
Polynomials

1 More properties of polynomials

Recall that, for R a commutative ring with unity (as with all rings in this
course unless otherwise noted), we define R[x] to be the set of expressions∑n

i=0 aix
i, where ai ∈ R, with the understanding that two such expressions

agree if they differ by terms of the form 0xk. Alternatively, we could identify
a polynomial with an infinite sequence a0, a1, . . . , such that ai ∈ R and
only finitely many of the ai are non-zero. Addition and multiplication of
polynomials are defined as follows:∑

i

aix
i +
∑
i

bix
i =

∑
i

(ai + bi)x
i;

(∑
i

aix
i

)(∑
i

bix
i

)
=
∑
k

 ∑
i+j=k

aibj

 .

Note that, with this definition, xixj = xi+j , and hence xi = x · x · · · · x︸ ︷︷ ︸
i times

.

Thus the two meanings of xi are consistent. We will use symbols such as
f, g, p, q for polynomials, unlike the more usual notations f(x), etc. in order
to emphasize that polynomials are formal or symbolic objects. We will
discuss the various ways in which we can think of polynomials as functions
later.

It is routine to check that (R[x],+) is an abelian group. To check that it
is a ring, we must check that multiplication is associative and commutative,
that the left distributive law holds (we don’t have to check both laws since
multiplication is commutative), and that there is a unity. We will just check
associativity. With

f =
∑
i

aix
i; g =

∑
i

bix
i; h =

∑
i

cix
i,
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a calculation shows that

(fg)h =
∑
`

 ∑
i+j+k=`

(aibj)ck

x`,

and similarly

f(gh) =
∑
`

 ∑
i+j+k=`

ai(bjck)

x`.

Thus (fg)h = f(gh) since multiplication in R is associative. Note that R is
a subring of R[x], with

r

(∑
i

aix
i

)
=
∑
i

raix
i,

and in particular 1 ∈ R is the unity in R[x].

Remark 1.1. The definition of addition and multiplication in R[x] is es-
sentially forced by requiring associativity, commutativity, and distributivity.
For example, we must have axi + bxi = (a + b)xi. Likewise, we must have
(axi)(bxi) = abxi+j , provided that we interpret xi as (x)i, the product of
the ring element x with itself i times.

As previously stated, the degree of a polynomial f =
∑

i aix
i is the

largest integer d such that ad 6= 0. The degree of the zero polynomial 0
is undefined. Note that, if a ∈ R, a 6= 0, then deg a = 0, and in fact the
subring R of R[x] is given by

R = {f ∈ R[x] : deg f = 0 or f = 0}.

We shall sometimes refer to the elements of R as constant polynomials or
constants.

If f =
∑d

i=0 aix
i is a polynomial of degree d and g =

∑e
i=0 bix

i is a
polynomial of degree e and, say, d > e, then clearly the degree of f + g is
d. But if f and g both have the same degree d, the term (ad + bd)x

d might
be 0, if bd = −ad, and hence in this case deg(f + g) < d, or is undefined if
g = −f . Thus, if f, g, f + g 6= 0, then

deg(f + g) ≤ max(deg f, deg g).

Similarly, if f and g are as above, then the highest degree term of fg is
adbex

d+e, unless adbe = 0. Hence, if f, g, fg 6= 0, then

deg(fg) ≤ deg f + deg g.
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Example 1.2. In (Z/6Z)[x],

(2x+ 1)(3x2 + 1) = 3x2 + 2x+ 1,

since the “leading term” (2x)(3x2) = 0, and hence the product does not
have the expected degree 1 + 2 = 3. Even worse, 2(3x2 + 3) = 0.

In (Z/4Z)[x], (2x+1)2 = 4x2+4x+1 = 1. Thus, not only does (2x+1)2

not have the expected degree, but we also see that 2x+ 1 is a unit, i.e. there
are rings R such that the group of units (R[x])∗ is larger than the units R∗

in R.

Polynomials in several variables can be defined similarly. For example,
an element of R[x1, x2], i.e. a polynomial in the two variables x1, x2, is an
expression of the form

∑
i,j≥0 aijx

i
1x
j
2, where the aij ∈ R, and only finitely

many are nonzero. By grouping such terms in powers of x2, we see that
R[x1, x2] ∼= R[x1][x2]. In other words, a polynomial in x1 and x2 is the
same thing as a polynomial in x2 whose coefficients are polynomials in x1.
Similarly R[x1, x2] ∼= R[x2][x1] by grouping in powers of x1. Inductively, we
can define polynomials in n variables via

R[x1, . . . , xn] = R[x1, . . . , xn−1][xn].

2 Polynomials as functions

A polynomial with real coefficients f =
∑

i aix
i defines a function f : R→ R

by defining f(t) =
∑

i ait
i. (Typically, we speak of x as the “variable,” not

just some formal symbol.) We can do the same thing in a general ring: given
r ∈ R, we define the evaluation evr of a polynomial f =

∑
i aix

i at r, and
write it as evr(f) or sometimes as f(r), by the formula

evr(f) =
∑
i

air
i ∈ R.

Informally, evr(f) is obtained from f by “plugging in r for x.” In this way,
an element f ∈ R[x] also defines a function from R to R, which we denote
by E(f), via the formula

E(f)(r) = f(r) = evr(f).

For example, if a ∈ R ≤ R[x] is a constant polynomial, then evr(a) = a
and E(f) is the constant function from R to itself whose value is always a.
Likewise, evr(x) = r and E(x) : R → R is the identity function. To tie this
in with ring theory, we have

3



Proposition 2.1. (i) For all r ∈ R, the function evr : R[x] → R is a
homomorphism.

(ii) The function E is a ring homomorphism from R[x] to RR, the ring of
all functions from R to itself (with the operations of pointwise addition and
multiplication).

Proof. (i) We must check that, for all f, g ∈ R[x],

evr(f + g) = evr(f) + evr(g); evr(fg) = evr(f) evr(g).

With f =
∑

i aix
i and g =

∑
i bix

i,

evr(f) + evr(g) =
∑
i

air
i +
∑
i

bir
i =

∑
i

(ai + bi)r
i = evr(f + g).

Here of course we can add as many terms of the form 0xk as are needed to
make sure that the sums for f and g have the same limits.

For multiplication, with f and g as above,

evr(f) evr(g) =

(∑
i

air
i

)(∑
i

bir
i

)
=
∑
i,j

aibjr
i+j =

=
∑
k

 ∑
i+j=k

aibj

 rk = evr(fg).

Finally, evr(1) = 1, so evr takes the unity in R[x] to the unity in R.

(ii) We must check that, for all f, g ∈ R[x],

E(f + g) = E(f) + E(g); E(fg) = E(f)E(g).

To check for example that the functions E(f +g) and E(f)+E(g)are equal,
we must check that they have the same value at every r ∈, i.e. that

E(f + g)(r) = (E(f) + E(g))(r) = E(f)(r) + E(g)(r)

for every r ∈ R, where the second equality is just the definition of pointwise
addition of functions. By definition, E(f + g)(r) = evr(f + g) = evr(f) +
evr(g), by Part (i), and so

E(f + g)(r) = evr(f) + evr(g) = E(f)(r) + E(g)(r)

as claimed. Finally we must check that E(1) = 1, where the right hand 1 is
the unity in RR. Here E(1)(r) = evr(1) = 1 for all r, and hence E(1) is the
constant function f : R → R whose value at every r ∈ R is 1. This is the
unity in RR.
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In more down to earth terms, Part (ii) above just says that every poly-
nomial in R[x] defines a function from R to R, and that the operations
of polynomial addition and multiplication correspond to pointwise addition
and multiplication respectively (and that the constant polynomial 1 corre-
sponds to the constant function 1). One reason (among many) that we want
to be somewhat pedantic about this setup is the following observation: For
R = R, the homomorphism E : R[x] → RR is injective: this just says that
a polynomial function determines the polynomial itself (i.e. its coefficients)
uniquely. We will give an algebraic argument for this fact, in much more
generality, soon. (Of course, the homomorphism E : R[x]→ RR is definitely
not surjective, since most functions from R to R are not polynomials.) But
for many rings R, the homomorphism E : R[x] → RR is not injective. For
example, if R is a finite ring, E cannot be injective because R[x] is infinite:
there exist nonzero polynomials in every positive degree k. Thus, in this
case, E can’t be injective because RR is finite. So we cannot simply identify
a polynomial with the function that it defines.

There are various generalizations of the homomorphism evr:

1. In the case of the polynomial ring R[x1, . . . , xn] in n variables, given
r1, . . . , rn ∈ R, we can evaluate f ∈ R[x1, . . . , xn] at (r1, . . . , rn). This
gives a homomorphism evr1,...,rn : R[x1, . . . , xn] → R, as well as a ho-
momorphism E : R[x1, . . . , xn] → RR

n
. In other words, a polynomial

in n variables defines a function “of n variables,” , i.e. a function
Rn → R. Note that evr1,...,rn can be defined inductively: viewing
R[x1, . . . , xn] as R[x1, . . . , xn−1][xn] and rn ∈ R ≤ R[x1, . . . , xn−1],
evrn is a homomorphism

evrn : R[x1, . . . , xn−1][xn]→ R[x1, . . . , xn−1],

and by repeating this construction successively we get

evr1,...,rn = evr1 ◦ · · · ◦ evrn : R[x1, . . . , xn]→ R.

2. Suppose that R is a subring of a ring S and that s ∈ S. Then we
can restrict evs to the subring R[x] of S[x] to define a homomorphism
evs : R[x]→ S. For example, we might want to evaluate a polynomial
with real coefficients on a complex number such as i. As we have seen,
the image of evs is a subring of S, and is denoted R[s]. By definition,
since evs(a) = a for all a ∈ R and evs(x) = s, the subring R[s] of S
contains R and s. In fact,

R[s] =

{∑
i

ais
i : ai ∈ R

}
.
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Clearly, every subring of S containing R and s contains si for all
nonnegative integers i, hence contains ais

i for all ai ∈ R and thus
contains R[s]. Thus: R[s] is the smallest subring of S containing R
and s. For example, the rings Z[i], Z[ 3

√
2] are of this type. Of course,

since i2 = −1, given an ∈ Z, we can rewrite
∑

n ani
n as a sum only

involving actual integers (n even) as well as integers times i (n odd),
so every expression of the form

∑
n ani

n is actually of the form a+ bi
where a, b ∈ Z. A similar remark holds for Z[ 3

√
2], using the fact

that ( 3
√

2)n is always of the form a, b 3
√

2, or c( 3
√

2)2 for integers a, b, c
depending on whether n is congruent to 0, 1, or 2 mod 3.

More generally, given s1, . . . , sn ∈ S, we can define

evs1,...,sn : R[x1, . . . , xn]→ S.

The image of evs1,...,sn is a subring of S, denoted by R[s1, . . . , sn], and
it is the smallest subring of S containing R and s1, . . . , sn.

3. Suppose that ϕ : R → S is a homomorphism. Then we can define
a homomorphism from R[x] to S[x], which for simplicity we also de-
note by ϕ, by “applying ϕ to all of the coefficients of f .” Explicitly,
if f =

∑
i aix

i, we set ϕ(f) =
∑

i ϕ(ai)x
i. It is easy to check from

the definition of polynomial multiplication and the fact that ϕ pre-
serves addition and multiplication that ϕ : R[x] → S[x] is also a ring
homomorphism. We have tacitly used one example of this already:
if R is a subring of S, then R[x] is a subring of S[x]. For another
important example, let π : Z → Z/nZ be the projection of an inte-
ger to its congruence class mod n. Then we get a homomorphism
π : Z[x]→ (Z/nZ)[x], which consists in reducing the coefficients of an
integer polynomial mod n.

4. We can also amalgamate the examples above: given a ϕ : R → S and
an element s ∈ S, we can define

evϕ,s = evs ◦ϕ.

In other words, given the polynomial f ∈ R[x], first apply the ho-
momorphism ϕ to the coefficients of f to view it as a polynomial in
S[x], then evaluate it at s. For example, given a polynomial f ∈ Z[x],
and using the homomorphism π : Z → Z/nZ, we could look at the
polynomial π(f) ∈ (Z/nZ)[x] and then evaluate it on an element of
Z/nZ.

6



One general theme of this course is as follows: let F be a field (typically
F is Q, R, C, Fp) and let f ∈ F [x]. Then we want to find a root or zero of f
(sometimes we say we want to “solve the equation f = 0”). This means we
want to find an element r ∈ F such that evr(f) = f(r) = 0. By experience,
such as with the polynomial x2 + 1 ∈ R[x] or x2 − 2 ∈ Q[x], sometimes
we cannot find such an r within F . In this case, we look for a larger field
E, i..e a field containing F as a subfield, and an element s ∈ E such that
evs(f) = 0. In fact, we shall show that, given any field F and a non-constant
polynomial f ∈ F [x], we can always find a field E containing F as a subfield
and an element α ∈ E such that f(α) = evα(f) = 0.
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