Polynomials

1 More properties of polynomials

Recall that, for R a commutative ring with unity (as with all rings in this course unless otherwise noted), we define $R[x]$ to be the set of expressions $\sum_{i=0}^{n} a_{i} x^{i}$, where $a_{i} \in R$, with the understanding that two such expressions agree if they differ by terms of the form $0 x^{k}$. Alternatively, we could identify a polynomial with an infinite sequence a_{0}, a_{1}, \ldots, such that $a_{i} \in R$ and only finitely many of the a_{i} are non-zero. Addition and multiplication of polynomials are defined as follows:

$$
\begin{aligned}
\sum_{i} a_{i} x^{i}+\sum_{i} b_{i} x^{i} & =\sum_{i}\left(a_{i}+b_{i}\right) x^{i} ; \\
\left(\sum_{i} a_{i} x^{i}\right)\left(\sum_{i} b_{i} x^{i}\right) & =\sum_{k}\left(\sum_{i+j=k} a_{i} b_{j}\right) .
\end{aligned}
$$

Note that, with this definition, $x^{i} x^{j}=x^{i+j}$, and hence $x^{i}=\underbrace{x \cdot x \cdots x}_{i \text { times }}$. Thus the two meanings of x^{i} are consistent. We will use symbols such as f, g, p, q for polynomials, unlike the more usual notations $f(x)$, etc. in order to emphasize that polynomials are formal or symbolic objects. We will discuss the various ways in which we can think of polynomials as functions later.

It is routine to check that $(R[x],+)$ is an abelian group. To check that it is a ring, we must check that multiplication is associative and commutative, that the left distributive law holds (we don't have to check both laws since multiplication is commutative), and that there is a unity. We will just check associativity. With

$$
f=\sum_{i} a_{i} x^{i} ; \quad g=\sum_{i} b_{i} x^{i} ; \quad h=\sum_{i} c_{i} x^{i},
$$

a calculation shows that

$$
(f g) h=\sum_{\ell}\left(\sum_{i+j+k=\ell}\left(a_{i} b_{j}\right) c_{k}\right) x^{\ell}
$$

and similarly

$$
f(g h)=\sum_{\ell}\left(\sum_{i+j+k=\ell} a_{i}\left(b_{j} c_{k}\right)\right) x^{\ell} .
$$

Thus $(f g) h=f(g h)$ since multiplication in R is associative. Note that R is a subring of $R[x]$, with

$$
r\left(\sum_{i} a_{i} x^{i}\right)=\sum_{i} r a_{i} x^{i}
$$

and in particular $1 \in R$ is the unity in $R[x]$.
Remark 1.1. The definition of addition and multiplication in $R[x]$ is essentially forced by requiring associativity, commutativity, and distributivity. For example, we must have $a x^{i}+b x^{i}=(a+b) x^{i}$. Likewise, we must have $\left(a x^{i}\right)\left(b x^{i}\right)=a b x^{i+j}$, provided that we interpret x^{i} as $(x)^{i}$, the product of the ring element x with itself i times.

As previously stated, the degree of a polynomial $f=\sum_{i} a_{i} x^{i}$ is the largest integer d such that $a_{d} \neq 0$. The degree of the zero polynomial 0 is undefined. Note that, if $a \in R, a \neq 0$, then $\operatorname{deg} a=0$, and in fact the subring R of $R[x]$ is given by

$$
R=\{f \in R[x]: \operatorname{deg} f=0 \text { or } f=0\} .
$$

We shall sometimes refer to the elements of R as constant polynomials or constants.

If $f=\sum_{i=0}^{d} a_{i} x^{i}$ is a polynomial of degree d and $g=\sum_{i=0}^{e} b_{i} x^{i}$ is a polynomial of degree e and, say, $d>e$, then clearly the degree of $f+g$ is d. But if f and g both have the same degree d, the term $\left(a_{d}+b_{d}\right) x^{d}$ might be 0 , if $b_{d}=-a_{d}$, and hence in this case $\operatorname{deg}(f+g)<d$, or is undefined if $g=-f$. Thus, if $f, g, f+g \neq 0$, then

$$
\operatorname{deg}(f+g) \leq \max (\operatorname{deg} f, \operatorname{deg} g)
$$

Similarly, if f and g are as above, then the highest degree term of $f g$ is $a_{d} b_{e} x^{d+e}$, unless $a_{d} b_{e}=0$. Hence, if $f, g, f g \neq 0$, then

$$
\operatorname{deg}(f g) \leq \operatorname{deg} f+\operatorname{deg} g
$$

Example 1.2. In $(\mathbb{Z} / 6 \mathbb{Z})[x]$,

$$
(2 x+1)\left(3 x^{2}+1\right)=3 x^{2}+2 x+1
$$

since the "leading term" $(2 x)\left(3 x^{2}\right)=0$, and hence the product does not have the expected degree $1+2=3$. Even worse, $2\left(3 x^{2}+3\right)=0$.

In $(\mathbb{Z} / 4 \mathbb{Z})[x],(2 x+1)^{2}=4 x^{2}+4 x+1=1$. Thus, not only does $(2 x+1)^{2}$ not have the expected degree, but we also see that $2 x+1$ is a unit, i.e. there are rings R such that the group of units $(R[x])^{*}$ is larger than the units R^{*} in R.

Polynomials in several variables can be defined similarly. For example, an element of $R\left[x_{1}, x_{2}\right]$, i.e. a polynomial in the two variables x_{1}, x_{2}, is an expression of the form $\sum_{i, j \geq 0} a_{i j} x_{1}^{i} x_{2}^{j}$, where the $a_{i j} \in R$, and only finitely many are nonzero. By grouping such terms in powers of x_{2}, we see that $R\left[x_{1}, x_{2}\right] \cong R\left[x_{1}\right]\left[x_{2}\right]$. In other words, a polynomial in x_{1} and x_{2} is the same thing as a polynomial in x_{2} whose coefficients are polynomials in x_{1}. Similarly $R\left[x_{1}, x_{2}\right] \cong R\left[x_{2}\right]\left[x_{1}\right]$ by grouping in powers of x_{1}. Inductively, we can define polynomials in n variables via

$$
R\left[x_{1}, \ldots, x_{n}\right]=R\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]
$$

2 Polynomials as functions

A polynomial with real coefficients $f=\sum_{i} a_{i} x^{i}$ defines a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by defining $f(t)=\sum_{i} a_{i} t^{i}$. (Typically, we speak of x as the "variable," not just some formal symbol.) We can do the same thing in a general ring: given $r \in R$, we define the evaluation ev_{r} of a polynomial $f=\sum_{i} a_{i} x^{i}$ at r, and write it as $\mathrm{ev}_{r}(f)$ or sometimes as $f(r)$, by the formula

$$
\mathrm{ev}_{r}(f)=\sum_{i} a_{i} r^{i} \in R
$$

Informally, $\mathrm{ev}_{r}(f)$ is obtained from f by "plugging in r for x." In this way, an element $f \in R[x]$ also defines a function from R to R, which we denote by $E(f)$, via the formula

$$
E(f)(r)=f(r)=\operatorname{ev}_{r}(f)
$$

For example, if $a \in R \leq R[x]$ is a constant polynomial, then $\operatorname{ev}_{r}(a)=a$ and $E(f)$ is the constant function from R to itself whose value is always a. Likewise, $\operatorname{ev}_{r}(x)=r$ and $E(x): R \rightarrow R$ is the identity function. To tie this in with ring theory, we have

Proposition 2.1. (i) For all $r \in R$, the function $\mathrm{ev}_{r}: R[x] \rightarrow R$ is a homomorphism.
(ii) The function E is a ring homomorphism from $R[x]$ to R^{R}, the ring of all functions from R to itself (with the operations of pointwise addition and multiplication).

Proof. (i) We must check that, for all $f, g \in R[x]$,

$$
\mathrm{ev}_{r}(f+g)=\mathrm{ev}_{r}(f)+\mathrm{ev}_{r}(g) ; \quad \mathrm{ev}_{r}(f g)=\mathrm{ev}_{r}(f) \mathrm{ev}_{r}(g) .
$$

With $f=\sum_{i} a_{i} x^{i}$ and $g=\sum_{i} b_{i} x^{i}$,

$$
\mathrm{ev}_{r}(f)+\mathrm{ev}_{r}(g)=\sum_{i} a_{i} r^{i}+\sum_{i} b_{i} r^{i}=\sum_{i}\left(a_{i}+b_{i}\right) r^{i}=\mathrm{ev}_{r}(f+g) .
$$

Here of course we can add as many terms of the form $0 x^{k}$ as are needed to make sure that the sums for f and g have the same limits.

For multiplication, with f and g as above,

$$
\begin{aligned}
\operatorname{ev}_{r}(f) \mathrm{ev}_{r}(g) & =\left(\sum_{i} a_{i} r^{i}\right)\left(\sum_{i} b_{i} r^{i}\right)=\sum_{i, j} a_{i} b_{j} r^{i+j}= \\
& =\sum_{k}\left(\sum_{i+j=k} a_{i} b_{j}\right) r^{k}=\operatorname{ev}_{r}(f g) .
\end{aligned}
$$

Finally, $\mathrm{ev}_{r}(1)=1$, so_{r} takes the unity in $R[x]$ to the unity in R.
(ii) We must check that, for all $f, g \in R[x]$,

$$
E(f+g)=E(f)+E(g) ; \quad E(f g)=E(f) E(g)
$$

To check for example that the functions $E(f+g)$ and $E(f)+E(g)$ are equal, we must check that they have the same value at every $r \in$, i.e. that

$$
E(f+g)(r)=(E(f)+E(g))(r)=E(f)(r)+E(g)(r)
$$

for every $r \in R$, where the second equality is just the definition of pointwise addition of functions. By definition, $E(f+g)(r)=\mathrm{ev}_{r}(f+g)=\mathrm{ev}_{r}(f)+$ $\mathrm{ev}_{r}(g)$, by Part (i), and so

$$
E(f+g)(r)=\operatorname{ev}_{r}(f)+\mathrm{ev}_{r}(g)=E(f)(r)+E(g)(r)
$$

as claimed. Finally we must check that $E(1)=1$, where the right hand 1 is the unity in R^{R}. Here $E(1)(r)=\mathrm{ev}_{r}(1)=1$ for all r, and hence $E(1)$ is the constant function $f: R \rightarrow R$ whose value at every $r \in R$ is 1 . This is the unity in R^{R}.

In more down to earth terms, Part (ii) above just says that every polynomial in $R[x]$ defines a function from R to R, and that the operations of polynomial addition and multiplication correspond to pointwise addition and multiplication respectively (and that the constant polynomial 1 corresponds to the constant function 1). One reason (among many) that we want to be somewhat pedantic about this setup is the following observation: For $R=\mathbb{R}$, the homomorphism $E: \mathbb{R}[x] \rightarrow \mathbb{R}^{\mathbb{R}}$ is injective: this just says that a polynomial function determines the polynomial itself (i.e. its coefficients) uniquely. We will give an algebraic argument for this fact, in much more generality, soon. (Of course, the homomorphism $E: \mathbb{R}[x] \rightarrow \mathbb{R}^{\mathbb{R}}$ is definitely not surjective, since most functions from \mathbb{R} to \mathbb{R} are not polynomials.) But for many rings R, the homomorphism $E: R[x] \rightarrow R^{R}$ is not injective. For example, if R is a finite ring, E cannot be injective because $R[x]$ is infinite: there exist nonzero polynomials in every positive degree k. Thus, in this case, E can't be injective because R^{R} is finite. So we cannot simply identify a polynomial with the function that it defines.

There are various generalizations of the homomorphism ev_{r} :

1. In the case of the polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$ in n variables, given $r_{1}, \ldots, r_{n} \in R$, we can evaluate $f \in R\left[x_{1}, \ldots, x_{n}\right]$ at $\left(r_{1}, \ldots, r_{n}\right)$. This gives a homomorphism $\mathrm{ev}_{r_{1}, \ldots, r_{n}}: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow R$, as well as a homomorphism $E: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow R^{R^{n}}$. In other words, a polynomial in n variables defines a function "of n variables,", i.e. a function $R^{n} \rightarrow R$. Note that $\mathrm{ev}_{r_{1}, \ldots, r_{n}}$ can be defined inductively: viewing $R\left[x_{1}, \ldots, x_{n}\right]$ as $R\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]$ and $r_{n} \in R \leq R\left[x_{1}, \ldots, x_{n-1}\right]$, $\mathrm{ev}_{r_{n}}$ is a homomorphism

$$
\mathrm{ev}_{r_{n}}: R\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right] \rightarrow R\left[x_{1}, \ldots, x_{n-1}\right]
$$

and by repeating this construction successively we get

$$
\mathrm{ev}_{r_{1}, \ldots, r_{n}}=\mathrm{ev}_{r_{1}} \circ \cdots \circ \mathrm{ev}_{r_{n}}: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow R
$$

2. Suppose that R is a subring of a ring S and that $s \in S$. Then we can restrict ev_{s} to the subring $R[x]$ of $S[x]$ to define a homomorphism $\mathrm{ev}_{s}: R[x] \rightarrow S$. For example, we might want to evaluate a polynomial with real coefficients on a complex number such as i. As we have seen, the image of ev_{s} is a subring of S, and is denoted $R[s]$. By definition, since $\operatorname{ev}_{s}(a)=a$ for all $a \in R$ and $\operatorname{ev}_{s}(x)=s$, the subring $R[s]$ of S contains R and s. In fact,

$$
R[s]=\left\{\sum_{i} a_{i} s^{i}: a_{i} \in R\right\}
$$

Clearly, every subring of S containing R and s contains s^{i} for all nonnegative integers i, hence contains $a_{i} s^{i}$ for all $a_{i} \in R$ and thus contains $R[s]$. Thus: $R[s]$ is the smallest subring of S containing R and s. For example, the rings $\mathbb{Z}[i], \mathbb{Z}[\sqrt[3]{2}]$ are of this type. Of course, since $i^{2}=-1$, given $a_{n} \in \mathbb{Z}$, we can rewrite $\sum_{n} a_{n} i^{n}$ as a sum only involving actual integers (n even) as well as integers times i (n odd), so every expression of the form $\sum_{n} a_{n} i^{n}$ is actually of the form $a+b i$ where $a, b \in \mathbb{Z}$. A similar remark holds for $\mathbb{Z}[\sqrt[3]{2}]$, using the fact that $(\sqrt[3]{2})^{n}$ is always of the form $a, b \sqrt[3]{2}$, or $c(\sqrt[3]{2})^{2}$ for integers a, b, c depending on whether n is congruent to 0,1 , or $2 \bmod 3$.
More generally, given $s_{1}, \ldots, s_{n} \in S$, we can define

$$
\mathrm{ev}_{s_{1}, \ldots, s_{n}}: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow S
$$

The image of $\mathrm{ev}_{s_{1}, \ldots, s_{n}}$ is a subring of S, denoted by $R\left[s_{1}, \ldots, s_{n}\right]$, and it is the smallest subring of S containing R and s_{1}, \ldots, s_{n}.
3. Suppose that $\varphi: R \rightarrow S$ is a homomorphism. Then we can define a homomorphism from $R[x]$ to $S[x]$, which for simplicity we also denote by φ, by "applying φ to all of the coefficients of f." Explicitly, if $f=\sum_{i} a_{i} x^{i}$, we set $\varphi(f)=\sum_{i} \varphi\left(a_{i}\right) x^{i}$. It is easy to check from the definition of polynomial multiplication and the fact that φ preserves addition and multiplication that $\varphi: R[x] \rightarrow S[x]$ is also a ring homomorphism. We have tacitly used one example of this already: if R is a subring of S, then $R[x]$ is a subring of $S[x]$. For another important example, let $\pi: \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ be the projection of an integer to its congruence class mod n. Then we get a homomorphism $\pi: \mathbb{Z}[x] \rightarrow(\mathbb{Z} / n \mathbb{Z})[x]$, which consists in reducing the coefficients of an integer polynomial $\bmod n$.
4. We can also amalgamate the examples above: given a $\varphi: R \rightarrow S$ and an element $s \in S$, we can define

$$
\mathrm{ev}_{\varphi, s}=\mathrm{ev}_{s} \circ \varphi
$$

In other words, given the polynomial $f \in R[x]$, first apply the homomorphism φ to the coefficients of f to view it as a polynomial in $S[x]$, then evaluate it at s. For example, given a polynomial $f \in \mathbb{Z}[x]$, and using the homomorphism $\pi: \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$, we could look at the polynomial $\pi(f) \in(\mathbb{Z} / n \mathbb{Z})[x]$ and then evaluate it on an element of $\mathbb{Z} / n \mathbb{Z}$.

One general theme of this course is as follows: let F be a field (typically F is $\left.\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_{p}\right)$ and let $f \in F[x]$. Then we want to find a root or zero of f (sometimes we say we want to "solve the equation $f=0$ "). This means we want to find an element $r \in F$ such that $\operatorname{ev}_{r}(f)=f(r)=0$. By experience, such as with the polynomial $x^{2}+1 \in \mathbb{R}[x]$ or $x^{2}-2 \in \mathbb{Q}[x]$, sometimes we cannot find such an r within F. In this case, we look for a larger field E, i..e a field containing F as a subfield, and an element $s \in E$ such that $\mathrm{ev}_{s}(f)=0$. In fact, we shall show that, given any field F and a non-constant polynomial $f \in F[x]$, we can always find a field E containing F as a subfield and an element $\alpha \in E$ such that $f(\alpha)=\operatorname{ev}_{\alpha}(f)=0$.

