\sum_{g \in G} t_{g} \cdot g$, where $t_{g}=0$ for all but finitely many g. It is natural to try to extend the multiplication in G to a multiplication on $k[G]$, by defining the product of the formal symbols g and h to be $g h$ (using the product in G and then expanding by using the obvious choice of rules. Explicitly, we define

$$
\left(\sum_{g \in G} s_{g} \cdot g\right)\left(\sum_{g \in G} t_{g} \cdot g\right)=\sum_{g \in G}\left(\sum_{\substack{h_{1}, h_{2} \in G \\ h_{1} h_{2}=g}} s_{h_{1}} t_{h_{2}}\right) \cdot g .
$$

It is straightforward to check that, with our finiteness assumptions, the inner sums in the formula above are all finite and the coefficients of the product as defined above are 0 for all but finitely many g.

If we view elements of $k[G]$ instead as functions, then the product of two functions f_{1} and f_{2} is called the convolution $f_{1} * f_{2}$, and is defined as follows:

$$
\left(f_{1} * f_{2}\right)(g)=\sum_{\substack{h_{1}, h_{2} \in G \\ h_{1} h_{2}=g}} f_{1}\left(h_{1}\right) f_{2}\left(h_{2}\right)=\sum_{h \in G} f_{1}(h) f_{2}\left(h^{-1} g\right)=\sum_{h \in G} f_{1}\left(g h^{-1}\right) f_{2}(h) .
$$

Again, it is straightforward to check that the sums above are finite and that $\operatorname{Supp} f_{1} * f_{2}$ is finite as well.

With either of the above descriptions, one can then check that $k[G]$ is a ring. The messiest calculation is associativity of the product. For instance, we can write

$$
\begin{aligned}
f_{1} *\left(f_{2} * f_{3}\right)(g) & =\sum_{x \in G} f_{1}(x)\left(f_{2} * f_{3}\right)\left(x^{-1} g\right)=\sum_{x \in G} \sum_{y \in G} f_{1}(x) f_{2}(y) f_{3}\left(y^{-1} x^{-1} g\right) \\
& =\sum_{\substack{x, y, z \in G \\
x y z=g}} f_{1}(x) f_{2}(y) f_{3}(z) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left(f_{1} * f_{2}\right) * f_{3}(g) & =\sum_{z \in G}\left(f_{1} * f_{2}\right)\left(g z^{-1}\right) f_{3}(z)=\sum_{x \in G} \sum_{z \in G} f_{1}(x) f_{2}\left(x^{-1} g z^{-1}\right) f_{3}(z) \\
& =\sum_{\substack{x, y, z \in G \\
x y z=g}} f_{1}(x) f_{2}(y) f_{3}(z)
\end{aligned}
$$

Thus $f_{1} *\left(f_{2} * f_{3}\right)=\left(f_{1} * f_{2}\right) * f_{3}$. Left and right distributivity can also be checked by a (somewhat easier) calculation. If $1 \in G$ is the identity element, let 1 denote the element of $k[G]$ which is $1 \cdot 1$ (the first 1 is $1 \in k$ and the second is $1 \in G)$. Thus we identify 1 with the element $\delta_{1} \in k[G]$. Then $1 * f=f * 1=f$. In fact, we leave it as an exercise to show that, for all $h \in G$, and all $f \in k[G]$,

$$
\begin{aligned}
& \left(\delta_{h} * f\right)(g)=f\left(h^{-1} g\right) ; \\
& \left(f * \delta_{h}\right)(g)=f\left(g h^{-1}\right) .
\end{aligned}
$$

In other words, convolution of the function f with δ_{h} has the effect of translating the function f, i.e. shifting the variable.

The ring $k[G]$ is commutative $\Longleftrightarrow G$ is abelian. It is essentially never a division ring. For example, if $g \in G$ has order 2 , so that $g^{2}=1$, then the element $1+g \in k[G]$ is a zero divisor: let $-g$ denote the element $(-1) \cdot g$, where $-1 \in k$ is the additive inverse of 1 . Then

$$
(1+g)(1-g)=1+g-g-g^{2}=1-1=0 .
$$

5 Linear functions and matrices

Let $F: k^{n} \rightarrow k^{m}$ be a linear function. Then

$$
F\left(t_{1}, \ldots, t_{n}\right)=F\left(\sum_{i} t_{i} e_{i}\right)=\sum_{i} t_{i} F\left(e_{i}\right)
$$

We can write $F\left(e_{i}\right)$ in terms of the basis e_{1}, \ldots, e_{m} of k^{m} : suppose that $F\left(e_{i}\right)=\sum_{j=1}^{m} a_{j i} e_{j}=\left(a_{1 i}, \ldots, a_{m i}\right)$. We can then associate to F an $m \times n$ matrix with coefficients in k as follows: Define

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right) .
$$

Then the columns of A are the vectors $F\left(e_{i}\right)$. Thus every linear map $F: k^{n} \rightarrow k^{m}$ corresponds to an $m \times n$ matrix with coefficients in k. We denote by $\mathbb{M}_{m, n}(k)$ the set of all such. Clearly $\mathbb{M}_{m, n}(k)$ is a vector space of dimension $m n$, with basis

$$
\left\{E_{i j}, 1 \leq i \leq m, 1 \leq j \leq n\right\},
$$

where $E_{i j}$ is the $n \times n$ matrix whose $(i, j)^{\text {th }}$ entry is 1 and such that all other entries are 0 . Equivalently, $\mathbb{M}_{m, n}(k) \cong k[X]$, where $X=\{1, \ldots, m\} \times$ $\{1, \ldots, n\}$ is the set of ordered pairs (i, j) with $1 \leq i \leq m$ and $1 \leq j \leq n$. If $m=n$, we abbreviate $\mathbb{M}_{m, n}(k)$ by $\mathbb{M}_{n}(k)$; it is the space of square matrices of size n.

Composition of linear maps corresponds to matrix multiplication: If $F: k^{n} \rightarrow k^{m}$ and $G: k^{m} \rightarrow k^{\ell}$ are linear maps corresponding to the matrices A and B respectively, then $G \circ F: k^{n} \rightarrow k^{\ell}$ corresponds to the $\ell \times n$ matrix $B A$. Here, the (i, j) entry of $B A$ is given by

$$
\sum_{k=1}^{m} b_{i k} a_{k j} .
$$

Composition of matrices is associative and distributes over addition of matrices; moreover $(t B) A=B(t A)=t(B A)$ if this is defined. The identity matrix $I \in \mathbb{M}_{n}(k)$ is the matrix whose diagonal entries are 1 and such that all other entries are 0 ; it corresponds to the identity map Id: $k^{n} \rightarrow k^{n}$. Thus as previously mentioned $\mathbb{M}_{n}(k)$ is a ring.

A matrix $A \in \mathbb{M}_{n}(k)$ is invertible if there exists a matrix $B \in \mathbb{M}_{n}(k)$ such that $B A=I$. Then necessarily $A B=I$, and we write $B=A^{-1}$. If $F: k^{n} \rightarrow k^{n}$ is the linear map corresponding to the matrix A, then A is invertible $\Longleftrightarrow F$ is an isomorphism $\Longleftrightarrow F$ is injective $\Longleftrightarrow F$ is surjective. We have the following formula for two invertible matrices $A_{1}, A_{2} \in \mathbb{M}_{n}(k)$: if A_{1}, A_{2} are invertible, then so is $A_{1} A_{2}$, and

$$
\left(A_{1} A_{2}\right)^{-1}=A_{2}^{-1} A_{1}^{-1} .
$$

The subset of $\mathbb{M}_{n}(k)$ consisting of invertible matrices is then a group, denoted by $G L_{n}(k)$.

Suppose that V_{1} and V_{2} are two finite dimensional vector spaces, and choose bases v_{1}, \ldots, v_{n} of V_{1} and w_{1}, \ldots, w_{m} of V_{2}, so that $n=\operatorname{dim} V_{1}$ and $m=\operatorname{dim} V_{2}$. If $F: V_{1} \rightarrow V_{2}$ is linear, then, given the bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{m} we again get an $m \times n$ matrix A by the formula: $A=\left(a_{i j}\right)$, where $a_{i j}$ is defined by

$$
F\left(v_{i}\right)=\sum_{j=1}^{m} a_{j i} w_{j} .
$$

We say that A is the matrix associated to the linear map f and the bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{m}. Given any collection of vectors u_{1}, \ldots, u_{k} in V_{2}, there is a unique linear map $F: V_{1} \rightarrow V_{2}$ defined by $F\left(v_{i}\right)=u_{i}$ for all i. In fact, if we let $H: k^{n} \rightarrow V_{1}$ be the "change of basis" map defined by $H\left(t_{1}, \ldots, t_{n}\right)=\sum_{i=1}^{n} t_{i} w_{i}$, then H is an isomorphism and so has an inverse H^{-1}, which is again linear. Let $G: k^{n} \rightarrow V_{2}$ be the map $G\left(t_{1}, \ldots, t_{n}\right)=$ $\sum_{i=1}^{n} t_{i} u_{i}$. Then the map F is equal to $G \circ H^{-1}$, proving the existence and uniqueness of F.

A related question is the following: Suppose that v_{1}, \ldots, v_{n} is a basis of k^{n} and that w_{1}, \ldots, w_{m} is a basis of k^{m}. Let F be a linear map $k^{n} \rightarrow k^{m}$. The we have associated a matrix A to F, using the standard bases of k^{n} and k^{m}, i.e. $F\left(e_{i}\right)=\sum_{j=1}^{m} a_{j i} e_{j}$. We can also associate a matrix B to F by using the bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{m}, i.e. $F\left(v_{i}\right)=\sum_{j=1}^{m} b_{j i} w_{j}$. What is the relationship between A and B ? This question can be answered most simply in terms of linear maps. Let $G: k^{n} \rightarrow k^{m}$ be the linear map corresponding to the matrix B in the usual way: $G\left(e_{i}\right)=\sum_{j=1}^{k} b_{j i} e_{j}$. As above, let $H_{1}: k^{n} \rightarrow k^{n}$ be the "change of basis" map in k^{n} defined by $H_{1}\left(e_{i}\right)=v_{i}$, and let $H_{2}: k^{m} \rightarrow k^{m}$ be the corresponding change of basis map in k^{m}, defined by $H_{2}\left(e_{j}\right)=w_{j}$. Then clearly (by applying both sides to v_{i} for every i)

$$
F=H_{2} \circ G \circ H_{1}^{-1} .
$$

Thus, if H_{1} corresponds to the $n \times n$ (square) matrix C_{1} and H_{2} corresponds to the $m \times m$ matrix C_{2}, then F, which corresponds to the matrix A, also corresponds to the matrix $C_{2} \cdot B \cdot C_{1}^{-1}$, and thus we have the following equality of $m \times n$ matrices:

$$
A=C_{2} \cdot B \cdot C_{1}^{-1}
$$

A case that often arises is when $n=m$, so that A and B are square matrices, and the two bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{n} are equal. In this case $C_{1}=$
$C_{2}=C$, say, and the above formula reads

$$
A=C \cdot B \cdot C^{-1} .
$$

We say that A is obtained by conjugating B by C.
Similarly, suppose that V is a finite dimensional vector space and that $F: V \rightarrow V$ is a linear map. Choosing a basis v_{1}, \ldots, v_{n} of V identifies F with a square matrix A. Equivalently, if $H_{1}: k^{n} \rightarrow V$ is the isomorphism $H_{1}\left(t_{1}, \ldots, t_{n}\right)=\sum_{i} t_{i} v_{i}$ defined by the basis v_{1}, \ldots, v_{n}, then A corresponds to the linear map $G_{1}: k^{n} \rightarrow k^{n}$ defined by $G_{1}=H_{1}^{-1} \circ F \circ H_{1}$. Choosing a different basis w_{1}, \ldots, w_{n} of V gives a different isomorphism $H_{2}: k^{n} \rightarrow V$ defined by $H_{2}\left(t_{1}, \ldots, t_{n}\right)=\sum_{i} t_{i} w_{i}$, and hence a different matrix B corresponding to $G_{2}=H_{2}^{-1} \circ F \circ H_{2}$. Then, using $\left(H_{2}^{-1} \circ H_{1}\right)^{-1}=H_{1}^{-1} \circ H_{2}$, we have

$$
G_{2}=\left(H_{2}^{-1} \circ H_{1}\right) \circ G_{1} \circ\left(H_{2}^{-1} \circ H_{1}\right)^{-1}=H \circ G_{1} \circ H^{-1},
$$

say, where $H=H_{2}^{-1} \circ H_{1}: k^{n} \rightarrow k^{n}$ is invertible, and corresponds to the invertible matrix C. Thus

$$
B=C A C^{-1} .
$$

It follows that two different choices of bases in V lead to matrices $A, B \in$ $\mathbb{M}_{n}(k)$ which are conjugate.

Definition 5.1. Let V be a vector space. We let $G L(V)$ be the group of isomorphisms from V to itself. If V is finite dimensional, with $\operatorname{dim} V=n$, then $G L(V) \cong G L_{n}(k)$ by choosing a basis of V. More precisely, fixing a basis $\left\{v_{1}, \ldots, v_{n}\right\}$, we define $\Phi: G L(V) \rightarrow G L_{n}(k)$ by setting $\Phi(F)=A$, where A is the matrix of F with respect to the basis $\left\{v_{1}, \ldots, v_{n}\right\}$. Choosing a different basis $\left\{w_{1}, \ldots, w_{n}\right\}$ replaces Φ by $C \Phi C^{-1}$, where C is the appropriate change of basis matrix.

6 Determinant and trace

We begin by recalling the standard properties of the determinant. For every n, we have a function det: $\mathbb{M}_{n}(k) \rightarrow k$, which is a linear function of the columns of A (i.e. is a linear function of the $i^{\text {th }}$ column if we hold all of the other columns fixed) and is alternating: given $i \neq j, 1 \leq i, j \leq n$, if A^{\prime} is the matrix obtained by switching the $i^{\text {th }}$ and $j^{\text {th }}$ columns of A, then $\operatorname{det} A^{\prime}=-\operatorname{det} A$. It is unique up the normalizing condition that
$\operatorname{det} I=1$.

One can show that $\operatorname{det} A$ can be evaluated by expanding about the $i^{\text {th }}$ row for any i :

$$
\operatorname{det} A=\sum_{k}(-1)^{i+k} a_{i k} \operatorname{det} A_{i k} .
$$

Here $\left(a_{i 1}, \ldots, a_{i n}\right)$ is the $i^{\text {th }}$ row of A and $A_{i k}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the $i^{\text {th }}$ row and $k^{\text {th }}$ column of A. $\operatorname{det} A$ can also be evaluated by expanding about the $j^{\text {th }}$ column of A :

$$
\operatorname{det} A=\sum_{k}(-1)^{k+j} a_{k j} \operatorname{det} A_{k j} .
$$

In terms of the symmetric group S_{n},

$$
\operatorname{det} A=\sum_{\sigma \in S_{n}}(\operatorname{sign} \sigma) a_{\sigma(1), 1} \cdots a_{\sigma(n), n},
$$

where $\operatorname{sign}(\sigma)$ (sometimes denoted $\varepsilon(\sigma))$ is +1 if σ is even and -1 if σ is odd.

For example, if A is an upper triangular matrix $\left(a_{i j}=0\right.$ if $\left.i>j\right)$, and in particular if A is a diagonal matrix $\left(a_{i j}=0\right.$ for $\left.i \neq j\right)$ then $\operatorname{det} A$ is the product of the diagonal entries of A.

Another useful fact is the following:

$$
\operatorname{det} A=\operatorname{det}\left({ }^{t} A\right)
$$

where, if $A=\left(a_{i j}\right)$, then ${ }^{t} A$ is the matrix with $(i, j)^{\text {th }}$ entry $a_{j i}$.
We have the important result:
Proposition 6.1. For all $n \times n$ matrices A and $B, \operatorname{det} A B=\operatorname{det} A \operatorname{det} B$.
Proposition 6.2. The matrix A is invertible $\Longleftrightarrow \operatorname{det} A \neq 0$, and in this case

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det} A} .
$$

Hence det: $G L_{n}(k) \rightarrow k^{*}$ is a homomorphism, where k^{*} is the multiplicative group of nonzero elements of k.

Corollary 6.3. If C is an invertible $n \times n$ matrix and A is any $n \times n$ matrix, then $\operatorname{det} A=\operatorname{det}\left(C A C^{-1}\right)$. Thus, the determinant of a linear map can be read off from its matrix with respect to any basis.

Proof. Immediate from $\operatorname{det}\left(C A C^{-1}\right)=\operatorname{det} C \cdot \operatorname{det} A \cdot \operatorname{det}\left(C^{-1}\right)=\operatorname{det} C$. $\operatorname{det} A \cdot(\operatorname{det} C)^{-1}=\operatorname{det} A$.

An important consequence of the corollary is the following: let V be a finite dimensional vector space and let $F: V \rightarrow V$ be a linear map. Choosing a basis v_{1}, \ldots, v_{n} for V gives a matrix A associated to F and the basis v_{1}, \ldots, v_{n}. Changing the basis v_{1}, \ldots, v_{n} replaces A by $C A C^{-1}$ for some invertible matrix C. Since $\operatorname{det} A=\operatorname{det}\left(C A C^{-1}\right)$, in fact the determinant $\operatorname{det} F$ is well-defined, i.e. independent of the choice of basis.

Thus for example if v_{1}, \ldots, v_{n} is a basis of k^{n} and, for every i, there exists a $d_{i} \in k$ such that $A v_{i}=d_{i} v_{i}$, then $\operatorname{det} A=d_{1} \cdots d_{n}$.

One important application of determinants is to finding eigenvalues and eigenvectors. Recall that, if $F: k^{n} \rightarrow k^{n}$ (or $F: V \rightarrow V$, where V is a finite dimensional vector space) is a linear map, a nonzero vector $v \in k^{n}$ (or V) is an eigenvector of F with eigenvalue $\lambda \in k$ if $F(v)=\lambda v$. Since $F(v)=v \Longleftrightarrow \lambda v-F(v)=0 \Longleftrightarrow v \in \operatorname{Ker}(\lambda \operatorname{Id}-F)$, we see that v is an eigenvector of F with eigenvalue $\lambda \Longleftrightarrow \operatorname{det}(\lambda I-A)=0$, where A is the matrix associated to F (and some choice of basis in the case of a finite dimensional vector space V). Defining the characteristic polynomial $p_{A}(t)=\operatorname{det}(t I-A)$, it is easy to see that p_{A} is a polynomial of degree n whose roots are the eigenvalues of F.

A linear map $F: V \rightarrow V$ is diagonalizable if there exists a basis v_{1}, \ldots, v_{n} of V consisting of eigenvectors; similarly for a matrix $A \in \mathbb{M}_{n}(k)$. This says that the matrix A for F in the basis v_{1}, \ldots, v_{n} is a diagonal matrix (the only nonzero entries are along the diagonal), and in fact $a_{i i}=\lambda_{i}$, where λ_{i} is the eigenvalue corresponding to the eigenvector v_{i}. Hence, for all positive integers d (and all integers if F is invertible), v_{1}, \ldots, v_{n} are also eigenvectors for F^{d} or A^{d}, and the eigenvalue corresponding to v_{i} is λ_{i}^{d}. If the characteristic polynomial p_{A} has n distinct roots, then A is diagonalizable. In general, not every matrix is diagonalizable, even for an algebraically closed field, but we do have the following:

Proposition 6.4. If k is algebraically closed, for example if $k=\mathbb{C}$, and if V is a finite dimensional vector space and $F: V \rightarrow V$ is a linear map, then there exists at least one eigenvector for F.
Remark 6.5. Let $A \in \mathbb{M}_{n}(k)$. If $f(t)=\sum_{i=0}^{d} a_{i} t^{i} \in k[t]$ is a polynomial in t, then we can apply f to the matrix $A: f(A)=\sum_{i=0}^{d} a_{i} A^{i} \in \mathbb{M}_{n}(k)$. Moreover, evaluation at A defines a homomorphism ev ${ }_{A}: k[t] \rightarrow \mathbb{M}_{n}(k)$, viewing $\mathbb{M}_{n}(k)$ as a (non-commutative) ring. There is a unique monic polynomial $m_{A}(t)$ such that (i) $m_{A}(A)=0$ and (ii) if $f(t) \in k[t]$ is any polynomial such that $f(A)=0$, then $m_{A}(t)$ divides $f(t)$ in the ring $k[t]$. In fact, we can take $m_{A}(t)$ to be the monic generator of the principal ideal Kerev_{A}.

Then one has the Cayley-Hamilton theorem: If $p_{A}(t)$ is the characteristic polynomial of A, then $p_{A}(A)=0$ and hence $m_{A}(t)$ divides $p_{A}(t)$. For example, if A is diagonalizable with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then

$$
p_{A}(t)=\left(t-\lambda_{1}\right) \cdots\left(t-\lambda_{n}\right),
$$

and it is easy to see that $p_{A}(A)=0$ in this case. On the other hand, in this case the minimal polynomial is the product of the factors $\left(t-\lambda_{i}\right)$ for distinct eigenvalues λ_{i}. Hence we see that, in the case where A is diagonalizble, $m_{A}(t)$ divides $p_{A}(t)$, but they are equal \Longleftrightarrow there are no repeated eigenvalues.

Finally, we define the trace of a matrix. If $A=\left(a_{i j}\right) \in \mathbb{M}_{n}(k)$, we define

$$
\operatorname{Tr} A=\sum_{i=1}^{n} a_{i i}
$$

Thus the trace of a matrix is the sum of its diagonal entries. Clearly, $\operatorname{Tr}: \mathbb{M}_{n}(k) \rightarrow k$ is a linear map. As such, it is much simpler that the very nonlinear function det. However, they are related in several ways. For example, expanding out the characteristic polynomial $p_{a}(t)=\operatorname{det}(t \operatorname{Id}-A)$ as a function of t, one can check that

$$
p_{a}(t)=t^{n}-(\operatorname{Tr} A) t^{n-1}+\cdots+(-1)^{n} \operatorname{det} A .
$$

In a related interpretation, Tr is the derivative of det at the identity. One similarity between Tr and det is the following:

Proposition 6.6. For all $A, B \in \mathbb{M}_{n}(k)$,

$$
\operatorname{Tr}(A B)=\operatorname{Tr}(B A)
$$

Proof. By definition of matrix multiplication, $A B$ is the matrix whose (i, j) entry is $\sum_{r=1}^{n} a_{i r} b_{r j}$, and hence

$$
\operatorname{Tr}(A B)=\sum_{i=1}^{n} \sum_{r=1}^{n} a_{i r} b_{r i} .
$$

Since $\operatorname{Tr}(B A)$ is obtained by reversing the roles of A and B,

$$
\operatorname{Tr}(B A)=\sum_{i=1}^{n} \sum_{r=1}^{n} b_{i r} a_{r i}=\sum_{i=1}^{n} \sum_{r=1}^{n} a_{r i} b_{i r}=\operatorname{Tr}(A B),
$$

after switching the indices r and i.

Corollary 6.7. For $A \in \mathbb{M}_{n}(k)$ and $C \in G L_{n}(k)$,

$$
\operatorname{Tr}\left(C A C^{-1}\right)=\operatorname{Tr} A
$$

Hence, if V is a finite dimensional vector space and $F: V \rightarrow V$ is a linear map, then $\operatorname{Tr} F$ is well-defined.

7 Direct sums

Definition 7.1. Let V_{1} and V_{2} be two vector spaces. We define the direct sum or external direct sum $V_{1} \oplus V_{2}$ to be the product $V_{1} \times V_{2}$, with + and scalar multiplication defined componentwise:

$$
\begin{aligned}
\left(v_{1}, v_{2}\right)+\left(w_{1}, w_{2}\right) & =\left(v_{1}+w_{1}, v_{2}+w_{2}\right) \text { for all } v_{1}, w_{1} \in V_{1} \text { and } v_{2}, w_{2} \in V_{2} ; \\
t\left(v_{1}, v_{2}\right) & =\left(t v_{1}, t v_{2}\right) \text { for all } v_{1} \in V_{1}, v_{2} \in V_{2}, \text { and } t \in k .
\end{aligned}
$$

It is easy to see that, with this definition, $V_{1} \oplus V_{2}$ is a vector space. It contains subspaces $V_{1} \oplus\{0\} \cong V_{1}$ and $\{0\} \oplus V_{2} \cong V_{2}$, and every element of $V_{1} \oplus V_{2}$ can be uniquely written as a sum of an element of $V_{1} \oplus\{0\}$ and and element of $\{0\} \oplus V_{2}$. Define $i_{1}: V_{1} \rightarrow V_{1} \oplus V_{2}$ by $i_{1}(v)=(v, 0)$, and similarly define $i_{2}: V_{2} \rightarrow V_{1} \oplus V_{2}$ by $i_{1}(w)=(0, w)$. Then i_{1} and i_{2} are linear and i_{1} is an isomorphism from V_{1} to $V_{1} \oplus\{0\}$ and likewise for i_{2}.

The direct sum $V_{1} \oplus V_{2}$ has the following "universal" property:
Lemma 7.2. If V_{1}, V_{2}, W are vector spaces and $F_{1}: V_{1} \rightarrow W, F_{2}: V_{2} \rightarrow W$ are linear maps, then the function $F_{1} \oplus F_{2}: V_{1} \oplus V_{2} \rightarrow W$ defined by

$$
\left(F_{1} \oplus F_{2}\right)\left(v_{1}, v_{2}\right)=F_{1}\left(v_{1}\right)+F_{2}\left(v_{2}\right)
$$

is linear, and satisfies $F\left(v_{1}, 0\right)=F_{1}\left(v_{1}\right), F\left(0, v_{2}\right)=F_{2}\left(v_{2}\right)$, i.e. $F_{1}=F \circ i_{1}$, $F_{2}=F \circ i_{2}$. Conversely, given a linear map $G: V_{1} \oplus V_{2} \rightarrow W$, if we define $G_{1}: V_{1} \rightarrow W$ by $G_{1}\left(v_{1}\right)=G\left(v_{1}, 0\right)$ and $G_{2}: V_{2} \rightarrow W$ by $G_{2}\left(v_{2}\right)=G\left(0, v_{2}\right)$, so that $G_{1}=G \circ i_{1}$ and $G_{2}=G \circ i_{2}$, then G_{1} and G_{2} are linear and $G=G_{1} \oplus G_{2}$.

The direct sum of V_{1} and V_{2} also has a related property that makes it into the product of V_{1} and V_{2}. Let $\pi_{1}: V_{1} \oplus V_{2} \rightarrow V_{1}$ be the projection onto the firsy factor: $\pi_{1}\left(v_{1}, v_{2}\right)=v_{1}$, and similarly for $\pi_{2}: V_{1} \oplus V_{2} \rightarrow V_{2}$. It is easy to check from the definitions that the π_{i} are linear and surjective, with $\pi_{1} \circ i_{1}=\operatorname{Id}$ on V_{1} and $\pi_{2} \circ i_{2}=\operatorname{Id}$ on V_{2}. Note that $\pi_{1} \circ i_{2}=0$ and $\pi_{2} \circ i_{1}=0$.

Lemma 7.3. If V_{1}, V_{2}, W are vector spaces and $G_{1}: W \rightarrow V_{1}, G_{2}: W \rightarrow V_{2}$ are linear maps, then the function $\left(G_{1}, G_{2}\right): W \rightarrow V_{1} \oplus V_{2}$ defined by

$$
\left(G_{1}, G_{2}\right)(w)=\left(G_{1}(w), G_{2}(w)\right)
$$

is linear, and satisfies $\pi_{1} \circ\left(G_{1}, G_{2}\right)=G_{1}, \pi_{2} \circ\left(G_{1}, G_{2}\right)=G_{2}$. Conversely, given a linear map $G: W \rightarrow V_{1} \oplus V_{2}$, if we define $G_{1}: W \rightarrow V_{1}$ by $G_{1}=\pi_{1} \circ$ $G, G_{2}: W \rightarrow V_{2}$ by $\pi_{2} \circ G$, then G_{1} and G_{2} are linear and $G=\left(G_{1}, G_{2}\right)$.

Remark 7.4. It may seem strange to introduce the notation \oplus for the Cartesian product. One reason for doing so is that we can define the direct sum and direct product for an arbitrary collection $V_{i}, i \in I$ of vector spaces V_{i}. In this case, when I is infinite, the direct sum and direct product have very different properties.

Finally, if we have vector spaces V, W, U, X and linear maps $F: V \rightarrow U$ and $G: W \rightarrow X$, we can define the linear map $F \oplus G: V \oplus W \rightarrow U \oplus X$ (same notation as Lemma 7.2) by the formula

$$
(F \oplus G)(v, w)=(F(v), G(w)) .
$$

The direct sum $V_{1} \oplus \cdots \oplus V_{d}=\bigoplus_{i=1}^{d} V_{i}$ of finitely many vector spaces is similarly defined, and has similar properties. It is also easy to check for example that

$$
V_{1} \oplus V_{2} \oplus V_{3} \cong\left(V_{1} \oplus V_{2}\right) \oplus V_{3} \cong V_{1} \oplus\left(V_{2} \oplus V_{3}\right) .
$$

It is straightforward to check the following (proof as exercise):
Lemma 7.5. Suppose that v_{1}, \ldots, v_{n} is a basis for V_{1} and that w_{1}, \ldots, w_{m} is a basis for V_{2}. Then $\left(v_{1}, 0\right), \ldots,\left(v_{n}, 0\right),\left(0, w_{1}\right), \ldots,\left(0, w_{m}\right)$ is a basis for $V_{1} \oplus V_{2}$. Hence V_{1} and V_{2} are finite dimensional $\Longleftrightarrow V_{1} \oplus V_{2}$ is finite dimensional, and in this case

$$
\operatorname{dim}\left(V_{1} \oplus V_{2}\right)=\operatorname{dim} V_{1}+\operatorname{dim} V_{2} .
$$

In particular, we can identify $k^{n} \oplus k^{m}$ with k^{n+m}. Of course, in some sense we originally defined k^{n} as $\underbrace{k \oplus \cdots \oplus k}_{n \text { times }}$.

A linear map $F: k^{n} \rightarrow k^{r}$ is the same thing as an $r \times n$ matrix A, and a linear map $G: k^{m} \rightarrow k^{r}$ is the same thing as an $r \times m$ matrix B. It is then easy to check that the linear map $F \oplus G: k^{n} \oplus k^{m} \cong k^{n+m} \rightarrow k^{r}$ is the $r \times(n+m)$ matrix $\left(\begin{array}{ll}A & B\end{array}\right)$. Likewise, given linear maps $F: k^{r} \rightarrow k^{n}$ and
$G: k^{r} \rightarrow k^{m}$ corresponding to matrices A, B, the linear map $(F, G): k^{r} \rightarrow$ k^{m+n} corresponds to the $(n+m) \times r$ matrix $\binom{A}{B}$. Finally, if given linear maps $F: k^{n} \rightarrow k^{r}$ and $G: k^{m} \rightarrow k^{s}$ corresponding to matrices A, B, the linear map $F \oplus G: k^{n+m} \rightarrow k^{r+s}$ corresponds to the $(r+s) \times(n+m)$ matrix $\left(\begin{array}{ll}A & O \\ O & B\end{array}\right)$. In particular, in the case $n=r$ and $m=s, A, B$, and $\left(\begin{array}{cc}A & O \\ O & B\end{array}\right)$ are square matrices (of sizes n, m, and $n+m$ respectively). We thus have:

Proposition 7.6. In the above notation,

$$
\operatorname{Tr}(F \oplus G)=\operatorname{Tr} F+\operatorname{Tr} G
$$

8 Internal direct sums

The term "external direct sum" suggests that there should also be a notion of an "internal direct sum." Suppose that W_{1} and W_{2} are subspaces of a vector space V. Define

$$
W_{1}+W_{2}=\left\{w_{1}+w_{2}: w_{1} \in W_{1}, w_{2} \in W_{2}\right\} .
$$

It is easy to see directly that $W_{1}+W_{2}$ is a subspace of V. To see this another way, let $i_{1}: W_{1} \rightarrow V$ and $i_{2}: W_{2} \rightarrow V$ denote the inclusions, which are linear. Then as we have seen above there is an induced linear map $i_{1} \oplus i_{2}: W_{1} \oplus W_{2} \rightarrow V$, defined by

$$
\left(i_{1} \oplus i_{2}\right)\left(w_{1}, w_{2}\right)=w_{1}+w_{2}
$$

viewed as an element of V. Thus $W_{1}+W_{2}=\operatorname{Im}\left(i_{1} \oplus i_{2}\right)$, and hence is a subspace of V by Lemma 2.2. The sum $W_{1}+\cdots+W_{d}$ of an arbitrary number of subspaces is defined in a similar way.

Definition 8.1. The vector space V is an internal direct sum of the two subspaces W_{1} and W_{2} if the linear map $\left(i_{1} \oplus i_{2}\right): W_{1} \oplus W_{2} \rightarrow V$ defined above is an isomorphism.

We shall usually omit the word "internal" and understand the statement that V is a direct sum of the subspaces W_{1} and W_{2} to always mean that it is the internal direct sum.

Proposition 8.2. Let W_{1} and W_{2} be subspaces of a vector space V. Then V is the direct sum of W_{1} and $W_{2} \Longleftrightarrow$ the following two conditions hold:
(i) $W_{1} \cap W_{2}=\{0\}$.
(ii) $V=W_{1}+W_{2}$.

Proof. The map $\left(i_{1} \oplus i_{2}\right): W_{1} \oplus W_{2} \rightarrow V$ is an isomorphism \Longleftrightarrow it is injective and surjective. Now $\operatorname{Ker}\left(i_{1} \oplus i_{2}\right)=\left\{\left(w_{1}, w_{2}\right) \in W_{1} \oplus W_{2}: w_{1}+\right.$ $\left.w_{2}=0\right\}$. But $w_{1}+w_{2}=0 \Longleftrightarrow w_{2}=-w_{1}$, and this is only possible if $w_{1} \in W_{1} \cap W_{2}$. Hence

$$
\operatorname{Ker}\left(i_{1} \oplus i_{2}\right)=\left\{(w,-w) \in W_{1} \oplus W_{2}: w \in W_{1} \cap W_{2}\right\}
$$

In particular, $W_{1} \cap W_{2}=\{0\} \Longleftrightarrow \operatorname{Ker}\left(i_{1} \oplus i_{2}\right)=\{0\} \Longleftrightarrow i_{1} \oplus i_{2}$ is injective. Finally, since $\operatorname{Im}\left(i_{1} \oplus i_{2}\right)=W_{1}+W_{2}$, we see that $W_{1}+W_{2}=V$ $\Longleftrightarrow i_{1} \oplus i_{2}$ is surjective. Putting this together, V is the direct sum of W_{1} and $W_{2} \Longleftrightarrow i_{1} \oplus i_{2}$ is both injective and surjective \Longleftrightarrow both (i) and (ii) above hold.

More generally, it is easy to check the following:
Proposition 8.3. Let W_{1}, \ldots, W_{d} be subspaces of a vector space V. Then V is the direct sum of W_{1}, \ldots, W_{d}, i.e. the induced linear map $W_{1} \oplus \cdots \oplus W_{d} \rightarrow$ V is an isomorphism, \Longleftrightarrow the following two conditions hold:
(i) Given $w_{i} \in W_{i}$, if $w_{1}+\cdots+w_{d}=0$, then $w_{i}=0$ for every i.
(ii) $V=W_{1}+\cdots+W_{d}$.

In general, to write a finite dimensional vector space as a direct sum $W_{1} \oplus \cdots \oplus W_{d}$, where none of the W_{i} is 0 , is to decompose the vector space into hopefully simpler pieces. For example, every finite dimensional vector space V is a direct sum $V=L_{1} \oplus \cdots \oplus L_{n}$, where the L_{i} are one dimensional subspaces. Note however that, if V is one dimensional, then it is not possible to write $V \cong W_{1} \oplus W_{2}$, where both of W_{1}, W_{2} are nonzero. So, in this sense, the one dimensional vector spaces are the building blocks for all finite dimensional vector spaces.

Definition 8.4. If W is a subspace of V, then a complement to W is a subspace W^{\prime} of V such that V is the direct sum of W and W^{\prime}. Given W, it is easy to check that a complement to W always exists, and in fact there are many of them.

One important way to realize V as a direct sum is as follows: suppose that $V=W_{1} \oplus W_{2}$. On the vector space $W_{1} \oplus W_{2}$, we have the projection map $p_{1}: W_{1} \oplus W_{2} \rightarrow W_{1} \oplus W_{2}$ defined by $p_{1}\left(w_{1}, w_{2}\right)=\left(w_{1}, 0\right)$. Let $p: V \rightarrow W_{1}$
denote the corresponding linear map via the isomorphism $V \cong W_{1} \oplus W_{2}$. Concretely, given $v \in V, p(v)$ is defined as follows: write v (uniquely) as $w_{1}+w_{2}$, where $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. Then $p(v)=w_{1}$. The linear map p has the following properties:

1. $\operatorname{Im} p=W_{1}$.
2. For all $w \in W_{1}, p(w)=w$.
3. $\operatorname{Ker} p=W_{2}$.

The next proposition says that we can reverse this process, and will be a basic tool in decomposing V as a direct sum.

Proposition 8.5. Let V be a vector space and let $p: V \rightarrow V$ be a linear map. Let W be the subspace $\operatorname{Im} p$, and suppose that, for all $w \in W, p(w)=w$. Then, for $W^{\prime}=\operatorname{Ker} p, V$ is the direct sum of W and W^{\prime}.

Proof. We must show that W and W^{\prime} satisfy (i) and (ii) of Proposition 8.3. First suppose that $w \in W \cap W^{\prime}=W \cap \operatorname{Ker} p$. Then $p(w)=w$ since $w \in W$, and $p(w)=0$ since $w \in W^{\prime}=\operatorname{Ker} p$. Hence $w=0$, i.e. $W \cap W^{\prime}=\{0\}$. Now let $v \in V$. Then $w=p(v) \in W$, and $v=p(v)+(v-p(v))=w+w^{\prime}$, say, where we have set $w=p(v)$ and $w^{\prime}=v-p(v)=v-w$. Since $w \in W$,

$$
p(v-w)=p(v)-p(w)=w-w=0
$$

where we have used $p(w)=w$ since $w \in W$. Thus $w^{\prime} \in \operatorname{Ker} p$ and hence $v=w+w^{\prime}$, where $w \in W$ and $w^{\prime} \in W^{\prime}$. Hence $W+W^{\prime}=V$. It follows that both (i) and (ii) of Proposition 8.3 are satisfied, and so V is the direct sum of W and W^{\prime}.

Definition 8.6. Let V be a vector space and W a subspace. A linear map $p: V \rightarrow V$ is a projection onto W if $\operatorname{Im}=W$ and $p(w)=w$ for all $w \in W$. Note that p is not in general uniquely determined by W.

Proposition 8.7. Let V be a finite dimensional vector space and let W be a subspace. If $p: V \rightarrow V$ is a projection onto W, then

$$
\operatorname{Tr} p=\operatorname{dim} W
$$

Proof. There exists a basis $w_{1}, \ldots, w_{a}, w_{a+1}, \ldots, w_{n}$ of V for which w_{1}, \ldots, w_{a} is a basis of W and w_{a+1}, \ldots, w_{n} is a basis of Ker p. Here $a=\operatorname{dim} W$. In this basis, the matrix for p is a diagonal matrix A with diagonal entries $a_{i i}=1$ for $i \leq a$ and $a_{i i}=0$ for $i>a$. Thus $\operatorname{Tr} p=\operatorname{Tr} A=a=\operatorname{dim} W$.

9 New vector spaces from old

There are many ways to construct new vector spaces out of one or more given spaces; the direct sum $V_{1} \oplus V_{2}$ is one such example. As we saw there, we also want to be able to construct new linear maps from old ones. We give here some other examples:
Quotient spaces: Let V be a vector space, and let W be a subspace of V. Then, in particular, W is a subgroup of V (under addition), and since V is abelian W is automatically normal. Thus we can consider the group of cosets

$$
V / W=\{v+W: v \in V\}
$$

It is a group under coset addition. Also, given a coset $v+W$, we can define scalar multiplication by the rule

$$
t(v+W)=t v+W
$$

We must check that this is well-defined (independent of the choice of representative of the coset $v+W)$: if v and $v+w$ are two elements of the same coset, then $t(v+w)=t v+t w$, and this is in the same coset as $t v$ since $t w \in W$. It is then easy to check that the vector space axioms hold for V / W under coset addition and scalar multiplication as defined above.

If V is finite dimensional, then so is W. Let w_{1}, \ldots, w_{a} be a basis for W. As we have see, we can complete the linearly independent vectors w_{1}, \ldots, w_{a} to a basis $w_{1}, \ldots, w_{a}, w_{a+1}, \ldots, w_{n}$ for V. It is then easy to check that $w_{a+1}+W, \ldots, w_{n}+W$ form a basis for V / W. In particular,

$$
\operatorname{dim}(V / W)=\operatorname{dim} V-\operatorname{dim} W
$$

We have the natural surjective homomorphism $\pi: V \rightarrow V / W$, and it is easy to check that it is linear. Given any linear map $F: V / W \rightarrow U$, where U is a vector space, $G=F \circ \pi: V \rightarrow U$ is a linear map satisfying: $G(w)=0$ for all $w \in W$. We can reverse this process: If $G: V \rightarrow U$ is a linear map such that $G(w)=0$ for all $w \in W$, then define $F: V / W \rightarrow U$ by the formula: $F(v+W)=G(v)$. If we replace v by some other representative in the coset $v+W$, necessarily of the form $v+w$ with $w \in W$, then $G(v+w)=G(v)+$ $G(w)=G(v)$ is unchanged. Hence the definition of F is independent of the choice of representative, so there is an induced homomorphism $F: V / W \rightarrow$ U. It is easy to check that F is linear. Summarizing:

Proposition 9.1. Let V be a vector space and let W be a subspace. For a vector space U, there is a bijection (described above) from the set of linear
maps $F: V / W \rightarrow U$ and the set of linear maps $G: V \rightarrow U$ such that $G(w)=$ 0 for all $w \in W$.

Dual spaces and spaces of linear maps: Let V be a vector space and define the dual vector space V^{*} (sometimes written V^{\vee}) by:

$$
V^{*}=\left\{F \in k^{V}: F \text { is linear }\right\} .
$$

(Recall that k^{V} denotes the set of functions from V to k.) Thus the elements of V^{*} are linear maps $V \rightarrow k$. Similarly, if V and W are two vector spaces, define

$$
\operatorname{Hom}(V, W)=\left\{F \in W^{V}: F \text { is linear }\right\} .
$$

(Here, again, W^{V} denotes the set of functions from V to W.) Then the elements of $\operatorname{Hom}(V, W)$ are linear maps $F: V \rightarrow W$, and $V^{*}=\operatorname{Hom}(V, k)$.

Proposition 9.2. $\operatorname{Hom}(V, W)$ is a vector subspace of W^{V}, and hence a vector space in its own right under pointwise addition and scalar multiplication. In particular, V^{*} is a vector space under pointwise addition and scalar multiplication.

Proof. By definition, $\operatorname{Hom}(V, W)$ is a subset of W^{V}. It is closed under pointwise addition since, if $F_{1}: V \rightarrow W$ and $F_{2}: V \rightarrow W$ are both linear, then so is $F_{1}+F_{2}$ (proof as exercise). Similarly, $\operatorname{Hom}(V, W)$ is closed under scalar multiplication. Since $0 \in \operatorname{Hom}(V, W)$, and $\operatorname{Hom}(V, W)$ is a subgroup of W^{V} closed under scalar multiplication, $\operatorname{Hom}(V, W)$ is a vector subspace of W^{V}.

Suppose that V is finite dimensional with basis v_{1}, \ldots, v_{n}. We define the dual basis $v_{1}^{*}, \ldots, v_{n}^{*}$ of V^{*} as follows: $v_{i}^{*}: V \rightarrow k$ is the unique linear map such that $v_{i}^{*}\left(v_{j}\right)=0$ if $i \neq j$ and $v_{i}^{*}\left(v_{i}\right)=1$. (Recall that every linear map $V \rightarrow k$ is uniquely specified by its values on a basis, and every possible set of values arises in this way.) We summarize the above requirement by writing $v_{i}^{*}\left(v_{j}\right)=\delta_{i j}$, where $\delta_{i j}$, the Kronecker delta function, is defined to be 1 if $i=j$ and 0 otherwise. It is easy to check that $v_{1}^{*}, \ldots, v_{n}^{*}$ is in fact a basis of V^{*}, hence $\operatorname{dim} V^{*}=\operatorname{dim} V$ if V is finite dimensional. In particular, for $V=k^{n}$ with the standard basis $e_{1}, \ldots, e_{n}, V^{*} \cong k^{n}$ with basis $e_{1}^{*}, \ldots, e_{n}^{*}$. But thus isomorphism changes in a complicated way with respect to linear maps, and cannot be defined intrinsically (i.e. without choosing a basis).

More generally, suppose that V and W are both finite dimensional, with bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{m} respectively. Define the linear map
$v_{i}^{*} w_{j}: V \rightarrow W$ as follows:

$$
v_{i}^{*} w_{j}\left(v_{\ell}\right)= \begin{cases}0, & \text { if } \ell \neq i \\ w_{j}, & \text { if } \ell=i\end{cases}
$$

In other words, for all $v \in V,\left(v_{i}^{*} w_{j}\right)(v)=v_{i}^{*}(v) w_{j}$. Suppose that $F: V \rightarrow W$ corresponds to the matrix $A=\left(a_{i j}\right)$ with respect to the bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{m}. In other words, $F\left(v_{i}\right)=\sum_{j=1}^{m} a_{j i} w_{j}$. Then by definition $F=\sum_{i, j} a_{j i} v_{i}^{*} w_{j}$. It then follows that the $v_{i}^{*} w_{j}, 1 \leq i \leq n, 1 \leq j \leq m$, are a basis for $\operatorname{Hom}(V, W)$ (we saw a special case of this earlier for $V \cong k^{n}$, $W \cong k^{m}$, where we denoted $e_{j}^{*} e_{i}$ by $E_{i j}$). Thus

$$
\operatorname{dim} \operatorname{Hom}(V, W)=(\operatorname{dim} V)(\operatorname{dim} W)
$$

The "universal" properties of direct sums can be expressed as follows:
Proposition 9.3. Let V, W, U be vector spaces. Then

$$
\begin{aligned}
& \operatorname{Hom}(V \oplus W, U) \cong \operatorname{Hom}(V, U) \oplus \operatorname{Hom}(W, U) ; \\
& \operatorname{Hom}(U, V \oplus W) \cong \operatorname{Hom}(U, V) \oplus \operatorname{Hom}(U, W) .
\end{aligned}
$$

In fact, the statements of Lemma 7.2 and Lemma 7.3 give an explicit construction of the isomorphisms.

Next we see how linear maps behave for these constructions. Suppose that V_{1} and V_{2} are two vector spaces and that $G: V_{1} \rightarrow V_{2}$ is a linear map. Given an element F of V_{2}^{*}, in other words a linear map $F: V_{2} \rightarrow k$, we can consider the composition on the right with G : define

$$
G^{*}(F)=F \circ G: V_{1} \rightarrow k .
$$

Since the composition of two linear maps is linear, $G^{*}(F) \in V_{1}^{*}$, and a straightforward calculation shows that $G^{*}\left(F_{1}+F_{2}\right)=G^{*}\left(F_{1}\right)+G^{*}\left(F_{2}\right)$ and that $G^{*}(t F)=t G^{*}(F)$, so that G^{*} is linear. In fact, one can show the following (proof omitted):

Proposition 9.4. The function $G \mapsto G^{*}$ is a linear function from the vector space $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ to the vector space $\operatorname{Hom}\left(V_{2}^{*}, V_{1}^{*}\right)$, and it is an isomorphism if V_{1} and V_{2} are finite dimensional.

Remark 9.5. In case $V_{1}=k^{n}$ and $V_{2}=k^{m}$, a linear map from V_{1} to V_{2} is the same thing as an $m \times n$ matrix $A=\left(a_{i j}\right)$. Using the isomorphisms $\left(k^{n}\right)^{*} \cong k^{n}$ and $\left(k^{m}\right)^{*} \cong k^{m}$ via the dual bases e_{i}^{*}, there is a natural isomorphism from
$\operatorname{Hom}\left(k^{n}, k^{m}\right)=\mathbb{M}_{m, n}(k)$ to $\operatorname{Hom}\left(k^{m}, k^{n}\right)=\mathbb{M}_{n, m}(k)$. In other words, we have a natural way to associate an $n \times m$ matrix to the $m \times n$ matrix A. It is easy to check that this is the transpose matrix

$$
{ }^{t} A=\left(a_{j i}\right)
$$

Clearly, $A \mapsto^{t} A$ is an isomorphism from $\mathbb{M}_{m, n}(k)$ to $\mathbb{M}_{n, m}(k)$. In fact, its inverse is again transpose, and more precisely we have the obvious formula: for all $A \in \mathbb{M}_{m, n}(k)$,

$$
{ }^{t t} A={ }^{t}\left({ }^{t} A\right)=A
$$

Note the reversal of order in Proposition 9.4. In fact, this extends to compositions as follows:

Proposition 9.6. Suppose that V_{1}, V_{2}, V_{3} are vector spaces and that $G_{1}: V_{1} \rightarrow$ V_{2} and $G_{2}: V_{2} \rightarrow V_{3}$ are linear maps. Then

$$
\left(G_{2} \circ G_{1}\right)^{*}=G_{1}^{*} \circ G_{2}^{*}
$$

Proof. By definition, given $F \in V_{3}^{*}$,

$$
\left(G_{2} \circ G_{1}\right)^{*}(F)=F \circ\left(G_{2} \circ G_{1}\right)=\left(F \circ G_{2}\right) \circ G_{1}
$$

since function composition is associative. On the other hand,

$$
G_{1}^{*} \circ G_{2}^{*}(F)=G_{1}^{*}\left(G_{2}^{*}(F)\right)=G_{1}^{*}\left(F \circ G_{2}\right)=\left(F \circ G_{2}\right) \circ G_{1}
$$

proving the desired equality.
Remark 9.7. For the case of matrices, i.e. $V_{1}=k^{n}, V_{2}=k^{m}, V_{3}=k^{p}$, the reversal of order in Proposition 9.6 is the familiar formula

$$
{ }^{t}(A B)={ }^{t} B \cdot{ }^{t} A
$$

The change in the order above is just a fact of life, and it is the only possible formula along these lines if we want to line up domains and ranges in the right way. However, there is one case where we can keep the original order of composition. Suppose that $V_{1}=V_{2}=V$, say, and that G is invertible, i.e. is a linear isomorphism. Then we have the operation $G \mapsto$ G^{-1}, and it also reverses the order of operations: $\left(G_{1} \circ G_{2}\right)^{-1}=G_{2}^{-1} \circ G_{1}^{-1}$. So if we combine this with $G \mapsto G^{*}$, we get a function $G \mapsto\left(G^{-1}\right)^{*}$, from invertible linear maps on V to invertible linear maps on V^{*}. given as follows: if $F \in V^{*}$, i.e. $F: V \rightarrow k$ is a linear function, define

$$
G \cdot F=F \circ\left(G^{-1}\right)
$$

(Note: a calculation shows that, if G is invertible, then G^{*} is invertible, and in fact we have the formula $\left(G^{*}\right)^{-1}=\left(G^{-1}\right)^{*}$, so that these two operations commute.) In this case, the order is preserved, since, if G_{1}, G_{2} are two isomorphisms, then

$$
\left(\left(G_{1} \circ G_{2}\right)^{-1}\right)^{*}=\left(G_{2}^{-1} \circ G_{1}^{-1}\right)^{*}=\left(G_{1}^{-1}\right)^{*} \circ\left(G_{2}^{-1}\right)^{*}
$$

and so the order is unchanged. For example, taking $V_{1}=V_{2}=k^{n}$ in the above notation, for all $G_{1}, G_{2} \in G L_{n}(k)$ and $F \in \operatorname{Hom}\left(k^{n}, W\right)$,

$$
\left(G_{1} \circ G_{2}\right) \cdot F=G_{1} \cdot\left(G_{2} \cdot F\right)
$$

This says that the above defines a group action of $G L_{n}(k)$ on $\operatorname{Hom}\left(k^{n}, W\right)$.
In the case of $\operatorname{Hom}(V, W)$, we have to consider linear maps for both the domain and range. Given two vector spaces V_{1} and V_{2} and a linear map $G: V_{1} \rightarrow V_{2}$, we can define G^{*} as before, by right composition: if $F \in \operatorname{Hom}\left(V_{2}, W\right)$, in other words if $F: V_{2} \rightarrow W$ is a linear map, we can consider the linear map $G^{*} F=F \circ G: V_{1} \rightarrow W$. Thus G^{*} is a map from $\operatorname{Hom}\left(V_{2}, W\right)$ to $\operatorname{Hom}\left(V_{1}, W\right)$, and it is linear. By the same kind of arguments as above for the dual space, if V_{1}, V_{2}, V_{3} are vector spaces and $G_{1}: V_{1} \rightarrow V_{2}$ and $G_{2}: V_{2} \rightarrow V_{3}$ are linear maps, then

$$
\left(G_{2} \circ G_{1}\right)^{*}=G_{1}^{*} \circ G_{2}^{*}
$$

On the other hand, given two vector spaces W_{1} and W_{2} and a linear map $H: W_{1} \rightarrow W_{2}$, we can define a function $H_{*}: \operatorname{Hom}\left(V, W_{1}\right) \rightarrow \operatorname{Hom}\left(V, W_{2}\right)$ by using left composition: for $F \in \operatorname{Hom}\left(V, W_{1}\right)$, we set

$$
H_{*}(F)=H \circ F .
$$

Note that the composition is linear, since both F and H were assumed linear, and hence $H^{*}(F) \in \operatorname{Hom}\left(V, W_{2}\right)$. It is again easy to check that H_{*} is a linear map from $\operatorname{Hom}\left(V, W_{1}\right)$ to $\operatorname{Hom}\left(V, W_{2}\right)$. Left composition preserves the order, though, since given $H_{1}: W_{1} \rightarrow W_{2}$ and $H_{2}: W_{2} \rightarrow W_{3}$, we have

$$
\begin{aligned}
\left(H_{2} \circ H_{1}\right)_{*}(F) & =\left(H_{2} \circ H_{1}\right) \circ F=H_{2} \circ\left(H_{1} \circ F\right) \\
& =\left(H_{2}\right)_{*}\left(\left(H_{1}\right)_{*}(F)\right)=\left(\left(H_{2}\right)_{*} \circ\left(H_{1}\right)_{*}\right)(F) .
\end{aligned}
$$

Finally, suppose given $G: V_{1} \rightarrow V_{2}$ and $H: W_{1} \rightarrow W_{2}$. We use the same symbol to denote $G^{*}: \operatorname{Hom}\left(V_{2}, W_{1}\right) \rightarrow \operatorname{Hom}\left(V_{1}, W_{1}\right)$ and $G^{*}: \operatorname{Hom}\left(V_{2}, W_{2}\right) \rightarrow$ $\operatorname{Hom}\left(V_{1}, W_{2}\right)$, and also use H_{*} to denote both $H_{*}: \operatorname{Hom}\left(V_{1}, W_{1}\right) \rightarrow \operatorname{Hom}\left(V_{1}, W_{2}\right)$ and $H_{*}: \operatorname{Hom}\left(V_{2}, W_{1}\right) \rightarrow \operatorname{Hom}\left(V_{2}, W_{2}\right)$. With this understanding, given $F: V_{2} \rightarrow W_{1}$,

$$
G^{*} \circ H_{*}(F)=H \circ F \circ G=H_{*} \circ G^{*}(F) .
$$

Hence:

Proposition 9.8. The functions $G^{*} \circ H_{*}: \operatorname{Hom}\left(V_{2}, W_{1}\right) \rightarrow \operatorname{Hom}\left(V_{1}, W_{2}\right)$ and $H_{*} \circ G^{*}: \operatorname{Hom}\left(V_{2}, W_{1}\right) \rightarrow \operatorname{Hom}\left(V_{1}, W_{2}\right)$ agree.

We paraphrase this by saying that right and left composition commute. Equivalently, there is a commutative diagram

More on duality: Let V be a vector space and V^{*} its dual. If $V=k^{n}$, then $V^{*} \cong k^{n}$, and in fact a reasonable choice of basis is the dual basis $e_{1}^{*}, \ldots, e_{n}^{*}$. Thus, if V is a finite dimensional vector space, then $V \cong V^{*}$ since both are isomorphic to k^{n}. However, the isomorphism depends on the choice of a basis of V.

However, let $V^{* *}=\left(V^{*}\right)^{*}$ be the dual of the dual of V. We call $V^{* *}$ the double dual of V. There is a "natural" linear map ev: $V \rightarrow V^{* *}$ defined as follows: First, define the function $E: V^{*} \times V \rightarrow k$ by

$$
E(f, v)=f(v),
$$

and then set

$$
\operatorname{ev}(v)(f)=E(f, v)=f(v) .
$$

In other words, $\operatorname{ev}(v)$ is the function on V^{*} defined by evaluation at v. For example, if $V=k^{n}$ with basis e_{1}, \ldots, e_{n}, and $e_{1}^{*}, \ldots, e_{n}^{*}$ is the dual basis of $\left(k^{n}\right)^{*}$, then it is easy to see that

$$
\operatorname{ev}\left(e_{i}\right)\left(e_{j}^{*}\right)=\delta_{i j} .
$$

This says that $\operatorname{ev}\left(e_{i}\right)=e_{i}^{* *}$, where $e_{1}^{* *}, \ldots, e_{n}^{* *}$ is the dual basis to $e_{1}^{*}, \ldots, e_{n}^{*}$. Thus:

Proposition 9.9. If V is finite dimensional, then ev: $V \rightarrow V^{* *}$ is an isomorphism.

Remark 9.10. If V is not finite dimensional, then V^{*} and hence $V^{* *}$ tend to be much larger than V, and so the map $V \rightarrow V^{* *}$, which is always injective, is not surjective.

Another example of duality arises as follows: Given two vector spaces V and W and $F \in \operatorname{Hom}(V, W)$, we have defined $F^{*}: \operatorname{Hom}(W, k)=W^{*} \rightarrow$ $\operatorname{Hom}(V, k)=V^{*}$, and the linear map $\operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}\left(W^{*}, V^{*}\right)$ defined by $F \mapsto F^{*}$ is an isomorphism. Repeating this construction, given $F \in \operatorname{Hom}(V, W)$ we have defined $F^{*} \in \operatorname{Hom}\left(W^{*}, V^{*}\right)$, and thus $F^{* *} \in$ $\operatorname{Hom}\left(V^{* *}, W^{* *}\right)$. If V and W are finite dimensional, then $V^{* *} \cong V$, by an explicit isomorphism which is the inverse of ev, and similarly $W^{* *} \cong W$. Thus we can view $F^{* *}$ as an element of $\operatorname{Hom}(V, W)$, and it is straightforward to check that, via this identification,

$$
F^{* *}=F .
$$

In fact, translating this statement into the case $V=k^{n}$, $W=k^{m}$, this statement reduces to the identity ${ }^{t t} A=A$ for all $A \in \mathbb{M}_{m, n}(k)$ of Remark 9.5.

10 Tensor products

Tensor products are another very useful way of producing new vector spaces from old. We begin by recalling a definition from linear algebra:
Definition 10.1. Let V, W, U be vector spaces. A function $F: V \times W \rightarrow U$ is bilinear if it is linear in each variable when the other is held fixed: for all $w \in W$, the function $f(v)=F(v, w)$ is a linear function from V to U, and all $v \in V$, the function $g(w)=F(v, w)$ is a linear function from W to U. Multilinear maps $F: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow U$ are defined in a similar way.

Bilinear maps occur throughout linear algebra. For example, for any field k we have the standard inner product, often denoted by $\langle\cdot, \cdot\rangle: k^{n} \times k^{n} \rightarrow k$, and it is defined by: if $v=\left(v_{1}, \ldots, v_{n}\right)$ and $w=\left(w_{1}, \ldots, w_{n}\right)$, then

$$
\langle v, w\rangle=\sum_{i=1}^{n} v_{i} w_{i} .
$$

More generally, if $B: k^{n} \times k^{m} \rightarrow k$ is any bilinear function, then it is easy to see that there exist unique $a_{i j} \in k$ such that, for all $v=\left(v_{1}, \ldots, v_{n}\right) \in k^{n}$, $w=\left(w_{1}, \ldots, w_{m}\right) \in k^{m}$,

$$
B(v, w)=\sum_{i, j} a_{i j} v_{i} w_{j} .
$$

Here, $a_{i j}=B\left(e_{i}, e_{j}\right)$ and the formula is obtained by expanding out

$$
B\left(\sum_{i} v_{i} e_{i}, \sum_{j} w_{j} e_{j}\right)
$$

using the defining properties of bilinearity.
Another important example of a bilinear function is composition of linear maps: given three vector spaces V, W, U, we have the composition function

$$
C: \operatorname{Hom}(V, W) \times \operatorname{Hom}(W, U) \rightarrow \operatorname{Hom}(V, U)
$$

defined by $C(F, G)=G \circ F$, and it is easily checked to be bilinear. Correspondingly, we have matrix multiplication

$$
\mathbb{M}_{n, m}(k) \times \mathbb{M}_{m, \ell}(k) \rightarrow \mathbb{M}_{n, \ell}(k)
$$

and the statement that matrix multiplication distributes over matrix addition (on both sides) and commutes with scalar multiplication of matrices (in the sense that $(t A) B=A(t B)=t(A B))$ is just the statement that matrix multiplication is bilinear.

The tensor product $V \otimes W$ of two vector spaces is a new vector space which is often most usefully described by a "universal property" with respect to bilinear maps: First, for all $v \in V, w \in W$, there is a symbol $v \otimes w \in$ $V \otimes W$, which is bilinear, i.e. for all $v, v_{i} \in V, w, w_{i} \in W$ and $t \in k$,

$$
\begin{aligned}
\left(v_{1}+v_{2}\right) \otimes w & =\left(v_{1} \otimes w\right)+\left(v_{2} \otimes w\right) ; \\
v \otimes\left(w_{1}+w_{2}\right) & =\left(v \otimes w_{1}\right)+\left(v \otimes w_{2}\right) ; \\
(t v) \otimes w & =v \otimes(t w)=t(v \otimes w) .
\end{aligned}
$$

Second, for every vector space U and bilinear function $F: V \times W \rightarrow U$, there is a unique linear function $\widehat{F}: V \otimes W \rightarrow U$ such that, for all $v \in V$ and $w \in W, F(v, w)=\widehat{F}(v \otimes w)$.

One can show that, for two vector spaces V and W, the tensor product $V \otimes W$ exists and is uniquely characterized, up to a unique isomorphism, by the above universal property. The construction is not very illuminating: even if V and W are finite dimensional, the construction of $V \otimes W$ starts with the very large (infinite dimensional if k is infinite) vector space $k[V \times W]$, the free vector space corresponding to the set $V \times W$ and then taking the quotient by the subspace generated by elements of the form $\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-$ $\left(v_{2}, w\right),\left(v, w_{1}+w_{2}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right),(t v, w)-t(v, w),(v, t w)-t(v, w)$. The important features of the tensor product are as follows:

1. If V and W are finite dimensional, v_{1}, \ldots, v_{n} is a basis of V_{1} and w_{1}, \ldots, w_{m} is a basis of W, then $v_{i} \otimes w_{j}, 1 \leq i \leq n, 1 \leq j \leq m$, is a basis of $V \otimes W$. Thus, in this case $V \otimes W$ is finite dimensional as well and

$$
\operatorname{dim}(V \otimes W)=(\operatorname{dim} V) \cdot(\operatorname{dim} W)
$$

2. Given vector spaces $V_{1}, V_{2}, W_{1}, W_{2}$ and linear maps $G: V_{1} \rightarrow V_{2}$, $H: W_{1} \rightarrow W_{2}$, then there is an induced linear map, denoted $G \otimes H$, from $V_{1} \otimes W_{1}$ to $V_{2} \otimes W_{2}$. It satisfies: for all $v \in V_{1}$ and $w \in W_{1}$,

$$
(G \otimes H)(v \otimes w)=G(v) \otimes H(w) .
$$

Moreover, given another pair of vector spaces V_{3}, W_{3}, and linear maps $G^{\prime}: V_{2} \rightarrow V_{3}$ and $H^{\prime}: W_{2} \rightarrow W_{3}$, then

$$
\left(G^{\prime} \otimes H^{\prime}\right) \circ(G \otimes H)=\left(G^{\prime} \circ G\right) \otimes\left(H^{\prime} \circ H\right)
$$

3. There is a "natural" isomorphism $S: V \otimes W \cong W \otimes V$, which satisfies

$$
S(v \otimes w)=w \otimes v .
$$

Thus, as with direct sum (but unlike Hom), tensor product is symmetric.
4. There is a "natural" isomorphism

$$
\left(V_{1} \oplus V_{2}\right) \otimes W \cong\left(V_{1} \otimes W\right) \oplus\left(V_{2} \otimes W\right),
$$

and similarly for the second factor, so that tensor product distributes over direct sum.
5. There are "natural" isomorphisms

$$
V_{1} \otimes\left(V_{2} \otimes V_{3}\right) \cong\left(V_{1} \otimes V_{2}\right) \otimes V_{3} \cong V_{1} \otimes V_{2} \otimes V_{3},
$$

where by definition $V_{1} \otimes V_{2} \otimes V_{3}$ has a universal property with respect to trilinear maps $V_{1} \times V_{2} \times V_{3} \rightarrow U$.
6. There is a "natural" linear map L from $V^{*} \otimes W$ to $\operatorname{Hom}(V, W)$, which is an isomorphism if V is finite dimensional. (Note that this is consistent with the statement that, if both V and W are finite dimensional, then $\operatorname{dim}(V \otimes W)=\operatorname{dim}(\operatorname{Hom}(V, W))=(\operatorname{dim} V)(\operatorname{dim} W)$.$) Here natural$ means in particular the following: Suppose that $V_{1}, V_{2}, W_{2}, W_{2}$ are vector spaces, and that $G: V_{1} \rightarrow V_{2}$ and $H: W_{1} \rightarrow W_{2}$ are linear maps. We have defined the linear map $H_{*} \circ G^{*}=G^{*} \circ H_{*}$ from $\operatorname{Hom}\left(V_{2}, W_{1}\right)$ to $\operatorname{Hom}\left(V_{1}, W_{2}\right)$. On the other hand, we have the linear $\operatorname{map} G^{*}: V_{2}^{*} \rightarrow V_{1}^{*}$ and hence there is a linear map $G^{*} \otimes H: V_{2}^{*} \otimes W_{1} \rightarrow$ $V_{1}^{*} \otimes W_{2}$, and these commute with the isomorphisms $L: V_{2}^{*} \otimes W_{1} \rightarrow$
$\operatorname{Hom}\left(V_{2}, W_{1}\right)$ and $L^{\prime}: V_{1}^{*} \otimes W_{2} \rightarrow \operatorname{Hom}\left(V_{1}, W_{2}\right)$ in the sense that the following diagram is commutative:

In particular, if V is finite dimensional then there is a "natural" isomorphism from $\operatorname{Hom}(V, V)$ to $V^{*} \otimes V$. Using this, we can give an intrinsic definition of the trace as follows:

Proposition 10.2. The function $E: V^{*} \times V \rightarrow k$ defined by

$$
E(f, v)=f(v)
$$

is bilinear. Using the isomorphism $V^{*} \otimes V \cong \operatorname{Hom}(V, V)$, the corresponding linear map $V^{*} \otimes V \rightarrow k$ is identified with the trace.

Warning: In general, it can be somewhat tricky to work with tensor products. For example, every element of a tensor product $V \otimes W$ can be written as a finite sum of the form $\sum_{i} v_{i} \otimes w_{i}$, where $v_{i} \in V$ and $w_{i} \in W$. But it is not in general possible to write every element of $V \otimes W$ in the form $v \otimes w$, for a single choice of $v \in V, w \in W$. Also, the expression of an element as $\sum_{i} v_{i} \otimes w_{i}$ is far from unique. What this means in practice, for example, if that we cannot try to define a linear map $G: V \otimes W \rightarrow U$ by simply defining G on elements of the form $v \otimes w$, and expect that G is always well defined. Instead, it is best to use the universal property of the tensor product when attempting to define linear maps from $V \otimes W$ to some other vector space.

