Factorization in Polynomial Rings

Throughout these notes, F denotes a field.

1 Long division with remainder

We begin with some basic definitions.
Definition 1.1. Let R be an integral domain and let $r, s \in R$. We say that r divides s, written $r \mid s$, if there exists a $t \in R$ such that $s=r t$, i.e. s is a multiple of r. Thus, for example, every $r \in R$ divides 0 , but r is divisible by $0 \Longleftrightarrow r=0$.

By definition, r is a unit $\Longleftrightarrow r \mid 1$. We claim that r is a unit $\Longleftrightarrow r \mid s$ for all $s \in R \Longleftrightarrow r \mid$. (Proof: if r is a unit, then, for all $s \in R, s=r\left(r^{-1} s\right)$ and hence $r \mid s$. Next, $r \mid s$ for all $s \in R \Longrightarrow r \mid 1$, and finally $r \mid 1 \Longrightarrow r$ is a unit.) We will usually ignore units when we discuss factorization because they contribute what are essentially trivial factors.

In case $R=F[x]$, the group of units $(F[x])^{*}$ of the ring $F[x]$ is F^{*}, the group of units in the field F, and hence the group of nonzero elements of F under multiplication. Thus f divides every $g \in F[x] \Longleftrightarrow f$ divides 1 $\Longleftrightarrow f \in F^{*}$ is a nonzero constant polynomial. Note that, if $c \in F^{*}$ is a unit, then $f|g \Longleftrightarrow c f| g \Longleftrightarrow f \mid c g$.

Proposition 1.2 (Long division with remainder). Let $f \in F[x], f \neq 0$, and let $g \in F[x]$. Then there exist unique polynomials $q, r \in F[x]$, with either $r=0$ or $\operatorname{deg} r<\operatorname{deg} f$, such that

$$
g=f q+r .
$$

Proof. First we prove existence. The proposition is clearly true if $g=0$, since then we can take $q=r=0$. Otherwise, we argue by induction on $\operatorname{deg} g$. If $\operatorname{deg} g=0$ and $\operatorname{deg} f=0$, then $f=c \in F^{*}$ is a nonzero constant, and then $g=c\left(c^{-1} g\right)+0$, so we can take $q=c^{-1} g$ and $r=0$. If $\operatorname{deg} g=0$ and $\operatorname{deg} f>0$, or more generally if $n=\operatorname{deg} g<\operatorname{deg} f=d$, then we can take
$q=0$ and $r=g$. Now assume that, for a fixed f, the existence of q and r has been proved for all polynomials of degree $<n$, and suppose that g is a polynomial of degree n. As above, we can assume that $n \geq d=\operatorname{deg} f$. Let $f=\sum_{i=0}^{d} a_{i} x^{i}$, with $a_{d} \neq 0$, and let $g=\sum_{i=0}^{n} b_{i} x^{i}$. In this case, $g-b_{n} a_{d}^{-1} x^{n-d} f$ is a polynomial of degree at most $n-1$ (or 0). By the inductive hypothesis and the case $g=0$, there exist polynomials $q_{1}, r \in F[x]$ with either $r=0$ or $\operatorname{deg} r<\operatorname{deg} f$, such that

$$
g-b_{n} a_{d}^{-1} x^{n-d} f=f q_{1}+r
$$

Then

$$
g=f\left(b_{n} a_{d}^{-1} x^{n-d}+q_{1}\right)+r=f q+r,
$$

where we set $q=b_{n} a_{d}^{-1} x^{n-d}+q_{1}$. This completes the inductive step and hence the existence part of the proof.

To see uniqueness, suppose that

$$
g=f q_{1}+r_{1}=f q_{2}+r_{2}
$$

where either $r_{1}=0$ or $\operatorname{deg} r_{1}<\operatorname{deg} f$, and similarly for r_{2}. We have

$$
\left(q_{1}-q_{2}\right) f=r_{2}-r_{1},
$$

hence either $q_{1}-q_{2}=0$ or $q_{1}-q_{2} \neq 0$ and then

$$
\operatorname{deg}\left(\left(q_{1}-q_{2}\right) f\right)=\operatorname{deg}\left(q_{1}-q_{2}\right)+\operatorname{deg} f \geq \operatorname{deg} f
$$

Moreover, in this case $r_{2}-r_{1} \neq 0$. But then

$$
\operatorname{deg}\left(r_{2}-r_{1}\right) \leq \max \left\{\operatorname{deg} r_{1}, \operatorname{deg} r_{2}\right\}<\operatorname{deg} f
$$

a contradiction. Thus $q_{1}-q_{2}=0$, hence $r_{2}-r_{1}=0$ as well. It follows that $q_{1}=q_{2}$ and $r_{2}=r_{1}$, proving uniqueness.

Remark 1.3. The analogue of Proposition 1.2 holds in an arbitrary ring R (commutative, with unity as always) provided that we assume that f is monic, in other words, $f \neq 0$ and its leading coefficient is 1 . The proof is essentially the same.

The following is really just a restatement of Proposition 1.2 in more abstract language:

Corollary 1.4. Let $f \in F[x], f \neq 0$. Then every coset $g+(f)$ has a unique representative r, where $r=0$ or $\operatorname{deg} r<\operatorname{deg} f$.

Proof. By Proposition 1.2, we can write $g=f q+r$ with $r=0$ or $\operatorname{deg} r<$ $\operatorname{deg} f$. Then $r \in g+(f)$ since the difference $g-r$ is a multiple of f, hence lies in (f). The uniqueness follows as in the proof of uniqueness for Proposition 1.2: if $r_{1}+(f)=r_{2}+(f)$, with each r_{i} either 0 of of degree smaller than $\operatorname{deg} f$, then $f \mid r_{2}-r_{1}$, and hence $r_{2}-r_{1}=0$, so that $r_{1}=r_{2}$.

Corollary 1.5. Let $a \in F$. Then every $f \in F[x]$ is of the form $f=$ $(x-a) g+f(a)$. Thus $f(a)=0 \Longleftrightarrow(x-a) \mid f$.
Proof. Applying long division with remainder to $x-a$ and f, we see that $f=(x-a) g+c$, where either $c=0$ or $\operatorname{deg} c=0$, hence $c \in F^{*}$. (This also follows directly, for an arbitrary ring: if $f=\sum_{i=0}^{d} a_{i} x^{i}$, write $f=$ $f(x-a+a)=\sum_{i=0}^{d} a_{i}(x-a+a)^{i}$. Expanding out each term via the binomial theorem then shows that $f=\sum_{i=0}^{d} b_{i}(x-a)^{i}$ for some $b_{i} \in F$, and then we take $c=b_{0}$.)

Finally, to determine c, we evaluate f at a :

$$
f(a)=\mathrm{ev}_{a}(f)=\mathrm{ev}_{a}((x-a) g+c)=0+c=c .
$$

Hence $c=f(a)$.
Recall that, for a polynomial $f \in F[x]$, a root or zero of f in F is an $a \in F$ such that $f(a)=\mathrm{ev}_{a}(f)=0$.

Corollary 1.6. Let $f \in F[x], f \neq 0$, and suppose that $\operatorname{deg} f=d$. Then there are at most d roots of f in any field E containing F. In other words, suppose that F is a subfield of a field E. Then

$$
\#\{a \in E: f(a)=0\} \leq d
$$

Proof. We can clearly assume that $E=F$. Argue by induction on $\operatorname{deg} f$, the case $\operatorname{deg} f=0$ being obvious. Suppose that the corollary has been proved for all polynomials of degree $d-1$. If $\operatorname{deg} f=d$ and there is no root of f in F, then we are done because $d \geq 0$. Otherwise, let a_{1} be a root. Then we can write $f=\left(x-a_{1}\right) g$, where $\operatorname{deg} g=d-1$. Let a_{2} be a root of f with $a_{2} \neq a_{1}$. Then

$$
0=f\left(a_{2}\right)=\left(a_{2}-a_{1}\right) g\left(a_{2}\right) .
$$

Since F is a field and $a_{2} \neq a_{1}, a_{2}-a_{1} \neq 0$ and we can cancel it to obtain $g\left(a_{2}\right)=0$, i.e. a_{2} is a root of g (here we must use the fact that F is a field). By induction, g has at most $d-1$ roots in F (where we allow for the possibility that a_{1} is also a root of g). Then

$$
\{a \in F: f(a)=0\}=\left\{a_{1}\right\} \cup\{a \in F: g(a)=0\} .
$$

Since $\#\{a \in F: g(a)=0\} \leq d-1$, it follows that $\#\{a \in F: f(a)=0\} \leq$ d.

Corollary 1.7. Let F be an infinite field. Then the evaluation homomorphism E from $F[x]$ to F^{F} is injective. In other words, if $f_{1}, f_{2} \in F[x]$ are two polynomials which define the same function, i.e. are such that $f_{1}(a)=f_{2}(a)$ for all $a \in F$, then $f_{1}=f_{2}$.

Proof. It suffices to prove that $\operatorname{Ker} E=\{0\}$, i.e. that if $f \in F[x]$ and $f(a)=0$ for all $a \in F$, then $f=0$. This is clear from Corollary 1.6, since a nonzero polynomial can have at most finitely many roots and F was assumed infinite.

Corollary 1.6 has the following surprising consequence concerning the structure of finite fields, or more generally finite subgroups of the group F^{*} under multiplication:

Theorem 1.8 (Existence of a primitive root). Let F be a field and let G be a finite subgroup of the multiplicative group $\left(F^{*}, \cdot\right)$. Then G is cyclic. In particular, if F is a finite field, then the group $\left(F^{*}, \cdot\right)$ is cyclic.

Proof. Let $n=\#(G)$ be the order of G. First we claim that, for each $d \mid n$, the set $\left\{a \in G: a^{d}=1\right\}$ has at most d elements. In fact, clearly $\left\{a \in G: a^{d}=1\right\} \subseteq\left\{a \in F: a^{d}=1\right\}$. But the set $\left\{a \in F: a^{d}=1\right\}$ is the set of roots of the polynomial $x^{d}-1$ in F. Since the degree of $x^{d}-1$ is d, by Corollary 1.6, $\#\left\{a \in F: a^{d}=1\right\} \leq d$. Hence $\#\left\{a \in G: a^{d}=1\right\} \leq d$ as well. The theorem now follows from the following purely group-theoretic result, whose proof we include for completeness.

Proposition 1.9. Let G be a finite group of order n, written multiplicatively. Suppose that, for each $d \mid n$, the set $\left\{g \in G: g^{d}=1\right\}$ has at most n elements. Then G is cyclic.

Proof. Let φ be the Euler φ-function. The key point of the proof is the identity (proved in Modern Algebra I, or in courses in elementary number theory)

$$
\sum_{d \mid n} \varphi(d)=n
$$

Now, given a finite group G as in the statement of the proposition, define a new function $\psi: \mathbb{N} \rightarrow \mathbb{Z}$ via: $\psi(d)$ is the number of elements of G of order exactly d. By Lagrange's theorem, if $\psi(d) \neq 0$, then $d \mid n$. Since every
element of G has some well-defined finite order, adding up all of values of $\psi(d)$ is the same as counting all of the elements of G. Hence

$$
\#(G)=n=\sum_{d \in \mathbb{N}} \psi(d)=\sum_{d \mid n} \psi(d) .
$$

Next we claim that, for all $d \mid n, \psi(d) \leq \varphi(d)$; more precisely,

$$
\psi(d)= \begin{cases}0, & \text { if there is no element of } G \text { of order } d \\ \varphi(d), & \text { if there is an element of } G \text { of order } d\end{cases}
$$

Clearly, if there is no element of G of order d, then $\psi(d)=0$. Conversely, suppose that there is an element a of G of order d. Then $\#(\langle a\rangle)=d$, and every element $g \in\langle a\rangle$ has order dividing d, hence $g^{d}=1$ for all $g \in\langle a\rangle$. But since there at most d elements g in G such that $g^{d}=1$, the set of all such elements must be exactly $\langle a\rangle$. In particular, an element g of order exactly d must both lie in $\langle a\rangle$ and be a generator of $\langle a\rangle$. Since the number of generators of $\langle a\rangle$ is the same as the number of generators of any cyclic group of order d, namely $\varphi(d)$, the number of elements of G of order d is then $\varphi(d)$. Thus, if there is an element of G of order d, then by definition $\psi(d)=\varphi(d)$.

Now compare the two expressions

$$
n=\sum_{d \mid n} \psi(d) \leq \sum_{d \mid n} \varphi(d)=n .
$$

Since, for each value of $d \mid n, \psi(d) \leq \varphi(d)$, and the sums are the same, we must have $\psi(d)=\varphi(d)$ for all $d \mid n$. In particular, taking $d=n$, we see that $\psi(n)=\varphi(n) \neq 0$. It follows that there exists an element of G of order $n=\#(G)$, and hence G is cyclic.

Example 1.10. (1) In case p is a prime and $F=\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$, then a generator for $(\mathbb{Z} / p \mathbb{Z})^{*}$ is called a primitive root.
(2) For $F=\mathbb{C}$, the finite multiplicative subgroups of \mathbb{C}^{*} are the groups μ_{n} of $n^{\text {th }}$ roots of unity. A generator of μ_{n}, in other words a complex number whose order in the group ($\left.\mathbb{C}^{*}, \cdot\right)$ is exactly n, is called a primitive $n^{\text {th }}$ root of unity. The standard such generator is $e^{2 \pi i / n}$.

Remark 1.11. If on the other hand G is an infinite subgroup of F^{*}, then G is not in general cyclic. For example, \mathbb{Q}^{*} is not a cyclic group. The situation for \mathbb{R}^{*} is even more drastic: \mathbb{R}^{*} is uncountable, but every cyclic group is either finite or isomorphic to \mathbb{Z}, hence countable.

2 Factorization and principal ideals

The outline of the discussion of factorization in $F[x]$ is very similar to that for factorization in \mathbb{Z}. We begin with:

Proposition 2.1. Every ideal in $F[x]$ is a principal ideal.
Proof. Let I be an ideal in $F[x]$. If $I=\{0\}$, then clearly $I=(0)$ as well, and so I is principal. Thus we may assume that $I \neq\{0\}$. Let $f \in I$ be a non-zero polynomial such that $\operatorname{deg} f$ is the minimal possible value among nonnegative integers of the form $\operatorname{deg} g$, where $g \in I$ and $g \neq 0$. More precisely, the set of nonnegative integers

$$
\{\operatorname{deg} g: g \in I \text { and } g \neq 0\}
$$

is a nonempty subset of $\mathbb{N} \cup\{0\}$ and hence by the well-ordering principle has a smallest element, necessarily of the form $\operatorname{deg} f$ for some non-zero polynomial $f \in I$. We claim that f is a generator of I, i.e. that $I=(f)$.

Clearly, as $f \in I,(f) \subseteq I$. To see the opposite inclusion, let $g \in I$. Then we can apply long division with remainder to f and g : there exist $q, r \in F[x]$, with either $r=0$ or $\operatorname{deg} r<\operatorname{deg} f$, such that $g=f q+r$. Since $g \in I$ and $(f) \subseteq I, r=g-f q \in I$. But, if $r \neq 0$, then $\operatorname{deg} r<\operatorname{deg} f$, contradicting the choice of f. So $r=0$, so that $g=f q \in(f)$. Since g was an arbitrary element of I, it follows that $I \subseteq(f)$ and hence that $I=(f)$. Thus I is principal.

Definition 2.2. Let $f, g \in F[x]$, where not both of f, g are zero. A greatest common divisor of f and g, written $\operatorname{gcd}(f, g)$, is a polynomial d such that

1. The polynomial d is a divisor of both f and $g: d \mid f$ and $d \mid g$.
2. If e is a polynomial such that $e \mid f$ and $e \mid g$, then $e \mid d$.

Proposition 2.3. Let $f, g \in F[x]$, not both 0 .
(i) If d is a greatest common divisor of f and g, then so is cd for every $c \in F^{*}$.
(ii) If d_{1} and d_{2} are two greatest common divisors of f and g, then there exists a $c \in F^{*}$ such that $d_{2}=c d_{1}$.
(iii) A greatest common divisor d of f and g exists and is of the form $d=r f+s g$ for some $r, s \in F[x]$.

Proof. (i) This is clear from the definition.
(ii) if d_{1} and d_{2} are two greatest common divisors of f and g, then by definition $d_{1} \mid d_{2}$ and $d_{2} \mid d_{1}$. Thus there exist $u, v \in F[x]$ such that $d_{2}=u d_{1}$ and $d_{1}=v d_{2}$. Hence $d_{1}=u v d_{1}$. Since a greatest common divisor can never be 0 (it must divide both f and g and at least one of these is non-zero) and $F[x]$ is an integral domain, it follows that $1=u v$, i.e. both u and v are units in $F[x]$, hence elements of F^{*}. Thus $d_{2}=c d_{1}$ for some $c \in F^{*}$.
(iii) To see existence, define

$$
(f, g)=(f)+(g)=\{r f+s g: r, s \in F[x]\} .
$$

It is easy to see that (f, g) is an ideal (it is the ideal sum of the principal ideals (f) and $(g))$ and that $f, g \in(f, g)$. By Proposition 2.1, there exists a $d \in F[x]$ such that $(f, g)=(d)$. In particular, $d=r f+s g$ for some $r, s \in F[x]$, and, as $f, g \in(d), d \mid f$ and $d \mid g$. Finally, if $e \mid f$ and $e \mid g$, then it is easy to check that e divides every expression of the form $r f+s g$. Hence $e \mid d$, and so d is a greatest common divisor of f and g.

Remark 2.4. We could specify the gcd of f and g uniquely by requiring that it be monic. However, for more general rings, this choice is not available, and we will allow there to be many different gcds of f and g, all related by multiplication by a unit of $F[x]$, in other words a nonzero constant polynomial.

Remark 2.5. In fact, we can find the polynomials r, s described in (iii) of the proposition quite explicitly by a variant of the Euclidean algorithm.

Remark 2.6. If R is a general integral domain, then we can define a greatest common divisor of a and b by the obvious analogue of Definition 2.2. However, in a general integral domain, greatest common divisors may not exist, and even when they do always exist, they need not be given as linear combinations $a r+b s$ as in Part (iii) of Proposition 2.3.

Definition 2.7. Let $f, g \in F[x]$. Then f and g are relatively prime if 1 is a gcd of f and g. It is easy to see that this definition is equivalent to: there exist $r, s \in F[x]$ such that $1=r f+s g$. (If 1 is a gcd of f and g, then $1=r f+s g$ for some $r, s \in F[x]$ by Proposition 2.3. Conversely, if $1=r f+s g$, then a gcd d of f, g must divide 1 and hence is a unit c, and hence after multiplying by c^{-1} we see that 1 is a gcd of f and g.)

Proposition 2.8. Let $f, g \in F[x]$ be relatively prime, and suppose that $f \mid g h$ for some $h \in F[x]$. Then $f \mid h$.

Proof. Let $r, s \in F[x]$ be such that $1=r f+s g$. Then

$$
h=r f h+s g h .
$$

Clearly $f \mid r f h$, and by assumption $f \mid g h$ and hence $f \mid$ sgh. Thus f divides the sum $r f h+s g h=h$.

Definition 2.9. Let $p \in F[x]$. Then p is irreducible if p is neither 0 nor a unit (i.e. p is a non-constant polynomial), and if $p=f g$ for some $f, g \in F[x]$, then either $f=c \in F^{*}$ and hence $g=c^{-1} p$, or $g=c \in F^{*}$ and $f=c^{-1} p$. Equivalently, p is not a product $f g$ of two polynomials $f, g \in F[x]$ such that both $\operatorname{deg} f<\operatorname{deg} p$ and $\operatorname{deg} g<\operatorname{deg} p$. In other words: an irreducible polynomial is a non-constant polynomial that does not factor into a product of polynomials of strictly smaller degrees. Finally, we say that a polynomial is reducible if it is not irreducible.

Example 2.10. A linear polynomial (polynomial of degree one) is irreducible. A quadratic (degree 2) or cubic (degree 3) polynomial is reducible \Longleftrightarrow it has a linear factor in $F[x] \Longleftrightarrow$ it has a root in F. Thus for example $x^{2}-2$ is irreducible in $\mathbb{Q}[x]$ but not in $\mathbb{R}[x]$, and the same is true for $x^{3}-2$. . Likewise $x^{2}+1$ is irreducible in $\mathbb{R}[x]$ but not in $\mathbb{C}[x]$. The polynomial $f=x^{2}+x+1$ is irreducible in $\mathbb{F}_{2}[x]$ as it does not have a root in $\mathbb{F}_{2} .(f(0)=f(1)=1$.)

On the other hand, the polynomial $x^{4}-4$ is not irreducible in $\mathbb{Q}[x]$, even though it does not have a root in \mathbb{Q}.

Proposition 2.11. Let p be irreducible in $F[x]$.
(i) For every $f \in F[x]$, either $p \mid f$ or p and f are relatively prime.
(ii) For all $f, g \in F[x]$, if $p \mid f g$, then either $p \mid f$ or $p \mid g$.

Proof. (i) Let $d=\operatorname{gcd}(p, f)$. Then $d \mid p$, so d is either a unit or a unit times p, hence we can take for d either 1 or p. If 1 is a gcd of p and f, then p and f are relatively prime. If p is a gcd of p and f, then $p \mid f$.
(ii) Suppose that $p \mid f g$ but that p does not divide f. By (i), p and f are relatively prime. By Proposition 2.8, since $p \mid f g$ and p and f are relatively prime, $p \mid g$. Thus either $p \mid f$ or $p \mid g$.

Corollary 2.12. Let p be irreducible in $F[x]$, let $f_{1}, \ldots, f_{n} \in F[x]$, and suppose that $p \mid f_{1} \cdots f_{n}$. Then there exists an i such that $p \mid f_{i}$.
Proof. This is a straightforward inductive argument starting with the case $n=2$ above.

Theorem 2.13 (Unique factorization in polynomial rings). Let f be a non constant polynomial in $F[x]$, i.e. f is neither 0 nor a unit. Then there exist irreducible polynomials p_{1}, \ldots, p_{k}, not necessarily distinct, such that $f=p_{1} \cdots p_{k}$. In other words, f can be factored into a product of irreducible polynomials (where, in case f is itself irreducible, we let $k=1$ and view f as a one element "product"). Moreover, the factorization is unique up to multiplying by units, in the sense that, if q_{1}, \ldots, q_{ℓ} are irreducible polynomials such that

$$
f=p_{1} \cdots p_{k}=q_{1} \cdots q_{\ell}
$$

then $k=\ell$, and, possibly after reordering the q_{i}, for every $i, 1 \leq i \leq k$, there exists a $c_{i} \in F^{*}$ such that $q_{i}=c_{i} p_{i}$.

Proof. The theorem contains both an existence and a uniqueness statement. To prove existence, we argue by complete induction on the degree $\operatorname{deg} f$ of f. If $\operatorname{deg} f=1$, then f is irreducible and we can just take $k=1$ and $p_{1}=f$. Now suppose that existence has been shown for all polynomials of degree less than n, where $n>1$, and let f be a polynomial of degree n. If f is irreducible, then as in the case $n=1$ we take $k=1$ and $p_{1}=f$. Otherwise $f=g h$, where both g and h are nonconstant polynomials of degrees less than n. By the inductive hypothesis, both g and h factor into products of irreducible polynomials. Hence the same is the true of the product $g h=f$. Thus every polynomial of degree n can be factored into a product of irreducible polynomials, completing the inductive step and hence the proof of existence.

To prove the uniqueness part, suppose that $f=p_{1} \cdots p_{k}=q_{1} \cdots q_{\ell}$ where the p_{i} and q_{j} are irreducible. The proof is by induction on the number k of factors in the first product. If $k=1$, then $f=p_{1}$ and p_{1} divides the product $q_{1} \cdots q_{\ell}$. By Corollary 2.12, there exists an i such that $p_{1} \mid q_{i}$. After relabeling the q_{i}, we can assume that $i=1$. Since q_{1} is irreducible and p_{1} is not a unit, there exists a $c \in F^{*}$ such that $q_{1}=c p_{1}$. We claim that $\ell=1$ and hence that $q_{1}=f=p_{1}$. To see this, suppose that $\ell \geq 2$. Then

$$
p_{1}=c p_{1} q_{2} \cdots q_{\ell} .
$$

Since $p_{1} \neq 0$, we can cancel it to obtain $1=c q_{2} \cdots q_{\ell}$. Thus q_{i} is a unit for $i \geq 2$, contradicting the fact that q_{i} is irreducible. This proves uniqueness when $k=1$.

For the inductive step, suppose that uniqueness has been proved for all polynomials which are a product of $k-1$ irreducible polynomials, and let $f=p_{1} \cdots p_{k}=q_{1} \cdots q_{\ell}$ where the p_{i} and q_{j} are irreducible as above. As
before, $p_{1} \mid q_{1} \cdots q_{\ell}$ hence, there exists an i such that $p_{1} \mid q_{i}$. After relabeling the q_{i}, we can assume that $i=1$ and that there exists a $c_{1} \in F^{*}$ such that $q_{1}=c_{1} p_{1}$. Thus

$$
p_{1} \cdots p_{k}=c_{1} p_{1} q_{2} \cdots q_{\ell}
$$

and so canceling we obtain $p_{2} \cdots p_{k}=\left(c_{1} q_{2}\right) \cdots \cdots q_{\ell}$. Then, since the product on the left hand side involves $k-1$ factors, by induction $k-1=\ell-1$ and hence $k=\ell$. Moreover there exist $c_{i} \in F^{*}$ such that $q_{i}=c_{i} p_{i}$ if $i>2$, and $c_{1} q_{2}=c_{2} p_{2}$. After renaming $c_{1}^{-1} c_{2}$ by c_{2}, we see that $q_{i}=c_{i} p_{i}$ for all $i \geq 1$. This completes the inductive step and hence the proof of uniqueness.

3 Prime and maximal ideals in $F[x]$

Theorem 3.1. Let I be an ideal in $F[x]$. Then the following are equivalent:
(i) I is a maximal ideal.
(ii) I is a prime ideal and $I \neq\{0\}$.
(iii) There exists an irreducible polynomial p such that $I=(p)$.

Proof. (i) \Longrightarrow (ii): We know that if an ideal I (in any ring R) is maximal, then it is prime. Also, the ideal $\{0\}$ is not a maximal ideal in $F[x]$, since there are other proper ideals which contain it, for example (x); alternatively, $F[x] /\{0\} \cong F[x]$ is not a field. Hence if I is a maximal ideal in $F[x]$, then I is a prime ideal and $I \neq\{0\}$.
(ii) \Longrightarrow (iii): Since every ideal in $F[x]$ is principal by Proposition 2.1, we know that $I=(p)$ for some polynomial p, and must show that p is irreducible. Note that $p \neq 0$, since $I \neq\{0\}$, and p is not a unit, since $I \neq$ $F[x]$ is not the whole ring. Now suppose that $p=f g$. Then $f g=p \in(p)$, and hence either $f \in(p)$ or $g \in(p)$. Say for example that $f \in(p)$. Then $f=h p$ for some $h \in F[x]$ and hence

$$
p=f g=h g p .
$$

Canceling the factors p, which is possible since $p \neq 0$, we see that $h g=1$. Hence g is a unit, say $g=c \in F^{*}$, and thus $f=c^{-1} p$. It follows that p is irreducible.
(iii) \Longrightarrow (i): Suppose that $I=(p)$ for an irreducible polynomial p. Since p is not a unit, no multiple of p is equal to 1 , and hence $I \neq R$. Suppose that J is an ideal of R and that $I \subseteq J$. We must show that $J=I$ or that $J=R$.

In any case, we know by Proposition 2.1 that $J=(f)$ for some $f \in F[x]$. Since $p \in(p)=I \subseteq J=(f)$, we know that $f \mid p$. As p is irreducible, either f is a unit or $f=c p$ for some $c \in F^{*}$. In the first case, $J=(f)=R$, and in the second case $f \in(p)$, hence $J=(f) \subseteq(p)=I$. Since by assumption $I \subseteq J, I=J$. Thus I is maximal.

Corollary 3.2. Let $f \in F[x]$. Then $F[x] /(f)$ is a field $\Longleftrightarrow f$ is irreducible.

Remark 3.3. While the above corollary may seem very surprising, one way to think about it is as follows: if f is irreducible, and given a nonzero coset $g+(f) \in F[x] /(f)$, we must find a multiplicative inverse for $g+(f)$. Now, assuming that f is irreducible, $g+(f)$ is not the zero coset $\Longleftrightarrow f$ does not divide $g \Longleftrightarrow f$ and g are relatively prime, by Proposition $2.11 \Longleftrightarrow$ there exist $r, s \in F[x]$ such that $1=r f+s g$. In this case, the coset $s+(f)$ is a multiplicative inverse for the coset $g+(f)$, since then

$$
\begin{aligned}
& (s+(f))(g+(f))=s g+(f) \\
& \quad=1-r f+(f)=1+(f)
\end{aligned}
$$

Thus, the Euclidean algorithm for polynomials gives an effective way to find inverses.

Given a field F and a nonconstant polynomial $f \in F[x]$, we now use the above to construct a possibly larger field E containing a subfield isomorphic to F such that f has a root in E. Here, and in the following discussion, if $\rho: F \rightarrow E$ is an isomorphism from F to a subfield $\rho(F)$ of E, we use ρ to identify $F[x]$ with $\rho(F)[x] \leq E[x]$.

Theorem 3.4. Let $f \in F[x]$ be a nonconstant polynomial. Then there exists a field E containing a subfield isomorphic to F such that f has a root in E.

Proof. Let p be an irreducible factor of f. It suffices to find a field E containing a subfield isomorphic to F such that p has a root α in E, for then $f=p g$ for some $g \in F[x]$ and $f(\alpha)=p(\alpha) g(\alpha)=0$. The quotient ring $E=F[x] /(p)$ is a field by Corollary 3.2 , the homomorphism $\rho(a)=a+(p)$ is an injective homomorphism from F to E, and the coset $\alpha=x+(p)$ is a root of f in E.

Corollary 3.5. Let $f \in F[x]$ be a nonconstant polynomial. Then there exists a field E containing a subfield isomorphic to F such that f factors into linear factors in $E[x]$. In other words, every irreducible factor of f in $E[x]$ is linear.

Proof. The proof is by induction on $n=\operatorname{deg} f$ and the case $n=1$ is obvious. Suppose that the corollary has been proved for all fields F and for all polynomials in $F[x]$ of degree $n-1$. If $\operatorname{deg} f=n$, by Corollary 3.4 there exists a field E_{1} containing a subfield isomorphic to F and a root α of f in E_{1}. Thus, in $E_{1}[x], f=(x-\alpha) g$, where $g \in E_{1}[x]$ and $\operatorname{deg} g=n-1$. By the inductive hypothesis applied to the field E_{1} and the polynomial $g \in E_{1}[x]$, there exists a field E containing a subfield isomorphic to E_{1} such that g factors into linear factors in $E[x]$. Since E contains a subfield isomorphic to E_{1} and E_{1} contains a subfield isomorphic to F, the composition of the two isomorphisms gives an isomorphism from F to a subfield of E. Then, in $E[x], f$ is a product of $x-\alpha$ and a product of linear factors, and is thus a product of linear factors. This completes the inductive step.

