Algebraic topology, Spring 2014

Homework 2, due Wednesday, February 26

In this homework, all cohomology groups are over $\mathbb{Z} / 2$.

1. We know that, for any space X, its cohomology $H^{*}(X)$ is a (left) module over the Steenrod algebra \mathcal{A}.
(a) Show that, as \mathcal{A}-modules, $H^{*}(X) \cong H^{0}(X) \oplus H^{>0}(X)$, where the second term is the direct sum of cohomology groups in all positive degrees.
(b) How does \mathcal{A} act on $H^{*}\left(\mathbb{S}^{n}\right)$? Show that

$$
H^{*}\left(X \times \mathbb{S}^{n}\right) \cong H^{*}(X) \oplus H^{*}(X)
$$

as \mathcal{A}-modules, for any space X.
(c) If $Y \subset X$ is a retract of X, then \mathcal{A}-module $H^{*}(Y)$ is naturally a direct summand of \mathcal{A}-module $H^{*}(X)$.
(d) If spaces X, Y are well-pointed, the usual isomorphism

$$
\widetilde{H}^{*}(X \vee Y) \cong \widetilde{H}^{*}(X) \oplus \widetilde{H}^{*}(Y)
$$

is an isomorphism of \mathcal{A}-modules.
2. Among the following spaces, select those for which the Steenrod algebra \mathcal{A} acts trivially on their cohomology (we say that an action is trivial if $S q^{n}$ acts by 0 for all $n>0$):
(a) A closed oriented surface of genus 3
(b) Suspension of a closed oriented surface of genus 2
(c) 5-dimensional torus
(d) Klein bottle
(e) $\mathbb{S}^{2} \times \mathbb{S}^{3} \times \mathbb{S}^{4}$
(f) $\mathbb{S}^{2} \vee \Sigma \mathbb{C P}^{2}$
(g) $K(\mathbb{Z} / 3,1)$
(h) $\mathbb{R P}^{5} / \mathbb{R P}^{3}$

Explain your answer.
3. (a) Compute the action of $S q^{n}$ for all n on the element $x_{1}^{3} x_{2}^{2} x_{3}$ in the cohomology ring of $\left(\mathbb{R} \mathbb{P}^{\infty}\right)^{\times n}$.
(b) How does $S q^{n}$ act on β^{i} where β is the generator of $H^{2}\left(\mathbb{C P}^{\infty}\right)$ can you give a closed formula for the action?
4. The space $\mathbb{C P}^{3} \times \mathbb{R P}^{3}$ has a unique nontrivial cohomology class in degree 3. Compute the action of $S q^{n}$ for all n on this class.
5. Determine how the following elements decompose in the basis of admissible monomials:

$$
S q^{2} S q^{6}, S q^{3} S q^{3}, S q^{4} S q^{5}, S q^{1} S q^{2} S q^{4}, S\left(S q^{4}\right), S\left(S q^{5}\right), S\left(S q^{4} S q^{2}\right),
$$

where S is the antipode of the Steenrod algebra.
6. We proved in class that \mathcal{A} acts faithfully on the cohomology of the wedge of $\left(\mathbb{R} \mathbb{P}^{\infty}\right)^{\times n}$, over all n. Show that \mathcal{A} does not act faithfully on the cohomology of the wedge of $\left(\mathbb{R} \mathbb{P}^{2}\right)^{\times n}$, over all n. (Hint: look for an element of \mathcal{A} that acts by zero on the cohomology of this direct product for any n.)
(7-8). Hatcher, Section 4.L exercises 2 and 5 on pages 517-518.

