Integral Domains

As always in this course, a ring R is understood to be a commutative ring with unity.

1 First definitions and properties

Definition 1.1. Let R be a ring. A divisor of zero or zero divisor in R is an element $r \in R$, such that there exists an $s \in R$ with $s \neq 0$ and $r s=0$. Thus, for example, 0 is always a zero divisor.

Example: in $\mathbb{Z} / 6 \mathbb{Z}, 0=2 \cdot 3$, hence both 2 and 3 are divisors of zero.
One way to find divisors of zero is as follows:
Definition 1.2. Let R be a ring. A nilpotent element of R is an element r, such that there exists an $n \in \mathbb{N}$ such that $r^{n}=0$. Note that 0 is allowed to be nilpotent.

Lemma 1.3. Let R be a ring and let $r \in R$ be nilpotent. Then r is a zero divisor.

Proof. The set of $n \in \mathbb{N}$ such that $r^{n}=0$ is nonempty, so let m be the smallest such natural number. Note that, if $m=1, r=0$ and hence is a divisor of zero. Otherwise, $0<m-1<m$, so by assumption $r^{m-1} \neq 0$. Hence $r \cdot r^{m-1}=r^{m}=0$, with $r^{m-1} \neq 0$, so that r is a divisor of zero.

Example: in $\mathbb{Z} / 16 \mathbb{Z}, 0=2^{4}=2 \cdot 2^{3}$, hence 2 is a divisor of zero. But in $\mathbb{Z} / 6 \mathbb{Z}$, neither 2 nor 3 is nilpotent, so there are examples of divisors of zero which are not nilpotent.

Definition 1.4. A ring R is an integral domain if $R \neq\{0\}$, or equivalently $1 \neq 0$, and such that r is a zero divisor in $R \Longleftrightarrow r=0$. Equivalently, a nonzero ring R is an integral domain \Longleftrightarrow for all $r, s \in R$ with $r \neq 0$, $s \neq 0$, the product $r s \neq 0 \Longleftrightarrow$ for all $r, s \in R$, if $r s=0$, then either $r=0$ or $s=0$.

Definition 1.5. Let R be a ring. The cancellation law holds in R if, for all $r, s, t \in R$ such that $t \neq 0$, if $t r=t s$, then $r=s$.

Lemma 1.6. A ring $R \neq\{0\}$ is an integral domain \Longleftrightarrow the cancellation law holds in R.

Proof. $\Longrightarrow:$ if $t r=t s$ and $t \neq 0$, then $t r-t s=t(r-s)=0$. Since $t \neq 0$ and R is an integral domain, $r-s=0$ so that $r=s$.
\Longleftarrow : Suppose that $r s=0$. We must show that either r or s is 0 . If $r \neq 0$, then apply cancellation to $r s=0=r 0$ to conclude that $s=0$.

The following are examples of integral domains:

1. A field is an integral domain. In fact, if F is a field, $r, s \in F$ with $r \neq 0$ and $r s=0$, then $0=r^{-1} 0=r^{-1}(r s)=\left(r^{-1} r\right) s=1 s=s$. Hence $s=0$. (Recall that $1 \neq 0$ in a field, so the condition that $F \neq 0$ is automatic.) This argument also shows that, in any ring $R \neq 0$, a unit is not a zero divisor.
2. If S is an integral domain and $R \leq S$, then R is an integral domain. In particular, a subring of a field is an integral domain. (Note that, if $R \leq S$ and $1 \neq 0$ in S, then $1 \neq 0$ in R.) Examples: any subring of \mathbb{R} or \mathbb{C} is an integral domain. Thus for example $\mathbb{Z}[\sqrt{2}], \mathbb{Q}(\sqrt{2})$ are integral domains.
3. For $n \in \mathbb{N}$, the ring $\mathbb{Z} / n \mathbb{Z}$ is an integral domain $\Longleftrightarrow n$ is prime. In fact, we have already seen that $\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$ is a field, hence an integral domain. Conversely, if n is not prime, say $n=a b$ with $a, b \in \mathbb{N}$, then, as elements of $\mathbb{Z} / n \mathbb{Z}, a \neq 0, b \neq 0$, but $a b=n=0$. Hence $\mathbb{Z} / n \mathbb{Z}$ is not an integral domain.
4. If R is an integral domain, then, as we shall see in a minute, $R[x]$ is an integral domain. Hence, by induction, $R\left[x_{1}, \ldots, x_{n}\right]$ is an integral domain if R is an integral domain. In particular, if F is a field, $F\left[x_{1}, \ldots, x_{n}\right]$ is an integral domain, as is $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.

To prove the last statement (4) above, we show in fact:
Lemma 1.7. Let R be an integral domain. Then, if $f, g \in R[x]$ are both nonzero, then $f g \neq 0$ and $\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g$.
Proof. Let $d=\operatorname{deg} f$ and $e=\operatorname{deg} g$. Then $f=\sum_{i=0}^{d} a_{i} x^{i}$ and $g=\sum_{j=0}^{e} b_{j} x^{j}$ with $a_{d}, b_{e} \neq 0$. Since $a_{d} b_{e} \neq 0$, the leading term of $f g$ is $a_{d} b_{e} x^{d+e}$. Hence $f g \neq 0$ and $\operatorname{deg}(f g)=d+e=\operatorname{deg} f+\operatorname{deg} g$.

Corollary 1.8. Let R be an integral domain. Then the group of units $(R[x])^{*}$ in the polynomial ring $R[x]$ is just the group of units R^{*} in R (viewed as constant polynomials).

Proof. Clearly, if u is a unit in R, then it is a unit in $R[x]$, so that $R^{*} \subseteq$ $(R[x])^{*}$. Conversely, if $f \in(R[x])^{*}$, then there exists a $g \in R[x]$ such that $f g=1$. Clearly, neither f nor g is the zero polynomial, and hence

$$
0=\operatorname{deg} 1=\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g .
$$

Thus, $\operatorname{deg} f=\operatorname{deg} g=0$, so that f, g are elements of R and clearly they are units in R. Hence $f \in R^{*}$, so that $(R[x])^{*} \subseteq R^{*}$. It follows that $(R[x])^{*}=R^{*}$.

The corollary fails if the ring R has nonzero nilpotent elements. For example, in $(\mathbb{Z} / 4 \mathbb{Z})[x]$,

$$
(1+2 x)(1+2 x)=(1+2 x)^{2}=1+4 x+4 x^{2}=1
$$

so that $1+2 x$ is a unit in $(\mathbb{Z} / 4 \mathbb{Z})[x]$.
Finally, we note the following:
Proposition 1.9. A finite integral domain R is a field.
Proof. Suppose $r \in R$ with $r \neq 0$. The elements $1=r^{0}, r, r^{2}, \ldots$ cannot all be different, since otherwise R would be infinite. Hence there exist $0 \leq n<$ m with $r^{n}=r^{m}$. Writing $m=n+k$ with $k \geq 1$, we see that $r^{n}=r^{m}=$ $r^{n+k}=r^{n} r^{k}$. By induction, since R is an integral domain and $r \neq 0, r^{n} \neq 0$ for all $n \geq 0$. Applying cancellation to $r^{n}=r^{n} \cdot 1=r^{n} r^{k}$ gives $r^{k}=1$. Finally since $r^{k}=r \cdot r^{k-1}$, we see that r is invertible, with $r^{-1}=r^{k-1}$.

2 The characteristic of an integral domain

Let R be an integral domain. As we have seen in the homework, the function $f: \mathbb{Z} \rightarrow R$ defined by $f(n)=n \cdot 1$ is a ring homomorphism and its image is $\langle 1\rangle$, the cyclic subgroup of $(R,+)$ generated by 1 . There are two possibilities:
(1) 1 has finite order n, in which case $\langle 1\rangle \cong \mathbb{Z} / n \mathbb{Z}$, or (2) 1 has infinite order, in which case $\langle 1\rangle \cong \mathbb{Z}$.

Proposition 2.1. With notation as above,
(i) If 1 has finite order n, then $n=p$ is a prime number, and every nonzero element of R has order p.
(ii) If 1 has infinite order, then every nonzero element of R has infinite order.

Proof. (i) By definition, n is the smallest positive integer such that $n \cdot 1=0$. If $n=a b$, where $a, b \in \mathbb{N}$, then (using homework) $0=n \cdot 1=(a \cdot 1)(b \cdot 1)$. Since R is an integral domain, one of $a \cdot 1, b \cdot 1$ is 0 . Say $a \cdot 1=0$. Then $a \geq n$, but since a divides n, we must have $a=n$. Hence in every factorization of n, one of the factors is n, so by definition n is a prime p. Moreover, for every $r \in R, p \cdot r=(p \cdot 1) r=0$, so that the order of r divides p. If $r \neq 0$, then its order is greater than 1 , hence must equal p.
(ii) Let $r \in R$, and suppose that r has (finite) order $n \in \mathbb{N}$, so that $n \cdot r=0$. As in the proof of (i), write $n \cdot r=(n \cdot 1) r$. Since 1 has infinite order, $n \cdot 1 \neq 0$, and hence $r=0$. Thus, if $r \neq 0$, then $n \cdot r \neq 0$ for every $n \in \mathbb{N}$. Thus r has infinite order.

Definition 2.2. Let R be an integral domain. If $1 \in R$ has infinite order, we say that the characteristic of R is zero. If $1 \in R$ has finite order, necessarily a prime p, we say that the characteristic of R is p. In either case we write char R for the characteristic of R, so that char R is either 0 or a prime number.

Examples: Clearly, the characteristic of \mathbb{Z} is 0 . Also, if R and S are integral domains with $R \leq S$, then clearly char $R=$ char S. Thus char \mathbb{Q}, char \mathbb{R}, char \mathbb{C}, char $\mathbb{Q}(\sqrt{2})$, etc. are all 0 . On the other hand, the characteristic of $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ is p. Thus, the characteristic of $\mathbb{F}_{p}[x]$ is also p, so that $\mathbb{F}_{p}[x]$ is an example of an infinite integral domain with characteristic $p \neq 0$, and $\mathbb{F}_{p}[x]$ is not a field. (Note however that a finite integral domain, which automatically has positive characteristic, is always a field.)

3 The field of quotients of an integral domain

We first begin with some general remarks about fields. If F is a field and $r, s \in F$ with $s \neq 0$, we write (as usual) $r s^{-1}=r / s$. Note that $r / s=t / w$ $\Longleftrightarrow r w=s t$, since $r w=(s w) r / s$ and $s t=(s w) t / w$, and by cancellation. Then the laws for adding and multiplying fractions are forced by associativity and distributivity in F : for example,

$$
\begin{aligned}
r / s+t / w & =r s^{-1}+t w^{-1}=(r w)(s w)^{-1}+(t s)(s w)^{-1} \\
& =(r w+t s)(s w)^{-1}=(r w+t s) /(s w)
\end{aligned}
$$

Now suppose that R is an integral domain. We would like to enlarge R to a field, in much the same way that we enlarge \mathbb{Z} to \mathbb{Q}. To this end, we construct a set whose elements are "fractions" r / s with $r, s \in R$ and $s \neq 0$. Two fractions r / s and t / w are identified if, as in the discussion above for fields, $r w=s t$. The correct way to say this is via equivalence classes: on the set $R \times(R-\{0\})$, define the relation \sim on pairs (r, s) by: $(r, s) \sim(t, w)$ $\Longleftrightarrow r w=s t$.

Lemma 3.1. \sim is an equivalence relation.
Proof. We must show \sim is reflexive, symmetric, and transitive. Reflexive: $(r, s) \sim(r, s) \Longleftrightarrow r s=s r$, which holds since R is commutative. Symmetric: $(r, s) \sim(t, w) \Longleftrightarrow r w=s t$, in which case $t s=w r$, hence $(t, w) \sim(r, s)$. Transitive (it is here that we use the fact that R is an integral domain): suppose that $(r, s) \sim(t, w)$ and that $(t, w) \sim(u, v)$, with $s, w, v \neq 0$. By definiton $r w=s t$ and $t v=w u$. Then $r w v=s t v=s w u$, hence $w(r v)=w(s u)$. Since $w \neq 0$ and R is an integral domain, $r v=s u$, hence $(r, s) \sim(u, v)$. Thus \sim is transitive.

Define $Q(R)$, the field of quotients of R, to be the set of equivalence classes $(R \times(R-\{0\})) / \sim$. Next we need operations of addition and multiplication on $Q(R)$. As is usually the case with equivalence relations, we define these operations by defining them on representative of equivalence classes, and then check that the operations are in fact well-defined. Define

$$
[(r, s)]+[(t, w)]=[(r w+s t, s w)] ; \quad[(r, s)] \cdot[(t, w)]=[(r t, s w)] .
$$

Lemma 3.2. Let \sim and $Q(R)$ be as above.
(i) The operations of addition and multiplication are well-defined.
(ii) $(Q(R),+, \cdot)$ is a field.
(iii) The function $\rho: R \rightarrow Q(R)$ defined by $\rho(r)=[(r, 1)]$ is an injective homomorphism.

Proof. These are all straightforward if sometimes tedious calculations. For example, to see (i), suppose that $(r, s) \sim\left(r^{\prime}, s^{\prime}\right)$. We shall show that ($r w+$ $s t, s w) \sim\left(r^{\prime} w+s^{\prime} t, s^{\prime} w\right)$ and that $(r t, s w) \sim\left(r^{\prime} t, s^{\prime} w\right)$. By definition, $r s^{\prime}=$ $s r^{\prime}$. Then

$$
\begin{aligned}
(r w+s t)\left(s^{\prime} w\right) & =r w s^{\prime} w+s t s^{\prime} w=\left(r s^{\prime}\right)\left(w^{2}\right)+\left(s s^{\prime}\right)(t w) \\
& =\left(r^{\prime} s\right)\left(w^{2}\right)+\left(s s^{\prime}\right)(t w)=\left(r^{\prime} w+s^{\prime} t\right)(s w)
\end{aligned}
$$

Hence $(r w+s t, s w) \sim\left(r^{\prime} w+s^{\prime} t, s^{\prime} w\right)$. Moreover,

$$
(r t)\left(s^{\prime} w\right)=\left(r s^{\prime}\right)(t w)=\left(r^{\prime} s\right)(t w)=\left(r^{\prime} t\right)(s w) .
$$

Hence $(r t, s w) \sim\left(r^{\prime} t, s^{\prime} w\right)$. Similarly, if $(t, w) \sim\left(t^{\prime}, w^{\prime}\right)$, then $(r w+s t, s w) \sim$ $\left(r w^{\prime}+s t^{\prime}, s w^{\prime}\right)$ and that $(r t, s w) \sim\left(r t^{\prime}, s w^{\prime}\right)$.

To see (ii), we must show first that ($Q(R),+$) is an abelian group and that multiplication is associative, commutative, and distributes over addition. These are all completely straightforward if long computations. Note that $[(0,1)]=[(0, r)]$ is the additive identity, that $[(r, s)] \sim[(0,1)] \Longleftrightarrow r=0$, and that $[(1,1)]=[(r, r)]$ is a multiplicative identity. Finally, if $[(r, s)] \neq$ $[(0,1)]$, so that $r \neq 0$, then $[(s, r)] \in Q(R)$ and $[(r, s)][(s, r)]=[(r s, r s)]=$ $[(1,1)]$. Thus $Q(R)$ is a field.

To see (iii), defining $\rho(r)=[(r, 1)]$, we see that

$$
\begin{aligned}
\rho(r+s) & =[(r+s, 1)]=[(r, 1)]+[(s, 1)]=\rho(r)+\rho(s) ; \\
\rho(r s) & =[(r s, 1)]=[(r, 1)][(s, 1)]=\rho(r) \rho(s) .
\end{aligned}
$$

Thus ρ is a homomorphism. It is injective since $\rho(r)=\rho(s) \Longleftrightarrow(r, 1) \sim$ $(s, 1) \Longleftrightarrow r=s$.

From now on we write $[(r, s)]$ as r / s or as $r s^{-1}$ and identify $r \in R$ with its image $r / 1 \in Q(R)$. In this way we view R as a subring of $Q(R)$.

Example: 1) let F be a field and $F[x]$ the polynomial ring with coefficients in F. Then we denote $Q(F[x])$ by $F(x)$. By definition, the elements of $F(x)$ are quotients f / g, where f, g are polynomials with coefficients in F. We call $F(x)$ the field of rational functions with coefficients in F. In particular, taking $F=\mathbb{F}_{p}$, the field of rational functions $\mathbb{F}_{p}(x)$ is an example of an infinite field (since it contains a subring isomorphic to the polynomial ring $\mathbb{F}_{p}[x]$, which is infinite), whose characteristic is $p>0$.
2) If $R=F$ is already a field, then $(r, s) \sim\left(r s^{-1}, 1\right)$. Thus the injective homomorphism ρ is also surjective, hence an isomorphism, so that $Q(F) \cong$ F.

Remark: In the field of quotients $\mathbb{Q}=Q(\mathbb{Z})$ of \mathbb{Z}, we can always put a fraction n / m in lowest terms, i.e. we can assume that $\operatorname{gcd}(n, m)=1$. This says that the equivalence class $[(n, m)$] has a "best" representative, if we require in addition, say, that $m>0$. Such a choice depends on results about factorization in \mathbb{Z}, and is not possible in a general integral domain.

Finally, we show that $Q(R)$ has a very general property with respect to injective homomorphisms from R to a field:

Proposition 3.3. Let R be an integral domain, F a field, and $\phi: R \rightarrow F$ be an injective homomorphism. Then there exists a unique injective homomorphism $\tilde{\phi}: Q(R) \rightarrow F$ such that $\tilde{\phi}(r / 1)=\phi(r)$. Finally, if every element of F is of the form $\phi(r) / \phi(s)$ for some $r, s \in R$ with $s \neq 0$, then $\tilde{\phi}: Q(R) \rightarrow F$ is an isomorphism, and in particular $Q(R) \cong F$.

Proof. Clearly, if $\tilde{\phi}$ exists, then we must have

$$
\tilde{\phi}(r / s)=\tilde{\phi}\left(r s^{-1}\right)=\tilde{\phi}(r) \tilde{\phi}\left(s^{-1}\right)=\tilde{\phi}(r) \tilde{\phi}(s)^{-1}=\tilde{\phi}(r) / \tilde{\phi}(s)=\phi(r) / \phi(s) .
$$

(Here we have used the fact, which is easy to check, that $\tilde{\phi}\left(s^{-1}\right)=\tilde{\phi}(s)^{-1}$.) This proves that $\tilde{\phi}$ is unique, if it exists. Conversely, we try to define $\tilde{\phi}$ by the formula

$$
\tilde{\phi}(r / s)=\phi(r) / \phi(s)
$$

Here r / s is shorthand for the equivalence class $[(r, s)] \in Q(R)$, and the fraction $\phi(r) / \phi(s)=\phi(r) / \phi(s)^{-1}$ is well-defined in F since, as ϕ is injective and $s \neq 0, \phi(s) \neq 0$. We must first show that $\tilde{\phi}$ is well-defined, i.e. independent of the choice of representative $(r, s) \in[(r, s)]$. Choosing another representative $\left(r^{\prime}, s^{\prime}\right) \in[(r, s)]$, we have by definition $r s^{\prime}=r^{\prime} s$. Hence $\phi\left(r s^{\prime}\right)=\phi(r) \phi\left(s^{\prime}\right)=\phi\left(r^{\prime} s\right)=\phi\left(r^{\prime}\right) \phi(s)$. Dividing by $\phi(s) \phi\left(s^{\prime}\right)$ gives

$$
\phi(r) / \phi(s)=\phi(r) \phi\left(s^{\prime}\right) / \phi(s) \phi\left(s^{\prime}\right)=\phi\left(r^{\prime}\right) \phi(s) / \phi(s) \phi\left(s^{\prime}\right)=\phi\left(r^{\prime}\right) / \phi\left(s^{\prime}\right) .
$$

Hence $\tilde{\phi}(r / s)=\phi(r) / \phi(s)$ is independent of the choice of representative $(r, s) \in[(r, s)]$. It is then straightforward to check that $\tilde{\phi}$ is a (ring) isomorphism. To see that it is injective, suppose that $\tilde{\phi}(r / s)=\tilde{\phi}\left(r^{\prime} / s^{\prime}\right)$. Then $\phi(r) / \phi(s)=\phi\left(r^{\prime}\right) / \phi\left(s^{\prime}\right)$, and hence

$$
\phi\left(r s^{\prime}\right)=\phi(r) \phi\left(s^{\prime}\right)=\phi\left(r^{\prime}\right) \phi(s)=\phi\left(r^{\prime} s\right) .
$$

Since ϕ is injective, $r s^{\prime}=r^{\prime} s$, and hence $r / s=r^{\prime} / s^{\prime}$. Thus $\tilde{\phi}$ is injective. (In fact, this is a general property of ring homomorphisms where the domain is a field.) Finally, if every element of F is of the form $\phi(r) / \phi(s)$ for some $r, s \in R$ with $s \neq 0$, then $\tilde{\phi}$ is also surjective, hence an isomorphism.

Here is a typical way we might apply the proposition:
Lemma 3.4. Let R be an integral domain with field of quotients $Q(R)$. Then $Q(R[x])$, the field of quotients of the integral domain $R[x]$, is isomorphic to $Q(R)(x)$, the field of rational functions with coefficients in $Q(R)$.

Proof. Since R is isomorphic to a subring of $Q(R)$, there is a natural homomorphism from $R[x]$ to $Q(R)[x]$, and since $Q(R)[x]$ is isomorphic to a subring of its field of quotients $Q(R)(x)$, there is an injective homomorphism from $R[x]$ to $Q(R)(x)$, which amounts to viewing a polynomial with coefficients in R as a particular example of a rational function with coefficients in $Q(R)$. Hence, by the proposition, there is an injective homomorphism $Q(R[x]) \rightarrow Q(R)(x)$. To see that it is surjective, it suffices to show that every rational function with coefficients in $Q(R)$ is a quotient of two polynomials with coefficients in R. Given such a quotient f / g, suppose that $f=\sum_{i=0}^{n} a_{i} x^{i}$ and $g=\sum_{j=0}^{m} b_{j} x^{j}$, with $a_{i}, b_{j} \in Q(R)$. Then $a_{i}=r_{i} / s_{i}$ with $r_{i}, s_{i} \in R$ and $s_{i} \neq 0$. Likewise, $b_{j}=t_{j} / w_{j}$ with $t_{j}, w_{j} \in R$ and $w_{j} \neq 0$. We then proceed to "clear denominators" in the coefficients: Let $N=s_{0} \cdots \cdot s_{n} \cdot w_{0} \cdots \cdots w_{m}=\prod_{i=0}^{n} s_{i} \cdot \prod_{j=0}^{m} w_{j}$. Then $N\left(r_{k} / s_{k}\right)=r_{k} \prod_{i \neq k} s_{i} \cdot \prod_{j=0}^{m} w_{j} \in R$, and similarly $N\left(t_{j} / w_{j}\right) \in R$. Clearly $N f \in R[x]$ and $N g \in R[x]$. Thus

$$
\frac{f}{g}=\frac{f}{g} \cdot \frac{N}{N}=\frac{N f}{N g}
$$

It then follows that $f / g=N f / N g$ is a quotient of two polynomials with coefficients in R. Hence $Q(R[x]) \cong Q(R)(x)$.

Another application of Proposition 3.3 is as follows: let F be a field of characteristic 0 . As we have seen in the homework, the function $f: \mathbb{Z} \rightarrow$ F defined by $f(n)=n \cdot 1$ is a ring homomorphism. If char $F=0$, the homomorphism f is injective. Hence by Proposition 3.3 there is an induced homomorphism $\tilde{f}: \mathbb{Q} \rightarrow F$. Its image is the set of all quotients in F of the form $n \cdot 1 / m \cdot 1$, with $m \neq 0$. In particular, the image of \tilde{f} is a subfield of F isomorphic to \mathbb{Q}. Thus every field of characteristic 0 contains a subfield isomorphic to \mathbb{Q}, called the prime subfield. It is the smallest subfield of F, hence unique, and it can be described by starting with 1 and making sure that we can perform the operations of addition and subtraction and then automatically multiplication (to get the subring isomorphic to \mathbb{Z}), and finally division to get the subfield isomorphic to \mathbb{Q}. Here "prime" has nothing to do with prime numbers but simply means that the field \mathbb{Q} is a basic, indivisible object.

A similar statement holds if F is a field of positive characteristic, say char $F=p$ where p is a prime number. In this case, the function $f: \mathbb{Z} \rightarrow F$ defined by $f(n)=n \cdot 1$ is still a ring homomorphism, but its kernel is $\langle p\rangle$ and hence its image, as an abelian group, is isomorphic to $\mathbb{Z} / p \mathbb{Z}$. The fact that f is a ring homomorphism implies that the image of f, as a ring, is
isomorphic to $\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$. Thus, every field of characteristic p contains a subfield isomorphic to \mathbb{F}_{p}, again called the prime subfield. The fields \mathbb{Q} and \mathbb{F}_{p} are more generally called prime fields. They contain no proper subfields, and every field F contains a unique subfield isomorphic either to \mathbb{Q}, if char $F=0$, or to \mathbb{F}_{p}, if char $F=p$.

