
Factorization in Polynomial Rings

Throughout these notes, F denotes a field.

1 Long division with remainder

We begin with some basic definitions.

Definition 1.1. Let R be an integral domain and let r, s ∈ R. We say that
r divides s, written r

∣∣s, if there exists a t ∈ R such that s = rt, i.e. s is a
multiple of r. Thus, for example, every r ∈ R divides 0, but r is divisible
by 0 ⇐⇒ r = 0.

By definition, r is a unit ⇐⇒ r
∣∣1. We claim that r is a unit ⇐⇒ r

∣∣s
for all s ∈ R ⇐⇒ r

∣∣1. (Proof: if r is a unit, then, for all s ∈ R, s = r(r−1s)
and hence r

∣∣s. Next, r
∣∣s for all s ∈ R =⇒ r

∣∣1, and finally r
∣∣1 =⇒ r is

a unit.) We will usually ignore units when we discuss factorization because
they contribute what are essentially trivial factors.

In case R = F [x], the group of units (F [x])∗ of the ring F [x] is F ∗, the
group of units in the field F , and hence the group of nonzero elements of
F under multiplication. Thus f divides every g ∈ F [x] ⇐⇒ f divides 1
⇐⇒ f ∈ F ∗ is a nonzero constant polynomial. Note that, if c ∈ F ∗ is a
unit, then f

∣∣g ⇐⇒ cf
∣∣g ⇐⇒ f

∣∣cg.

Proposition 1.2 (Long division with remainder). Let f ∈ F [x], f 6= 0, and
let g ∈ F [x]. Then there exist unique polynomials q, r ∈ F [x], with either
r = 0 or deg r < deg f , such that

g = fq + r.

Proof. First we prove existence. The proposition is clearly true if g = 0,
since then we can take q = r = 0. Otherwise, we argue by induction on
deg g. If deg g = 0 and deg f = 0, then f = c ∈ F ∗ is a nonzero constant,
and then g = c(c−1g) + 0, so we can take q = c−1g and r = 0. If deg g = 0
and deg f > 0, or more generally if n = deg g < deg f = d, then we can take
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q = 0 and r = g. Now assume that, for a fixed f , the existence of q and
r has been proved for all polynomials of degree < n, and suppose that g is
a polynomial of degree n. As above, we can assume that n ≥ d = deg f .
Let f =

∑d
i=0 aix

i, with ad 6= 0, and let g =
∑n

i=0 bix
i. In this case,

g − bna
−1
d xn−df is a polynomial of degree at most n − 1 (or 0). By the

inductive hypothesis and the case g = 0, there exist polynomials q1, r ∈ F [x]
with either r = 0 or deg r < deg f , such that

g − bna−1d xn−df = fq1 + r.

Then
g = f(bna

−1
d xn−d + q1) + r = fq + r,

where we set q = bna
−1
d xn−d + q1. This completes the inductive step and

hence the existence part of the proof.
To see uniqueness, suppose that

g = fq1 + r1 = fq2 + r2,

where either r1 = 0 or deg r1 < deg f , and similarly for r2. We have

(q1 − q2)f = r2 − r1,

hence either q1 − q2 = 0 or q1 − q2 6= 0 and then

deg((q1 − q2)f) = deg(q1 − q2) + deg f ≥ deg f.

Moreover, in this case r2 − r1 6= 0. But then

deg(r2 − r1) ≤ max{deg r1, deg r2} < deg f,

a contradiction. Thus q1 − q2 = 0, hence r2 − r1 = 0 as well. It follows that
q1 = q2 and r2 = r1, proving uniqueness.

Remark 1.3. The analogue of Proposition 1.2 holds in an arbitrary ring
R (commutative, with unity as always) provided that we assume that f is
monic, in other words, f 6= 0 and its leading coefficient is 1. The proof is
essentially the same.

The following is really just a restatement of Proposition 1.2 in more
abstract language:

Corollary 1.4. Let f ∈ F [x], f 6= 0. Then every coset g+ (f) has a unique
representative r, where r = 0 or deg r < deg f .
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Proof. By Proposition 1.2, we can write g = fq + r with r = 0 or deg r <
deg f . Then r ∈ g + (f) since the difference g − r is a multiple of f ,
hence lies in (f). The uniqueness follows as in the proof of uniqueness for
Proposition 1.2: if r1 + (f) = r2 + (f), with each ri either 0 of of degree
smaller than deg f , then f

∣∣r2−r1, and hence r2−r1 = 0, so that r1 = r2.

Corollary 1.5. Let a ∈ F . Then every f ∈ F [x] is of the form f =
(x− a)g + f(a). Thus f(a) = 0 ⇐⇒ (x− a)

∣∣f .

Proof. Applying long division with remainder to x − a and f , we see that
f = (x − a)g + c, where either c = 0 or deg c = 0, hence c ∈ F ∗. (This
also follows directly, for an arbitrary ring: if f =

∑d
i=0 aix

i, write f =

f(x − a + a) =
∑d

i=0 ai(x − a + a)i. Expanding out each term via the

binomial theorem then shows that f =
∑d

i=0 bi(x− a)i for some bi ∈ F , and
then we take c = b0.)

Finally, to determine c, we evaluate f at a:

f(a) = eva(f) = eva((x− a)g + c) = 0 + c = c.

Hence c = f(a).

Recall that, for a polynomial f ∈ F [x], a root or zero of f in F is an
a ∈ F such that f(a) = eva(f) = 0.

Corollary 1.6. Let f ∈ F [x], f 6= 0, and suppose that deg f = d. Then
there are at most d roots of f in any field E containing F . In other words,
suppose that F is a subfield of a field E. Then

#{a ∈ E : f(a) = 0} ≤ d.

Proof. We can clearly assume that E = F . Argue by induction on deg f , the
case deg f = 0 being obvious. Suppose that the corollary has been proved
for all polynomials of degree d− 1. If deg f = d and there is no root of f in
F , then we are done because d ≥ 0. Otherwise, let a1 be a root. Then we
can write f = (x − a1)g, where deg g = d − 1. Let a2 be a root of f with
a2 6= a1. Then

0 = f(a2) = (a2 − a1)g(a2).

Since F is a field and a2 6= a1, a2 − a1 6= 0 and we can cancel it to obtain
g(a2) = 0, i.e. a2 is a root of g (here we must use the fact that F is a
field). By induction, g has at most d− 1 roots in F (where we allow for the
possibility that a1 is also a root of g). Then

{a ∈ F : f(a) = 0} = {a1} ∪ {a ∈ F : g(a) = 0}.
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Since #{a ∈ F : g(a) = 0} ≤ d − 1, it follows that #{a ∈ F : f(a) = 0} ≤
d.

Corollary 1.7. Let F be an infinite field. Then the evaluation homomor-
phism E from F [x] to FF is injective. In other words, if f1, f2 ∈ F [x] are two
polynomials which define the same function, i.e. are such that f1(a) = f2(a)
for all a ∈ F , then f1 = f2.

Proof. It suffices to prove that KerE = {0}, i.e. that if f ∈ F [x] and
f(a) = 0 for all a ∈ F , then f = 0. This is clear from Corollary 1.6, since a
nonzero polynomial can have at most finitely many roots and F was assumed
infinite.

Corollary 1.6 has the following surprising consequence concerning the
structure of finite fields, or more generally finite subgroups of the group F ∗

under multiplication:

Theorem 1.8 (Existence of a primitive root). Let F be a field and let G
be a finite subgroup of the multiplicative group (F ∗, ·). Then G is cyclic. In
particular, if F is a finite field, then the group (F ∗, ·) is cyclic.

Proof. Let n = #(G) be the order of G. First we claim that, for each
d
∣∣n, the set {a ∈ G : ad = 1} has at most d elements. In fact, clearly
{a ∈ G : ad = 1} ⊆ {a ∈ F : ad = 1}. But the set {a ∈ F : ad = 1} is the
set of roots of the polynomial xd − 1 in F . Since the degree of xd − 1 is d,
by Corollary 1.6, #{a ∈ F : ad = 1} ≤ d. Hence #{a ∈ G : ad = 1} ≤ d
as well. The theorem now follows from the following purely group-theoretic
result, whose proof we include for completeness.

Proposition 1.9. Let G be a finite group of order n, written multiplica-
tively. Suppose that, for each d

∣∣n, the set {g ∈ G : gd = 1} has at most n
elements. Then G is cyclic.

Proof. Let ϕ be the Euler ϕ-function. The key point of the proof is the
identity (proved in Modern Algebra I, or in courses in elementary number
theory) ∑

d|n

ϕ(d) = n.

Now, given a finite group G as in the statement of the proposition, define
a new function ψ : N → Z via: ψ(d) is the number of elements of G of
order exactly d. By Lagrange’s theorem, if ψ(d) 6= 0, then d

∣∣n. Since every
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element of G has some well-defined finite order, adding up all of values of
ψ(d) is the same as counting all of the elements of G. Hence

#(G) = n =
∑
d∈N

ψ(d) =
∑
d|n

ψ(d).

Next we claim that, for all d
∣∣n, ψ(d) ≤ ϕ(d); more precisely,

ψ(d) =

{
0, if there is no element of G of order d;

ϕ(d), if there is an element of G of order d.

Clearly, if there is no element of G of order d, then ψ(d) = 0. Conversely,
suppose that there is an element a of G of order d. Then #(〈a〉) = d, and
every element g ∈ 〈a〉 has order dividing d, hence gd = 1 for all g ∈ 〈a〉.
But since there at most d elements g in G such that gd = 1, the set of
all such elements must be exactly 〈a〉. In particular, an element g of order
exactly d must both lie in 〈a〉 and be a generator of 〈a〉. Since the number
of generators of 〈a〉 is the same as the number of generators of any cyclic
group of order d, namely ϕ(d), the number of elements of G of order d is
then ϕ(d). Thus, if there is an element of G of order d, then by definition
ψ(d) = ϕ(d).

Now compare the two expressions

n =
∑
d|n

ψ(d) ≤
∑
d|n

ϕ(d) = n.

Since, for each value of d
∣∣n, ψ(d) ≤ ϕ(d), and the sums are the same, we

must have ψ(d) = ϕ(d) for all d
∣∣n. In particular, taking d = n, we see that

ψ(n) = ϕ(n) 6= 0. It follows that there exists an element of G of order
n = #(G), and hence G is cyclic.

Example 1.10. (1) In case p is a prime and F = Fp = Z/pZ, then a
generator for (Z/pZ)∗ is called a primitive root.

(2) For F = C, the finite multiplicative subgroups of C∗ are the groups µn
of nth roots of unity. A generator of µn, in other words a complex number
whose order in the group (C∗, ·) is exactly n, is called a primitive nth root
of unity. The standard such generator is e2πi/n.

Remark 1.11. If on the other hand G is an infinite subgroup of F ∗, then G
is not in general cyclic. For example, Q∗ is not a cyclic group. The situation
for R∗ is even more drastic: R∗ is uncountable, but every cyclic group is
either finite or isomorphic to Z, hence countable.
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2 Factorization and principal ideals

The outline of the discussion of factorization in F [x] is very similar to that
for factorization in Z. We begin with:

Proposition 2.1. Every ideal in F [x] is a principal ideal.

Proof. Let I be an ideal in F [x]. If I = {0}, then clearly I = (0) as well, and
so I is principal. Thus we may assume that I 6= {0}. Let f ∈ I be a non-zero
polynomial such that deg f is the minimal possible value among nonnegative
integers of the form deg g, where g ∈ I and g 6= 0. More precisely, the set of
nonnegative integers

{deg g : g ∈ I and g 6= 0}

is a nonempty subset of N∪{0} and hence by the well-ordering principle has a
smallest element, necessarily of the form deg f for some non-zero polynomial
f ∈ I. We claim that f is a generator of I, i.e. that I = (f).

Clearly, as f ∈ I, (f) ⊆ I. To see the opposite inclusion, let g ∈ I.
Then we can apply long division with remainder to f and g: there exist
q, r ∈ F [x], with either r = 0 or deg r < deg f , such that g = fq + r. Since
g ∈ I and (f) ⊆ I, r = g − fq ∈ I. But, if r 6= 0, then deg r < deg f ,
contradicting the choice of f . So r = 0, so that g = fq ∈ (f). Since g was
an arbitrary element of I, it follows that I ⊆ (f) and hence that I = (f).
Thus I is principal.

Definition 2.2. Let f, g ∈ F [x], where not both of f, g are zero. A greatest
common divisor of f and g, written gcd(f, g), is a polynomial d such that

1. The polynomial d is a divisor of both f and g: d
∣∣f and d

∣∣g.

2. If e is a polynomial such that e
∣∣f and e

∣∣g, then e
∣∣d.

Proposition 2.3. Let f, g ∈ F [x], not both 0.

(i) If d is a greatest common divisor of f and g, then so is cd for every
c ∈ F ∗.

(ii) If d1 and d2 are two greatest common divisors of f and g, then there
exists a c ∈ F ∗ such that d2 = cd1.

(iii) A greatest common divisor d of f and g exists and is of the form
d = rf + sg for some r, s ∈ F [x].
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Proof. (i) This is clear from the definition.

(ii) if d1 and d2 are two greatest common divisors of f and g, then by
definition d1

∣∣d2 and d2
∣∣d1. Thus there exist u, v ∈ F [x] such that d2 = ud1

and d1 = vd2. Hence d1 = uvd1. Since a greatest common divisor can never
be 0 (it must divide both f and g and at least one of these is non-zero) and
F [x] is an integral domain, it follows that 1 = uv, i.e. both u and v are units
in F [x], hence elements of F ∗. Thus d2 = cd1 for some c ∈ F ∗.
(iii) To see existence, define

(f, g) = (f) + (g) = {rf + sg : r, s ∈ F [x]}.

It is easy to see that (f, g) is an ideal (it is the ideal sum of the principal
ideals (f) and (g)) and that f, g ∈ (f, g). By Proposition 2.1, there exists
a d ∈ F [x] such that (f, g) = (d). In particular, d = rf + sg for some
r, s ∈ F [x], and, as f, g ∈ (d), d

∣∣f and d
∣∣g. Finally, if e

∣∣f and e
∣∣g, then it

is easy to check that e divides every expression of the form rf + sg. Hence
e
∣∣d, and so d is a greatest common divisor of f and g.

Remark 2.4. We could specify the gcd of f and g uniquely by requiring
that it be monic. However, for more general rings, this choice is not avail-
able, and we will allow there to be many different gcds of f and g, all related
by multiplication by a unit of F [x], in other words a nonzero constant poly-
nomial.

Remark 2.5. In fact, we can find the polynomials r, s described in (iii) of
the proposition quite explicitly by a variant of the Euclidean algorithm.

Remark 2.6. If R is a general integral domain, then we can define a great-
est common divisor of a and b by the obvious analogue of Definition 2.2.
However, in a general integral domain, greatest common divisors may not
exist, and even when they do always exist, they need not be given as linear
combinations ar + bs as in Part (iii) of Proposition 2.3.

Definition 2.7. Let f, g ∈ F [x]. Then f and g are relatively prime if 1
is a gcd of f and g. It is easy to see that this definition is equivalent to:
there exist r, s ∈ F [x] such that 1 = rf + sg. (If 1 is a gcd of f and g,
then 1 = rf + sg for some r, s ∈ F [x] by Proposition 2.3. Conversely, if
1 = rf + sg, then a gcd d of f, g must divide 1 and hence is a unit c, and
hence after multiplying by c−1 we see that 1 is a gcd of f and g.)

Proposition 2.8. Let f, g ∈ F [x] be relatively prime, and suppose that f
∣∣gh

for some h ∈ F [x]. Then f
∣∣h.
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Proof. Let r, s ∈ F [x] be such that 1 = rf + sg. Then

h = rfh+ sgh.

Clearly f
∣∣rfh, and by assumption f

∣∣gh and hence f
∣∣sgh. Thus f divides

the sum rfh+ sgh = h.

Definition 2.9. Let p ∈ F [x]. Then p is irreducible if p is neither 0 nor a
unit (i.e. p is a non-constant polynomial), and if p = fg for some f, g ∈ F [x],
then either f = c ∈ F ∗ and hence g = c−1p, or g = c ∈ F ∗ and f = c−1p.
Equivalently, p is not a product fg of two polynomials f, g ∈ F [x] such
that both deg f < deg p and deg g < deg p. In other words: an irreducible
polynomial is a non-constant polynomial that does not factor into a product
of polynomials of strictly smaller degrees. Finally, we say that a polynomial
is reducible if it is not irreducible.

Example 2.10. A linear polynomial (polynomial of degree one) is irre-
ducible. A quadratic (degree 2) or cubic (degree 3) polynomial is reducible
⇐⇒ it has a linear factor in F [x] ⇐⇒ it has a root in F . Thus for
example x2 − 2 is irreducible in Q[x] but not in R[x], and the same is true
for x3 − 2. . Likewise x2 + 1 is irreducible in R[x] but not in C[x]. The
polynomial f = x2 + x+ 1 is irreducible in F2[x] as it does not have a root
in F2. (f(0) = f(1) = 1.)

On the other hand, the polynomial x4−4 is not irreducible in Q[x], even
though it does not have a root in Q.

Proposition 2.11. Let p be irreducible in F [x].

(i) For every f ∈ F [x], either p
∣∣f or p and f are relatively prime.

(ii) For all f, g ∈ F [x], if p
∣∣fg, then either p

∣∣f or p
∣∣g.

Proof. (i) Let d = gcd(p, f). Then d
∣∣p, so d is either a unit or a unit times

p, hence we can take for d either 1 or p. If 1 is a gcd of p and f , then p and
f are relatively prime. If p is a gcd of p and f , then p

∣∣f .

(ii) Suppose that p
∣∣fg but that p does not divide f . By (i), p and f are

relatively prime. By Proposition 2.8, since p
∣∣fg and p and f are relatively

prime, p
∣∣g. Thus either p

∣∣f or p
∣∣g.

Corollary 2.12. Let p be irreducible in F [x], let f1, . . . , fn ∈ F [x], and
suppose that p

∣∣f1 · · · fn. Then there exists an i such that p
∣∣fi.

Proof. This is a straightforward inductive argument starting with the case
n = 2 above.
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Theorem 2.13 (Unique factorization in polynomial rings). Let f be a non
constant polynomial in F [x], i.e. f is neither 0 nor a unit. Then there
exist irreducible polynomials p1, . . . , pk, not necessarily distinct, such that
f = p1 · · · pk. In other words, f can be factored into a product of irreducible
polynomials (where, in case f is itself irreducible, we let k = 1 and view f as
a one element “product”). Moreover, the factorization is unique up to mul-
tiplying by units, in the sense that, if q1, . . . , q` are irreducible polynomials
such that

f = p1 · · · pk = q1 · · · q`,

then k = `, and, possibly after reordering the qi, for every i, 1 ≤ i ≤ k, there
exists a ci ∈ F ∗ such that qi = cipi.

Proof. The theorem contains both an existence and a uniqueness statement.
To prove existence, we argue by complete induction on the degree deg f of
f . If deg f = 1, then f is irreducible and we can just take k = 1 and
p1 = f . Now suppose that existence has been shown for all polynomials of
degree less than n, where n > 1, and let f be a polynomial of degree n.
If f is irreducible, then as in the case n = 1 we take k = 1 and p1 = f .
Otherwise f = gh, where both g and h are nonconstant polynomials of
degrees less than n. By the inductive hypothesis, both g and h factor into
products of irreducible polynomials. Hence the same is the true of the
product gh = f . Thus every polynomial of degree n can be factored into a
product of irreducible polynomials, completing the inductive step and hence
the proof of existence.

To prove the uniqueness part, suppose that f = p1 · · · pk = q1 · · · q` where
the pi and qj are irreducible. The proof is by induction on the number k
of factors in the first product. If k = 1, then f = p1 and p1 divides the
product q1 · · · q`. By Corollary 2.12, there exists an i such that p1

∣∣qi. After
relabeling the qi, we can assume that i = 1. Since q1 is irreducible and p1
is not a unit, there exists a c ∈ F ∗ such that q1 = cp1. We claim that ` = 1
and hence that q1 = f = p1. To see this, suppose that ` ≥ 2. Then

p1 = cp1q2 · · · q`.

Since p1 6= 0, we can cancel it to obtain 1 = cq2 · · · q`. Thus qi is a unit for
i ≥ 2, contradicting the fact that qi is irreducible. This proves uniqueness
when k = 1.

For the inductive step, suppose that uniqueness has been proved for all
polynomials which are a product of k − 1 irreducible polynomials, and let
f = p1 · · · pk = q1 · · · q` where the pi and qj are irreducible as above. As
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before, p1
∣∣q1 · · · q` hence, there exists an i such that p1

∣∣qi. After relabeling
the qi, we can assume that i = 1 and that there exists a c1 ∈ F ∗ such that
q1 = c1p1. Thus

p1 · · · pk = c1p1q2 · · · q`,

and so canceling we obtain p2 · · · pk = (c1q2) · · · · · · q`. Then, since the prod-
uct on the left hand side involves k−1 factors, by induction k−1 = `−1 and
hence k = `. Moreover there exist ci ∈ F ∗ such that qi = cipi if i > 2, and
c1q2 = c2p2. After renaming c−11 c2 by c2, we see that qi = cipi for all i ≥ 1.
This completes the inductive step and hence the proof of uniqueness.

3 Prime and maximal ideals in F [x]

Theorem 3.1. Let I be an ideal in F [x]. Then the following are equivalent:

(i) I is a maximal ideal.

(ii) I is a prime ideal and I 6= {0}.

(iii) There exists an irreducible polynomial p such that I = (p).

Proof. (i) =⇒ (ii): We know that if an ideal I (in any ring R) is maximal,
then it is prime. Also, the ideal {0} is not a maximal ideal in F [x], since
there are other proper ideals which contain it, for example (x); alternatively,
F [x]/{0} ∼= F [x] is not a field. Hence if I is a maximal ideal in F [x], then
I is a prime ideal and I 6= {0}.
(ii) =⇒ (iii): Since every ideal in F [x] is principal by Proposition 2.1,
we know that I = (p) for some polynomial p, and must show that p is
irreducible. Note that p 6= 0, since I 6= {0}, and p is not a unit, since I 6=
F [x] is not the whole ring. Now suppose that p = fg. Then fg = p ∈ (p),
and hence either f ∈ (p) or g ∈ (p). Say for example that f ∈ (p). Then
f = hp for some h ∈ F [x] and hence

p = fg = hgp.

Canceling the factors p, which is possible since p 6= 0, we see that hg = 1.
Hence g is a unit, say g = c ∈ F ∗, and thus f = c−1p. It follows that p is
irreducible.

(iii) =⇒ (i): Suppose that I = (p) for an irreducible polynomial p. Since p
is not a unit, no multiple of p is equal to 1, and hence I 6= R. Suppose that
J is an ideal of R and that I ⊆ J . We must show that J = I or that J = R.
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In any case, we know by Proposition 2.1 that J = (f) for some f ∈ F [x].
Since p ∈ (p) = I ⊆ J = (f), we know that f

∣∣p. As p is irreducible, either
f is a unit or f = cp for some c ∈ F ∗. In the first case, J = (f) = R, and
in the second case f ∈ (p), hence J = (f) ⊆ (p) = I. Since by assumption
I ⊆ J , I = J . Thus I is maximal.

Corollary 3.2. Let f ∈ F [x]. Then F [x]/(f) is a field ⇐⇒ f is irreducible.

Remark 3.3. While the above corollary may seem very surprising, one way
to think about it is as follows: if f is irreducible, and given a nonzero coset
g + (f) ∈ F [x]/(f), we must find a multiplicative inverse for g + (f). Now,
assuming that f is irreducible, g + (f) is not the zero coset ⇐⇒ f does
not divide g ⇐⇒ f and g are relatively prime, by Proposition 2.11 ⇐⇒
there exist r, s ∈ F [x] such that 1 = rf + sg. In this case, the coset s+ (f)
is a multiplicative inverse for the coset g + (f), since then

(s+ (f))(g + (f)) = sg + (f)

= 1− rf + (f) = 1 + (f).

Thus, the Euclidean algorithm for polynomials gives an effective way to find
inverses.

Given a field F and a nonconstant polynomial f ∈ F [x], we now use the
above to construct a possibly larger field E containing a subfield isomorphic
to F such that f has a root in E. Here, and in the following discussion, if
ρ : F → E is an isomorphism from F to a subfield ρ(F ) of E, we use ρ to
identify F [x] with ρ(F )[x] ≤ E[x].

Theorem 3.4. Let f ∈ F [x] be a nonconstant polynomial. Then there exists
a field E containing a subfield isomorphic to F such that f has a root in E.

Proof. Let p be an irreducible factor of f . It suffices to find a field E
containing a subfield isomorphic to F such that p has a root α in E, for
then f = pg for some g ∈ F [x] and f(α) = p(α)g(α) = 0. The quotient ring
E = F [x]/(p) is a field by Corollary 3.2, the homomorphism ρ(a) = a+ (p)
is an injective homomorphism from F to E, and the coset α = x + (p) is a
root of f in E.

Corollary 3.5. Let f ∈ F [x] be a nonconstant polynomial. Then there
exists a field E containing a subfield isomorphic to F such that f factors
into linear factors in E[x]. In other words, every irreducible factor of f in
E[x] is linear.
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Proof. The proof is by induction on n = deg f and the case n = 1 is obvi-
ous. Suppose that the corollary has been proved for all fields F and for all
polynomials in F [x] of degree n − 1. If deg f = n, by Corollary 3.4 there
exists a field E1 containing a subfield isomorphic to F and a root α of f in
E1. Thus, in E1[x], f = (x−α)g, where g ∈ E1[x] and deg g = n−1. By the
inductive hypothesis applied to the field E1 and the polynomial g ∈ E1[x],
there exists a field E containing a subfield isomorphic to E1 such that g
factors into linear factors in E[x]. Since E contains a subfield isomorphic
to E1 and E1 contains a subfield isomorphic to F , the composition of the
two isomorphisms gives an isomorphism from F to a subfield of E. Then,
in E[x], f is a product of x− α and a product of linear factors, and is thus
a product of linear factors. This completes the inductive step.
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