Algebraic topology, Spring 2014

Homework 2, due Wednesday, February 26

In this homework, all cohomology groups are over $\mathbb{Z}/2$.

1. We know that, for any space X, its cohomology $H^*(X)$ is a (left) module over the Steenrod algebra \mathcal{A} .

(a) Show that, as \mathcal{A} -modules, $H^*(X) \cong H^0(X) \oplus H^{>0}(X)$, where the second term is the direct sum of cohomology groups in all positive degrees.

(b) How does \mathcal{A} act on $H^*(\mathbb{S}^n)$? Show that

$$H^*(X \times \mathbb{S}^n) \cong H^*(X) \oplus H^*(X)$$

as \mathcal{A} -modules, for any space X.

(c) If $Y \subset X$ is a retract of X, then \mathcal{A} -module $H^*(Y)$ is naturally a direct summand of \mathcal{A} -module $H^*(X)$.

(d) If spaces X, Y are well-pointed, the usual isomorphism

$$\widetilde{H}^*(X \lor Y) \cong \widetilde{H}^*(X) \oplus \widetilde{H}^*(Y)$$

is an isomorphism of \mathcal{A} -modules.

2. Among the following spaces, select those for which the Steenrod algebra \mathcal{A} acts trivially on their cohomology (we say that an action is trivial if Sq^n acts by 0 for all n > 0):

(a) A closed oriented surface of genus 3

(b) Suspension of a closed oriented surface of genus 2

- (c) 5-dimensional torus
- (d) Klein bottle
- (e) $\mathbb{S}^2 \times \mathbb{S}^3 \times \mathbb{S}^4$
- (f) $\mathbb{S}^2 \vee \Sigma \mathbb{CP}^2$
- (g) $K(\mathbb{Z}/3, 1)$
- (h) $\mathbb{RP}^5/\mathbb{RP}^3$

Explain your answer.

3. (a) Compute the action of Sq^n for all n on the element $x_1^3 x_2^2 x_3$ in the cohomology ring of $(\mathbb{RP}^{\infty})^{\times n}$.

(b) How does Sq^n act on β^i where β is the generator of $H^2(\mathbb{CP}^\infty)$ - can you give a closed formula for the action?

4. The space $\mathbb{CP}^3 \times \mathbb{RP}^3$ has a unique nontrivial cohomology class in degree 3. Compute the action of Sq^n for all n on this class. 5. Determine how the following elements decompose in the basis of admissible monomials:

 $Sq^{2}Sq^{6}, Sq^{3}Sq^{3}, Sq^{4}Sq^{5}, Sq^{1}Sq^{2}Sq^{4}, S(Sq^{4}), S(Sq^{5}), S(Sq^{4}Sq^{2}),$

where S is the antipode of the Steenrod algebra.

6. We proved in class that \mathcal{A} acts faithfully on the cohomology of the wedge of $(\mathbb{RP}^{\infty})^{\times n}$, over all n. Show that \mathcal{A} does not act faithfully on the cohomology of the wedge of $(\mathbb{RP}^2)^{\times n}$, over all n. (Hint: look for an element of \mathcal{A} that acts by zero on the cohomology of this direct product for any n.)

(7-8). Hatcher, Section 4.L exercises 2 and 5 on pages 517-518.