
Modern Algebra I: The Euclidean algorithm

As promised in the lecture, we describe a computationally efficient method
for finding the gcd of two positive integers a and b, which at the same time
shows how to write the gcd as a linear combination of a and b.

Begin with a, b. Write a = bq1 + r1, with integers q1 and r1, 0 ≤ r1 < b.
Note that r1 = a + b(−q1) is a linear combination of a and b. If r1 = 0,
stop, otherwise repeat this process with b and r1 instead of a and b, so that
b = r1q2 + r2, with 0 ≤ r2 < r1, and note that r2 = b− r1q2 = b− aq2 + bq1q2
is still a linear combination of a and b. If r2 = 0, stop, otherwise repeat again
with r1 and r2 instead of b and r1, so that r1 = r2q3 + r3, with 0 ≤ r3 < r2.
We can continue in this way to find r1 > r2 > r3 > · · · > rk ≥ 0, with
rk−1 = rkqk+1 + rk+1. Since the sequence of the ri decreases, and they are all
nonnegative integers, eventually this procedure must stop with an rn such
that rn+1 = 0, and hence rn−1 = rnqn+1. The procedure looks as follows:

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3
...

rn−2 = rn−1qn + rn

rn−1 = rnqn+1.

We claim that rn is the gcd of a and b. In fact, we shall show:

(i) rn divides both a and b;

(ii) rn is a linear combination of a and b.

(i) Since rn|rn−1, the equation rn−2 = rn−1qn + rn implies that rn|rn−2,
and then working backwards from the equation rk−1 = rkqk+1 + rk+1, we see
(with reverse induction) that rn|rk−1 for all k < n. The fact that b = r1q2+r2
and that rn divides r1 and r2 implies that rn divides b, and then the equation
a = bq1 + r1 implies that rn divides a, too.

(ii) Working the other way, we have seen that r1 and r2 are linear combi-
nations of a and b. By induction, if rk−1 and rk are linear combinations of a
and b, then the equation rk−1 = rkqk+1+rk+1 implies that rk+1 = rk−1−rkqk+1

is also a linear combination of a and b (because as we saw in class the set
of all linear combinations of a and b is a subgroup of Z and thus is closed



under addition, subtraction, and multiplication by an integer). Thus rn is
a linear combination of a and b as well. But we have seen that if a linear
combination of a and b divides a and b and is positive, then it is equal to the
gcd of a and b. So rn is the gcd of a and b.

The algorithm is easier to carry out than it is to explain! For example,
to find the gcd of 34 and 38, we have

38 = 34(1) + 4

34 = 4(8) + 2

4 = 2(2).

This says that 2 = gcd(34, 38) and that 2 = 34− 4(8) = 34− (38− 34)(8) =
9(34) + (−8)(38).

It is often more efficient to choose qk+1 and rk+1 so that rk−1 = rkqk+1 ±
rk+1, with rk+1 < rk and the sign chosen so that rk+1 is as small as possible.
In other words, we allow negative remainders of the form −rk with the goal
of minimizing the absolute value of the remainder. For example, to find the
gcd of 7 and 34, we could write

34 = 7(4) + 6

7 = 6(1) + 1,

to see that the gcd is 1 and that 1 = 7− 6 = 7− (34− 4(7)) = −34 + 5(7),
or we could see directly that

34 = 7(5)− 1.

A more complicated example is the following, to find the gcd of 1367 and
298:

1367 = (298)(5)− 123

298 = 123(2) + 52

123 = 52(2) + 19

52 = 19(3)− 5

19 = 5(4)− 1.

Thus the gcd is 1, and a little patience shows that

1 = 5(4)− 19 = 11(19)− 4(52) = 11(123)− 26(52) =

= (63)(123)− (26)(298) = (−63)(1367) + (289)(298).


