Lie groups

Homework #2, due Wednesday, February 21.

1. Use the degree formula for an irreducible representation $V(\lambda)$ to compute the dimension of an irreducible representation of sl(n) with the highest weight $\sum_{i=1}^{n-1} m_i \lambda_i$ as a function of m_1, \ldots, m_{n-1} .

2. Classify highest weight vectors in the symmetric powers $S^k V$ of the fundamental *n*-dimensional irreducible representation of sl(n) and use this to show that $S^k V$ is irreducible.

3. Draw the weight diagram (with weight multiplicities) of the symmetric cube S^3V of the fundamental representation V of sl(3).

4. Let V be the fundamental and L the adjoint representation of sl(3). Determine how tensor products $V \otimes V$ and $V \otimes L$ decompose into direct sums of irreducible representations, using the method discussed in class (see also exercise 9 on page 142 of Humphreys' book). Do the same for $S^2V \otimes S^2(V^*)$.

5. Let $V(\lambda)$ be an irreducible representation of so(2n) (the root system is D_n). What is the highest weight of $V(\lambda)^*$?

6. Let α_1, α_2 be simple roots of B_2 , with α_1 the longer root. Draw the weight lattice together with α_1, α_2 and the fundamental weights λ_1, λ_2 . Find dimensions and weight spaces of fundamental representations $V(\lambda_1), V(\lambda_2)$. Determine multiplicities of irreducible representations in tensor products $V(\lambda_1)^{\otimes 2}, V(\lambda_1) \otimes V(2\lambda_2), V(\lambda_1 + \lambda_2) \otimes V(\lambda_1), V(3\lambda_1) \otimes V(\lambda_2)$.