Ideals

The symbol R always denotes a commutative ring with unity, and F always denotes a field.

1 Definitions and examples

We begin by discussing the following question: let R be a ring and let H be an additive subgroup of $(R,+)$. We can then form the group of cosets $R / H=\{r+H: r \in R\}$ of H. By analogy with the case of $R=\mathbb{Z}$ and $H=\langle n\rangle=n \mathbb{Z}$, where we know that it is possible both to add and to multiply cosets, we want to find conditions on H so that coset multiplication is well-defined, i.e. independent of the choice of representative. Here, as in the case of $\mathbb{Z} / n \mathbb{Z}$, we attempt to define coset multiplication by the rule: $(r+H)(s+H)=r s+H$. In particular, this is well defined \Longleftrightarrow for all $r, s \in R$, replacing r by a different representative $r+h_{1}$ of $r+H$ and s by a different representative $s+h_{2}$ of $s+H$, the product $\left(r+h_{1}\right)\left(s+h_{2}\right)$ lies in $r s+H$. In other words, for all $r, s \in R$ and $h_{1}, h_{2} \in H$, there exists an $h_{3} \in H$ such that $\left(r+h_{1}\right)\left(s+h_{2}\right)=r s+h_{3}$. Since $\left(r+h_{1}\right)\left(s+h_{2}\right)=$ $r s+r h_{2}+s h_{1}+h_{1} h_{2}$, another way to say this is: for all $r, s \in R$ and $h_{1}, h_{2} \in H$,

$$
r h_{2}+s h_{1}+h_{1} h_{2} \in H .
$$

In particular, taking $h_{2}=h$ an arbitrary element of H and $s=h_{1}=0$,

$$
r h_{2}+s h_{1}+h_{1} h_{2}=r h+0+0
$$

Thus we see that a necessary condition that coset multiplication is welldefined is that, for all $r \in R$ and $h \in H$, the product $r h \in H$. Conversely, if this condition is satisfied, then, for all $r, s \in R$ and $h_{1}, h_{2} \in H, r h_{2} \in H$, $s h_{1} \in H$, and $h_{1} h_{2} \in H$ (take $r=h_{1}$ and $h=h_{2}$). Hence, as H is closed under addition, coset multiplication is well-defined.

Definition 1.1. A subset I of R is an ideal if

1. I is an additive subgroup of $(R,+)$;
2. (The "absorbing property") For all $r \in R$ and $s \in I$, $r s \in I$; symbolically, we write this as $R I \subseteq I$.

For example, for all $d \in \mathbb{Z}$, the cyclic subgroup $\langle d\rangle$ generated by d is an ideal in \mathbb{Z}. A similar statement holds for the cyclic subgroup $\langle d\rangle$ generated by d in $\mathbb{Z} / n \mathbb{Z}$. However, for a general ring R and an element $r \in R$, the cyclic subgroup $\langle r\rangle=\{n \cdot r: n \in \mathbb{Z}\}$ is almost never an ideal. We shall describe the correct generalization of $\langle r\rangle$ to an arbitrary ring shortly.

Remark 1.2. It is easy to see that I is an ideal of $R \Longleftrightarrow I$ is nonempty, closed under addition, and the absorbing property $R I \subseteq I$ holds. The \Longrightarrow direction is clear since an additive subgroup of R is nonempty and closed under addition. To show the \Longleftarrow direction, it is enough to show that I is an additive subgroup, and hence it suffices to show that $0 \in I$ and that, for all $s \in I,-s \in I$. To see that $0 \in I$, note that $I \neq \emptyset$ by assumption, hence there exists some $s \in I$. Then $0=0 s \in I$. Also, if $s \in I,-s=(-1) s \in I$. Thus I is an additive subgroup.

Summarizing the discussion before the definition of an ideal, we have:
Proposition 1.3. Suppose that I is an ideal. Then coset multiplication is well-defined on R / I. Moreover, $(R / I,+, \cdot)$ is a ring, called the quotient ring, and the function $\pi: R \rightarrow R / I$ defined by $\pi(r)=r+I$ is a ring homomorphism, called the quotient homomorphism.

Proof. We have seen that coset multiplication is well-defined. It is then easy to check that it is associative and commutative, and that coset multiplication distributes over coset addition: all of these properties follow from properties of multiplication in the ring R. The multiplicative identity in R / I is the coset $1+I$. Finally, from the definition of coset multiplication, we see that

$$
\pi(r) \pi(s)=(r+I)(s+I)=r s+I=\pi(r s) .
$$

Moreover $\pi(1)=1+I$ is the multiplicative identity in R / I. Thus π (which we know from last semester to be a group homomorphism) is a ring homomorphism.

Remark 1.4. If I is an ideal, we have defined coset multiplication by the formula $(r+I)(s+I)=r s+I$. However, unlike the case of groups, it is not necessarily literally true that, if we define

$$
(r+I)(s+I)=\left\{\left(r+t_{1}\right)\left(s+t_{2}\right): t_{1}, t_{2} \in I\right\}
$$

then we necessarily have $(r+I)(s+I)=r s+I$ as sets. For example, if $I=\langle n\rangle=n \mathbb{Z}$ in \mathbb{Z}, then taking $r=s=0$, we see that every element t of I is of the form $n^{2} k$ for some integer k, hence is not the most general element of $0 \cdot 0+\langle n\rangle=\langle n\rangle$. In general, we can only say that the set $(r+I)(s+I)$ is contained in $r s+I$.

Example 1.5. 1) In any ring R, the set $\{0\}$ is an ideal (the zero ideal) and the ring R itself is an ideal (the unit ideal). An ideal $I \neq R$ is called proper ideal.
2) If R is a ring and I is an ideal of R such that $1 \in I$, then by the absorbing property, for all $r \in R, r=r \cdot 1 \in I$, hence $I=R$. More generally, if I is an ideal containing a unit u, then $1=u^{-1} u \in I$ and hence $I=R$. In particular, if F is a field and I is a nonzero ideal of F, then I contains a unit and hence $I=F$. Thus a field contains no proper nonzero ideals, i.e. every ideal of F is either $\{0\}$ or F.

One way that ideals arise is as follows:
Proposition 1.6. Let $\phi: R \rightarrow S$ be a ring homorphism. Then $\operatorname{Ker} \phi$ is an ideal in R.

Proof. We know that $\operatorname{Ker} \phi$ is an additive subgroup of R, so we just have to check the absorbing property. If $r \in \operatorname{Ker} \phi$ and $s \in R$, then $\phi(s r)=$ $\phi(s) \phi(r)=\phi(s) \cdot 0=0$. Hence by definition $s r \in \operatorname{Ker} \phi$, so that $\operatorname{Ker} \phi$ has the absorbing property.

Example 1.7. If R is a ring and $a \in R$, then $\operatorname{Ker~}_{\operatorname{ev}}=\left\{f \in R[x]: \operatorname{ev}_{a}(f)=\right.$ $f(a)=0\}$ is an ideal in $R[x]$. For example,

$$
\operatorname{Kerev}_{0}=\left\{\sum_{i=0}^{N} a_{i} x^{i}: a_{0}=0\right\}=\{x g: g \in R[x]\}
$$

A slightly more complicated argument shows that

$$
\operatorname{Ker}_{a}=\{(x-a) g: g \in R[x]\} .
$$

More generally, if R is a subring of a ring S and $b \in S$, then $\operatorname{Ker~ev}_{b}$ is an ideal in $R[x]$. However, it is usually much more difficult to describe Ker ev ${ }_{b}$.

Remark 1.8. In a non-commutative ring, there are left ideals, right ideals, and two-sided ideals, and for coset multiplication to be well-defined on R / I, we need I to be a two-sided ideal. The analogue of Proposition 1.6 is then that the kernel of a homomorphism is a two sided ideal.

Many of the results about isomorphisms in group theory hold in this context as well. For example, a (ring) homomorphism ϕ is injective \Longleftrightarrow $\operatorname{Ker} \phi=0$, since a ring homomorphism is in particular a homomorphism of abelian groups. Likewise, the first isomorphism theorem holds:

Proposition 1.9. Let $\phi: R \rightarrow S$ be a ring homorphism and let $I=\operatorname{Ker} \phi$. The $\operatorname{Im} \phi \cong R / I$. More precisely, there is a unique isomorphism $\tilde{\phi}: R / I \rightarrow$ $\operatorname{Im} \phi$ such that $\phi=i \circ \tilde{\phi} \circ \pi$, where $\pi: R \rightarrow R / I$ is the quotient homomorphism and $i: \operatorname{Im} \phi \rightarrow S$ is the inclusion.

Proof. The standard argument in group theory shows that, defining $\tilde{\phi}: R / I \rightarrow$ $\operatorname{Im} \phi$ by $\tilde{\phi}(r+I)=\phi(r), \tilde{\phi}$ is well-defined and is an isomorphism of abelian groups. It then suffices to check that $\tilde{\phi}$ is a ring homomorphism, which follows from the definition of coset multiplication.

Next we turn to a very general construction of ideals, which is an analogue of the definition of a cyclic subgroup:

Definition 1.10. Let R be a ring and let $r \in R$. The principal ideal generated by r, denoted (r), is the set

$$
\{s r: s \in R\} .
$$

Thus (r) is the set of all multiples of r.
Proposition 1.11. The principal ideal (r) generated by r is an ideal of R containing r. Moreover, if I is any ideal of R and $r \in I$, then $(r) \subseteq I$.

Proof. First, (r) is closed under addition: given $s_{1} r, s_{2} r \in(r), s_{1} r+s_{2} r=$ $\left(s_{1}+s_{2}\right) r \in(r)$. Moreover $r=1 \cdot r \in(r)$. Hence (r) is nonempty, so to show that it is an ideal it suffices to show that the absorbing property holds. Given $s r \in(r)$ and $t \in R, t(s r)=(t s) r \in(r)$. Hence (r) is an ideal of R containing r. Finally, if I is an ideal of R and $r \in I$, then, by the absorbing property, for all $s \in R, s r \in I$. Hence $(r) \subseteq I$.

More generally, if R is a ring and $r_{1}, \ldots, r_{n} \in R$, the ideal generated by $r_{1}, \ldots r_{n}$ is by definition the ideal

$$
\left(r_{1}, \ldots, r_{n}\right)=\left\{\sum_{i=1}^{n} s_{i} r_{i}: s_{i} \in R\right\} .
$$

It is an ideal in R, containing r_{1}, \ldots, r_{n}, and is the smallest ideal in R with this property: I is an ideal of R and $r_{i} \in I$ for all i, then $\left(r_{1}, \ldots, r_{n}\right) \subseteq I$. An
ideal of the form $\left(r_{1}, \ldots, r_{n}\right)$ is called a finitely generated ideal. For many rings R, such as $F\left[x_{1}, \ldots, x_{n}\right]$, every ideal is finitely generated. But therer are interesting rings such as $C^{\infty}(\mathbb{R})$ for which some ideals are not finitely generated.

As an application of this construction, we show the following:
Proposition 1.12. Let R be a ring such that $R \neq\{0\}$. Then R is a field \Longleftrightarrow every ideal of R is either $\{0\}$ or R.

Proof. We have seen the implication \Longrightarrow in Part 2 of Example 1.5. To see the \Longleftarrow direction, suppose that $R \neq\{0\}$ and that every ideal of R is either $\{0\}$ or R. We must show that, if $r \in R$ and $r \neq 0$, then r is invertible. Consider the principal ideal (r). This is an ideal and it is not equal to $\{0\}$ since $r \in(r)$ and $r \neq 0$. Then by hypothesis $(r)=R$. In particular, $1 \in(r)$. Thus, there exists $s \in R$ such that $s r=1$. Hence r is a unit.

2 Prime ideals and maximal ideals

Finally, we want to know when a ring of the form R / I is an integral domain or a field.

Definition 2.1. Let R be a ring. An ideal I in R is a prime ideal if $I \neq R$ and, for all $r, s \in R$, if $r s \in I$ then either $r \in I$ or $s \in I$. Equivalently, I is a prime ideal if $I \neq R$ and, for all $r, s \in R$, if $r \notin I$ and $s \notin I$, then $r s \notin I$.
Proposition 2.2. Let R be a ring and let I be an ideal in R. Then R / I is an integral domain if and only if I is a prime ideal.

Proof. First note that $I \neq R \Longleftrightarrow R / I \neq\{0\}$, so it is enough to show that the condition that for all $r, s \in R$, if $r s \in I$ then either $r \in I$ or $s \in I$ is equivalent to the statement that R / I has no divisors of zero. But R / I has no divisors of zero \Longleftrightarrow for all $r, s \in R$ with $r+I \neq 0=0+I$ and $s+I \neq 0=0+I$, the coset product $r s+I \neq 0+I$. But $r+I \neq 0=0+I$ is equivalent to the statement that $r \notin I$, and similarly for s and $r s$, so the statement that R / I has no divisors of zero is equivalent to the statement that, if $r \notin I$ and $s \notin I$, then $r s \notin I$. Hence R / I is an integral domain \Longleftrightarrow I is a prime ideal.

Definition 2.3. Let R be a ring. An ideal I in R is a maximal ideal if $I \neq R$ and, if J is an ideal in R containing I, then either $J=I$ or $J=R$.

Proposition 2.4. Let R be a ring and let I be an ideal in R. Then R / I is a field if and only if I is a maximal ideal.

Proof. As before, $I \neq R \Longleftrightarrow R / I \neq\{0\}$, so it is enough to show: for all ideals J containing I, either $J=I$ or $J=R \Longleftrightarrow$ every nonzero coset $r+I \in R / I$ has a multiplicative inverse.
\Longrightarrow Suppose that, for all ideals J containing I, either $J=I$ or $J=R$. Let $r+I$ be a nonzero coset in R / I; equivalently, $r \notin I$. Consider the set

$$
J=\{s+t r: s \in I, t \in r\} .
$$

Then we claim that J is an ideal of R containing I and r. In fact, J is the ideal sum $I+(r)$ as defined in the homework, and thus is an ideal. To check this directly, note that J is closed under addition since, given $s_{1}+t_{1} r, s_{2}+t_{2} r \in J$,

$$
\left(s_{1}+t_{1} r\right)+\left(s_{2}+t_{2} r\right)=\left(s_{1}+s_{2}\right)+\left(t_{1}+t_{2}\right) r \in J,
$$

and, for all $w \in R, s+\operatorname{tr} \in J$,

$$
w(s+t r)=(w s)+(w t) r \in J .
$$

Finally, taking s an arbitrary element of I and $t=0$, we see that $I \subseteq J$, and taking $s=0, t=1$, we see that $r \in J$. Thus $J \neq I$, and so $J=R$. In particular, there exist $s \in I$ and $t \in R$ such that $1=s+t r$. Thus $1 \in(r+I)(t+I)$, so by definition of coset multiplication $(r+I)(t+I)=1+I$. Hence $r+I$ has a multiplicative inverse.
\Longleftarrow : We must show that, if every nonzero coset $r+I \in R / I$ has a multiplicative inverse and J is an ideal of R such that $I \subseteq J$ and $J \neq I$, then $J=R$, or equivalently that $1 \in J$. Since $J \neq I$, there exists $r \in J$, $r \notin I$. Then $r+I$ is not the zero coset, so there exists $s \in I$ such that $(r+I)(s+I)=r s+I=1+I$. Equivalently, $r s=1+t$, where $t \in I$. Then, since $r \in J$, rs $\in J$, and since $I \subseteq J, t \in J$ and hence $r s+t \in J$. Thus $1 \in J$, so that $J=R$.

Corollary 2.5. A maximal ideal is a prime ideal.
Proof. This follows since a field is an integral domain.
Example 2.6. 1) A ring $R \neq\{0\}$ is an integral domain $\Longleftrightarrow(0)=\{0\}$ is a prime ideal. Indeed, in this case R is an an integral domain \Longleftrightarrow for all $r, s \in R, r s \in(0)$, i.e. $r s=0, \Longleftrightarrow$ either $r=0$ or $s=0$, i.e. $r \in(0)$ or $s \in(0), \Longleftrightarrow(0)$ is a prime ideal. Likewise, by Proposition 1.12, $R \neq\{0\}$ is a field $\Longleftrightarrow(0)$ is a maximal ideal.
2) In \mathbb{Z}, an ideal $(n)=\langle n\rangle$, where $n \geq 0$, is a prime ideal if and only if $n=0$ or $n=p$ is a prime number. It is a maximal ideal if and only if $n=p$ is a
prime number. To see this last statement, note in general that, for $n \in \mathbb{Z}$ and $a \in \mathbb{Z}, a \in(n) \Longleftrightarrow n$ divides a. Suppose that (p) is contained in an ideal J of \mathbb{Z}. Since J is in particular an additive subgroup, it is cyclic, and so $J=\langle n\rangle=(n)$ for some $n \geq 0$. Then n divides p. Then either $n=1$, in which case $(n)=(1)=\mathbb{Z}$, or $n=p$, in which case $(n)=(p)$. It then follows that (p) is also a prime ideal; of course, it is easy to check this directly, using the basic fact that, if a prime p divides a product of two integers r, s, then it divides at least one of r, s.

Conversely, if $n \in \mathbb{N}$ is not a prime, then it is easy to see that (n) is not a prime ideal and hence is not maximal: writing $n=a b$ with $1<a<n$, $1<b<n$, it follows that $a b \in(n)$ but neither a nor b lies in (n). Hence (n) is not a prime ideal.
3) If F is a field and $R=F\left[x_{1}, x_{2}\right]$, then the ideals (0) and (x_{1}) are prime ideals in R but are not maximal, whereas $\left(x_{1}, x_{2}\right)$ is a maximal ideal in R (it is the kernel of the surjective homomorphism $\mathrm{ev}_{0,0}: F\left[x_{1}, x_{2}\right] \rightarrow F$). However, it is easy to see that $\left(x_{1}, x_{2}\right)$ is not a principal ideal, i.e. is not of the form (f) for some $f \in F\left[x_{1}, x_{2}\right]$. This says in particular that there is no polynomial f such that x_{1} and x_{2} are both multiples of f.

