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PREFACE
TO THE ENGLISH EDITION

This book was written on the basis of lectures held at the Moscow State University
during the mid-sixties. They were preceded by a number of striking discoveries of
general importance to mathematics, first of all, by the Atiyah-Singer theorem on the
index of elliptic operators. At this time topology attracted a good many mathematicians
from fields such as analysis and differential equations. They suddenly felt a new-born
interest in the subject which they had considered a somewhat obsolete and rather
useless field before. Lecture halls, as if at a stroke, became overcrowded when the topic
dealt with there was topology. However, we should mention here that the lecturers
themselves had been brought up on the homotopic topology of the “fifties—and they
were strongly influenced by its algebraic approach. Albeit due to a different reason, but
the index formula of elliptic operators was a strange and distant idea to them just as to
the majority of their audience. For them the calculation of the homotopy groups of
spheres was the main subject of topology (or mathematics as a whole?) Why? It would
be hard to answer this question now in retrospect. Nevertheless, the lectures referred to
above were overburdened with calculation. A lecturer’s main aim was to dig a tunnel
for the ignorant from the basic terms to “the height of heights”—the Adams spectral
sequence, and it was only a lucky chance that this tunnel led through a few reefs of
gold.

To the reader, the book offers a wide range of topics: singular homology,
obstruction theory, spectral sequences of fibre bundles, Steenrod squares. We hope
that he or she will not be confused by the naive accentuation of some of them, and the
bulky calculations of homotopy groups at the end of the book will prove a useful
source for practice. As to other chapters of topology having more in common with
geometry, the reader may consult other books on the subject. (Milnor’s works in the
literature are recommended.) .

The book is fully illustrated by A. Fomenko’s pictures. One could hardly imagine the
Russian original without them—they are an organic part of it. A well-known
mathematician (and a renowned artist) today, Fomenko was a young student at the
time the book was written, and his drawings give the feeling of a beginner’s creative
reaction to a fresh and promising subject. I have no doubt that they offer a useful guide
to many readers who otherwise would have been, perhaps, lost in the “labyrinth of
zeros and arrows” which algebraic topology was thought of some time ago.

The authors are greatful to Kdroly Mdlyusz for translating the book into English
and to Aliz Fialowsky whose contribution to this edition was a great help.
D. Fuchs
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HOMOTOPY

§1. HOMOTOPY AND HOMOTOPY EQUIVALENCE
Some basic constructions of topological spaces

1. Product space. Let X and Y be topological spaces, M =X x Y. A subset of M is
open if it is the product of a pair of open subsets of X and Y, respectively, or if it is the
union of an arbitrary number of such subsets.

* Exercise. Prove that the axioms of topology are satisfied.

2. Quotient space. Let R be an equivalence relation on a space X. We consider the set
of equivalence classes, denoted by X/R, and choose the weakest among the topologies
for which the natural mapping f: X— X/R is continuous (i. €. a subset of X/R is open if
and only if its pre-image in X is open). It is called the quotient topology in X /R.
Whenever X/R will be mentioned, we shall always mean this particular topology.

Examples. Let X be a square and let us introduce the following equivalence relations
R;, i=1, ...,5. We consider as equivalent with respect to

R;: points of the segments 4B and DC if they lie on the same horizontal line (i.e.
parallel with AD);

R,:points of ABand CD if they lie on the same line passing through the centre of the
square; _

R;: points of AB and CD according to R, and points of BC and AD analogously;

R, points of A Band CD according to R,, and points of BC and 4 D according to
R, and

Rs: points of 4B and CD as well as points of BC and 4D according to R,. .

Clearly X/R, is the annulus, X/R, is the M&bius band, X/Rj is the two-dimensional
torus, X/R, is the Klein bottle and X/R; is the projective plane.

3. Attaching. Let A< X and B< Y be topological spaces and [ a mapping of 4 onto
B. We define R on X U Yin the following way: each b € B is equivalent with any a € 4
such that f(a)=b; points which are not. involved in the mapping (i. e. points of
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(X\A)U(Y\B) ) are inequivalent. We denote the quotient space X U Y/Rby XU, Y
and say that we obtained it by attaching X to Y along f.

4. Wedge. Let x, and y, be points of X and Y, respectively, and let f: x,—y, be the
mapping of the point x, into y,. We shall call X U, Ythe wedge or union of the pointed
spaces X and Y, and denote it by X VY.

For example, S' V S', where S is the circle, the figure looks like the number eight:

X ¢ Y
e Xvy
Xo

5. Mapping cylindre. Let X and Y be spaces and f: X— Y a continuous mapping.
Assuming that / is also mapping X x (1)= Y, we obtain (X x [)U, Y. It will be called
the mapping cylindre of f and denoted by C.

—r

X

\

= IN—=—

6. Suspension. Let X be a space and X x I its product with the interval I =[0, 1]. We
collapse the upper face X x 1 into a point and the lower face X x 0 into another point.
The result is called the suspension over X and is denoted by XX.
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@

Example. §"=3%8""" (S" is the n-dimensional sphere).

1. Mapping space. Let H(X, Y) be the set of all continuous mappings of the space X
into the space Y. We shall always assume H(X, Y) to be equipped with the following
topology.

Let € be the family of all compact subsets of X and % be the family of all open
subsets of Y. Let [¢, u], c € €, u € % be the subset of H(X, Y) consisting of all mappings f
withf(c) cu. We take the subsets [¢, u] as a basis of a topology on H(X, Y) which we call
the compact-open topology.

Exercise. Show that if Yis a metric space, the compact-open topology is the same as
the topology of uniform convergence on compact sets.

Exercise. Let X, Yand Z be three topological spaces. Show that if X, Yare Hausdorff
spaces, and X is locally compact, then H(XxZ,Y) and H(Z,H(X,Y)) are
homeomorphic. As the space H( X, Y)is sometimes denoted by Y*, this statement can
be written as Y**%£=(Y*)Z. Hence it is called the exponential law.

Examples. If Y=« is a single point, then H(X, Y) consists of one element.

If X =« is a single point, then H(X, Y)=Y.

If X=1=[0, 1], then H(l, Y) is called the path-space of Y.

Let yo € Y be an arbitrary fixed point; the subspace Q< H(I, Y) consisting of all
mappings f: I-Y such that f(0)= f(1)=y,, is the loop space of Y.

If any two points of a space can be connected by a path, we have a pathwise-
connected space.
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Homotopy

Let X and Y be topological spaces, f: X—Y and g: X—Y two continuous
mappings. We say that f and g are homotopic and write f~ g whenever there exists a
family ¢,: X—Y,te [ of mappings such that '

D oo=/, 01=g;
2) the mapping @: X x[—=Y, &(x, t) = ¢,(x) is continuous.

The continuous mapping @ is called a homotopy between f and g.

The relation of homotopy is a relation of equivalence. (Prove it!)

Example. All mappings f: X —1 of an arbitrary space X to the interval I ={0, 1] are
homotopic.

Indeed, for any f: X— I the mappings ¢, = (1 — 1) f form a homotopy between fand
the zero mapping ¢, (x)=0.

There is another way of defining homotopy as a path in the space which connects the
point f € H(X, Y) with ge H(X, Y).

The relation of homotopy divides H(X, Y) into a set of equivalence classes. It is
denoted by n(X, Y).

Examples. 1) n(X, I)= * (it consists of a single element).

2) n(*, Y) is the set of the pathwise-connected components of Y.

Let X, X" and Y be spaces and /#: X— X’ a mapping; we define h*: n(X",Y)-n(X,Y)
in the following way: for every class @ € n(X", Y) we choose a representative o € H(X', Y)

+ and assign to & the class A*(«) of the mapping aohe H(X, Y) (i. €. the composition

X Lx Ly,

Let X, Y and Y’ be spaces and A: Y-Y' a mapping; we define
he:n(X,Y)-a(X,Y') in the following way. We take aen(X, Y) and choose an
arbitrary representative « € H(X, Y)init. Then assign to & the class A, (&) generated by
hooae H(X,Y').

* Exercise. Prove that the two definitions are correct.

Homotopy equivalence

We first give three equivalent definitions of the homotopy equivalence.
Definition 1. The spaces X, and X, are homotopy equivalent: X, ~ X, if there exist

‘mappings f: X;—X,and g: X,—X, such that the composite mappings g f: X, - X,,

fo 8: X;—X, are homotopic to the identity mappings.

- Remark. If g° fand f o g are not only homotopic to but also equal to the respective
identity mapping, then f and g are homeomorphisms, moreover, they are inverses to
each other.The notion of homotopy equivalence therefore generalizes the notion of
homeomorphism. :
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Definition 2. X, ~ X, if for any space Y there exists a one-to-one correspondence
oy (X, Y)—>n(X,, Y) such that for every continuous mapping h: Y—Y' the
diagram

oy Xy, Y)on(X,, Y)
L hy L hy
oy Xy, Y)on(X,, Y)
1S commutative, 1. €.,
¢Y’°h*=h*°¢Y-

Definition 3. X | ~ X, if for every space Ythere exists a one-to-one correspondence

o' (VX ) -nlY, X ,) such that for every continuous mapping h: Y- Y’ the diagram

) " (Y, X )-n(Y, X,)
T h* T h*
o' (Y, X )»n(Y', X,)
is commutative, 1. €.,
gDYOh*Zh*O(pY'.

Theorem. The definitions 1, 2 and 3 are equivalent.

Proof. We prove the equivalence of*definitions 1 and 2.

Suppose that X, ~ X, in the sense of definition 2, then there exists a one-to-ones
correspondence ¢y, : (X, X,)n(X;,X,). We write [ =gy} (id X,) and ¢hoose fe f
(we shall keep the notation that & denotes the homotopy class of the mapping h). There
exists, moreover, a one-to-one correspondence ¢y : (X, X;)>n(X,, X,). Putg= Ox,
and choose g € g. We show that fand g satisfy the conditions of the definition, i. e.,
feog~id X, and go f ~id X,. The diagram

Px, * Xy, Xy)-n(X,, X,)
T/« T/«
@x, (X, Xp)-n(X,, X))
is commutative by definition 2. Hence @y, o f, =f, o ¢x,. We consider the images of the
element id X, under the mappings in the diagram. By the definition off, we have
folid X)=f0idX, =], ¢x,(N=idX, by the choice of . Therefore @y, o f,(dX;)=
:I&','\‘f';. On the other hand f, o (pXXE“XT:—f—o_g. Since the diagram is commutative,

idX,=fog, ie, fog~idX,.

It can be proved similarly that go f~id X,. We have shown that 2 implies 1.

Let us now assume that there exist mappings f: X;—X, and g: X,—X, with
Jg~id X, withgf ~ id X, and take an arbitrary space’Y. We put ¢, =g* and consider
the mappings

py=g* n(X,, Y)-n(X,,Y),

frn(X,, Y)-n(X,, Y).
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We show that g* and f* are inverse to each other. By the definition of g* and f*,
g (@) =aog and f*(xcg)=(aog)of =ar(gs ) =a. since gof=idX,. It can be
checked in the same way that g*o f*=id.

We have verified that ¢, has an inverse mapping, that is, ¢y is one-to-one.

Let us now verify the second property of ¢, .

Let Y’ be a space and h: Y- Y’ a continuous mapping. We consider the diagram

oy=g*: n(X,, Y)on(X,, Y)

i hy L by
QDyEg* TC(XI’ YI)HH(XZ, Y/)

which is commutative. Indeed, if « e n(X,, Y), then h*(d)zh—o&, @Y,(m):g*(hoa):
=(hoa)-g; on theother hand ¢, (&) =g*(@) =a- g and A, (2o g) =ho(aog). The statement
1s proved.

The equivalence of [ and 3 can be proved in the same way. It is easy to show that
homotopy equivalence is indeed an equivalence relation in the usual sense.

A class of homotopy equivalent spaces is a homotopy type.

Example for spaces of the same homotopy type: X, is a circle and X, a ring:

N f .

X

\\/f

Here f: X, — X, isan imbedding andg=f"'ok: X,~ X, (hisa contraction along the
radii).

Obviously homeomorphic spaces are homotopy equivalent. As it is seen in the
example, the converse statement is not true. '

* Exercise. Prove that a contractible space is homotopy equivalent to the single-point
space. (A space X is called contractible if the identity mapping is homotopic to a
mapping X — X which takes X into one point.)

* Exercise. Prove that the cylinder of a mapping /> X— Yis homotopy equivalent to Y.

* Exercise. Construct two spaces X, and X , such that even though there exist one-to-
one continuous mappings £ X, - X, and g: X,—X,, the spaces are not homotopy
equivalent.

A subspace X < Yis called contractible in Y to the point y, if the inclusion mapping
X < Y and the mapping X— Y, taking the whole X into y,,, are homotopic to each other.

* Exercise. Let X be any space; cat, X (the Lyusternik~Schnirelmann ca‘tegory of X) is
defined as the minimal cardinality of sets I with X= U X ; such that:

iel

1. the sets X ; are closed,
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; 2. the mapping of inclusion ¢,;: X; < X and the mapping ¢,;: X;—X which maps X,
| into one point are homotopic for every iel.

For spaces good enough, condition 2 is equivalent to

2'. for every i e I there exists a homotopy ¢{": X— X such that ¢ =id X and ¢{"

sends X; to one point.
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We get the definition of the “strong category” cat, X' by substituting 2 by the
following condition:

2". every X, is contractible to a point.

Exercise. Are cat, X and cat, X invariant to homotopy equivalence? (Are they
“homotopy invariants” of X?) '

Exercise. Let K be the two-dimensional sphere with three of its points identified. Is
then cat, K =cat, K?

The relative case

A topological pair or simply a pair is a space with a specified subspace. A mapping of
the pair (X, A) into (X', A') is a mapbing S X— X’ such that f(4)c 4"

Homotopy, homotopy equivalence, and all related notions are naturally transferred
to the class of pairs and their mappings. (Verify 1t!)

In the special case 4= {x,} the pair (X, A)=(X, x,) is called a pointed space.

The space H((X, x,), (X', x5)) of all mappings (X, xo)—(X’, x;) will be denoted by
Hy(X, X'). (In this notation X and X’ are symbols for pointed spaces.) In the similar
sense we use the notation 7,(X, X*). The index b (from the word base) shows that each
space has a base point and only the mappings that carry base points into base points
are considered. '

We also may consider triples (X, A, B). It is then understood that Bc A< X ;a
mapping f:(X, A, B)—(X', A’, B') of triples is a mappingf: X — X’ such that f(4)< 4’ and
f(B)cB.

82. NATURAL GROUP STRUCTURE ON THE SETS (X, Y)

In homotopy theory we study invariants assigned to topological spaces and
continuous mappings, whose values are taken from discrete sets. As a rule, these
invariants coincide if the spaces are homotopy equivalent and the mappings are
homotopic. We have a general procedure for constructing such kind of invariants.
Namely, we fix a space Yand assign to any space X the set (X, Y)(or o(Y, X) ). In many
cases it is easier to study these sets than the spaces X. Information about (X, Y)can be"
turned into information about X.

We have already noticed an important property of the sets n(X, Y). If X' > X"
and Y'— Y" are mappings between spaces, there are mappings n(X", Y)-n(X’, Y)
andn(X, Y')-n(X, Y")that corresponds to them. In other words, (-, ) is a functor
from the category of topological spaces into the category of sets; it is contravariant in
the first argument and covariant in the second one.

~ Studying n(X, Y) becomes considerably easier when it is equipped with a natural

group structure. Before explaining this notion in detail let us agree on the form we
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choose for presenting the material. We shall study invariants of two kinds. We will fix a
space Yand then we shall assign to X either n(X, Y) or n(Y, X). We shall prove theorems
for either case. The theories remain parallel — more exactly, dual — for a good time.
Thisis called the Eckman-Hilton duality. We are not going to expound it in the present
book, nevertheless in this § we shall give emphasis to this notion by giving visibly
parallel exposition of the dual definitions, statements and proofs.

Throughout the present §, spaces will be assumed to be equipped with base points, i.

e. we shall consider pointed spaces.

Let us fix a space Y with base point y,.

Suppose that for every X, the set
(X, Y) 1s equipped with a group struc-
ture. Such structures are called natural
if for any continuous mapping ¢: X'— X",
@* (X', Y)->m(X", Y) is a homomor-
phism.

Definition. Y is a H-space if there are
given mappings

w Yxy-y
and
v: Y=Y
such that
(1) the mappings

Yy o yxytoy
and
Yy L yxy-toy,

where j;(y) = (7. ¥0), 200) = (o> ¥)

are homotopic to the identity mapping
idY: Y-Y;

(i) (homotopy associativity) the

mappings

Yx Yx Y—o > vy # Ly

and

YxYxY “XIdY%YgY N

are homotopic;

Suppose that for every X, the set
(X, Y) is equipped with a group struc-
ture. Such structures are called natural
if for any continuous mapping ¢: X' — X",
¢y n(Y,X)>»n(Y,X") is a homomor-
phism‘.

Definition. Y is a H'-space if there are
given mappings

u Y-YVy

v: Y—-) Y
such that

(1) the mappings

and

vyt yvy-Z2,y
and
y Foyvy2Ly

where 7,(n,) is the identity mapping on

- the first Y (on the second Y)and trivial on

the second Y (on the first Y) are homo-
topic to the identity mappingid ¥: Y- Y.

(1) (homotopy coassociativity) the
mappings

dYvyu
—

vy-A.yvy YVYVY
and
y—*oyvy MY yvyvy

are homotopic;
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(i1i) the mapping

9y Ay

is homotopic to the constant mapping

(into the single point).

An important example for a H-space.
The space Y,=QZ of loops in Z, where Z
is an arbitrary space.

The mapping u: QZxQZ-QZ is
given by the formula

f(21), Ogtéé
ut9) (0= |
g2t —1), <t<l,

l.e.we assigﬁ to fand g the loop we obtain
by walking first along f and then along g.

The mapping v: QZ—QZ is given by
the formula ‘ :
v(t)=f(1—1).

Another important example of a H-
space is any topological group. .

Theorem. The set m,(X,Y) may be
equipped with a group structure natural
in X if and only if Yis a H-space.

Proof. Necessity. Assume that for
every X, there is a muitiplication in
n,(X,Y), which is natural in X.

(iii) the mapping

y-toyv Y_ﬂ\L,Y

is homotopic to the mapping into the
single point.

An important example for a H'-space.
The suspension Y, =2Z over an arbitrary
space Z.

The mapping u: ZX->ZXV ZIX is
given in the following way:

Y/
V—4

The mapping v: ZX—>XX is given as

follows:

It is useful to assume the line segment
over the base point of ZX to be con-
tracted into a single point, namely the
base point of £ZX. Such modification does
not alter the homotopy type of ZX (for
sufficiently good X). T Y, X0

‘Theorem. The set mpX=¥) may be
equipped with a group structure natural
in X if and only if Yis a H'-space.

Proof. Necessity. Assume that for
every X, there is a multiplication In
n,(Y,X), which is natural in X.
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Let us choose X = Yx Yand consider
the homotopy classes &, , &, e 1,(Yx ¥, Y)
of the projections of Yx Y onto the
factors.

Set i=4a, a,. (Here we use the multi-
plication in m(YXY,Y). Let 7%
YX Y—Y be an arbitrary mapping for
which pepn. We define v: Y—Y as a
representative of the coset vemn,(Y, Y)
given as the inverse in the group m,(Y,Y)
to the coset of the identity mapping id Y:
Y-vY.

Properties (i-iii) of u and v are auto-
matically satisfied. Let us verify, for
example, that uoj, ~id Y. The mapping
Jit Y>YX Yinduces j¥: m,(Yx Y,Y)>
—m,(Y, Y) which maps a, onto «, 0/,
and a, onto a,oj;. Now a0/, (y) = %
and a, oj(y) = y, thus a, oj; = = (where
% 15 the constant mapping) and «, 0/, =
= id Y. Being natural in X, the product is
carried into product, hence

Iy °d2)=:°mzﬁ

Le uej,~id Y.

(We have made use of the fact that the
coset of the constant mapping, i. e. the
mapping that sends the whole space Y
into the base point y,, is the identity of the
group m,(Y, V). This can immediately be
proved by considering the single-point
space for X and the mapping Y- X; we
obtain a homomorphism 7,(X, Y)—7,(Y,Y)
where the identity, i.e. the single element
of the group is carried into the identity of
(Y, Y).)
~ Sufficiency. Suppose that Y is a H-
space. Let X be an arbitrary space. Then
pur YX Y- Yinduces pu,: m,(X,Y x Y)—
—-7,(X, Y). We compose it with the natu-
ral imbedding ¢: n,(X, Y)xn(X, Y)

s N T LTt s B T O S

Let us choose X=Y V Y and consider
the homotopy classes 4, aen(Y,YVY)
of the imbeddings of Y into Y V Y.

Set pg=d, «,. (Here we use the
multiplication in m,(Y,YV Y).) Let u:
Y=Y VY be an arbitrary mapping for
which ye ji. Wedefinev: Y- Yasa repre-
sentative of the coset ve (Y, Y) given in
the group as the inverse of the coset of the
identity mapping idY: Y—Y.

Properties (i-iii) of u and v are auto-
matically satisfied. Let us verify, for ex-
ample, that j cu~idY. The mapping
Ju YVY=Y induces j, . m(Y,YV Y)—
—my(¥, ¥) which maps a, onto j, - «, and
% onto jieay. Now jica,(y)=* and
Jieaz(y)=y, thus Jioo; =% (where * 1s
the constant mapping) and j, oo, =id Y.
Being natural in X, the product is carried
into product, hence

Jislozoon) =% oid Y=id ¥,
Le jiou~idY.

(We made use of the fact that the coset
of the constant mapping, i. e. the map-
ping that sends the whole space Y into the
base point y,, is the identity of the group
m(Y,Y). This can immediately be prov-
ed by considering the single-point space
for X and the mapping X—Y; we get
a homomorphism w,(Y,X)—m,(Y,Y)
where the identity, i. e. the single element
of the group 7,( Y, X) is carried into the
identity of , (Y, Y).)

Sufficiency. Suppose that Y is a H'-
space. Let X be an arbitrary space. Then
p: Y=YV Yinduces p*: n,(YV Y, X)~
—-7m,(Y,X). We compose it with natu-
ral imbedding ¢: w,(Y,X)x (Y, X)
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___(_:)_mb(X, Yx Y). We obtain a map-

ping which we denote by 4.

Similarly, v: Y- Yinducesv,: m(X,Y)—
->7(X, Y).

Multiplication p, and inversion v,
define on m,(X,Y) a group structure
natural in X, as the reader will easily
verify.

* Exercise. my(X, QQZ) is an Abelian
group. .

Let n>1. Since the n-dimensional
sphere S" is the suspension over $"7 !,
m,(S", X) is a group. It will be called the
n-th homotopy group of X and denoted
by n,(X). It follows from the exercise that
n,(X) is Abelian if n>2.

i)—»nb(YV Y, X). We obtain a map-

ping which we denote by u*.

Similarly, v: Y- Yinduces v*: m,(Y,X)—
-n,(Y,X).

Multiplication g* and inversion v*
define on m(Y, X) a group structure
natural in X, as the reader will easily
verify.

* Exercise. m(LEXZ, X) is an Abelian
group.

Let n>1. There exists a space K,
(cf. §8) such that

0 for i#n
1) n(K,)= ’
(1) m¢ {Z for i=n;

(2) K,,—["’QK,‘.

Then n,(X,K,) is a group. It will be
called the n-th integral cohomology
group of X and denoted by H"(X).

Moreover,

" 0 for
H'(S™) =1,

n#m, r
for n=m (cf. §12)







23
§3. CW COMPLEXES

A CW complex is a topological space which is represented as a disjoint union K =

= U U &7 of sets (cells) €9, if there exists a family of continuous mappings f7: B'—»X
q=0 icl,
(where B? is the g-dimensional ball), called the characteristic mapping for e?,

such that the restriction of f7to Int B?is a homeomorphism Int B?x~efand f4(S? ")

is contained in the union of the cells of smaller dimensions: f#($77!) <
-1

- qU U e?. Further, the following axioms have to be satisfied:

p=0 icl,

(C) The closure of each cell meets only a finite number of cells;

(W) a subset F — K is closed if and only if for each e? the pre-image (%)~ '(F)< B%is
closed in B2’

A CW complex is finite if it consists of finitely many cells. A subcomplex of a
complex K isa CW complex contained in K as a closed subset, whose cells are cells of K
as well. For example, a subcomplex of K is its n-th skeleton, that is, the union of all of its
cells of dimension <n.

A complex is locally finite if each point in it has a neighbourhood that belongs to a
union of finitely many cells.

Exercise. Prove that any cell is contained in a finite subcomplex.

* Exercise. Prove that the direct product of a locally finite CW complex with an
arbitrary one is a CW complex. Its cells are the products of the cells of the two factors.

Exercise. Prove that the topology given by axiom (W) is the weakest one among the
topologies for which the characteristic mappings are continuous.

* Exercise. A function given on a CW complex is continuous if and only if it is
continuous on every finite subcomplex.

Axiom (C) does not imply (W). Indeed, let S* be the set of sequences (x,, x,, .. .)of
real numbers, satisfying the conditions (a) for sufficiently large i, x;=0, and (b)

% x? = 1. The topology in S is defined by means of the usual metric p({x;},1y;})=

i=1
2

=(Zx;—y;)*)'. The topological space S can be represented as a union UO 'U1 el
. =0 is

where
ef={x=(xy, x5,...)| ;=0 for i>gq; x,>0},

ef={x=(xy,x;,...)]x;=0 for i>gq; x,<0}.

This is a cell structure that satisfies (C) but does not satisfy (W). (Prove it!)

We note that if a space admits a division into cells which satisfies all the conditions
except (W), one can always weaken the topology by applying the condition (W) so that
the space becomes a CW complex.
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Examples for CW complexes.

1. The n-dimensional sphere S".

It may be represented as a union e® U ¢" of a point e° and its complement "= S"\ ¢°.
The characteristic mapping f": B"—S" of the cell e” transfers the boundary of the ball B
into the point, and homeomorphically maps the interior of B” onto e".

Another cell structure can be defined on S” similarly to the previous example.

2. The real projective space RP" of dimension n. We choose in RP" a sequence of
projective subspaces

+=RP°cRP!c ... cRP"

and set e>=RP°, ¢! =RP'\RP?,..., ¢&"=RP"\RP""!. The representation RP"=

= U e clearly defines on RP" a structure of a CW complex.

q=0
3. Similarly the n-dimensional complex projective space can be represented asa CW
complex with one cell in each dimension 0, 2, 4, . . ., 2n. The n-dimensional projective

space over the field of quaternions has an analogous cell structure with one cell in each
dimension 0, 4, 8, ..., 4n.-

* Exercise. Represent as CW complexes:
a) the torus,
b) the Klein bottle,
c) the suspension over a given CW complex.

* Exercise. Prove that any finite CW complex can be imbedded into an Euclidean space
of sufficiently large dimension.

SIY
S
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Definition. A topological pair (A4, B) is called a Borsuk pair (or cofibration) if for any
X and F: A—X, an arbitrary homotopy f;: B— X with f,=F |5 can be extended to a
homotopy F,;: A— X such that Fo=F and F,|g= f,.

Theorem (Borsuk). Any CW pair (K, L) (i. e. K is a CW complex and L is its
subcomplex) is a Borsuk pair.

Proof. Consider the pair (K x I, L xI).

Assume that there are given @: L X J-X (the homotopy f,) and F: KX 0—X,
and F|; . o= ®|, «- Extending homotopy f, to F, is the same as extending the mapping
F: Kx0—-X to a mapping F': KX I—-X for which F'|,,,=&.

The construction will be carried out by induction on the dimensions of the cells.
Let n=0. For null-dimensional cells ¢ we set

Fia, f)= F(a,0) if a=el¢L,
T\ da,t) if ael.”

Assume now that F’ has been extended from L x I to K" x I, where K" is the n-
dimensional skeleton of K.

Let us take an arbitrary (n + 1)-dimensional cell ¢"* ' ¢ L. By induction, @ is given on
(e"* 1\ e"* 1) x I, because the boundary é"*! = gn* 1\ e"* L of the cell " * ! is the same as
S"1(0B"* 1), thus it belongs to K" by the definition of CW complexes. (Here f"* ! is the
characteristic mapping of e"*'.)

The next thing to do is to extend F' to the interior of the cylinder f"**(B"* 1) x
from the “wall” f"*1(0B"*')x I and the bottom f"*1(B"*1).




‘or any
d to a

L 1S Its

0-X,
apping

e cells.

the n-
ven on
ame as

!is the

|+1_)XI

3 CW COMPLEXES 27

Again by the definition of CW complexes it is clear that this is equivalent to
extending y: (0B" ! x )U(B"** x {0})—K to a mapping ¢ B""! x [=K.

Let us take a point outside the cylinder and near the ball B**' x {1}. The mapping #:
Bt x [-(dB"" ' x [)U(B"*! x {0}) of projecting the cylinder from the point onto the
boundary is the identity mapping on the boundary. So we define the mapping
Y’ by ¥'(a,1)=yon(a,1). ,

The cells e?* ! do not intersect one another, thus the mapping may be defined this
way on the whole (n+ 1)-skeleton K"*'. Q. e. d.

Corollary 1. Let K be a CW complex and L its subcomplex. If L is contractible, then
K/L~K.

Proof. We construct p: K—K/Land ¢: K/ L—K,and show that 1) g p=id Kand 2)
pog~id (K/L).

1) Denote by p the projection K—K/L. Since L is contractible, there exists a
homotopy f, such that f,: L—Lc K is the identity mapping, i. e. id (K/L) = fq
and f,|, = *.

By the Borsuk theorem there exists a homotopy F,: K—K such that F,=1d K and
F,|.=f.. Then F,(L)=+. Thus F; may be considered as a mapping given on K/L.
More precisely, F, =qo p where g: K/L—K is some mapping. We obtain F; =F,, 1. e.
gop~id K.

2) We show that pog~id (K/L). Asabove, po F,(L)= * implies po F,=¢q, o p, where
g,: K/L—K/Lisahomotopy, and g, =id (K/L), g, =p°q. Hence pog~id (K/L). Q.
e. d. . ‘

Corollary 2. If (K, L) is a Borsuk pair, then K/L~KU CL where CL is the cone
over L.

The proof is left to the reader.
Definition. A mapping f: K— L is cellular if f(K")c L" (n=0,1, ...), where L"
and K" are the n-skeletons of K and L.
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The cellular approximatioi. theorem

Let f: K— L be a continuous mapping between CW complexes K and L. Assume
that f is cellular on a subcomplex K 1 © K. Then there exists a mapping g: K— L such
that 1) f~g;2) flx,=glk,; 3) giscellularon K; 4) the homotopy connecting f and g
may be chosen fixed on K.

In the proof of the theorem we shall need some notions from the theory of simplicial
complexes. We notice that characteristic mappings of cells of CW complexes may be
considered as mappings of simplexes 47 as well as closed balls. A CW complex is
simplicial if the following two conditions are satisfied:

(i) Each characteristic mapping f% 49—K is a homeomorphism on the whole &,

(ii) For any face 4" = A%, f%4") coincides with the closure of one of the cells of K, and
S 4 &/—K coincides with the characteristic mapping of this cell (up to affine
transformation of 47). We do not distinguish between the r-dimensional standard
simplex and the r-dimensional face of the g-dimensional standard simplex. The
necessary corrections will be left to the reader.

The closures of the cells of a simplicial complex are its simplexes. The null-
dimensional cells are called vertices. The star of a vertex is the union of all simplexes
containing the vertex. The star of a vertex a will be denoted by St (a).

A simplicial mapping between two simplicial complexes K and Lis a continuous
mapping which linearly maps simplexes of K onto simplexes of L (of the same, or
smaller dimensions). In particular, a simplicial mapping sends vertices into vertices,
thus two simplicial mappings coincide whenever they coincide on the vertices of K.

A simplicial complex K’ is a subdivision of K if K and K’ coincide as topological
spaces and each simplex of K is a union of some complete simplexes of K’ (in other
words, K" is obtained by dividing the simplexes of K into smaller ones). An important
case is the barycentric subdivision.

X .

K!

It is obtained as follows. After the (g — 1)-skeleton of K has been divided, we find the
centre of each g-dimensional simplex and divide it into pyramides with their tops at the
centre and bottoms coinciding with one of the various simplexes of the barycentric
subdivision of the boundary.

- Exercise. Any finite CW complex is homotopy equivalent to a simplicial one.
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3 CW COMPLEXES 29

* Exercise. Any finite simplicial complex is the subcomplex of a simplex of sufficiently
large dimension. In particular, it can be imbedded in the Euclidean space in such a way
that the imbedding is linear on each simplex.

* Exercise. The dimension of the Euclidean space in the previous exercise can be cut
down to 2n+1, where n is the dimension of the complex.

The simplicial approximation theorem

Theorem. Let f: K—L be a continuous mapping between finite simplicial
complexes. Then there exists a refinement K’ of K and a mapping f': K’ L which is
simplicial and homotopic to f.

Remark. We are going to construct a mapping which is not merely homotopic but
also, in a certain sense, near to f. As simplicial approximations only play an auxiliary
role in our investigations, we give no formal treatment to this property. It can be found
in almost every textbook on topology (cf. for example, Rochlin—Fuchs, The beginner’s
course in topology, Springer, 1984).

Proof. Complexes L and K will be assumed as being imbedded in an Euclidean
space.

Let o be an arbitrary simplex of L, and let L’ be its first barycentric subdivision. Let
v be a vertex. If v¢o then p(o,St’(v) ) >0, where p is the distance and the comma '
means that the item belongs to a barycentric subdivision. In the present case, the
comma means belonging into the first subdivision L'. As L is a finite complex, we have
min ¢(o, St'(v)) = a>0 for vé¢o.

Now fis a uniformly continuous mapping, thus there exists a subdivision K’ of K
with the property that diam (f(¢”) ) <afor any ¢’ < K’. Here diam denotes the diameter
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of the set under consideration. (For K’ we may choose a multiple barycentric
subdivision.) For a vertex w’ € K', we define f'(w) to be equal to any of the vertices for
which f(w') € St'(v). As it can easily be seen, if vertices wy, w}, . .. belong to the same
simplex of K’, then f'(wy), f'(w}), ... belong to the same simplex of L. Hence
extending f’ “‘by linearity” as a simplicial mapping K’ — L is possible.

Next we show that /"~ f.If f(x) € g, where g is a simplex of L, then f'(x) € ¢ as well.
Indeed, in the opposite case there exists at least one vertex of K', belonging to a simplex
containing x, whose image by /" belongs to the barycentric star of a vertex not contained
in ¢. This would, however, contradict the construction.

Finally we define the homotopy connecting f* with f by the formula ¢(x, 1) = f(x)—

—[f)=f ()] Q. e d

Proof of the cellular approximation theorem

Suppose that the mapping is already cellular on the cells of the subcomplex K’ as
well as on all cells of K of dimensions smaller than p. Let e? =e? be a p-dimensional cell
of K. By axiom (C) its image f(e?) meets only finitely many cells of K. (Indeed, f(e?)is
compact, being the image of a compact set by a continuous mapping.) Let us consider
one of these cells; assume that it has the highest dimension possible. We shall denote it
by &% There are two possibilities.

1) The image of e? does not fill the whole ¢?. Then we can take a free point and pull
the set f(e?), along the radii starting at this centre, to the boundary. (We have a
homeomorphism between the cell and the open ball.) This deformation can be
extended to a homotopy which is given on K'UKP? and is constant outside
e? N f ~'(&%). By the Borsuk theorem it can be extended on the whole K.

2) It may happen that there are no “free” points, 1. €. 7 < f(e”). In that case one can
apply the following procedure: substitute f on a part of e?, by a simplicial mapping
whose image does not fill ¢%. (If the reader has already understood “everything”, he may
skip the end of this section.)

First of all we identify the interiors of e” and ¢? with the open unit balls of the
corresponding dimensions. Let B, < ¢? denote the closed concentric ball with radius r.
Since f is cellular on the (p—1)-skeleton of K, we can take in e a finite simplicial
simplex F containing e’ N f ~(Bss). We take a subdivision of F into finer simplexes
such that (i) whenever « is a simplex of F (in the new subdivision) and f(«) N B # @, we
have f(a)<&? (ii) for any f(a) = &%, diam f(a) <1/6. (We recall that &7 is the unit ball.)
Now let us consider in F the minimal subcomplex F, that contains all simplexes whose
images meet B, 6. Then B, 6 N f(e?) f(F,) < Bs6. Together with f we consider another
mapping f,: F;— Bs,; which coincides with f on the vertices of F; and is linear on
each simplex. (Again &7 is the unit ball!) Now f = f,, and f, are connected with the
homotopy f,: F,— Bs,s moving each point f,(x) with constant speed from f(x) to
£, (x) along a corresponding line segment.



ric
‘or
ne
ice

ell.
lex
ed

"as
sell
)is
der
eit

suil
ea

be
ide

can
nng
nay

the
sr.
cial
Xes
we
all.)
ose
her

on
the
) to

3 CW COMPLEXES . 31

\\‘(“\\\\p-.

Wl

4
=
£
—
—_—
NS
s‘\\%

—

The necessity of “being sewn’ is not clear from this figure. It>appears for p>1.

Mappings f and f; can be “sewn” together in the following way. Let f: K’ UKP-L
be defined by '

(/e if f()¢Bye or xger,
JFx)= 1 fi(%) if f(x)eB,s or xee,
S3-6o(x) otherwise.
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Here ¢(x) is the distance between the point f (x) and the centre of the ball &4. (It is defined
only if f(x) e &%)

Clearly f is continuous, homotopic to f, and coincides with f outside of e” as well as
outside of f ~'(¢%). The image of e” meets B, only in finitely many p-dimensional
planes. Thus it does not fill ¢%. By the Borsuk theorem, the homotopy between fand f
can be continued on the whole K.

We have reduced case (ii) to case (i).

Now we are ready to prove the theorem inductively, applying the above
construction. If K is a finite complex, there is nothing to be added. The case of infinite
complexes still requires some accuracy. Instead of going into details, we leave this part
to the reader. Note: if K has infinitely many cells of the same dimension, then the best is
to apply the construction to all these cells simultaneously. Further, if K has cells of
arbitrarily large dimensions, axiom (W) has to be referred to.

% \\\\\

This completes the proof of the cellular approximation theorem.
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Some consequences of the cellular approximation theorem

1. Let X and Y be CW complexes and assume that X has a single vertex and no other
cells up to dimension g while dim Y<g. Then any mapping Y- X is homotopic to the
constant (i. e. the mapping that carries Yinto a single point).

This immediately follows from the theorem. Indeed, if f: Y= X is cellular, it carries
the (g— 1)-skeleton of Y, equal to Y, into the (g— 1)-skeleton of X, which is the vertex.

In particular n(S™, %) = m,(S™, 5% = 0for m<q (i. e. it consists of a single element).

2. A space X is called n-connected if n(S?, X) contains a single element forg<n (i. e.
all the mappings $7— X are homotopic). '

* Exercise. Prove that the following conditions are equivalent to n-connectivity:

(a) m,(S?, X) contains a single element for g<n;

(b) any continuous mapping S?— X extends to a continuous mapping DYl X.

* Exercise. A space is 0-connected if and only if it is path-connected. (We recall that
S° consists of a pair of points.)

The term “1-connected” is more often used in the form “simply connected”.

Theorem. Any n-connected CW complex is homotopy equivalent to a CW complex
that contains a single vertex and no other cells in dimensions 1 through n.

Proof. Let us choose a vertex e, of the complex X and connect it with the remaining
vertices with paths. This is possible since the complex is n-connected and, in particular,
path-connected. (The paths may intersect.) By the cellular approximation theorem they
may be assumed to belong to the one-dimensional skeleton of X. Let s; be the path
connecting e, with ¢;. We attach to X the two-dimensional disk along the mapping of

) X

the lower half-circle by means of the path s;. By carrying out this procedure with each s;
we obtain a new complex X which contains X as well as cells e} , e7 (the upper half-circle
resp. the interior of the attached disk).

I

x>

€3 €4
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3 CW COMPLEXES 35

The boundaries of the two-dimensional cells e7 belong to the 1-skeleton because the
same is true for the paths s;.

Now X is clearly a deformation retract in X , as each disk can be deformed onto the
lower half-circle.

Let Y be the union of the closures of the cells e} .

Clearly Y is contractible. Thus X/ Y~ X ~ X. On the other hand, Y has only a single
vertex.

The next step is similar. Assume that X ~ X’ and has a single vertex and no cells in
dimensions 1, ..., k—1, where k<n. In that case every k-dimensional cell is a k-
dimensional sphere. Since X is n-connected as well as X', the imbedding of the sphere
into X’ can be continued on the (k + 1)-dimensional ball whose image, in turn, may be
considered as belonging to the (k+ 1)-skeleton, in view of the cellular approximation
theorem. We attach the ball D**2 to X’ along the mapping, thus adding one (k+ 1)-
dimensional and one (k+2)-dimensional cell to X’. The complex X' obtained is
homotopy equivalent to X’ and contains a contractible subcomplex Y (the union of
closures of the newly added (k+ l)-dimensional cells) that contains all the k-
dimensional cells. We have X'/Y ~ X'~ X'~ X . Now X'/Y has a single vertex and no
cells in dimensions 1, ..., k. Q.e.d.

Corollary. If X is a k-connected CW complex and Y'is a k-dimensional CW complex
then n( Y, X) consists of a single element. The same is true for n,( Y, X)if Xand Y have
vertices for basepoints.

Exercise. Prove that an arbitrary one-dimensional CW complex is homotopy
equivalent to a union of circles.

§4. THE FUNDAMENTAL GROUP 7,(X)

The one-dimensional homotopy group #,(X) is also called the fundamental group
of X. The definition given for x,(X) in §2 was a very general one so it is worth repeating
it in terms of the particular case n=1.

Let us consider all possible loops passing through a fixed point x,€X, i. e.
continuous mappings ¢: I—X such that ¢(0) = ¢(1) = Xo. Two loops are said to be
homotopic if there exists a homotopy ¢,: I— X such that ¢, = ¢, ¢, = ¥ and
¢, (0)=0¢,(1)=x, (0<t<1). The product loop of ¢ and ¥ is given by

o(2t) erSts%;

x(0) = {
Y(r—1) mrEStSL

In other words, the product loop is obtained by passing ¢ and ¥ successively, first ¢
and then ¢ . It is easy to verify that this multiplication is compatible with homotopy, so
it gives at the same time a multiplication in the set of homotopy classes of loops, and in
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result a group which will be denoted by =7, (X, x,). The homotopy class containing the
loop ¢: I-X is clearly the inverse element of the class of ¢': I—X defined by
¢t = o(1-0). )

Any mapping f: X— Y induces a homomorphism f,: n,(X, xq)—n (Y, y,) where
Yo=f(x0). If f', f”: X— Y are homotopic mappings of pointed spaces, , and f,
clearly coincide.

Theorem 1. If Y'is path-connected and y,, y, isan arbitrary pair of points, then there
is an isomorphism 7,(Y, y,).

Proof. Because Yis path-connected, there exists a path o: I — Y with «(0) = y, and
al) =y, .

f Yo o Y

We construct a mapping oy : 7,(Y, yo)—=7,(Y, y1). Let fen (Y, yo), gen (Y, y;)
andfe f,geg.Weputay (f) = «-f-a~!. We obtain a loop with its beginning and end
at y,. By replacing f, g and « by homotopic paths we only change a,, (f) for a homotopic
loop, so «., defines a mapping of homotopy classes 7,(Y, yo)—=n (Y, y;). The inverse
mapping « ' is constructed analoguously by a3’ (9) =a ' -g-a.

It is easy to see that «. is a group isomorphism between 7,(Y, y,) and 7 (Y, y,).

This isomorphism depends on the choice of the path «. By changing « for another
path $ which is not homotopic to a we usually get a different isomorphism. In short, the
isomorphism is not canonical. It will be emphasized however that a, and f, may
coincide even if « and B are not homotopic.

Exercise. The isomorphisms «, coincide for all « if and only if n, (Y, y,) is
commutative.

In view of the theorem the group =,(Y, y,) may be regarded as independent of y, .
This justifies the notation #,(Y) and the name, fundamental group of the space X,
accepted for 7,(Y, y,).

* Exercise. For homotopy equivalent spaces Y; and Y,, n,(Y,) = n,(Y,).
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Computation of fundamental groups

Theorem 2. The fundamental group of the circle is isomorphic to the additive group
of integers: n,(S*) = Z.

Proof. We are going to construct the so-called universal covering space over the
circle. This notion will be expounded in the next section. The reader will be advised to
return at each step of the general construction to the corresponding part of the present
proof.

The points of the circle are assumed to be parametrized by real numbers defined up
to a summand 2kn. The base point is 0. We recall that the elements of =,(S') are
homotopy classes of base-point preserving mappings S* —S'. Any such mapping may
be given as a multivalued continuous function defined on [0, 27] whose value at each
point is given up to additive terms 2k, satisfying f(0) = f(2n).

We are not going into the details, what is meant by the notion of continuous
multivalued function and how to prove, by using the usual ¢ — é-technics that such a
function has a single-valued branch, i. e. a function defined and continuous on [0, 27
whose value at each point coincides with one of the values of f. Let f* be such as a
function on [0, 2n] with f§, = 0. It is uniquely determined by f, moreover any
homotopy f, (0<t<1) will define a homotopy of the functions f}* (0<z<1) as
mappings of the interval to the line.

Conversely, any continuous function F defined on [0, 2r] and such that F(0)=0,
F(2r) = 2kn, where k is an integer, is of the form f* with a suitable f. To finish the proof
we only have to make three very simple remarks. First, the number k (in f*(2n) = 2kn)
will not change during a homotopy as the range of the admitted values of f*(2n) is
discrete. Thus it only depends on the element of r,(S') represented by f.
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Second, if for any pair of mappings f;, f, we have f} (2n)= ¥ (2n), then certainly
J1 ~ f>- Inparticular if /* (2r)=2kn then f ~ h,. Here hi (x)=2knx, as shown on
the figure. Finally, we have A, - h,=h,,,. Q. e. d.

y

Theorem 3. Let By= V ,_, S. be the union of circles S!. Then n,(BY) is a free
group whose generators correspond to the elements of 4.

Proof. The proof will be carried out in two steps. The second step will actually be
postponed until §5. Let B} be a union of circles (whose common point is considered as
the base point of the space). We denote by i, the a-th standard imbedding of the circle S*
into B (assumed to preserve the base points), and by 1, € n, (B}) the class of i,. We
show that (1) any element of =, (B) may be written as a finite product of elements #,
and 7, !; (2) such representation is unique up to reduction by pairs of adjacent factors
n, and 7, '. The two statements put together are equivalent to the theorem.

Now (1) actually follows from the simplicial approximation theorem. Consider a
mapping f: S'— B} The spaces S* and B, will be divided into simplexes in the obvious
way by each circle S*, S! being divided into three one-dimensional simplexes P, Q, R
resp. P,, Q,, R,. By the simplicial approximation theorem S is homotopic to a
simplicial mapping between suitable subdivisions of S! and B} (It is left to the reader
to make this argument more precise, taking into account that the simplicial ap-
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proximation theorem does not involve base points. Actually the constructions of the sim-
plicial approximation theorem in the original proof may automatically give a sim-
plicial mapping that preserves the base points.) Next the mapping is multiplied from
the right by a homotopy of B} into itself connecting the identity mapping with a
mapping which maps all the simplexes P,, R, onto the base point, and stretches each
simplex Q, on the whole circle S} . The result is a mapping }7 :S'— B! homotopic tofand
of the following structure. The circle is divided into several arcs, each of which is either
mapped onto the base point or is stretched over one of the circles of the union. By the
definition of multiplication in the fundamental group, the class of this mapping in
n,(B}) is a product of elements #,, 7, ! and the unit element (which is the class of the
constant mapping).

To prove (2) it suffices to show that any product ;. ... n7g (g, = = 1) is unequal to
the unit element unless it contains elements 7, and 5, ! in succession. This will be
obtained as a corollary of the main theorem in §5.

Let X be a space with base point x, and ¢ be a mapping which sends the base point
of S into x; € X . Let us be given a path s connecting x, and x, . The loop s¢s ™~ * defines
an element f of 7,(X, x,). If s is replaced by another path s’, we get gfg ~ ! instead of f,
where g is the class of the loop s's ™! . Thus any mapping of the circle defines an element
of the fundamental group up to conjugacy.

Theorem 4. Let K be a CW complex having a single vertex, one-dimensional cells
el (iel), two-dimensional cells e? (jeJ) and characteristic mappings f1: B'>K,
f%: B*- K. The mappings obtained by restricting f? to B2=S" determine, up to
conjugacy, the elements ;€ n, (K*). Then =, (K) is the group generated by the set of
generators I with relations §;=1, je J (see theorem 3).

Proof. Let us compute n,(K) = n,(K,*) for a CW complex that consists of a single
vertex *, 1-dimensional cells e! (i € I) (with characteristic mappings f* : B! = [-»K)and
2-dimensional cells ¢ (j € J) (with characteristic mappings /7 : B~ K) . Every element of
the group is represented by a base-point preserving mapping ¢: S!— K. If the circle is
regarded as a CW complex with a single 0-dimensional and a single 1-dimensional cell,
¢ is already cellular on the O-skeleton, consequently it is homotopic to a cellular
mapping that is constant on the 0-skeleton. In other words, every element of 7,(K) is
represented by some mapping ¢: S'—» K! c K.

The characteristic mappings f of the cells e} represent certain elements @; e n,(K).
By theorem 3 any element of #, (K) can be written as a product @%! ... @ (g, = £ 1),

Finally we have to find the products equal to 1. Let je J, g;: S!'— K! < K be the
restriction of the characteristic mapping f? . By the paragraph preceding theorem 4, it
defines, up to a conjugacy class an element in n,(K') whose image is clearly the unit
element in n,(K) (as g; extends to a mapping of the disk B?). Moreover the conjugates of
such elements will be equal to the unit element as well as their products.

‘Remark. It seems as if we might have assumed that all the mappings in question send
the respective base points.into each other. Neither is it so for an arbitrary CW complex
nor would it make the proof any easier.
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Let ®en,(K') be an element sent to the unit element by the homomorphism
induced by the inclusion K' < K. That is, any representative f: S'—K' = K may be
extended to a mapping F : B> — K . By the cellular approximation theorem the image of
F may be assumed to be in K*. By the same procedure as the one in the proof of the
cellular approximation theorem we may ensure that F is simplicial on the pre-image of
a small disk surrounding the centre of each 2-dimensional cell of K. Let these disks be
further diminished until they contain only images of points of open 2-dimensional
simplexes (by the respective simplicial mappings).

Nowwe have the following situation: each 2-dimensional cell contains at its centre a
small disk whose pre-image consists of similar disks that belong to B* and are linearly
mapped onto the corresponding disks. (Nothing is assumed about orientation!)

Next the complex K is deformed in itself so that the one-dimensional skeleton is
fixed, in each cell the disk is stretched to cover the whole cell, and its complement is

squeezed out to the one-dimensional skeleton. By the Borsuk theorem this deformation
extends to a deformation K—K, so F may be defined as the composite of F with it.
Then F will have the following description. The complement in B of a number of disks
is mapped-onto the 1-skeleton, the disks themselves are mapped onto corresponding 2-
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dimensional cells and each of these mappings either coincides with the characteristic
mapping or differs from it in an axial reflexion.

Now let each disk be connected with the base point of S* by a line. The complement
to the union of the disks and lines is an open disk mapped by F onto K*. Its boundary is
also mapped onto K' and represents the identity element of 7,(K), because it is the
restriction of a mapping of the disk. On the other hand, it is equal to a product of &
(represented by the boundary of B*)and certain classes which are conjugate to elements
represented by the characteristic mappings of 2-dimensional cells. Thus © is equal to
such a product. Q.e.d.

* Exercise. Every contractible space is simply connected.

Exercise. The fundamental group of any H-space is commutative.

Exercise. On the 2-dimensional sphere S* there are given two continuous odd
functions (i. e. functions such that f(x)= — f(tx) for x € S2, where 7 is the antipodal
mapping of §?). Then they have a common zero.

Exercise. A trifolium is the simplest knot in the 3-dimensional space.

5=

Find the fundamental group of its complement. Deduce from this that the trifolium
cannot be “undone” i. e. there is no homeomorphism of the space E* into itself that
transforms the trifolium into the standard circle. Can any group be isomorphic to the
fundamental group of the complement of a knot? (A knot is a closed polygonal non-
self-intersecting line in the three-dimensional space.)
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It is well known that every closed two-dimensional manifold may be obtained from
the sphere by attaching to it handles (“orientable surface”) and M&bius bands (cf.
Milnor, Morse theory, Princeton Univ. Press, 1963).

For example, a torus is a sphere with a single handle.

Attaching of a mdbius band cannot be carried out within the three-dimensional
space without causing self-intersection. For the sake of better visualization we recall
that the boundary of the Mdbius band is nothing else than an ordinary circle. Thusit is
possible to attach along the boundary of the Mobius band a sphere with a hole.

Exercise. Prove that we get the same thing by attaching three Mobius bands as by
attaching a Mobius band and a handle.

* Exercise. Compute the fundamental group of an arbitrary two-dimensional surface.
What are the fundamental groups of the sphere, the torus, the projective plane, the
Klein bottle? Which of the surfaces have commutative fundamental groups?

Exercise. Prove the existence of a group that can be the fundamental group of
no closed 3-dimensional manifold.

Let G be an arbitrary group with finitely many generators and relations.

Exercise. Construct a closed manifold the fundamental group of which is G.

The problem will be more difficult if we add the strongest possible condition on the
dimension:

Exercise. Construct a closed 4-dimensional manifold the fundamental group of
which is G.

§5. COVERINGS

A path-connected space T is called a covering space over the path-connected space
X if there is given a mapping n: T— X such that for every xe X there exists an open
neighbourhood U(x) < X for which n~}(U) is homeomorphic to U x D where D is a
discrete set, and the diagram '

n Y (U) ~ UxD (homeomorphism)

\ / projection

U

is commutative. The mapping n: T—X is called a covering projectidn or simply a
covering.
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Examples.

1) T = R is the real line and X = S' is the circle S' = {zeC; |z| = 1}. The
projection 7: R—S" is given by the formula n(t) = ™.

2) n: S'— S is given by the formula =(z)=z* where k#0 is an integer.

3) T = S" is the n-dimensional unit sphere in R"*!, X = RP" is the real n-
dimensional projective space. The mapping n: S"—RP”" is given as assigning to any
point of S” the line connecting it with the centre of the sphere.

4) T = R?1s the plane, X = S x S!is the torus, and = is the projection of 7= Rx P
onto the quotient group X = (R+R)/(Z+2).

The covering homotopy theorem

Theorem 1. Let n: T— X be a covering. Let us be given an arbitrary space Z,
a mapping f: Z- T and a homotopy ®: Z x I— X such that wo f = ®|,,,. Then
there exists a unique homotopy F: Z x I - T such that F|,.,=f and no F= &,

Lemma. Let n: T— X be a covering, xe X, ten” '(x) and let f: I— X be a path
for which f(0) = x. Then there exists a unique path g: /— T such that g(0) = ¢ and
nog=f.

Proof of the lemma. The neighbourhoods U(x) with the property required by the
definition of covering will be called elementary.

Every path is compact, being the continuous image of a compact set. For every point
f(t) e X there exists an elementary neighbourhood. Their system contains a finite
subsystem covering the path. For the sake of convenience we order the elements so that
a neighbourhood precedes another one if it contains a point of the path whose
parameter is smaller than the parameter of any point belonging to the latter. Let us
consider the first neighbourhood. Its pre-image by = is homeomorphic to a discrete
union of similar neighbourhoods. Only one of them contains the point ¢. In this
neighbourhood we consider the inverse pre-image of the path f. This is the only way to
“lift” the part of the path contained in U(f(0)) to T.

Now the second neighbourhood clearly meets the first one. Thus it contains some
point f(7) that has already been lifted, and we see the previous situation repeated, etc.
The process is finite. The lifted path is unique, as has been at each step.

Proof of Theorem 1. Let zeZ. Them ¢|;x;: I—X defines a path in X. The
function ¢ is continuous in 7 € I, therefore the path has a unique “lifting” in T, where
the starting point of the path is given by f. By making z to run through Z we obtain the
mapping F: Z x I - T. The reader will easily show it to be continuous and unique.

Theorem 2. The mapping n,: 7n,(T) is a monomorphism. (Here n,(X) stands for
n, (X, xo) where x, is an arbitrary fixed point of X.)

Theorem 3. The pre-image =~ !(*)=D of an arbitrary point * is in a one-to-one
correspondence with the cosets of 7, (X) by the subgroup =, (%, (7T)).
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Proof of Theorem 2. Suppose that a loop a of T is projected on a loop n(a) homotopic
to zero. It has to be shown to be zero homotopic, too.

Now a loop is a mapping o= F: S'— T. By assumption 7 F= f,: S'— X is zero
homotopic, i. e. there exists a homotopy f,: S'— X such that f,(S')==x. By the
homotopy covering theorem there exists a homotopy F: S!— T such that nF, = f,and
Fo = F.Asthe pre-image of the point * isa discrete subset of T, Fy isa mappingonto a
single point. Thus the loop « is contractible into a single point, too. Q.e.d.

Proof of Theorem 3. (Actually we have more of a construction than a theorem, i. e.
something between a definition and a theorem.) The correspondence is established as
follows. Let us consider a loop in X. It can be lifted to T. We assign to it the endpoint of
the corresponding path in T. (The starting point coincides with * while the endpoint is
only known to belong to ™ !(x).)

The following facts are to be verified:

(i) The definition is correct, i. e. if two loops belong to the same class in 7,(X)/ 7, (T),
the same point is assigned to them.

(ii) If two loops belong to different classes in m,(X)/n(T) the points assigned to
them are different. '

(iii) Every point of =~ !(x) is assigned to some loop.

(i) Leto, Ben,(X)/n(T). Then . }(B~ 'a)isaloopin T,i.e. the path =, !(f) starts at
the endpoint of n."*(«), hence m.”!(B) ends at the same point as 7. *(a), as claimed.
. (ii) Indeed, if a point corresponds to both « and f, the pre-image of the loop ™ is
also a loop in T, i. e. « and f belong to the same class.
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(ili) Consider a point te T for which n(t) = xe X . As T is path-connected, t and
« e T can be connected by a path, whose image is necessarily a loop in X Its homotopy
class corresponds to .

Theorem 2 implies that if 7: T— X is a covering, x € X, x, X, € T and n(x,)=mn(x,)=
= x, further s is an arbitrary path connecting x, and x,, then n(s) is a loop, with its
vertex in x, which is not homotopic to zero. This fact enables us to fill up the gap in the
proof of theorem 3 in §4. We have to prove that no loop, represented in the form of a
product @ = ©¢' ... @% is zero homotopic unless it contains a factor @; immediately
followed by ©; ! . Here ©% ¢, = + 1 denotes a loop along the i-thcircle of the union,
that is, we are supposed to walk along the circle. The direction depends on the sign of ;.
Let k be the number of letters in the word ©. Let us consider k + 1 copies of the union as
shown on the picture.

At first we take the first letter of the word. It corresponds to some circle in the union.
We cut out a small section of this circle in the first and second copies. Then we
unite the free ends crosswise. The projection is defined on the modified space in the
obvious way. Next we connect the second and third copies similarly, this time by using
the second letter in the word. We go on with this procedure until we get a connected
space with a projection on the union. If two identical letters follows each other, we cut
off two segments from the same circle. It is then necessary that the first segment should
precede the second one if the letters in question are on the first power and should
follow it in the opposite case. (All circles in question are oriented, otherwise it would
make no sense to speak about powers.)

As it will easily be verified by the reader, the result is a (k+ 1)-fold covering of the
union of circles, moreover the loop in point is covered by a path that starts at the lowest
among the points pro;ected onto the base point and ends at the hlghest one. Hence it is
not homotopic to zero.

A covering is regular if the image of n,(T) is a normal subgroup of #,(X).
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Exercise. Prove that a covering space is regular if and only if for any pa‘th in X, the
paths above it in T are either all closed or are not closed.

* Exercise. Any covering space over the torus 72 = S*x S? is regular, Describe the
covering spaces of the torus.

Exercise. Find all the covering spaces of the figure 8 space.

C o>

A covering space is universal if n,(T) = 0.

In examples 1, 3 and 4 we had universal covering spaces.

* Exercise. Prove that a universal covering space over X is a covering space of any
covering space over X too.

* Exercise. Prove that for n>2, n(T) = n,(X) (the proof can be found in §7).

Classification of the covering spaces over a given base

In the sequel X will be assumed locally simply-connected. That is, for any x X there
exists a path-connectéd neighbourhood U(x) such that for any pair x, , x,€ U(x), all
paths which connect them within U(x) are homotopic in X.

Existence of covering spaces

Theorem. For any subgroup G <, (X) there exists a covering n: T— X such that
for a suitable point 6®en™(x,), Im n(n,(T, ¢°) = G.

. Construction. Consider the path space of X. Two paths with identical endpoints «
and f# will be identified if the class of B~ '« belongs to G. Let the space of equivalence
classes of paths be chosen for 7. For the projection we take the mapping that assigns
the second endpoint to each path.

The result is a covering space satisfying the condition Im nJn,(T)) = G . (Prove it!
As you will find the proof requires the use of local simply-connectedness.)

Two covering spacesn: T—X and n': T'— X are said to be equivalent if there exists a
homeomorphism T = T' such that the diagram ‘

is commutative. .
Theorem. The covering spaces n: T— X and n’: T'— X are equivalent if and only if
n,(n,(T)) and n', (7 (T)) are conjugate subgroups of n,(T).
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Proof. if the covering spaces are equivalent, the subgroups under consideration are
clearly conjugate. To prove the converse statement we construct the required
homeomorphism. First of all we notice that by choosing the base point *e T’ properly
we can obtain that the conjugate subgroups simply coincide.

Tl
—» _x basepoint No. |

% basepoint No. 2

|
=

Next we assign to te T a point of 7" according to the following rule: Let f be an
arbitrary path in T which starts at . We lower it into X and then again liftit to 7". The
endpoint of T’ will be associated with . We leave it to the reader to show that this does
not depend on the choice of the path, the obtained mapping is a homeomorphism and
' the diagram is commutative.

Exercise. Construct a pair of non-equivalent, homeomorphic covering spaces over
the torus.
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86. HOMOTOPY GROUPS

The homotopy groups 7,(X, x,) of a pointed topological space X were already
defined in §2 as a special case of a general covariant homotopy invariant. The extreme
importance of the notion justifies its thofrough study.

We recall that the set m,(X, x,) is defined as the set of all homotopy classes of
mappings S"— X which send the base point of S" into x,. Such mappings are called
spheroids. In a slightly different way a spheroid may be defined as a mapping of the n-
dimensional cube /" into X that sends the boundary 97" of the cube into the single
point x,.

The sum of two spheroids f.g: S"— X is the spheroid f +g: S"— X defined as follows:
first the equator of S” (containing the base point) is contracted to a single point so that
the sphere becomes a union of two spheres. Then the two spheres of the union are
mapped into X by means of fand g, respectively. Let the spheroids f, g: I"— X be given

Sn

in terms of cubes. Then the sum f+ g is defined to coincide on the left half-cube with the
composite of fand the contraction of I" to the left half of the cube and on the right half-
cube with the composite of g and the analogous contraction.
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Though the addition of spheroids is not a group operation, it is invariant to
homotopy (i.e. f~ f'.g~g implies f +g~f"+8&") and induces a group operation
on 7,(X. x,). Associativity and the existence of a unit element are directly verified (cf.

§2).

py between the

For n>2 the operation is commutative as well. The homoto
e shaded part is

spheroids f+ g and g +f may be carried out as shown on the picture (th
mapped to xo). :

As in the case of fundamental groups, the natural question arises about the

dependence of m (X, x,) on the base point, xo.
If X is path-connected, it can be shown that 7, (X, xo) and 7,(X, x,) are isomorphic

for any Xxq, X;€X by using argumentation analogous to that in §4. Again the
isomorphisms coming from homotopic paths will coincide. The question when is this

isomorphism independent of the choice of the path between X, and x, is an interesting

one. Loops define automorphism of 7,(X, Xo)- This defines a group action of 7,(X, Xo)

on (X, X,)-
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A space X is n-simple if the isomorphisms coincide for any pair of paths con-
necting %, and x,. Equivalently X is n-simple if the action of 7 (X) 1s trivial.
Thus, as shown in §4, a space X is 1-simple if and only if (X, x,) is commutative. If
m (X, xo)=0, then X is clearly n-simple for any n.

Exercise. Prove that any H-space is n-simple for arbitrary n.

Homotopy groups and covering

Theorem. For any covering n: T— X the mappmg T (T)->7,(X) is an
isomorphism for n>2.

This immediately follows from the next lemma.

Lemma. For any covering n: T— X, simply-connected (and locally simply-
connected) space Y and continuous mapping /> Y —X such that n(t,) = So) = X,
where 4, Yo, X, are the base points of the respective spaces, there exists a unique
natural mapping F: YT such that F(y,) = t, and 7o F = f.

Proof of the lemma. Let y € Y and let s be a path connecting y, with y. Its image f{s) is
a path connecting with x, in f{y). Now there exists a path §in T starting at ¢, and
covering f{s). Let the endpoint of § be denoted by F(y). It does not depend on the choice
of s because Y is simply connected and so any path between y, and y is homotopic to s.
A mapping F: YT for which F(y,) = t,, o F = f, arises. It is left to the reader to
show that F is continuous (hint: use the local simply-connectedness of Y). Unicity of F
clearly follows from that of the covering path.

Proof of the theorem. As the sphere S" is simply-connected for n > 2, for any spheroid
S 8" X there exists a unique F: $"— Twith 7o F = f. Thus Ty T (T)>m,(X)is an
epimorphism.

Now §" x I is again simply-connected, so the homotopy ¢ : S" x I - X is coveregl bya
unique @: S"x I-T, i. e. by a homotopy connecting ®|sn «(0) With @|gn;, which are the
spheroids homotopically unique by the lemma that cover | g, oy and @[ gny iy
respectively. We obtain that spheroids covering homotopic spheroids are homotopic,
too, 1. €. m.: m(T)—>n,(X) is a monomorphism. Q.e.d.

The theorem may immediately be applied to compute the homotopy groups of some
spaces. For example,

Z for n=1
1y Y
”"(s)—{o for n>1.

The first statement was proved in §4; the rest f(;llows from 7,(S") = n,(R)for n>2, and
from the contractibility of R.

Exercise. Prove that if X is a graph, then n(X) = 0 for n>2.

Exercise. Find the homotopy groups of a surface of genus g>1 (a sphere with g
handles).
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* Exercise. Prove that (X x Y) = m,(X)+m,(Y).

* Exercise. Prove that if CW complex X has no cells of dimension 1, ..., ¥. then
7,(X)=0 for i<n. In particular, 7,(S")=0 for i<n.

Hint. This follows from the cellular approximation theorem of §3.

§7. FIBRATIONS

In§5 we studied the covering spaces which are locally constructed as direct products
of an open and a discrete set. They are particular cases of a broader notion, the so-called
locally-trivial fibration.

bfinftion/Wo/say fhat (£, By F. ), wiere E. B, FF aye spaces gnd pyis a pap infff
ipto B/is afocally try 1alf) r?élif for gver, Q.w/?t/e/ree 1st ane'dg%h od B
4nd Aombombrpidsm 4 suédh that ' '( YA U x4F andl thé digkr

Definition. We say that (E, B, F, p)were E, B, F are spacesand pisa mapping of E into
B, is a locally trivial fibration if for every x € B there exists a neighbourhood U < Band
homeomorphism ¢ such that p~*(U) £ U x F and the diagram

p YU)R UxF
p\‘ the natural projection
U
is commutative.
We say that p, F, B and E are the projection, the fibre, the base space and the total
space of the fibration, respectively. The term “fibre space” is also used for E.
A fibration is trivial if Ex B x F and

ExBxF
4 \/ the natural projection
B

is commutative.

Examples for fibrations

1. Coverings.

2. (E, B, F, p) where E is the M6bius band, B the circle (middle.line) of the Mobius
band, p the natural projection and F a line segment. This is probably the most popular
among the examples of nontrivial fibrations. (Prove it!)

3. p: S35 where S3={(z,,2,)}z:12,+2,7,=1} = C? and S?=CP!' is the
complex projective line, p: (z,, z,)—2,2; ' . The base space and the fibre are S and §*,
respectively. Prove that for any pair x, #x,€S?,p~ '(xo) and p~'(x,) ate linked in §°,
i. e. a film spanned on one of the fibres will necessarily intersect the other fibre.
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4. Let G and H be a Lie group and its closed subgroup. The homogeneous space
G/H 1s defined as the set of right cosets of G mod-H. The projection G—G/H gives a
locally-trivial fibration.

5. Let f: M"— M* be a regular mapping between compact smooth manifolds, i. e. a
mapping whose differential is a monomorphism on each tangent space: It is a locally
trivial fibration whose fibre F= L" % is a compact smooth manifold of dimension
(n—k).

The proof of this fact may be carried out in two steps: (i) /'~ !(p) is a smooth
manifold of dimension (n—k) (where y € M*); (il) forany y,, y,, /"' (y )= f " (p,).

The pre-image of each point is a smooth manifold by the implicit function theorem.
Planes which are normal to a fibre can intersect each other only at some distance from
the fibre, as follows from the smoothness of the mapping.

6. Let E be the space of the unit tangent vectors to the sphere S2¥, B=S§2*  and
p: E— 5% the natural projection. Were this fibration trivial, there would exist a non-
zero section, i. €. a continuous mapping ¢: S**—~ E such that pogp =1, and @(b)#b

» for any hie B. Thus there would exist on S?* a continuous vector field that does not

vamsh any where on S%. It is well known that no such vector field exists on even-
d1mensnonal spheres
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Covering homotopy

It turns out that, like covering projections, any locally trivial fibrations have the
covering homotopy property except the uniqueness.

Theorem 1. (Covering homotopy theorem.) Let (E, B, F, p) be a locally trivial
fibration and Z be a CW complex. For any mapping f: Z— E and homotopy &: Z x |—
— B such that pof = @], there exists a homotopy F: Zx I—>E with F|,,, = f
andpo F = & Moreover, if such a homotopy is already given on a subcomplex Z' < Z,
it can be extended onto Z.

Definition. Let p: E— B be a locally-trivial fibration, B’ < B,and E' = p~ (B’). Then
the restriction p: E'— B’ of p is evidently a locally trivial fibration with the same fibre. It
is called the restriction of the fibration p : E— B to the subspace B'. It is a particular case
of a more general notion.

Definition. Let p: E— B be a locally-trivial fibration and f: B, — B a mapping of some
space B, into the base space. A fibration p, : E, — B, is said to be induced from p by fif
there exists a mapping f : E, —E such that the fibre over each point x € B, is sent into
the fibre of p over f{x) € B and the mappings between the fibres are homeomorphisms.

Lemma. For any locally-trivial fibration p: R— B and mapping f: B,— B there
exists an induced fibration.

Proof. Let E| be the subspace of E X B defined by E, ={(e, b)|f(h)=p(e)} and
let f: E,~E and py: E\— B, be the restrictions to E; of the respective natural
projections of the product space. Then p,: E,— B, is easily shown to be a locally-
‘trivial fibration induced from p: E-» B by f.

Lemma. (Feldbau’s theorem). Every locally-trivial fibration p: E— I? over the
g-dimensional cube /9 is trivial.

Proof. At first we show that if p: E—]7 has trivial restrictions on the half-cubes

I = {(xl,. X )0, <L i=1,2,.. . g—1; Oqus%}
and

1
1% = {(xl,. X0 x,<,i=1,2,...g-1; 3 qusl}

then it is equivalent to a trivial fibration.

Indeed, let p, : E; —1§ and p,: E,—I4 be the restrictions. We have E, = 1 x P and
E,=1I% x P. The points of E, and E, are given by coordinates (x, y) and [x, y], where
yeP and xelf or xelf, respectively. Let xeI?"! = I{NI5. Each point of E with
coordinates (x, y) has also coordinates [x, y']. The correspondence y—y defines a
function f,: P— P. Let n: I4— I be given by the formula

1
n(xy,.. .,xq)=(x1,. N S 5)

and consider a mapbing @: E— E which is the identity on E,, and sends [x, y]€ E,
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into (X, fr(x, (»))- Asitcan easily be seen, the existence of ¢ implies the equivalence of
the fibrations while the fibration constructed is trivial.

S
ik

e e ————

e ————

Now the fibration being locally trivial, there exists a sufficiently fine division of I
into cubicles over which it is trivial. We begin with any of the cubicles and prove the
triviality of the fibration joining the other cubicles one after another and applying the
above argument at each step.

A7
va
P ya Z g
P =z Z 7
2 2. z L

Proof of the covering homotopy theorem. 1. Suppose first that the fibration p is
trivial. Then the statement reduces to the Borsuk theorem. Indeed, if E = B x F,'then
Y: Z— Fand homotopies ¢;: Z- B, y;: Z'> F, where by assumption ¢ = f,, and ¢
= f,|z-- Now by the Borsuk theorem there exists a homotopy ¥, such that y, =y and
Vilz=y;. We put F(z) = (/i(2), ¥,(2)). '

2. In the general case we use induction. For 0-dimensional cells of Z the theorem is
obvious. Suppose the homotopy is given on Z;=Z'UZ* ' UiZ{ ef. It will be
extended to a homotopy F,: Z,— E where Z,=Z, Ue¥. Consider the characteristic
mapping f*: B*— Z for the cell e*. The fibration p': E'—B*x I induced by the

composite




ice of

10f 17
ve the
ng the

on pis
F, then
and ¢;
¢y and

yrem is
will be
teristic
by the

7 FIBRATIONS 57

" .
B"XIM—»ZX[L»B

is trivial by the Feldbau theorem. We define @(¢) e E' < B¥x [ x Eand ¢, (¢)e Bx [
for ¢eB* by @) = (&0, FfkeE)) and &) = (& t). Then we define
D ()€ E'c B* X IX E for e dB* by @y()=(¢, 1, F.f{(£)).

We recall that &£ e dB* implies f*(&)e Z*', i. e. for such points F, is already
defined.

We have obtained mappings ®: B*~E’, ¢,: B*— B*x [and @,: 0 B*— E' such that
Dlope~ Dy, po®=q,, p'oP,=¢,. As the theorem holds for trivial fibrations,
there exists a homotopy @,: B*— E with ®,|, 5=, p' o ®,=¢,, ®,=P. For points £
of the cell e¥ we set F,(&) =y @,(f*) ™1 (&) where y: E' — Eis the restriction to £’ of the
projection of B* x I x E on the last factor. It is an extension of F; on Z, as required by
the step of induction. Q. e. d.

Serre fibrations

The covering homotopy property gives rise to a new class of fibrations.

A Serre fibrationis a triple (E, B, p) of spaces E and B (the latteris assumed to be path-
wise connected) and a mapping p: E— B having the covering homotopy property
(CHP) for arbitrary CW complexes, i. €. if Z is a CW complex and f: Z—E a mapping,
then for any homotopy @®: Zx[I— B for which po f=®|;, there exists
F: Z x I- E such that’Flzx{o} and po F=9&.

A Serre fibration is not necessarily a locally trivial fibration. A simple example:

,‘4
SRR XX221R

We remark that unicity of the covering homotopy has not been required.

Examples for Serre fibrations

1. Any locally trivial fibration ( by the theorem above).

2. Mapping space fibrations. Let Y be an arbitrary space, X and A a CW complex
and its subcomplex. We recall that H(X, Y) denotes the space of all continuous
mappings X —» Y. Wetake E = H(X, Y), B=H(A, Y)and define p: E— Bthe natural
mapping given by restricting f to A: |

p(f)=/la-
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Itturns out that we obtain a Serre fibration—prove it. If X, S and Y are pointed, we get
a Serre fibration H,(X, Y)— H,(4, Y) too.

3. Take in the above example the unit interval (0, 1) for X with 0 as the base point,
and the set {0, 1} with the base point 0 for A. We obtain a fibration whose base space is
Y = H\(4, Y), the fibre over y, € Y is the set of all paths connecting the base point of Y
with y,, and the projection assigns to the paths their endpoints.

Covering homotopies can be given by the formula

[F()(z(1+1)) for t(l+0)<1,

[F(2)](z) = {ftum_l(z)'}.for t(l+1)>1.

Note: the covering homotopy property (CHP) holds here not only for CW
complexes but also for arbitrary spaces. Fibrations with this strong CHP are called
Hurewicz fibrations.

Fibres

As shown on the very first example of a Serre fibration: the fibres (1. e. pre-images of
points) are not necessarily homeomorphic. Nevertheless it turns out that in a sense, like
locally trivial fibrations, any Serre fibration has a standard fibre over each point.

A space X is said to be weakly homotopy equivalent to Y if for any CW complex Z,
there is a natural isomorphism n(Z, X) = n(Z, Y). That is, for any CW complex Z there
exists a one-to-one mapping ¢,: n(Z, X)—n(Z, Y) such that for any Z’ and f:
Z—Z' the diagram

9z: ®Z, X)->n(Z,7Y)
T/* Tr*
0z n(Z', X)-n(Z',Y)

is commutative. Evidently homotopy equivalence implies weak homotopy equiva-
lence. Compare this definition to definition 3 of homotopy equivalence in §1.
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Theorem. If p: £— B is a Serre fibration and x,, x, € B, then p~!(x,) is weakly
homotopy equivalent to p~*(x,).

Remark. If the covering homotopy property holds for any topological space Z and
not only for CW complexes, i. e. if we have a Hurewicz fibration, the fibres are
homotopy equivalent in the ordinary sense.

Proof. Let P, = p~'(x,), P, = p~ '(x,). We have to show that n(Z, P,) = n(Z, P,)
for an arbitrary CW complex Z. Let be given a mapping F: Z—- P, c E. Clearly
poF:Z—x,.Letx, and x, be connected by a path . We define a homotopy f,: Z— B
by f(Z)=y(1) (each f, sending Z into a single point). Clearly fo(Z)=x,, i (Z£)=x,,
moreover po F = f, . By the covering homotopy property there exists a F,: Z— E with
poF,=f,, implying poF((Z) =f,(Z) = x, i. e. F;: Z-p !(x,) = P,. Let the
mapping F, be assigned to F. If two mappings are homotopic, so are the mappings
assigned to them. Clearly the correspondence between n(Z, P,) and n(Z, P,) is natural.
It remains to show that it is one-to-one.

To this end we define the inverse mapping in a similar way. The only difference is
that the path y connecting x, and x, is now to be passed in the opposite direction. We
obtain g: Z x [0, 2]— E such that p o g is the path i twice: there and back. This two-fold
path is contractible to x,, thus pofis homotopic to Z x [0, 2]—Xx, . By lifting this
homotopy to E we get a homotopy between the original F: Z— P, and the mapping
which is obtained by “driving” F into F; and then again turning it into a mapping
Z - P,. This proves that the correspondence between n(Z, P,) and n(Z, P,) is one-
to-one.

x
Y
x
~N

X4 path Xy

The theorem implies that the fibres of a Serre fibration over its different points are
weakly homotopy equivalent. That is, if x,, x,, X3, X, are points of a path-connected
space X, the space of all paths connecting x, and x, is weakly homotopy equivalent
to the space of the paths connecting x5 and x,. In fact these spaces are homotopy
equivalent in the usual sense, too, for the fibrations involved are Hurewicz.
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Any mapping is homotopy equivalent to a Serre fibration

Let the two mappings /: XY, g: X,—Y, be given. We say that f and g are
homotopy equivalent if there exist homotopy equivalences ¢: X > X, and y: Y — Y,
such that the diagram

x Loy

»l W

Xy,

1s commutative,
Theorem. Let Y be path-connected. Then for an arbitrary mapping f: X — Y there

exists an equivalent Serre fibration p: X' — Y.
Proof. We construct a space X' — X in the following way.

The points of X" are the pairs (x, s) such that xe Xand sisa pathin Y beginning at
f(x). Clearly X ~ X",

We define f': X' Y as assigning to (g, s) the endpoint of s.

Clearly f'is homotopic to f and it is easy to see that it is a Serre fibration. Q.e. d.

Moreover, the fibration p constructed above is a Hurewicz fibration. In particular,
its fibres are homotopy equivalent in the usual sense.
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$8. RELATIVE HOMOTOPY GROUPS
AND THE HOMOTOPY SEQUENCE OF A FIBRATION

Similarly to the case of pointed spaces, homotopy groups can also be assigned to
pairs of pointed spaces, i. €. triples (X, A4, x,) that consists of a space X, subspace 4 and
base-point x,€ A. ’

Let the cube I" be represented in the form "~ ! x [0, 1]. A relative n-dimension-
al spheroid of a pair (X, 4) with base-point x, is a mapping f: I"— X for which
SUTEX{0) = A and f(O1"\ (1" x{0})=x,.

,_

////// ////// 1\\

/////// T T

Relative spheroids f, g: I"—X are homotopic if the mappings f and g are
homotopic in the class of relative spheroids. The set of homotopy classes of n-
dimensional relative spheroids of (X, 4) with base-point x, is denoted by
(X, A, x,).

The sum of relative spheroids f, g: I - X is defined by

1
Ax, 2t) for 0<t<-,

hx, o) = 1
fix, 2t—1) for 5$t_<_1

[\

(here xe I"~1). We advise the reader to examine carefully this formula, in particular, to
verify that the addition of relative spheroids is defined only for n> 1.

Addition of relative spheroids is a homotopy invariant operation.

That is, if f~ f"and g~g’, then h~h'. ;

It gives rise to an operation in (X, 4, X,), also called addition. The set (X, A4, x,) is
a group with respect to the addition (for n>1).

Associativity is proved by explicit construction of the homotopy (f; +/5)+ fa~f; +

11

i|l@2

1 : 1 13 3 :
and l:i, 1 ] are transferred into I:O, EJ [ > 4] and [ 2 1], respectively.

The neutral element of the group is the homotopy class of the constant mapping

+(f; +f3): the plane is deformed along the axis ¢, so that the segments [O,
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folI™) = x,. For an arbitrary mapping f, the homotopy f, +f~f can be constructed by
1 1
deforming the axis t; so that [0, 5] is contracted to the point O, while [5, 1:| is

stretched on the whole segment [0, 1].

All the mappings f that transfer the whole cube into A are clearly null homotopic as
relative spheroids.

The spheroid defined by f: I"— X, f(x, t) = flx, | —t) represents the inverse of the
class of fern,(X, A, xq). (Prove it!)

The group m(X, A, x,) is commutative if n>3. This can be proved by directly
constructing a homotopy connecting the spheroids f +g and g+ f as well as by deducing
it from the analoguous property of absolute (i. e. ordinary) homotopy groups. Indeed,
we can use the following statement.

Lemma. If a Serre fibration = A’ — X is homotopy equivalent to the inclusion i: A—
— X (cf. the construction at the end of §6), then 7(X, 4, xo) = m,_(F), where F is the
fibre of the fibration. (It was pointed out that all fibres of 7 are stroagly homotepy
equivalent.) wreak

We shall return to the proof later on.

We have defined 7,(X, A, x,) for any pair (X, 4) and base point x,. It is aset with a
distinguished element (zero) for n>1, a group for n>2, and Abelian group for n>3.
If A=x,, then 7,(X, 4, xo)=mn,(X, xo). Any mapping f: (X, 4)—(Y, B) induces
a ho’hc')'morphism St (X, A, x0)> (Y, B, f(xo)). For path-connected A4,
(X, 4, xg) 18 independent' of x, in the sense that (X, 4, x,) and =,(X; 4, x,)
-are isomorphic, and with the homotopy class of the path between x, and x, fixed, the
isomorphism is canonical.

The homomorphism ¢

We define a homomorphism 8: =,(X, 4, xo)— 7,—;(4, xo) as follows. Let
aem, (X, A, x,) be represented by a mapping f. Consider the restriction of f|;.-:
to the face I"~ ! of I". The boundary I"~! is again mapped onto x,. Any homotopy
between mappings b, g from (1", I""*, J"" ') to (X, 4, x,) defines a homotopy
between the restrictions.

Thus the correspondence f— df gives rise to a mapping of homotopy classes a— da.

Clearly d(f, +13) = 0f, +0f>.
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The homotopy sequence of a pair

The sequence

-

. . P
. —U)Hn(A’ xO)'—lL‘)nn(X’ xO)L)nn(‘X: A’ xO)——)TCn—I(Aa xO)_) s

Ly (X, A, xo)—— (A, x0) —2 7, (X, x0) 74 (X, A, xo)

where i, and j, are the homomorphisms induced by the inclusions i: 4 = X and
Ji (X, X0, x0)= (X, A4, x,), is called the homotopy sequence of the pair and has
a remarkable property: it is exact: at each term the image of the left-hand homo-
morphism coincides with the kernel of the right-hand homomorphism. (We remind
the reader that m,(X, A4, x,) is not necessarily a group. The kernel at this term is
understood to be the pre-image of the class represented by f: S'—x,.)
That 1s, we have
(1) Im 0 = Keri,;
(1) Imi, = Kerj,;
(iii) Imj, = Ker 0.
The proof is left to the reader.
Let us mention a further important property of this sequence. If A: (X, A Xg) —
—-(Y, B, y,) 1s a mapping, then the diagram

~

. P
. __0__”["(/1, XO) l“)nn(}L XO)—;}—*—WC,,(X, A’ XO)*"—>TC”_1(A, Xo)—’ e

0 ] " 0
. “———)nn(B7 yO)_l_*“)nn(Y’ yO) —J-_”tn(Ys B, )’o)——>7l,,_1(B, yo)—> e

IS commutative.

An algebraic insertion: exact sequences

* Exercise 1. The sequence 0— A —»0 is exact if and only if 4 = 0.

* Exercise 2. The sequence 0— 4 —% , B0 is exact if and only if 4 and B are
isomorphic with each other and ¢: 4 - B is an isomorphism.

* Exercise 3. The sequence 0— A 5 B -5 C—0is exact if and only if 4 is
isomorphic to a subgroup of B, i: 4— B'is the inclusion C=B/4 and n: B—>C=
=B/ A is the natural projection.

*Exercise 4. If 0> A, — ... — A,—0 is an exact sequence, then

—1)(ank 4) =0
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* Exercise 5 (the “five lemma”). Assume that in the following diagram

Ay > Ay - Ay - A, - A
lo, Lo, l(Pg_ 1_?4 los
Bl nd BZ - B3 - B4 -—> BS

the horizontal lines are exact sequences, ¢, and @, are isomorphisms, ¢, is an
epimorphism and 5 is a monomorphism. Then ¢, is an isomorphism.

The lemma is indispensable in topology and wherever exact sequences are used. It
is highly advis%le to prove it for the reader.

First applications of the exactness of sequences of pairs

Exercise 6. If a mapping f: (X, A)—(Y, B) gives rise to isomorphisms

1 (X) =1 7 (v) and m,(4) —s 7 (8)

then n,(X, 4)—>n,(Y, B) will also be isomorphisms for all qg.

Exercise 7. Suppose that A is a deformation retract of X. Then for n> 1 and for any
xo € A the inclusion homomorphism i, : 7,(A4, x4) = n,(X, x,) is a monomorphism.
For n>2 it yields a direct sum decomposition.

TI"(X, xO) = nn(Az x0)+nn(X’ A’ xO)'

Exercise 8. If A is contractible in X to a point x,e 4, then for n>1 the
homomorphism i, : m,(A4, xo)—n,(X, x,) is trivial. Moreover for n>3 we have the
decomposition '

X, A, xo) = (X, Xo)+ m,_ (A, Xo).

The homotopy sequence of a fibration

Let (E, B, F, p) be a Serre fibration. We can write out the homotopy sequence of the
pair (E, F), F=p~'(p(x,)) with base-point x,:
0 i j d
. —1(F, Xo) = ,(E, xo) 21, (E, F, x0)——,_(F, x0)— . . .

..’ - a . . .
. ”—j*—’nz(E, F, xo)——n,(F, xo)—“l*—’m(E, xo)—k"nl(E, F, xo).

Now the remarkable fact is that it can be written by using only absolute groups.
This follows from the isomorphism n,(E, F) = n(B), which can be proved quite
simply. Indeed, the mapping n(E, F)—n,(B,*) is induced by the projection of the
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fibration. It is a monomorphism by CHP (the covering homotopy property) and an
epimorphism because of the following.
Letaem,(B, *), and let f:S"— B be a representative of o. Let us denote by ¢, 8"

—3$" the homotopy which is shown on the picture for n = 2 and it is analogously
defined for arbitrary n.

1/6
Dass
9o
9 : | 9376
\ Pure

Ps/6

Let us denote by Z the (n— 1)-dimensional sphere and putf, = foo,, F(Z) = x,.In
view of (CHP) there exists a homotopy F,:Z—E such that F, = F and p- F, =f,,in
particular F(Z) < F. Clearly Uo<i<1 F(Z) makes a relative spheroid in (E, F ), which is
projected onto f. ’

One can also immediately construct n,(B)—m,_ 1(F) without applying relative
groups. We advise the reader to do it in the way suggested by the following picture:

The obtained sequence which contains only absolute groups is called the exact
sequence of the fibration. Its final form is as follows:

oo o (F)>n(E)>n (B)—n,_,(F)—.. .—n(B).
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Applications of exact sequences of fibrations

* Exercise. Deduce all possible consequences from the exact sequence of the Hopf
fibration. (Here the equality 7,(S*) = Z, which follows from the sequence, is important
by various reasons: first, it proves that the two-dimensional sphere is not contractible,
second, the general procedure to compute 7,(S") cannot be applied to this case, thus
75(8%) = Z will be necessarily the starting step of any induction.) The equality 75(S?)
= 715(S?), also following from this exact sequence, was one of the main sensations of the
early thirties.

*Exercise. Find the homotopy groups of the infinite-dimensional complex
projective space (by using the fibration S* -»CP® with fibre S!).

* Exercise. If the base (or fibre) of a fibration is contractible, the homotopy groups of
the total space are isomorphic to the homotopy groups of the fibre (resp. base).

* Exercise. If all homotopy groups of the base as well as those of the fibre are finite,
so are the homotopy groups of the total space, and their orders do not exceed the
product of the orders of the homotopy groups of the same dimension of the base and
the fibre.

*Exercise. If the base and the fibre have finitely generated homotopy groups, then
the total space of fibration has the same property. Moreover, the rank of the g-th
homotopy group of the space is not larger than the sum of the ranks of the g-th
homotopy groups of the base and the fibre.

* Exercise. Prove that for any pathwise connected X and an arbitrary x,e X we
have the isomorphism

7z:q(/\/’ xO)znq—l(Qx0X7 6o.xo)

where w, is the constant loop in the point x,.

* Exercise. Consider a pair (X, A) with path-connected X. Denote by A the space of
all paths in X which begin at a fixed point x, and end in 4. The n,(X, 4, a)=
= n,- (4, Aa) where Aa is an arbitrary path beginning at x, and ending at ae A.

Exercise. Suppose that the fibration p: E— B admits a section y: B— E, where
eo=yx(bo). Then for n>1, p, is an epimorphism, and for n>2 yields a direct sum
decomposition n,(E, eg)=n,(B, by)+n,(F, eg). '

Let (X, A) be an arbitrary pair. We already know that the inclusion 4A— X may be
turned into a Serre fibration by substituting A by a homotopy equivalent 4'. Let us
consider the exact sequence of the pair (X, 4) and the fibration p: A"~ X and construct
a mapping : ' '

o () = T A) o (4) o () o

al Il I
.= m(X) - Tp=y (F) = w1 (A7) - 7__Tn—1(X) ..
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(where F denotes the fibre of the fibration p). Here n,_,(4")—n,_,(A4) is the
homomorphism induced by the projection A"~ A (cf. §5). We define n, _, (F)—n, (X, A)
the following way. A point of Fis a pathin X thatstarts at x, and ends somewhere in 4.
If f/: ""'>Fis a spheroid, then the mapping F: I'=I"""' x |- X, given by F(x,{)=
= (fix)) (1 —1), is a relative spheroid of the pair (X, A).

By assigning F to fwe get a homomorphism 7, ;(F)—n,(X, A) and the arising diagram
is commutative. By the five lemma, n,_, (F)>=,(X, 4) is an isomorphism.

We could have got the same conclusion without applying the five lemma by only
noticing that the correspondence in question between the spheroids is one-to-one. We
preferred the longer way because it makes the nature of the exact sequences of
fibrations clear.

§9. THE SUSPENSION HOMOMORPHISM

The suspension over a spheroid f: S"— X is obviously a spheroid, too: X f: S™*!=
=25"— 2 X. (For the definition of suspension see §2.) If f, g: $"— X are homotopic,
thenso are 2 f and 2 g. As it can easily be seen, the spheroid X (f + g) is homotopic to
2f+2g. Hence, by assigning Xf to f, we obtain a homomorphism

T (X)> 7,1 (ZX) that will be called the suspension homomorphism and denoted by
2.

Theorem (Freudenthal). The homomorphism 7;_ , (S" ') > 7,(S") is an epimorphism
for i<2n—2 and isomorphism for i<2n—2.

This was called the “easy part” of the Freudenthal theorem. The “difficult part” will
be given further on in the present §. The following generalization of the Freudenthal
theorem cannot be proved until Chapter 11 and may be considered as an exercise to
this chapter.

If Kis a CW complex and 7;(K)=0 for i<n—1 then'2: n;_,(K)-»n,(ZK) is an
isomorphism for i<2n—2 and epimorphism for i=2n—2.

Proof of the Freudenthal theorem. Let f: $'>8", i<2n—1. We must prove that
there exists.a £: $~'—S""! such that f is homotopic to Th: LS 1=8i-8".

iy
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Let the spheres S* and $" =X 5"~ ! be triangulated. Let a and b denote the “poles™ of
the sphere $". The triangulation of $” will be done so that a and b will be inner points of
n-dimensional simplexes, and f will be supposed to be simplicial.

Let K, = f Y(a) and K, = f~ '(b). Consisting of convex polyhedra they are not
simplicial complexes in general, nevertheless they can easily be triangulated.

Next we are going to state some obvious geometric facts concerning the situation of
linear simplicial complexes in a Euclidean space.

1. Let K% and K% be complexes in E". If p+ ¢ <n then for any ¢> 0, we may make
them disjoint by an ¢'-shift of each, where ¢'>e¢.

2. K# and K% are said to be unlinked if there exists an isotopy (i. €. a homotopy
consisting of isomorphism) of id E” transforming them into complexes which are
separated by an (n— 1)-dimensional hyperplane. If p+qg<n—1, then K%, Kj are
always unlinked.

Let us explain the second statement. Let us choose a hyperplane such that Kf is on
one side of it. Let x be a point on the opposite side. We construct the cone LY+ over K4
with its summit in x. Because p+ (g + 1)<n we may assume L¢*! and K% not to meet
each other. Next we pull K% through the cone into the other side of the hyperplane.
Outside of a small neighbourhood of L?*! the isotopy may be forced to be stationary.

Let us now consider the sphere S' and the complexes K, and K Py
As a and b are inner points of n-dimensional simplexes, we have dim K;<i—n. If
(i—n)+(i—n)<i—1,i.e.i<2n—1, then K, and K, are unlinked, i. e. there is an iso-
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topy ¢, of S*into itself which carries K, and K, into different hemispheres (KX, to
“North™ and K, to “South”), i. e. there exists an isotopy ¢,: S~ S* such that ¢, is
identity, ¢,(K,) and ¢;(K,) belong to different hemispheres and every ¢, is
homeomorphism.

-1
Let us consider the homotopy ¢, : S"—f—l—»S"—f—»S". Then g; '(a) and g; *(b) are in
different hemispheres while the image of the equator of S* does not contain either g or b.
Moreover there exist neighbourhoods 4 and B of a and b respectively, not containing

any point of the equator.
There exists a homotopy S"— S" that stretches 4 and B to the northern and southern

hemisphere, respectively, and squeezes the remainder onto the equator. By composing
it with g, : $'— 5" we obtain a homotopy whose final state is a fairly good mapping
S‘— S". It sends the equator as well as the two hemispheres into themselves. Let us

<IOU Si

look at S* and S” from North. So we only see the northern hemisphere. We draw all
possible meridians and follow where they are carried by the mapping.

D&

A further homotopy may be constructed which finally turns the mapping into the
suspension mapping. The construction is as seen on the picture:

B
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1. e. the image of each radius is pulled to the point, an increasing part of it being replaced
by radii. This proves that the suspension homomorphism is really an epimorphism.
(This smart homotopy was invented by J. Alexander a long time ago.)

To finish the proof it must be shown to be a monomorphism for i<2n—2.

Let fi=2h;: S'">S"and F,=Zh,: S'— S" be spheroids. We show that if X4,
and Xh, are homotopic, then so are 4, and h,.

The homotopy f, connecting f, and f, hasto bealtered so thateach f, would be a
suspension spheroid. ‘

Consider the homotopy f, which is actually a mapping S* x J— S".

Again we examine the sets K, = f~*(a), K, = f!(b). We have dim K;<(i+1)—n
anddim ($'xI) = i+1,s0 K, and K, may be deformed through S’ x I so that they are
separated. This can be done whenever (i+1—n)+(i+1—n)<i+1—1,i. e i<2n—2.

The remaining arguments are analogous to those applied in proving the
epimorphism property. Q.e.d.

Theorem (Hopf). =,(S")=2.

For n=1, 2 it was proved in §4 and 8. For n>3 the equality follows from
T,—1(S""') = Z in view of the Freudenthal theorem.

Corollary. No sphere S" is contractible.

So far we have not been able to make this kind of statements. Neither could we
answer the question whether a given space with nontrivial n-th homotopy group really
exists.

A further corollary. n4(S?) = Z.
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Indeed, in view of the exact sequence of the Hopf fibration §°—S? with fibre S!,

753(81)‘*753(S3)“"7T3(SZ)"’7‘72(SI)

I I
0 0

we have 74(S?) = n5(S3).

Further analysis of the same exact sequence would show that the generator of 74(5?)
is represented by the Hopf fibration S3—$2.

Let us now recollect our informations on the homotopy groups of spheres.

m(S") | i=1 4 5 6
n:; z\ \Z\?X?Xj
IR e
410 0 o}\zk‘vx"

We see that the set of homotopy groups of spheres is decomposed into series
{m,+:(S") 2=, which stabilize as n increases. Later at the end of this book we shall
obtaina procedure to determine the first stable groups (and we shall actually compute
the stable groups 7, . (S”) for i < 13). So far it would be too difficult a task. We are only
able to say that the stable groups =, ;(S") are zero for i<0, Z for i=0 and cyclic
fori=1.

The product $™x S" is a CW complex with four cells €, e", ¢™ and e¢"*™. The
restriction of the characteristic mapping f: B"*™— S™ x " of the cell e"* ™ to the sphere
S"*m~1 < B"*™isamapping $"*™ 1 S"V S™. Let it be denoted by W(m, n) or simply
by W.

Definition. Leta € ,(X) and f € n,,(X). The element of =, , ,,_ , (X) represented by
the spheroid

fea

Su+m—1_ﬂsnvsm__)X

\
gep
will be called the Whitehead product of &, 8. It will be denoted by [a, f].
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- Exercise. [a, f] = (—1)dimedimbrg o7
Exercise. If a, fen,(X), then [a, f] = afa™ B~ en,(X).
5 Excercise. If Xis n-simple, 2 € n,(X) and ff € ,(X). then [«, f]=0.Ifa € ng(X) and
pen,(X)withn>1, then[a, f]=T,f—f where T, denotes the action of o on 7, (X).
see §6.
Exercise.

(_ﬁ l)dim 2 dim 7y [[(Z. /;] 7_]+(_ l)dim f dim 1[[/;‘ ;,]‘ 1]+
+H(=DEm Iy a), f1=0.

Exercise. If X is a H-space. 2 e n,(X) and ff e, (X). then [x, ff]=
Excercise. Forany v en,(X)and fen, (X) the clcmcnt ([, e mn, _M(X) IS Zero.
(Hint. The diagram '

ZW(n. Z(f Vg
gmenp(smin-ty M o gny gmy EUVE) oy
//
/
[
w L, I - ZfVZX
Sm+n+1 (n+l.m+1) N Sn+1 \V Sm+1 (an) \VJ (Zsm) _/ & ZX .

may be completed to a commutative one by choosing a suitable mapping S™*"—
—S™*"*1 Now any mapping S™*"— S™*"*! is homotopy trivial, which implies the
statement.)

Exercise. For arbitrary m, n the space Z(S" X §™) is homotopy equivalent to
Sttty §mtty gmtntl (Hint: the problem is equivalent to the preceding one.)

Exercise. The element [i,, i3] of n5(S?), where i, is the canonical generator of 7,(S?),
is equal to the doubled generator of n4(S?%) = Z.

Exercise. (The difficult part of the Freudenthal theorem). The kernel of-the
1 epimorphism X: 7,,_(S?")—>n,,(S?""') is generated by the single eclement
x [i2ns i2n] € T4 (S?") where i, is the canonical generator of the group m,,(S").
, The last two exercises imply that n,(S°)=Z,. Thus n,,,(S")=2Z, for n>4.

810. HOMOTOPY GROUPS AND CW COMPLEXES

Attaching cell theorem. Let X be a space and f: $"”!— X be a mapping. The
homomorphism g, : 7,(X)—n(XU,e") is isomorphism for i<n—1 and epimor-
phism for i=n—1. The kernel in the latter case is generated by [ f] and the elements of

s the form T,[ f] where yen, (X).

{ . We recall that the group =,(X) acts on =,(X) in the following way. Let « e n,(X) and
) let the loop s represent «. Then sis a path connecting the base point x, € X with itself. It
induces an isomorphism 7,(X, xo)—m,(X, x,) which sends Be n,(X, x,) into an element
that will be denoted by T, 8. We also recall that T, f=f + [a, ], and at last, that there
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exists an alternative definition of n-simplicity in terms of this action: X is n-simple if
T,pB = p for arbitrary a € n,(X), f e n,(X).

Proof of the attaching cell theorem. Let i<n and let us be given an arbitrary
mapping ¢: S'—>XU,e". Analogously to the cellular approximation theorem, we
show that there exists a mapping : S'— X U, ¢" homotopic to ¢ whose image does
not cover the whole ball e". Then this image may be pulled to the boundary, 1. €. ¢
is homotopic to a mapping of S’ into X. If i<n—1, the same argumentation holds
for §'x I - XU, e" as we have an extra dimension, i. ¢. any homotopy connecting two
spheroids of such dimensions may be made as not meeting e".

We obtain that the theorem is valid for i<n—1 and the homomorphism 7, _,(X)—
-7, (X Uye") is an epimorphism for i=n—1. It remains to describe the kernel.
[t clearly contains any element T, [ f ] with y € m, (X) as well as the linear combinations
of such elements. The statement that every element of the kernel has this form is less
obvious, it may be proved similarly to the second part of theorem 4 in §4. It is left to the
reader.

Corollary. If Y is.a subcomplex of X and the difference X"\ Y contains no cells of
dimension < p, then the homomorphism 7;( Y) — 7,;(X) induced by the inclusion is an
isomorphism for i< p and epimorphism for i =p.

Corollary of the Corollary. For any CW complex X, n{X) = n(X'"'), where X' * ! is
the (i + 1)-skeleton of X.

Theorem. If the CW complexes X and Y are p- and g-connected, respectively, then

a.n{XVY)=n(XxY)fori<p+q—1;

b. there exists an epimorphism 7,., (XVY)-n,,, (X xY). In particular,
1 (S"V ... VSN =2+...+Zfor n>1.

Proof. As proved in §3, there exist CW complexes X* and Y’ which are homotopy
equivalent to X and Y and have a single vertex each, and have no cells in dimensions
l,...,p—1landl,...,g—1,respectively. Now X'V Y"is homotopy equivalentto X VY
and is imbedded in X' X Y’ which is homotopy equivalent to X x Y; moreover, the
difference (X' x Y)\(X'V Y’) is free of cells of dimension <p+gq. According to the
corollary to the attaching cell theorem n(X'V Y')->n (X' x Y') = n{X")+n(Y’) is an
isomorphism if i<p+g—1. v

Remark. Tt will be noted that not only the isomorphism between 7;(X V Y) and
7(X)+n,(Y) has been stated but also that it is induced by the imbedding X' V Y —
— X x Y. Inparticular, the group m,(S" V ... V S")=Z+ ... +Zis generated by the
classes of the natural imbeddings S"—»>S"V ... V §".
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Computing the first nontrivial homotopy group of a
CW complex

Let n> 1 and assume that for a connected CW complex K, 7{K) = Ofori<n. There
exists a CW complex K’ having a single vertex and no other cell in dimension <n.
Suppose K’ to have n-dimensional cells 67, i€ I and (n+ 1)-dimensional cells 67", je J.

Wedenote by /7! : B""! — K the characteristic mapping for ¢ "' . The mappings

®;=[7""gn: S">K"= V S" represent elements of the group 7,(K") = @ Z.

J
iel iel

Theorem. The group 7,(K) is the quotient group of n,(K") = @ Z by the sub-
group generated by the elements {¢;} € n,(K"). !

Or, in a formulation which, though not really adequate, is nevertheless more
convenient to memorize: 7,(K) is the Abelian group whose generators and relations
correspond to the n-dimensional and (n+ 1)-dimensional cells, respectively.

The proof is similar to that of the theorem on the fundamental groups of CW
complexes.

The main steps are the following:

(1) Every n-spheroid of K’ being homotopic to a spheroid of K", we can choose for
the generators of n,(K") the imbeddings «; of the n-dimensional cells in K.

(2) The relations X a;;0,=0 are obviously satisfied, as each ¢;: $"— K extends to

p!+1 : Bn+ 1 5 K 3
J
(3) Any relation reduces to Za;;o;=0.

The Whitehead theorem

Theorem. Let X and Y be CW complexes. If the mapping f: X— Y induces
isomorphism between the respective homotopy groups, then it is a homotopy
equivalence.

Equivalently: for CW complexes weak and ordinary homotopy equivalence are the
same.

Exercise. Prove the equivalence of the two statements.

Lemma. For any CW pair (K, L) for which n{K, L) = 0, for i<n, there exists a
homotopy equivalent pair (K’, L') such that for all i<n, the i-dimensional cells of K’
belong to L’. Here n may be infinite; then it is claimed that n(K, L) = O for every i
implies K ~ L. The equality n{K, L) = 0 is meant to say that (K, L) consists of a
single element. ' ‘ '

Deduction of the theorem from the lemma. Let us choose the cylinder of f for K and
Y for L. Then f as well as the imbedding L — K induce isomorphisms between the
homotopy groups. Taking into account the exact sequence of the pair (K, L) we obtain
n;(K, L)=0 for every i. Then the lemma, applied for n=oc0, implies K~ L.

Proof of the lemma. The reader is advised to prove it, following the line of the
“absolute™ theorem as given in §3. Nevertheless we present it here.”
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We construct step-by-step imbeddings

KcK,cK,c...cKk,

u u u U
LclycL,c...cL,

where the imbeddings Kc Kyc K, < ..., Lc Loyc L, = ... are homotopy
equivalences, the diagram is commutative and the differences K\ L; contain no cells
with dimension at most / while K,\ K,_ only consists of cells with dimensions i+ 1 and
i+2. Hence we get the lemma for n<oo. If n=c0, we put K,,=U,K; and L, =U;L;.
Clearly K,=L,. Now the imbeddings K—K, and L—-L, are homotopy
equivalences. Indeed, let f;: K;—K;_; be a homotopy inverse mapping of the
imbedding K;_,— K. By the Borsuk theorem it can be chosen so that it coincides
with the identity on K,_, < K;. Wedefine /: K, — Kas oeingequalto foo fy ... o f;
on K;. It is correctly defined and it is a homotopy inverse of K— K. The homofopy
inverse of L — L, is defined analogously.

Construction of the chain of imbeddings

T

Suppose K;, L; as well as the preceding spaces and mappings already defined. Then
every (i+ 1)-dimensional cell ¢*' < K; which is not contained in L; is a (i+1)-
dimensional relative spheroid of (K;, L; (not the cell itself, of course, but its
characteristic mapping). Such a spheroid is homotopic to a spheroid belonging to L;,
moreover the homotopy is constant on the boundary of e'* !, it takes place within the
(i +2)-skeleton of K;, and its final result belongs to the (i + 1)-skeleton of L; (by virtue of
the cellular approximation theorem). This homotopy is a mapping D*? 5 K, whichcan
be used for attaching D'*3 to K; (D**? is the lower hemisphere of the boundary sphere
of Di*3). There are two new cells attached to K;: one of dimension (i+2) and one of
dimension (i + 3) (the interiors of the upper hemisphere and of D*3). This procedure is
repeated for every (i + 1)-dimensional cell of K; which does not belong to L;. The result
isa complex K. ;. For L, ; we choose the union of L;, the (i + 1)-skeleton of K; and all

~the new (i + 2)-dimensional cells. The inclusion relations

Kic Ky
u U
Lic Liyy

are obvious and the assumptions of the lemma are satisfied.
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Remark. By the Whitehead theorem, the homotopy groups completely characterize
in a way the homotopy type of a CW complex. Nevertheless this statement should not
be taken literally: coincidence of the homotopy groups of two CW complexes does not
necessarily imply homotopy equivalence. It is also required that the isomorphisms are
established by a continuous mapping. For example, 1(S3)=m,(S* x CP*) for every i,
however S? and 3 x CP® are not homotopy equivalent spaces. (Prove it.)

Refinement of the notion of weak homotopy equivalence

Theorem. If there exists a mapping between connected topological spaces X and Y
that induces isomorphisms between the homotopy groups, then X and Y are weakly
homotopy equivalent. Moreover, for any CW complex Z, the mapping f,: n(Z, X)—
—7n(Z, Y) is one-to-one.

Proof. For dim Z = 0 statement is obvious. Namely, n(Z,X) = n(Z, Y) = * in this
case. Assume the statement proved for any Z with dim Z < q. Let us take g-dimensional
complex Z. First of all we show that f,: n(Z, X)-»n(Z, Y)is an epimorphism, i. . for
arbitrary ¢: Z—Y there exists i : Z— X such that foy ~ ¢. By induction there exists
Y Z7 'S X withfoy' ~ | 54—+ (as usual Z97 ! stands for the (g —1)-skeleton of Z). Let
a homotopy @: Z*" ! x I Y connecting fo ' with ¢ | za-1 be fixed. Let e? < Z be a g-
dimensional cell and «: BY»Z be its characteristic mapping. As the mapping
@otlse-1: ST 'Y is null homotopic (it extends to poo: B1>Y), 50 is Y oalgq-1:
§?7'>X by the commutative diagram :

(Poot\s“" Y
Sqmlﬁ\ Tf
°a’/sq\,\. X

(here f,: m,_,(X)—n,_,(Y)is a monomorphism) and it can be extended to p: Bi-X.
The mapping f is not unique: it is determined up to some g-dimensional spheroid
added to.

\v
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Let us now consider in Y the spheroid consisting of

g4 B¢

fo B DY,
d -1
|,' s%7x1 @ (olge-r X 1): ST X [ Y

q oo@: DioY
B

As fy: m(X)-m,(Y)is an epimorphism, the spheroid is homotopic to the image of
some spheroid of X. By substituting it instead of f we can make the compound
spheroid be null homotopic in Y. Then it can be extended to y: DI*1 Y.

Mappings similar to f: D?— X (we mean its improved variant) and y: DIty
are next defined for all cells. They are then applied for extending Y Z s X oy
Z— X.(On e,y is defined as the restriction to the interior of D of the mapping fj cor-
responding to D?.) Similarly &: Z9 ! x [ Y is extended to a homotopy ¥:
ZxI->Y connecting fo to ¢ (on e?x (0, 1) the mapping ¥ is given as the
restriction to Int D*! of the corresponding 7).

Thus we have y: Z— X with foyy~¢, i e. f, is an epimorphism.

Now we show that fxis a monomorphism, i. e. for any pair ¥, ¥,: Z—X, foy,
~foy, implies ; ~y,. Wehave iy, | zo-1 ~¥, | zo-: by the induction. Moreover, given

=/

a homotopy @:Z x I>Y connecting fo s, with foy,, we can construct a mapping i/ :
((Z x{0})U(Z*"* x )U(Z x {1})— X that coincides with y, on Z x {0} and with , on
Z x {1} and is homotopic to the restriction of @ on (Z x {OHU(Z ' x HU(Z x {1})(in
the same way as above; we only have to realize that the construction was carried out
independently on each g-dimensional cell, and had already been given a suitable

~ mapping on a g-dimensional cell, there was no necessity to changeit later). As f: 7 (X)—

- (Y)is a monomorphism, §’ can be extended to ¥: Z x I - X . We have obtained a
homotopy connecting ¥, with y,.

Thus f,: n(Z, X)-»n(Z, Y) is a one-to-one correspondence for every finite-
dimensional Z . Transition to the case of infinite-dimensional Z is made by the familiar
induction on increasing skeletons.
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Cellular approximation of topological spaces

Theorem. To any topological space there exists a weakly homotopy equivalent CW
complex.

Proof. The space X will be assumed to be connected {otherwise the constructions are
repeated for each component). Let K, be the single point space. Suppose that we
already have the CW complexes K, .. ., K;, imbeddings K, « K; < ... =K;and a
mapping f;: K;—X which induces isomorphisms between the homotopy groups of
dimensions </ and an epimorphism in dimension i. Let £, e n{K,), (x € 4) denote the
generators of Ker (f),, where (f),: n(K;) »mn,(X), and let n4(f e B) be generators of
7;+ 1 (X). The spheroids representing these elements will be denoted by &, : §'— K, and
g ST X, respectively.

Along each &, an (i+ 1)-dimensional ball will be attached to K;. The union of the
resulting space and a union of spheres indexed by elements of B will be denoted by
K;.,. Next we define f;,: K;,,— X as coinciding with f; on K, with 7, on the §-th
(i+ 1)-dimensional sphere of the union as well as on the ball attached to it along the
mapping &,, and with an extension {,: D' "' — X of f; o £,: §' = X whose existence fol-
lows from the choice of &, as an element of Ker (f; )«- Clearly f;,, induces isomor-
phisms of the homotopy groups of dimensions <iand #ﬁorphism in dimension i#{.

By induction we have K for every i, inclusions K, ¢ K; = K, < ... and mappings
fi: K;—»X, each being an extension of the preceding one. Further f; induces
isomorphisms of the homotopy groups with dimensions less than / and an epimor-
phism in dimension i.

We write K = U,K; and define f: K— X as coinciding with f;on K;. Then K'isa CW
complex with spaces K as its skeletons, and f induces isomorphisms of the homotopy
groups. Thus K and X are weakly homotopy equivalent spaces.

Eilenberg-MacLane complexes

As it was announced in §2, for every natural number n and group II (Abelian if n> 1)
there exists a space whose i-th homotopy groupis zeroifi#nand IT ifi =n. We are now
ready to construct such CW complexes, for any IT and n.

Let {a;};c; be a system of generators in JI. We denote by K, a union of n-
dimensional spheres indexed by the elements of J,1. €. K, = V §}, ST = §". We have

ielJ
n{K,) = Ofori<n.Now r,(K,)is a free Abelian group (if n> 1 and a free group, ifn=1)
with generating system J. Let {Zk;;0,=0} ;. , be a generating set of relations in I7 (for
n>1 we may presume that the elements «; commute, so not to take into consideration
relations of the form a;+a; = a;+a; in the case n=1, J must be a complete set of
generating relations). Let us denote by #; the spheroid $"— K, equal to Zk;;S7 (the
notation applied here is not quite exact: S7is taken as a spheroid in K ). We attach to K,
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an (n+ 1)-dimensional ball along each mapping #;: S"-K,. By the attaching cell
theorem, for the space K, . , obtained, we have (K, 4 1)=0if i<nand n,(K,)=1T if
i=n. Next we attach an (n + 2)-dimensional ball to K, . alongeach (n+ 1)-dimension-
al spheroids representing any set of generators of Tu+1(K,+,). We obtain a space K, .»
with n(K, ,,) = Ofori<n,i = n+1 and (K, 2) = IT. Next we kill 7, , (K, , ,) with

balls of dimension n+3, etc. The limit space K will have the prescribed homotopy
groups in all dimensions.

A space K with

0 for i#n,
(K) =
m(K) {H for i=n

is called an Eilenberg—MacLane space (or, if it is a complex, an Eilenberg-MacLane
complex) or a space (complex) of the type K(Il, n), or simply a K(I1, n).

Exercise. Any two spaces of the type K(I1, n) are weakly homotopy equivalent.

Comment. This statement will be proved and frequently referred to in Chapter IL. It
is the exception of the general rule formulated above: the weak homotopy equivalence
of spaces follows from mere coincidence of the homotopy groups.

* Exercise. K(IT', n) x K", ny=KI'+1T", n).

* Exercise. QK(IT, n)=K(Il, n—1).

*Exercise. The circle is a space of the type K(Z, 1). The real infinite-dimensional
projective space is a K(Z,, 1) space. The complex infinite-dimensional projective space
is a K(Z, 2) space. The lense space L’ =S5%/Z, is of the type K(Z,,, 1). Here S is the
set of infinite rows (zy, z,,...) with Z|z,|2=1 where all but finitely many ele-
ments are equal to zero, and the generator of Z,, acts on $© by theformula (z,, z,,.. . )}—

2ni 2xi

s—»(zleT,zzeT,...). \‘?

Comment. The list of all “good” K(IT, n) spaces with Abelian I7 in fact exhausted by
the examples of the previous exercise and their products.

* Exercise. Any one-dimensional CW complex is a space of type K(I1, 1), where IT is a
free group.

EXxercise. (V. 1. Arnold). The set of all points (zy,. . ., 2,) € C" with distinct complex
numbers z,,.. ., z, is a K(I1, 1) space with some group I1. ~

Exercise. The supplement of a piecewise-smooth curve in S? is of the type K(I1, 1)
with some IT.
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CHAPTER Il

HOMOLOGY

After the homotopy groups now we turn to another type of series of groups
associated with topological spaces—to homology and cohomology groups. In
comparison with the homotopy groups they have some significant disadvantage—
their correct definition involves a certain amount of formal difficulties—as well as
significant advantages—they can be computed more easily (indeed they will
immediately be found at once for the basic examples of spaces) and have more
transparent geometric contents (in the case of homology groups we shall not be
affronted by incomprehensible facts like 73(S?) = Z). The information carried by the
homology groups about a simply-connected space X, is approximately the same
as the one contained in the homotopies.

The geometric idea of homology is the following. Spheroids are substituted by
cycles. A k-dimensional cycle is a k-dimensional oriented surface (it may be either a
sphere or something else; a torus, for example). The relation of homotopy is substituted
by that of homology—a k-dimensional cycle is null homological if it forms the
boundary of a piece of a (k+ 1)-dimensional surface. _

How can we accurately define the notion of a cycle (and those “pieces”, called chains,
which can be bordered by these cycles)? We might try to define them as mappings of
certain standard objects (spheres and still something else) but this would turn out to be
very difficult. (Still in dimensions 1 and 2 it would do, but how to g&l?) Actually it is
easier to define cycles, as well as chains, as unions of standard elements (“bricks”). For
this, we introduce the notion of singular simplexes.

811. SINGULAR HOMOLOGY
Singular simplexes

We recall that the g-dimensional standard simplex 47 is the set of all points
(to,- - -,t)€ E** I such that £, >0,. . £, >0and to+ ¢, + . .. +t, = 1. Evidently, 4%is a
point, 4! is a segment, 42 is a triangle, 43 is a tetrahedron. The g-simplex 4% has ¢ + |
(g—1)-faces 4§™1,. .., 4971; A9 is defined by the equation ¢;=0.

Let X be a topological space.

A g-dimensional singular simplex of X is a continuous mapping of 47 into X.
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Chains

A g-dimensional chain of the space X is by definition a (finite) formal linear
combination with integral coefficients of singular simplexes of X.

The set of g-dimensional singular cha’ns of X will be denoted by C,(X). The addition
of chains as linear combinations makes C,(X) an Abelian group. Clearly C (X) is a free
Abelian group whose generators are the singular simplexes.

The boundary homomeorphism

Next we define the homomorphism J, = C(X)—C,_1(X). Since C,(X) is free, it
suffices to give d, on every singular simplex f2.

q I3
Putd (f%) = ) (=1 f¢' where f¢~! = f9 ., is the restriction to the i-th
i=0

face 4771 of the standard simplex A49. 497! is standardly identified with 497! so that
(fos- -2 tiz15 0 tisy,. . 1) € 4871 = AT corresponds t0 (Lo, . ., by, fiyys. . .ot,) €% L
As it can easily be seen, d,00,,; =0, 1. e. Ker d,,, & Im 92

Homology

The group H (X) = Ker d,/Im 0, , is called the g-dimensional homology group of
X. The chains belonging to Im d,, , < C,(X) are called g-dimensional boundaries. The
subgroup Im 4, , ; of C (X) is the group of q-dimensional boundaries. We shall denote it
by B(X).

Chains of C,(X) belonging to the subgroup Ker d, will be called g-dimensional
cycles. The subgroup Ker d, of C (X) is the group of g-dimensional cycles. We shall
denote it by Z (X). Thus H (X) = Z (X)/B,(X). A cycle is said to be null homological:
z,~0, if z, € B,(X), i e. if there exists a chain C_, such that 0C,,, = Z,. Similarly,
cycles z; and z7 are said to be homological: z} ~z7 if the cycle z!—2z2 is null
homological.

If H (X) is finitely generated, it is well known to be of the following form: H AX)
=Z@ ... DZO (D ) where Z, is a cyclic group of order k;, and k; is divisible by
kn if j<m.

The number of terms Z in the decomposition of H (X) is the g-dimensional Betti
number of X; k, k,,... are the g-dimensional torsion numbers of X.




near

ition
i free

ee, it

e i-th

y that

wap of
5. The
iote it

sional
- shall
gical:
ilarly,
; null

14X)
ble by

| Betti

11 SINGULAR HOMOLOGY 87
Chain complexes

A chain complex is a sequence of Abelian groups and homomorphisms

) 0 0 €
.--")Ck“‘_k“)Ck_l_}..._)Cz Z}Cl 1‘(jo 72

such that g,00,,,=0, ecd;=0 and ¢ is an epimorphism. Clearly Imd,_; < Ker§,.
We call Kerd,/Imd,_, the ¢-th (or.¢g-dimensional) homology group of the chain
complex. We see also that ¢ defines an epimorphism of the null-dimensional homology
group onto Z.

If X is an arbitrary space, C (X) and the boundary homomorphism 0,, together with
¢ to be defined below, form a chain complex. It is called the singular complex of X and is
denoted by C(X). The homomorphism ¢ is defined in the following way: consider a
null-dimensional chain ¢, = Xk, f?. We pute(co) = e(Zk; f?) = Tk;€Z. (The sum Ik,
is called the index of the null-dimensional chain.) ‘

/ﬁxercise. Verify that ¢09, =0. Moreover, if X is path-connected then Kere=
={Mo,.

Chain mappings
Let us have two chain complexes C' and C”. We define a chain mapping of C’

into C” as a family of homomorphisms ¢,: C; — C} such that the diagram

15 ' g’

-CY—C| —C) ——Z-0
los Lo oo lid
o - I G BN AL N

iscommutative, i.e. ¢, ;o 0y = 0y o ¢, forevery k and ¢” o ¢, = ¢’. Any chain mapping
of C’" into C” induces a mapping of the corresponding homology groups.

Let X, Y be topological spaces and g: X - Y a continuous mapping. Then g induces
(by means of composition) a family of homomorphisms g, : C(X)—»C(Y) and {g,} is a
chain mapping of C' = C(X) into C; = C(Y). By the above, g: X—Y induces

., mappings g. = g,.: H(X)—H(Y) between the homology groups of X and Y.

Note that

(@ifg: X;»X, and h: X,—» X, then (hog)h = h.og.;

(b) (1d X),, (e i, : H(X)— H(X) is the identity for any k.

This immediately implies that homology groups are topological invariants, i. e. if the
spaces X and Y are homeomorphic, then their homology groups are isomorphic.

The reader who is already acquainted with other homology theories will notice that
in the singular theory, as presented here, the theorem on topological invariance is a
direct consequence of the definition, while in some other theories it is the result of long
and rather complicated investigations.
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Chain homotopy

Assume again that C' and C" are chain complexes, and let ¢ ={¢,}: C' - C" and
Y = {y} = C"->C" be chain mappings.
A chain homotopy between ¢ and y is a family {D,} of homomorphisms D, : C;,— Ci¢
such that for any k, '
Di_ o0+ 0ks1°Dy = o=y,

(i. e. the diagram

"—‘)C;c*l-l >C;( ;G(I—-l
V Dy |
aen]
"—_)Ck-i-l %Ck %Ck_l > ...

has a certain specific commutativity property).

Chain mappings that can be connected with chain homotopy are said to be
homotopic.

Homotopic chain mappings induce identical mappings of the homology groups: if
aeC; and =0, then @) —¥Y(0)= Dy - 1(Gi0) = O+ 1 (Dyo)= — Ok + (D)€ Imiy s ;.

Let us explain where the name “chain homotopy” comes from. If f, g: X —Y are
homotopic mappings between spaces, then the chain mappings induced by fand g are
homotopic.

Indeed, let us fix a homotopy F: X x I—Y connecting f with g. For any singular
simplex ¢: 42— X, the mapping Fo(p xI): 42xI-Y is defined. The cylinder 49 x|

o

)
(1,0,0)

{1.0) (0,1

/

can be divided into simplexes 4! (i=0, 1, ..., q). (Such a division is shown on the
picture in the cases =2, 3. In general it can be defined by 49" ={(t,, . . . ,2,7): to+
+...+4 1 STt<to+ ... +}). Evidently 47+ is the simplex with the vertices (v, 0),
(v O), (vi, 1), . . ., (vg41, 1) where (v, . . ., v, ) are the vertices of 49. We identify
‘A% ! with the standard simplex 47* ! by means of an arbitrary orientation-preserving
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homeomorphism. Thus the mapping F °(p x 1) defines g+ 1 (q+ 1)-dimensional
singular simplexes 1/, --.,¥,. We denote the sum Xy, by D (). Let D(Zk;p;)=
= Xk;D,(¢;). It is not difficult to verify that {D,} 1s a chain homotopy connecting f
and g.

We conclude that homotopic mappings of spaces induce identical mappings of
homology groups.

Corollary. Homotopy equivalent spaces have isomorphic homology groups.
Moreover, homotopy equivalences induce homology isomorphisms.

Homology of a point

Suppose X = x. The only singular simplexes are those with the form /" = A"—x.
Hence C,(x) = Z. Now Of =Z(=D'fi = [Z(=Df 1,

of = 0 for r=2p+1 and r=0;
S tor r=2p.

Thus Hy(*)=2; H,(x)=0for k>0. (If k is odd, then B(x)=2,(x)=2Z; if k is even,
then By(*) = Z,(*) = 0.) '

Null-dimensional homology

If X is pathwise connected, then Hy(X)=2Z. Moreover, ¢: Hy(X)—2Z is an
isomorphism. Indeed, any null-dimensional chain is a cycle, too: Co(X) = Zy(X). Let
us have an arbitrary null-dimensional chain c¢=2Xk;p;. By adding to it a chain d=
= 2ki(¢;— o) with arbitrary 0-dimensional simplex ¢, we obtain a chain concen-
trated to a single point. For X is path-connected, @;—®o 1s a boundary and so is d.
Moreover, all null-dimensional simplexes are homological, and so we obtain that
H(X) = Z. It remains to add that ¢ is an isomorphism, because it is an epimorphism.

Similarly, if / is the set of pathwise connected components of X, we have Hy(X)=
= @i Z. .

*Exercise. Let f: X—>7Y be a continuous mapping between pathwise connected
spaces. Then f,: Hy(X)—Hy(Y) is an isomorphism.

, Relative homology

Let X, Y be a pair of topological spaces; ¥ = X. Then C(Y)cC(x )‘and we may
consider the quotient group C,(X, Y)=C(X)/C(Y).
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We have compatible boundary operators d,: C,(X)—C,_;(X) and §,: C,(Y)—
—C,-(Y).So wehave an operator C (X, Y)—C,_ (X, Y) which will be denoted by the
same letter d,. Now Kerd = Z(X, Y) o Imd = B,(X, Y) so that we have a group
H/(X,Y)= Z (X, Y)/B/X, Y)which is called the group of the relative g-dimensional
homology classes of X 'modulo Y. For relative homology groups we also have the
functorial property, topological and homotopical invariances.

The operator 0 in the homology

Now we construct a new operator d, that will map H (X, Y) into H,_(Y).

Let a relative cycle z,e C (X, Y) be represented by 7, C (X). From d,z, = 0 it
follows that d,z,e€ C, _,(Y). The homology class of the (absolute) cycle 9,2, is clearly
independent of the choice of z,. Thus there arises an operator d: H(X, Y)—H 4-1(Y).

The homology sequences of pairs and triples

Let i: ¥ < X be the inclusion mapping. It induces iy Hy_(Y)-H,_,(X). Since
every absolute cycle can be regarded as a relative one, we also have a mapping n:
H,y(X)-H,_ (X, Y).

Theorem. The following sequence is exact:

, .
.= H(X, Y)—=H, (Y)—2>H, (X)——H, (X, Y)>...

The proof reduces to the trivial verification of the fact that the corresponding
kernels and images coincide. By the way we notice that for connected X and Y we
have Hy(X, Y) = 0. In general, if every component of X contains a point of ¥, then
Hy(X, Y)=0.

* Exercise. Prove that for any point x, of X we have H,(X)=H/(X, x,) for ¢>0.

The homology sequence of a triple is a version of the exact sequence of a pair.

It is defined for a triple (X, Y, Z), X o Y o Z, and has the form

s HX,Y) S H,_ (Y, Z) > H,_ (X, Z)—>H, (X, V)~ ...
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where 0 is the composition of the former 0 and the mapping H, . ((Y)—-H,_ (Y, Z)
similar to the former 7, and the rest homomorphisms are indu‘ed by the inclusions of
e

the pairs.
Exercise. Verify the exactness of the sequence obtained

The connection between absolute and relative homology

As it turns out, relative homology groups in a certain sense reduce to absolute ones

Namely, for any CW pair we have H (X, Y) = H(X/Y) for q#0.
The analogous formula is not valid in the case of homotopy groups. For example

n(D?/S") # n(D?, SY).

Denote by CY the cone over Y. It is obtained from Y x [ by the upper face being
contracted into a single point. Let us consider XUCY. If X and Y are CW complexes
then XU CY = X/ Y so that the statement to be proved is H (X, Y)=H (XU CY) for

AXUCY ,*)for any complex X and subcomplex Y,

qg#0.
= H(XUCY)for ¢>0.

It suffices to prove H (X, Y) = H
where * is the vertex of the cone. We recall that H (XUCY ,*)

Let ¢: 49—V be a singular simplex of the space V. Let us denote by f¢ the chain
defined as the sum of the singular simplexes obtained by restricting ¢ to the g-
dimensional simplexes of the barycentric subdivision of 4% For any g-dimensional
Tk, C(X) we put fc = Zkfo;. The correspondence ¢+ fe clearly

chain ¢ =
defines a homomorphism f,: C (X)— C(X).

Lemma. The family {8,: C (X)— C(X)},is a chain mapping of the complex {C (X)},

into itself. It is homotopic to the identity mapping
The first statement is almost obvious, we leave the proof to the reader. The chain

homotopy connecting {f,} with the identity is constructed as follows Forany ¢=>0we

define a triangulation of 4% x J such that
(1) the base of the cylinder 47X [ is triangulated as the standard simplex

(i) the product 427! x I o 49 I, where 47~ ! is a face, is a simplicial subcomplex of

the complex 47 x J which is triangulated as 477! x [

] T h
Iy ‘
] |‘ H
1] '
! (AU
' ] H
1} 1
! |
'
! |

1
1
[}

p/ )'\ i
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(iii) the upper face of the cylinder is triangulated as a barycentric subdivision of the
standard simplex.

Such triangulation can be constructed by induction. For ¢ =0 it is defined as shown

on the last picture.
Assume that it is already defined for g < k. We triangulate (49 x 0) U (049 x [)c 49 x I in
such a way that it is the standard triangulation of 47 = 4% x 0 and coincides with the
constructed one on 04% x I. Then we divide 4% x I into pyramides whose bases are the
simplexes of the triangulation (49 x 0)U (049 x I) and whose common vertex is the
centre of the upper face.

Let ¢: A%— X be a singular simplex. We denote by D(¢) € C, ., ; (X) the sum of all
{g+ 1)-dimensional simplexes obtained by restricting ¢: 47X I- X (where ®(y, {)=
= ¢(y)) to the simplexes of the above triangulation of 4?x I. Then D: C (X)—
— C,,1(X) 1s the homotopy which satisfies the lemma. (Verify this!)

Proof of the theorem. Let us consider the imbedding (X, Y)—=(X UCY, CY). It
induces a mapping H(X, Y)—»H (X UCY,CY) = H (X UCY,x),since the cone CY is
contractible to its vertex: CY = .

We show that it is an epimorphism. Let ze Z (X UCY, CY) be a cycle. We have to
find a cycle in Z (X, Y) whose image is homologous with z. Let us cut CY into two

pieces at the height =Y. We obtain a cone C'Y and a truncated cone CY .

By the lemma, z may be substituted by a homologous cycle z’ with simplexes so
small that anyone intersecting C'Y, necessarily belongs to CY. Let us throw out from
Z' the simplexes intersecting C'Y. This operation remains within CY, so we do not
change the homology class of z mod CY. We get a relative cycle z” mod CY. On the
other hand, we have H (XU CY, _C—’—_};)qu(X , Y) by the homotopy invariance of
homology groups. Thus there exists a relative cycle in X mod Y which is car-
ried by the isomorphism into the relative cycle z” in XUCY mod CY. Thus
H, (X, Y)-»H/(XUCY, CY) is an epimorphism, moreover it can be shown by a
similar construction that it is a monomorphism too. We leave this to the reader.
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§12. COMPUTATION OF THE HOMOLOGY GROUPS
OF CW COMPLEXES

The homology groups of the 0-dimensional sphere, i. e. a pair of points, is already
known:

ZHZ for i=0;
oy _ )
H{S") = {0 for i>0.
We show that for n>0
Z for i=0 and i=mn,
H(S™) = {0 for i#0, n.

Consider the homology sequence of the pair (B*, S°):
H,(B')—H,(B', $°)~ H(S°)—> Ho(B')—~0.

Since B! is homotopy equivalent to the single point space, we have H,(B')=0,
Hy(B*)=Z. Now B'/S°=S! implies H,(B', S°)=H,(S'). We may write the
sequence in the form 0-»H,(S!)—»Z@®Z—->Z—0, implying H,(S')=2Z by the
exactness. If ¢> 1, then H (B') and H,_,(S°) are trivial in

Hq(Bl)_’Hq(Bl, SO)_)Hq—l(SO):
and H,(B', $°)=0. Hence H,(S')=0 for g>1.

Assume now the statement to be valid for spheres of dimensions less than n. Consider
the exact sequence of the pair (B", $"~!):

H(B)—H/B", " ')=H,_ (8" Y—>H,_(B")-

We make use of the formulas H,(B")=0 for ¢>0 and H,(B", $""')=H(S") for
q>0.
If g>1, we have

0—H(S")~H,_4(5"~1)-0,
i.e. H(S")=H""'). For g=1 we get the exact sequence
H(B")—HB", $"~ 1)—’H0(S"_1)—’HO(B"); X T

we already know H,(B")=0, H,(S" ')=Hy(B")=Z and the last arrow is an
isomorphism. Hence H,(S") = H,(B", ") = 0 and the statement is proved.

Remark. For the generator of H,(B", $" ') one may choose the homology class of the
singular chain 1 - ¢, where ¢ : 4" B"is a homeomorphism. The two possible selections
of the generator in H,(B", S"~ ') = Z clearly correspond to the two orientations of the
ball B".

It is similarly easy to describe the generator of H,(S") (which we leave to the reader).
Fixing the generator in H,(S") = Z is equivalent to fixing the orientation of S".
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Homology of the union of spheres

Let us be given the union of a family of n-dimensional spheres:
X = VierS?

where I is a (finite or infinite) set of indexes.
If n>0 and ¢>0, there is a canonical isomorphism

Hq(X) = C"Biel Hq(S:l)

Thus H,(X)is a free Abelian group, i. e. a direct sum of groups which are in one-to-one
correspondence with the spheres and are all isomorphic to Z. Moreover, if every sphere
is oriented, the group has a system of generators whose elements are in a canonical one-
to-one correspondence with the spherés in the union.

The easiest proof of this statement is made by induction, by applying the relation

(Viel B;l)/(viel (?B?): Viel S?-

Homology of a CW complex

Let K be a CW complex and X, be the set of its r-dimensional cells. The orientation
of each cell is assumed to be fixed.
By the above we have

_ . 0 for i#r,
HIK, K™ )=H(Vic5, Sii= %.(K) for i=r,

where %,(K) is the free Abelian group whose generators aré in one-to-one
correspondence with Z,. The elements of this group may be identified with finite linear
combinations 2 k;07, where 67 are r-dimensional cells.

Because 6,(K)=H. (K", K'™') and ¥,_(K)=H,_ (K" ', K"~2), we have a
homomorphism J,: €,(K)—%,_ ,(K) that comes from the exact sequence of the triple
(K", K"~ K™ ?),

There arises then a chain complex

)
. -—)%r(K) ~—r—> (gr_l(K)_') “ e

The next goal is to establish a canonical isomorphism between the homology
groups of this complex and of the space.

The existence of such an isomorphism will prove to be the main tool in computing
homology groups of specific spaces. One important corollary is already obvious: Any
finite CW complex has finitely generated homology groups.

Lemma. H(K)=H(K'*', Ki"?). .
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Proof. Consider the exact sequence of the triple (K'*', K/™2, Ki=3): H(K'"2,
K~ H(K, K3 H (K, KI~)—H,_ (K"~ 2, K’=3). The first and fourth
terms are zero, so Hy(K'*', Ki'"*)=H,(K’*', K'73). By applying the same
observation to the exact sequence of the triple (K'*!, K73 K/™%) we get
H{K/*Y, Ki™3)=H,(K'*1, K)=%). Similarly H,(K'*!, Ki=3)=HK'*', K'%) =
— = HKY KO =H (K, i e, Hy(K* )= H(K*Y, Ki™2).

We still have to prove that H;(K)=H,(K’*1).

We prove that for any ¢<j+1 there is an isomorphism H (K’*!)=H_(K'*?).

As seen from the exact sequence of the pair (K7*2, KI*1):

0=Hj+1(Kj+2, Kj+l)—+Hj(Kj+1)—+Hj(K'i+Z)“’Hj(Kj+2, Kj+1):0

we have H(K'*')=H(K'*?. Similarly H(K'*?=H{(K' "= ... =Hy(K). If K is
infinite, the equality H;(K)=H;(K") for sufficiently large N follows from the
compactness of 4/ and axiom (W) in the definition of the CW comiplex. The details are
left to the reader.)

Remark. In the proof of the lemma we have established a canonical isomorphism
H(K'*!, K~ %)=H;K).

Next we establish the isomorphism Kerd;/Imd;,, = H;(K’*", K'7?).

Consider the commutative diagram

HKI™!, Ki"2) = 0
l
Hj+1(KJ+19 KJ)——-)H](KJ'; KJ_Z)_*_’Hj(K'H-la KJ—Z)——'HJ'(KJ+23 Kj) =0

\ LB
3

7, ™ H{KI, KiTY

H, (K1 K72

where the row is a segment of the exact sequence of the triple (K’*!, K/, K'72), the
column is taken from the exact sequence of (K, K", K’"2) and a, f are the respective
inclusion mappings of pairs.

By definition, H{(K’, K'™') = ¢(K) and H,_(K’"!, K'"?)=¢,_,(K). Since
Hy(K'™', K'"?) and H,(K’*', K’) are trivial, by the exactness of the sequences we
have that §, is a monomorphism and «, is an epimorphism. Hence H;(K'*!, K'™%)=
=H(K, K~ ?)[Kero,=H (K, K)"?)/Im 0. As f, is a monomorphism, H(K’, K'~?)/
[Imo=B H(K K~ ?)/B,(Imd)=1Im f,/Im (), d). By the commutativity of the dia-
gram i, 00=0;,,, and Im B, =Ker J; by the exactness, i. €. the last quotient group is
equal to Kero;/Imd;, ;.

Then H(K)=H;(K’*', K)"?)=Ker0;/Imd;,,, which proves the theorem for

Jj=2.1f j=1, it is necessary to consider the diagram
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H(K% =0
!

d
Hy(K?, K )—H((K")—»H (K} H,(K*, K') = 0

3
'HI(K19 KO)

0l
Ho(K®)

0y Y
For j =0 we have Hy(K', K°) —= Ho(K°) —— Hy(K')— Hy (K", K°)=0.

The geometric meaning of the operator g,

Consider two cells 6% and 697! with fixed orientation and characteristic mappings

J: B'> X, g: B4~ X, which are compatible with the orientation.

Consider the composite 0BI= 57! &l—»X"‘I/X"‘Z. Here X947 1/Xx972 is a
union of (g — 1)-dimensional spheres. The cell g9~ ! belongs to the (g — 1)-skeleton and is
projected by the factorization X~ 1— X9 1/X972 onto a sphere S77 !, Let the whole
union be projected onto this sphere so that the other spheres be mapped onto the base
point. ,

The composite mapping 9B = STl X1 X172 5897 gives a mapping S9!
— 877! which represents some element of m,-1(ST71)=2Z,1. €. an integer, the so-called
degree of the mapping.

So we can assign an integer, called the incidence coefficient [6?: 69~ '] to every pair of
cells. It does depend on the orientation of ¢4 and g7~ but is independent of the
particular choice of the characteristic mappings f, g, as it can easily be verified by the
reader.

Theorem. 00? = X[696% ']69 !, where the sum is taken over all (¢g—1)-
dimensional cells of the'complex K. : .

Thus the boundary operator, despite the purely algebraic definition, has an obvious
geometric meaning too. -

The sum in the theorem is finite in virtue of axiom (O) in the definition of CW
complexes, since [07:677 '] # 0 only for those 6~ ! which meet the closure of ¢? and
their number is finite.

Proof. Consider the mapping of triples (B9, S9!, §) — (K2, K91 K972) where
B%— K*is the characteristic mapping of 6?and S9! — K~ ! is its restriction. Because
of the functorial property of exact homology sequences, we obtain a commutative
diagram:
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z
I P
0= H/(B")—H/(B, SITY——H, (ST =250

Lo !

0
H(K?, K" ) —H, ,(K"!, K72
il Il
“(K) %, 1(K)

H,/(B% S 'y=H/(S%) =1Z.

(Here g> 1, the case g = 1 is quite similar and is left to the reader.)

Consider the generator 1€ H(B?, $77') = Z. First it is sent by « into the chain
I-0%€ % ,(K) and then by 0 into do¥.

Let us now follow the same generator on the other route. First it is sent into
leZ=H, (8 ') as it follows from the definition of the homology sequence.

Further we have a mapping (S9!, §)—(K?" !, K9 ?)equivalentto $9~ ! — V §971,
which means H,_ (S ') = Z-H,_ (K" ", K" =ZH ZD ... D Z.

Each generator of %,_,(K) corresponds to a cell o~ !. We have to find their
coefficients in the image of 1e H,_ (S ).

Lemma. Iff: §7— §%is of degree 4, then the endomorphism f, of H (S%) = Z sends 1
into A.

So the coefficients are the very incidence numbers [¢7: ¢7~ '], which means ¢ =
=Z[0?: 69 ')6?" ! as we are to prove. »

Proof of the lemma. We recall how a mapping of degree A is constructed:

O-&

A

The mapping of the sphere into a union of 4 spheres takes the generator of H (89
into the sum of all generators of the g-dimensional homology group of the union, next
the mapping of the union into the sphere induces transition of each generator into the
generator of H (8%, as claimed by the lemma. Q.e.d.

Computation of homology groups

(1) S". The sphere has a decomposition into two cells 6 ® and ¢”. Clearly ¢, =%, =2
and 0=0, hence Hy=%y=H,=%,=Z (as we already know).
(2) The complex projective space CP". The points of CP" are sequences (zy:z,: . . .: z,)
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of complex numbers such that for at least one of z) does not vanish, considered up to
multiplying by nonzero complex numbers. On CP, we consider the following cell
structurc. The cell 024 (where 24 is real dimension), 0 < g <n,isdefined as the subset of
all points of CP" for which 2,#0, z,01=2,4,=...=2,=0. (The characteristic
mapping B?¢— CP" of the cell 624 is given by

(cra oz (2 gy Vfljlzllz—...—|quz:0:...: 0).
We have
0 for i=2k+1 or i>2n,
“ . ny _
{(CP™) {Z for i=2k.

All boundary operators are zero, so H; = %.,.

(3) The real projective space RP". The points of this space are sequences of real
numbers (xo: x;: ...: x,) such that x,#0 for at least one k, considered up to
multiplication by nonzero real multiplier. The cell 67 consists of all points for which
x,#0and x,, ,=x,,,=...=x,=0.

The difference between this and the previous example is that here we have cells in
cvery dimension (one cell in each dimension) while CP” has only even-dimensional
cells.

Let us describe the characteristic mappings. Consider B? and identify on 0B? the
diamctrically opposing points. This gives a mapping B?— RPY=47 < RP".

Conscquently €, (RP")=2, 0<i<n.

Now ¢ is not trivial anymore. Let us compute the incidence numbers. For this,we
have to compute the degrees of the following mappings: 0B=S7"'-RP? 1,
—RP¢ !/RPY =89! Here the last equality holds because there is a single cell in
cach dimension. The result is a composite S?°! >S9 !, Let us compute the
homomorphisms between the homology groups. We have S9! 5> RP?~! where RP9~ !

may be represented as the upper hemisphere with the diametrically opposing points of
the cquator being pairwise identified with one another. That is, the equator is RP4~ !
Further factorization contracts the equator into a single point, so that the upper
hemisphere becomes $97 !, : : ‘

The same mapping can also be described as follows. At first the equator is
contracted into a single point, then in the union obtained the two spheres are sewn
together in such a way that each point is identified with the diametrically opposing one.
Central reflection of the sphere preserves the orientation if the dimension of the sphere
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is odd and changes it if the dimension is even. Thus S~ ' —577 ! is of degree 0 if ¢ is odd
and 2 if g is even.

We conclude that the incidence coefficient [¢¥: 647 '] is zero if =2k + 1 and 2 if

qg=2k.
Thus d62*=202%*"1 and 0o2* ' =0, hence
Hy(RP") =2
H,(RP") =12,
H,(RP") =0
H,(RP")y =2,
for n=2k for n=2k+1
sz—l(RP"):Zz HZk (RP"):O
Hy, (RP") =0 Hyu+ (RP) =2

Exercise. Calculate the homology groups of (a) the torus, (b) the Klein bottle, (c)
the space RP2 x RPZ.

Homology with coefficients in an arbitrary group

We can build up the singular homology theory by defining singular chains as linear
combinations of singular simplexes with coefficients in an arbitrary Abelian group G, in
full analogy with the case of integral coefficients. We obtain homology groups which we
denote by H(X; G) and H(X, Y; G). We can extend the basic results of the last two
sections for this general case. In particular, if K is a CW complex, then H JAK; G) =
=Kerd,/0,,,(€,+1(K; G)), where €(K; G) is the group of finite linear combina-
tions of the form Zg, g, (where g, € G and ¢} are i-dimensional cells) and g, is defined by

ai(zkgkafc) =2 tgk[afc Lo 1]05’_ !

(where o} and ¢}~ 'run through the set with i-dimensional and (i — 1)-dimensional cells
respectively).
For instance,

Z,, 0<i<n,
0, i>n.

!y H,(RP"; Z,) = {

Indeed, €,(RP"; Z,)=2Z, for i<n, while 0;: €, (RP"; Z,)-%,_,(RP"; Z,) is
trivial (as 2=0 mod 2).
1 Further on we shall study homology theories with various coefficients in more
detail.
The notation H(X) will be kept for H(X; Z).
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§13. HOMOLOGY AND HOMOTOPY

Theorem. If a space X has trivial homotopy groups (and, in particular, is path-
connected), its homology groups are trivial, too, i. e. Ho(X)=2Z, H (X) =0 if
q>0.

Remark. For CW complexes the statement is trivial: 7;(X) = 0 for all i implies that
X is contractible, thus H,(X) = H, (point). '

Proof. A O-dimensional singular simplex of X is in fact a point of X. Let a point
X, € X be fixed and for each 0-dimensional singular simplex ¢° let a path Da® be chosen

that connects ¢° with x,. The path Do® may be regarded as a 1-dimensional singular
simplex or a 1-dimensional singular chain. Moreover d(Ds°)=x,—0°. For any 0-
dimensional chain ¢ = Zk;6? we put Dc=Zk;Do?.

If ¢! is a 1-dimensional singular simplex of X and do'=0¢—¢9, then the 1-
dimensional simplexes Da?, 6' and Do together constitute a mapping of the boundary
of the 2-dimensional simplex 42 into X. Because X is simply connected, the mapping
may be extended to a mapping 4°— X, which is a 2-dimensional singular simplex of X.
Now for each 1-dimensional singular simplex o' we fix such a 2-dimensional simplex
D¢'. Clearly dDo' = Ddo'+o'. Continuing this procedure in the subsequent
dimensions, by making use of the triviality of the groups m(X) we succeed in
constructing for any singular simplex ¢ of X another simplex Do whose dimension is
larger by one such that 0Do=Ddo+¢ if dimg>0. The mapping D: @,C (X)-
—®,C,(X) 1s a chain homotopy connecting the identity mapping ¢: @,C,(X)—
- ®,C,(X) with ¢: @,C,(X)—- ®,C,(X) which is given by

(0 = {@dox, for ceCo(X),
P90 for ceCy(X), g>0.

Then ¢ clearly induces the trivial mapping of homology groups while it is
homotopic to the identity mapping. This is only possible if the homology groups are
trivial, 1. e. Ho(X) = Z and H(X) = 0 for ¢>0.

- The relative analogue of the theorem is proved in literally the same way:

Theorem. If (X, Y) is a pair of topological spaces with X path-connected and
m (X, Y) =0 for every ¢, then'Hq(X, Y)=0 for every gq.

The homotopy D: ®,C,(X, Y)—®,C,(X, Y)to connect the identity with the null
mapping is constructed as shown on the picture:
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7

Corollary. If a mapping f: X—Y with Y path-connected induces isomorphisms
between the respective homotopy groups, then it induces isomorphisms between the
homology groups too.

Proof. Let us apply the relative variant of the theorem to the pair (Zf, X) where Zf is
the cylinder of the mapping f (it is path-connected if so is Y). In view of the exact
homotopy sequence

m{ X) > 1d Zf )~ nd Zf, X)— 7 ((X)-> 7 (Zf)

faXII x !

n(Y) 7 (Y)

we have n;(Zf, X)=0 for every i (regarded as set if i=1). Hence H,(Zf, X)=0 for
every i. Now it follows from the exact homology sequence of the pair (Zf, X) that the
inclusion X —Z f as well as f: X— Y induce isomorphisms of the homology groups 1n
every dimension.

Another formulation of the corollary. If f: X - Y is a weak homotopy equivalence,
then f, : H (X)—H (Y) is an isomorphism.

The Hurewicz theorem

Theorem. Assume that X is a path-connected space and 7,(X)=0 for a<gq and
7, (X)#0 (¢>1). Then H,(X)=0 for a®& g and H (X)=mnr,(X).

Proof. The topological space X may be assumed to be a CW complex without loss
(by the cellular approximation theorem in §10). It may even be assumed to have no cells
at all of dimension less than g, as indicated by a theorem in §3 (a corollary of the cellular
approximation theorem). ’

As shown in §10, n(X) is an Abelian group whose generators and relations
correspond to the cells of dimensions g and g+ 1, respectively. More exactly, for any
cell 6™ ! we consider the characteristic mapping f9**: BY*!- X and restrict it to 0B+ !.
We obtain a mapping of $?into the g-skeleton of X, i.e. V S§?, which means an element
of the free Abelian group spanned on the generators ¢¢. By turning it into zero we get
the relation. '

After these remarks the theorem is already obvious. Indeed, we have H,(X) =0 for
«<g, as there are no cells of dimension less than g. In dimension ¢, ¥,=Z, because
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d=0. Now B,(X) is in direct correspondence with the relations of z,(X). Hence we
obtain the isomorphism. Q. e. d.

The Hurewicz theorem permits a more exact formulation which will be important in
the sequel.

Leta e m,(X) be represented by f: S7— X. The standard sphere S?is assumed once
and for all to have a fixed orientation. The element S« () e H (X)isclearly determined
by o, which gives rise fo a mapping 7, (X)— H,(X) the so-called Hurewicz homomor-
phism denoted by y,. (Exercise. Verify that it is indeed a homomorphism!)

Theorem (Hurewicz). If ny(X) = ... = Ty-1(X) =0, ¢>1, then y, is an isomor-
phism.

The proof is essentially presented above, the further details are left to the reader.

Exercise. Formulate and prove the relative Hurewicz theorem.

The case g=1

Theorem. If X is path-connected, then H,(X)=mn,(X)/[r,(X), n,(X)]. Here
[7,(X)], m;(X)] is the commutator-group of 7,(X), i. e. its subgroup generated by all
elements of the form aba™'b~!, where a,ben,(X).

A more precise formulation: For path-connected X the homomorphism 7, : 1, (X)—
—H (X) is an epimorphism with the kernel [ ,(X), 7,(X)].

Proof. The space X may be assumed to be a CW complex with a single vertex. Then
n,(X) is a group whose generators and relations correspond to one- and two-
dimensional cells, respectively. Now H,(X) is an Abelian group having the same
generators and relations as 7,(X). In other words, we obtain H,(X) from 7,(X) by
adding to the relations those of the pairwise commutativity. Q.e.d. (The proof of the
second variant is left to the reader.)

~

The inverse Hurewicz theorem

Theorem. Assume that X is path-connected and H,(X) = 0 for a<g, n,(X) = 0.
Then 7,(X)=0 for 1 <a<g and n,(X)=H,(X).

Proof. Assume that n,(X) is different from zero with some r < ¢. Then the first non-
trivial homotopy group is equal to the first non-trivial homology group, in
contradiction with the original assumption. Thus 7,(X) = ny(X) = ... = - (X)=0
and by the Hurewicz theorem, m(X) = H (X).

The inverse Hurewicz theorem also has its relative variant.
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The Whitehead theorem

Theorem. Assume that X and Y are pathwise and simply connected spaces and f:
X—Y is any mapping such that f, : n,(X)—>n,(Y) is an epimorphism. Then the
following statements are equivalent:

(1) f,: ©(X)-n,(Y) is an isomorphism for r <q and an epimorphism for r=gq.

(2) f,: H{X)-H/(Y) is an isomorphism for r <q and an epimorphism for r=gq.

The theorem immediately follows from the relative Hurewicz theorem. One only
has to consider the pair (Zf, X), where Zf is the cylinder of the mapping f.

§14. COHOMOLOGY

Cochains. Let us consider the chains C (X) of a space X and let G be a fixed Abelian
group. A cochain of the space X with coefficients in G is a homomorphism of C (X) into
G. The natural addition turns the set Hom (C(X), G) of cochains into a group denoted
by C4(X; G). (In general Hom (A4, B) denotes the set of all homomorphisms of a given
Abelian group A4 into a given Abelian group B. It is an Abelian group.)

The operator 6. Let F,, F, be a pair of groups and G a third group. Let us be given a
homomorphism ¢: F,—F,. Then ¢ induces a homomorphism ¢*: Hom (F,,iG)—
—Hom (F,, G) defined by the formula (¢* /) (a) = f(@a), fe Hom (F,, G). In particular,
let ¢ be the boundary operator d: Cy(X)—C,_(X). Then the so-called coboundary
operator is 6 =@*: C*™}(X)— CYX).

For any chain ce C(X), (80)c = {(dc). Since 9> =0, we also have 6*=0. Thus the
sequence

52 51 50

e C? e (Cle—— C° (...

is a complex (called a cochain complex).

Cohomology groups. Similarly to the Case of homology groups and boundary
operators, we shall consider Ker 7= Z4(X; G) and Im 6?~ ' = B%(X; G). The quotient
group HX; G) = Ker 67/Im 64~ ! is the g-th cohomology group of the space X with
coefficients in G. It is denoted by HY(X; G).

Null-dimensional cohomology. Let X be connected. None of the nonzero elements’
is a coboundary: B°(X; G)=0. The cochain ¢ e C°(X; G) is a cocycle i. e. §°¢=0
if and only if & is constant, i. e. sends C° into a single element of G. Indeed, a null-di-
mensional cochain is a function on X taking its values in G. Let a, b be a pair of
points such that {(a)# {(b). Consider a one-dimensional simplex that connects a and
b. We have (80) (¢")={(06")={(a) - {(b) #0, i. e. {#O0.

We have obtained a natural equality H°(X; G)=G. Similarly, if X = U_X], where
X; are the connected components of X, we have H°(X; G)=®,G.
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Relative cohomology. Suppose that Y is a closed subset of X. We have a natural
inclusion C,(Y) = C, (X).

The subgroup C%(X, Y) « Hom (C,(X); G) consists of all cochains { whose val-
ues on the whole C,(Y) are zero. Clearly 6(C(X, Y)) < C**!(X, Y). Hence the
groups H4(X, Y; G) are defined in an obvious way.

The exact cohomology sequence. Similarly to the case of homology, we may assign to
a pair (X, ) an exact sequence of cohomology groups. The inclusion i: Y — X gives rise to
i*:HYX; G)—>HYY; G). Let{ be a cocycle in CX(Y; G), i.e. a homomorphism C(¥)—~G.
Let the homomorphism {': C (X)— G be one of the extensions of { on C,(X), Thend{is a
relative cocycle mod Y, as ' =6 vanishes on C(Y). So we obtain a homomorphism

~ HY(Y; G)-»H** (X, Y; G). The correctness of the definition is easily verified, i. e. the

homomorphism does not depend on the particular choice of the elements { and their
extensions.

As any relative cocycle may as well be regarded as an absolute cocycle, there is a
natural homomorphism H**}(X, Y; G)-»H**}(X; G).

As a result we have a sequence

.. =HYX, Y; G)»HYX; G)»HYY; G)»H"* (X, Y; G)— . ..

Exercise. Prove that the above sequence is exact.
‘The exact sequence of a triple is a simple generalization of the sequence of a pair. Let
X >Y>Z. We only have to replace formally absolute groups by relative ones mod Z.

We obtain
.—=HYX,Y; G)»HYX, Z; G)-»H Y, Z; G)-H*"" (X, Y; G)—. ..

which again is an exact sequence.

Cellular cohomology. Similarly to the case of homology, cellular cochains may be
defined by (X)) = H(X? X*~'; G) where X?denotes the g-dimensional skeleton of
X. The coboundary operator

o1 HI(XT, X1~ 1 G)— HT™' (X!, X%, G), that is 6: €°(X) %7 1(X)

arises as the operator at the corresponding place in the sequence of the triple
(Xq+1 Xq X9~ 1)

Let us note an important difference between homology and cohomology. There is
no such rule that cochains should vanish except on finitely many elementary cycles of
the form/l of. Thus cochains in general may only be written as infinite linear
combmatlons Xg,oi.

Scalar product between H(X ; Z) and H (X ; Z) is defined in the following way. Let

ae H"(X Z), Be H(X; Z) and let a and b represent o and f, respectively. Put (a, ) =

/

=a(b). It is clearly independent of the particular representatives of « and B, since

(a+06a’)(b+0b) = a(b)+ a'(b)+ a(0b’) + da'(0b') =
= a(b)+ d'(0b)+ da(b’) + 6%a'(b’) = a(b),
for a and b are a cocycle and a cycle respectively.




1atural

se val-
ice the

sign to
i rise to
Y)-G.
10 isa
rphism
. e. the
id their

creis a

vair. Let
mod Z.

may be
leton of

)

e triple

There is
cycles of
te linear

way. Let
(o, ) =

B, since

14 COHOMOLOGY 105

It may easily happen that an element a € H{X; Z) is not fully determined by its
scalar products with all elements of H(X). For example let « have a finite order in
HYX; Z). Then (a, p) = O for every fe H (X).

Exercise. Let H(X) = Z™ ®T, and HY(X;Z) =Z" ® T* where Z™ =
=Z@:..DZ(m, terms), Z"=2Z@ ... ®Z (n, terms), and T, and T are torsion
groups. Prove that m,=n,_, and T,=T?"" for any q.

Cohomology and homology with coefficients in a field

Let us consider H(X; k) and H (X ; k) for a finite CW complex X when k is assumed
to be a field. Then the group €(X; k) is a finite dimensional linear space over k and the
cycles Z (X ; k) and boundaries B(X ; k) form subspaces in it. Their quotient H (X; k) is
again a linear space, implying that H(X; k) = k@ ... ®k.

The group ¥%(X; k) of cochains may be regarded as the space of linear func-
tionals over €,(X; k) with values in k. In other words, € (X k) and (X k) are adjoint
linear spaces, 0: € ,(X; k)%, (X; k)and 6: ¢*7'(X; k)—>%°(X; k) are adjoint opera-
tors. It follows that Kerd and Coker d =%%(X; k)/Im 4, further Im$ and Coiméd=
=¢*"'(X; k)/Kerd, as well as H (X; k)=Kerd/Imd and the kernel of the projec-
tion Coker—Coim, i. e. Ker3/Im é = H%(X; k), are pairs of adjoint linear spaces.
Thus H (X; k) and H%(X; k) are adjoint linear spaces and have, among others, equal
dimensions. The scalar product between H?(X; k)and H (X; k)is obviously nondegen-

erate, in ¢fntrast to the integral case (see above).
0

$15. CHANGE OF COEFFICIENTS

Theorem. H{X; Q) = H(X) ® Q, where Q is the group of rational numbers. In
other words, if
H((X)=2® ... ®Z O (finite group)

—
p

then
HX; Q=Q®...®Q.
4

Proof. The inclusion Z— Q defines an imbedding C(X)— C,(X; Q). In view of the
commutative diagram

o Lo
U U
C(X; Q) 5 €, (X; Q)
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a chain of Cy(X) is or is not a cycle together in C{(X) and C{(X; Q),i.e. Z,(X)=
=Z,(X; QN Cy(X). Clearly for any o € C;(X; Q) there exists such N that N a e C,(X).
Therefore, if « € Z,(X; Q) is a boundary then, for some M, Mo is a boundary in Z,(X).
Thus H(X)— H,(X; Q) has finite kernel and every element of H,(X; Q) will get into
the image of H;(X) if multiplied by a suitable integer, which implies that

H(X)®Q-H(X; Q®Q=H(X; Q)

is an isomorphism.
An analogous Theorem. For any finite CW complex X we have

H(X;Q) = H(X; 2)® Q.

Because dim H'(X; Q) = dim H/(X ; Q) we have rank H{(X ; Z) = rank H{(X)for any
finite CW complex (cf. the exercise above).

Assume now that G, < G and G, = G/G,.

. i 1
We write out the exact sequence 0 —> G, — G SEAN G, — 0 and the
corresponding exact sequence of chain complexes

0-¢4RG,-€RG->¥R®G,—0

where € =%(X; Z) is the complex of cellular chains of a complex X (verify the
exactness of the last sequence).

As it will be shown there exists an exact homology sequence

S H{X; Gy~ H(X; 6) P H(X; G) L H,_(X; Gy ..

where i, and j, are induced by the homomorphisms i and j while g is the Bockstein
homomorphism defined as follows. Let ae € (X; G,), da = 0 represent the homology
class ae H(X; G,). Because j: G—G, is an epimorphism, we can construct a chain
a' € ¥4,(X; G) corresponding to the chain a. Now 4’ is not necessarily a cycle,
nevertheless it has the property j (da’) = 0.

Hence all coefficients of the chain a' belong to the same coset mod G, namely G,
itself. Thus da’ € €;_,(X; G,). The homomorphism B is then defined as assigning to «
the homology class of a’. We notice that @' ¢ €,(X; G) if a’ »a+#0 by G—G,. Therefore
if @’ is no cycle in €;(X; G) then da’=0 is not homological to zero in %;_,(X; G,), i. e.
B(a)#0. If a'e Z,(X; G), then 0a'=0 and B(a)=0. This implies Imj, =Ker g.
Exactness in the terms H{(X; G) and H(X; G,) is clear by the definitions of i, and j,.

Exercise. Verify the correctness of the definition of the Bockstein homomorphism.

We have an analogous exact sequence in cohomology:

..—»H(X; G)-H{(X; G)-»H(X; G‘z)_p"Hiﬂ(X ;G-

where f is the analogous cohomology Bockstein homomorphism.
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The formula of universal coefficients

In view of the formula H(X; G, @ G,) = H(X;G,)@ H(X; G,), where G, and G,
are arbitrary Abelian groups, we are able to compute the homology groups of X with
arbitrary coefficients, once H(X; Z) and all H{X; Z,) are known. Let us therefore
express H;(X; Z,) through H;(X). Consider the exact sequence

0-——z-z 1,z o0

where 7 is multiplication’ by the number k. We have an exact sequence

SH(XZ) S HXG ) e HXGZ) L (XD

where 7, is again multiplication by k. The group H;(X; Z,) is to be determined while
H(X;Z)and H;_,(X; Z) are supposed to be known. _
Let the above segment of the sequence be substituted by

0-H(X;2)/k-H(X; Z)-> H/(X; Z,) > {elements of order k in H,_,(X; Z)}—0,

where k- H,(X; Z) denotes the subgroup of H,(X; Z) of the elements of form b'=kb,
be H(X; Z). In short, in H,(X; Z) we switched to congruence mod k.

For any Abelian group G we shall use the notation Tor (Z,; G) for the subgroup of all
elements b such that kb = 0. The the exactness of the short sequence aboveis equivalent
to

HX;Z)=HX;Z)®Z,)®DTor(Z,; H;_,(X; Z))

which is called the universal coefficients formula.

We mention that Tor (4, B) is defined in algebra for any pair A, B of Abelian groups
and is called the torsion product of A and B. For finitely-generated 4 and B one has
simply Tor (4, B)=Tors A® Tors B where Tors G denotes the subgroup of G
consisting of the elements of finite order. It turns out that

H(X, G)=(H(X; Z)® G) ®Tor(G; H;_,(X; Z))

for any finitely-generated G. (Prove this formula for finitely-generated G!)
Example. Let us compute H;(RP"; Z,). The homology groups with coefficients in
Z are already known:

Z,2,0,2,,0,2,,0,2,,0, ...

We may apply the universal coefficients formula. By writing out in succession the
groups H;(RP"; Z) ® Z, we obtain Z,,2,02,,0,2,,...
For the second term of the formula we have

0,0,2,,0,Z,,0,2Z,,0, ...
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Finally
H,(RP"; Z,)={Z,,2,,2Z,,...,Z,,0,0,...}.

The universal coefficient formula for cohomology is proved analogously. For any
finitely-generated group G we have

H(X; G)=H'(X;2)® G®Tor (G; H'*'(X; Z)).

The Kiinneth formuila

Let K and L be a pair of chain complexes of Abelian groups where all K, are torsion-
free. Then there is an exact sequence

0— @ HAK)® HL) =KD L)~ @ Tor(Hy(K), Hy(L))— 0

m+n=r mtn=r—

where p is the tensor homology multiplication (see §16 below) and f is the natural
homomorphism. Moreover this sequence is split, 1. €.

m+n=r m+n=r—

HKQ L= & HKS H,.(L))@< D ITOY(H.,,(K),H"(L))>

although the splitting homomorphism is not natural. This is the formula of Kinneth
(for complexes of Abelian groups). It has an important particular case, the so-called
“tensor formula“of Kiinneth”.

Assume that the chains % ,(K) and the groups H,(K) are free Abelian groups. Then

H(K® L= @ HJ(KQ H(L).

mtn=r

If we choose a field k for the group of coefficients we have

H(KQL k= © Hu(K; k) ®H,(L; k).

m+n=r

§16. MULTIPLICATION

The tensor product of a pair ¥, ¢’ of chain complexes is a chain complex €=
= ¢ ® %" such that

€= @ i¥j=n(gi®(g}
and

I, ®@%) = (06) ®F;+(~ )%, ® (7)) for ,€%,, €%
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Then (0”)* = 0, as it can easily be seen.

We may translate this definition into the language of geometry. Let K, and K, be false
CW complexes. Their direct product is again a CW complex consisting of the direct} & stabesl
products of the cells of K, and K,. (locstey

Because chains are finite functions on the cells with their values taken in G, provided £ be” K
that G is a ring, they may tensorially be multiplied. Their domain of definition will be ~ f~ffve<s)
the cells of K, x K,.

Let ac%(K,; 2), be¥(K,; D), a=Xa0;, b=Zb{. Then a® b=%, a,b/(c} ¥
x t{). By geometric consideration d(a® b)=(0a) ® b+(—1)'a® (8b). Hence
aeZ(K,,Z) and be Z;(K,; Z) imply a®beZ;, (K, X K;; Z), so we may speak
‘orsion- about the tensor product of homology classes of H(K;;Z) and H,(K,; Z),

' and a ® e H, j(K, X K,; Z).
The tensor product is natural, i. e. if f: K, - L, and g: K, — L, are continuous

‘or any

)—— 0 mappings fxg: K; xK, »L XL, is their product, then for arbitrary ae H(K,),
be Hi(K3), (fxa) @ (gx0)=(f X &)y (a®b).
natural It is associative, 1. e. for any ae H(K,), be H;(K,), ce H(K;) the elements

(@a®b)®cand a® (b ®c) of Hy, ;. (K; X K, X K3) coincide.
Itis anticommutative,i.e.ifae H(K),be H;j(K),and f: K x K— K x K is defined

) by f(x,y)=(p, x) then f, (a®b) =(-1)"(b® a).
All these facts can easily be proved by the reader.
{{inneth The tensor product can be similarly defined in homology, and also in cohomology,
o-called with coefficients in an arbitrary commutative ring.
»s. Then Let G be a commutative ring. The diagonal mapping 4: K— K x K induces a map-
' ping 4*: H*(KxK; G)—-H*(K; G). For arbitrary a, b§ H*(K; G) we set
ab= A4%a®b). -

The multiplication that we have turns H*(K; G)into an anticommutative ring. The
naturalness (functorial property) of multiplication, as well as associativity, distibu-
tivity and anticommutativity follow from those of the tensor product.

Existence of unity

If the commutative ring G has a unit element, then so has H*(K; G). Consider the
mapping f : K— *. As H*(*; G)=G, there is a unit element in this ring. Let it be
lex €' = denoted by 1. Consider a chain of mappings f*(1)| HY(K; G), it will be a unit ele-
ment of the ring H*(K; G).

Indeed, the chain of mappings

K_LKxKLKx(*),

. where p(x,y)=x, sends for any aeH*(K;G) an element of the type
1 a®leH*(Kx(%);G), ae H¥*(K; G), first into a® f*(1)e H*(K x K; G) and
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then into a- f*(1)e H*(K; G). On the other hand, K= K X (x)— K is the identity
mapping, consequently a.- f*(1)= f*(1).a=a.

The cohomology rings have no analogy in the case of homology, where natural
multiplication exists only in a few particular cases, for example when K is a group.

The Hopf invariant

As the first application of the ring structure of H*(K; G) we prove the following non-
trivial fact: the group m,,_,(S?" is infinite. This will be done by constructing a non-
trivial homomorphism m,,_(S*")—>Z.

Leto e m,,_ ; (S2") be represented by f. We constructa CW complex X, =S%"U e*"
by attaching to S" a 4n-dimensional cell along the mapping f. It consists of three cells of
dimensions 0, 2n and 4n. As for the coboundary operator in the cellular cochain
complex we have =0, H*(X,; 2)=2® Z @ Z.

Let a and b be generators of H"(X,; Z) and H**(X,; Z), respectively. Since dima=
= 2n, we have a? e H*(X ), 1.€. a* = hb with he Z. This number h will be assigned to a
and will be called the Hopf invariant. The definition is correct, i. €. h(e) = h élearly does
not depend gn the particular choice of f within the homotopy class a.

Theorem. A(a) is additive: h(a+ B)=h(x)+h(p).

Proof. Together with X,,,=S8%"U,,,e* a similar complex Y,, will be
considered, too. It is defined in the following way. Let fea and ge . We have a
mapping f V g: S#7 1V §4 15 52" Weattache®" V e*"to S?"along the mapping
to obtain a complex that consists of one null-dimensional, one 2n-dimensional and two
4n-dimensional cells. Next $%"~ ! is mapped onto $*"~! V §4"~! by contracting to a
single point the equator S*" !,

S'Zn f+g S4n—1

I !

S2n S4n~l V S4n-l

" The two horizontal mappings here describe the complexes X, ., ; and Y, 4, the verti-
cal mapping S*"~ ! S§*"~ 1 v §4 1 gives rise to a mapping X, z— Y, ;, which iden-
tifies the 2n-dimensional cells of X, ., and Y, ; while the single 4n-dimensional cell
of X,,, covers both 4n-dimensional spheres of Y, ;. We obtain H*(Y, 4; Z)—
—H*(X,15:Z) where H¥(Y, ;;2)=Z2@ Z ® Z ®Z and H*( X, )=

0y (2n) (4n)  (4n)

2® Z @ Z . The generators in dimensions 2xn and 4n are @', b}, b, and a, b.
0)  Q2m  (4m)

By the definition of Y, g, b+ b, b3 +—band a'+— a. Now in H*(Y, 4; Z) we have (@)=
h by +h,b’ where hy, h,eZ.

By the naturality property of cohomology groups with respect to mapping of
complexes this implies a® = (h, + h,)b. On Ghe other hand a®=h(a+ B)b, 1. e. h(a+ f) =
=h, +h,. Now we notice that # depends on f €« alone, i. €. is independent of g€ f.

P .
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By putting =0 we obtain hy=h(a). Similarly £, =h(f). Thus A(a+ ) =h()+h(p)
as stated. Q. e. d.

In view of the theorem, the mapping o h(a) is a homomorphism Tan—1(S2M—2Z.
We have to prove its nontriviality. Let us consider the product $2" x $2" and attach the
spheres §2" x (x) and () x $2" to one another by identifying the corresponding points
of the two spheres. As a result we have a complex X which consists of one cell in each
dimension 0, 2x and 4#. :

The attaching mapping of the 4n-cell ¢*" maps S*"~ ! into the (4n — 1)-dimensional
skeleton of X which consists of a single cell 2", Let a: $*"~ ! $2" be this mapping,
and a be its homotopy class. In other words, the complex X is obtained by attaching to
§?" a ball ¢*" along a mapping o, i. ¢. X is of the type X,.

It turns out that the element of Tan-1(5") described by the mapping « has nonzero
h(x). Indeed, consider

S2n X S2n__)Xa — SZn Ua e4n‘

Let a, and a, be generators of H>"(§*"x S 2)=Z @ Z and q, b, d be generators
of H*"(X,; ), H*"(X,; Z) and H*¥(S%" x §2" Z), respectively. In the cohomology we
have then the correspondences g+ a; +a,, b—d, and in consequence a?— (a, +a,)*=
=ai+2a,a,+al,i. e. a?=h(a)bh, h(b—at +2a,a,+a?.

If K, and K, are torsion-free complexes over Z then clearly

H¥K,xK,; 2Z) = H*K; Z)® H*(K,; 2),
1. €, in the present case,
HY(S™x $7", 2) = HY(S™"; 2)® H*(s™; 2),

hence d=aq, -a,. Thus at=a3=0, and finally h(x)-b+ 2d, h(x) #0 as claimed.
Actually we have r,,. (S*")=2Z @ {a finite group}, which we are not going to
prove here. It is known that

(8 =2, n(SY=2®z,,
7, (8% =2, (S8 =202,

817. OBSTRUCTION THEORY

Let X be a topological space, K be a CW complex and g: K"~ ! X be a map-
ping, where K"~ 'denotes the (n— 1)-dimensional skeleton of XK. We want to extend
& to a mapping of K" into X. (This is the step of induction in the course of defining a
mapping K — X by successively extending it from each skeleton to the next one.) We
shall only consider the case when X is (n— 1)-simple (for example, simply-connected).
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Let us be given a cell "< K with characteristic mapping y: B"—K. Since é"< K" ™!
and f: K" !> X is already defined, we have B" = §" 'K X,

We remind the reader that the cell ¢” will be fixed during the whole procedure. If we
succeed in extending f from the boundary of e" to a mapping defined over the whole cell,
we shall be satisfied that by analogous construction we are able to extend it onto the
other cells as well, and obtain a mapping K"— X as required.

So the question of extending f: é"— X to f: e"— X is reduced to the question of
extending the $" ' > X to B"—» X.

Now $"~ 1! — X defines an element of 7, _  (X). (It will be recalled that in the view of
the (n—1)-simplicity this element does not depend on the behaviour of the base
points.) Consequently S” ! — X extends to some mapping B"— X if and only if the
homotopy class of the former is zero in 7, ,(X).

So we have assigned to each ¢"< K an element of =, _;(X).

Let this correspondence be continued as a homomorphism *%,(K)—mn,_;(X) by
performing the above construction for each cell " < K" and then defining the mapping
on %,(K) by linearity. The result is a cochain ¢, with coefficients in =, (X);
c;€6"(K, m,_(X)),called the obstruction to extending f: K"~ ! - X onto K".

Clearly f: K"~ * - X may be extended to a mapping of the n-skeleton of Kifand only -
if ¢, =0. .

So far we have only been reformulating the problem and as yet the relation ¢, =0
does not carry any new information. As it will soon turn out, ¢, has many interesting
properties.

Theorem 1. The cochain ¢, € ¢"(K, n,_,(X)) is a cocycle, i. e. d¢c, =0.

Proof. We shall need the relative Hurewicz theorem which has been mentioned in an
exercise. Here itis. If Y < X, xp€ Y, n;(X)=n,(¥)=0 and n, (X, Y, x0)=0, k<n,
then H, (X, Y)=0 for k<nand n,(X, Y, xo) = H (X, Y, x;).

In the diagram '

(glﬂ"l(K) = Hn+l(Kn+la K") = 7tn-i-l(l<"+17 K")

J}
1 7,(K")
Jl
¢, (K)=H/(K", K" 1) = (K", K" 1)
| o
‘ Tuey (K" 1)
ful

m,—,(X) = the coefficient group,




- > By - > < Bo g
- O = L “a | Q2 o = n 8 <G
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the horizontal lines represent the Hurewicz isomorphisms. By definition the boundary
operator 0: €, ;(K)—%,(K) is the corresponding operator in the exact sequence of the
triple (K"**, K", K"~ '). By the Hurewicz theorem it reduces to an operator in the exact
homotopy sequence for the same triple:

7T,,+1(Kn+1,K")—)7C"(Kn, K"_l).

By construction it decomposes into J and Jx:
+1 n g n j* n n—1
nn+1(Kn ,K)-—)TC"(K)—’W,,(K,K )’

the ordinary boundary operator and the transition from absolute to relative spheroids.
We notice that the three-term sequence obtained is not contained in the sequence of the
triple. The mapping ¢’ is again ordinary boundary operator and S 1s the
homomorphism induced by f: K" !> X.

The square consisting of €, . ;, €,, 7, + ; and «,, is clearly commutative. Consider the
homomorphism c}: €,(K)—>n,_(X). It is a composite f, od'; Sc% e €"* 1 (K).

The cochain éc’; defines a homomorphism €,,,(K)—n,_,(X) such that
dct=chod=f,000j,00=0,asd °j,=0(0"and j, being two successive homomor-
phisms in the exact sequence of the pair (K", K" !)). Q. e. d.

The cohomology class of the cocycle ¢} will be denoted by C}. So we have
7€ HY(K; m,1(X)).

Theorem 2. C; =0 if and only if f: K"~'—> X after having been appropriately
changed on K"~! without being altered on K" 2 may be extended to a mapping
f:K">X.

Before the proof we introduce a notion which will prove useful in the sequel.

Let f and g: K" !> X be such that f(x)=g(x) forxe K" 2. Let 6" ' K" ! be an
arbitrary cell with characteristic mapping y: B" ! — K. Because x(B" )c K"~ 2 the
mappings fo y and gy coincide on B"~ ! Now fand g are different on the cell 6",
their images are nevertheless attached to each other along the image of B" 1, i. e. we
have a spheroid in X, defining an element of =, _ ,(X). Actually we obtained a cochain
which assigns an element of z, _ (X)) to every cell 6" ~*. It shall be denoted by d} ! and
called the difference cochain of f and g. Thus d} '€ €" (K, =,_ (X)).

Obviously d} ' = 0 if and only if there exists a homotopy which connects f and g
and is constant on K"~ ? (where f =g).

Lemma 1. For every mapping f: K"'— X and cochain de %"~ (K ; n,_ (X)) there
may be found a mapping-g: K" '—X such that d = d} ' and g|gn-2 = f| gn-2.

Indeed, let us consider an arbitrary cell 6" ! and its image f(¢" ™ !)c X. We take a
small ball in the centre of the cell and cut offitsimage from f (6"~ *). Next we attach to its
place a spheroid representing the value in x,_ ,(X) of the cochain d at ¢" L.

Now g is defined as coinciding with feverywhere except on the ball where it is blown
up into the spheroid. By similarly altering fon every cell we finally get a mapping g for
which d=d7} ' as stated by the lemma.
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Lemma 2. 6dy )t = ¢} —c (i e. d7," is not a cocycle anymore).

Proof. We have (6d} ') (6")=d}, ' (06™) = Z,[0": 6771 ]d% (67~ 1). Let us recall
the definition of [¢": o7~ ']. There exists a characteristic mapping B"— K for the cell 6"
such that B" = §" !5 K" "1 K"~ 1/K""2=V §*~! Then [¢": 0"~ ']is the degree of
the mapping S" ' -8~ . Asit had been proved earlier, $"~ ! - K"~ ! is homotopic to a
mapping which maps the whole sphere, except for a finite number of balls B{™! into
K"~ 2 while the balls are mapped onto cells ¢~ with degrees + 1. The number of balls
mapped onto o] ! is actually equal to the incidence number.

I
-1
gl6™")
, //////////7/////4 l
ﬂ 67!

On the picture the heavy segments are meant to denote the small balls selected on $"~ *.
Let us now examine the value taken by the cochain cy—cg on the cell 6", i. e. where do
the little balls go when fresp. g is applied. Because f(x)= g(x) for xe K"~ 2, the value of
¢y —cg on each cell 7 ™! is the spheroid which is the value on 67! of the difference
cochain d} !, taken as many times as a little ball is mapped onto ¢7 !, i. e. taken with
the incidence number. To the whole cell ¢” the sum Z,[o": o '1d} (a7 ") is then
assigned. As it clearly coincides with (6d7,')(c"), the lemma is proved.

Proof of theorem 2. Assume that there exists g: K"~ ! — X which extends to K"— X
such that g|gn-2= f|gn-2. Then c¢j=0, 8d% ' =c" (by lemma 2) and C%=0.
Conversely, if C}=0, then ¢’}=6d, de¢" (K, n,_,(X)). According to lemma 1
there exists g: K" !> X coinciding with f on X"~ 2 such that dyl=d. We have
cg=cy—0ody ! = (bylemma 2) ¢’ — 6d=0, i. e. g extends to a mapping K" — X. Q.e.
d.
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We mention some obvious properties of the obstructions and the difference
cochains.

1. If fand g: K"~ !'- X are homotopic, then ¢} = ¢j.

2. Let K, and K, be two complexes and let ¢: K;—»K, be a cellular mapping.
Consider the mapping g: K}~ '— X defined by g(x) = f(¢(x)) where f: K3 ' - X . If &
%"(K,)—%"(K;) denotes the homomorphism induced by ¢, then c;=¢@(c}), i. e. the
obstruction is natural with respect to mappings of complexes.

3. If f and g are mappings of K" ! to X and f=g=~h on K" 2, then

A di =dn

4. Let f, g: K3 *>X; f=gon K3 ?and let ¢: K; ' K% '. Then
} 9,0 = Pd7

3. d;._gl = -d;._fl

The relative case

If LcK is a subcomplex and f is defined on K"~ *U L, then the obstruction to
extending f to a mapping K"U L— X is found in ¢"(K, L; 7, (X)). It is a (relative)
cocycle whose cohomology class is in H(K, L; =,_(X)). The theéory of “relative”
obstructions is parallel to its absolute variant and we are not going to go into the
details. We only mention the interesting connection between relative obstructions and
difference cochains; further on it will play important role at several instances. Assume
that f, g: K— X coincide (or are homotopic) on the n-skeleton of K. We then have a
mapping F: (K" x U(Kx dl)—X. denote L=Kx1I, M=Kxdl. Clearly K" x
x TUK x I = ["*' U M. The obstruction to extending Fon [ *2U M isin4"*2(L, M ;

e (X))=%""*(ZK, 7, (X))=%¢""(K,x,,,(X)) and it can easily be seen that it
equals to &}t Now od}7,! = ¢}"2—c;™? = O asfand g are defined on the whole K.
Thusiff,g: K—»X c01nc1de on K" and they are defined on the whole K, their difference
cochain may be represented as an obstruction.

By applying theorem 2 to this case we get the following statement.

Theorem 3. Let f, g: K— X coincide on K". Then d},! ~0 if and only if f{gn+:~
~¢| gn+1 relatively to K"~ ! (i. e. they may be connected by a homotopy which is
constant on K" 1),

As an application of this theorem we indicate the connection between cohomology
and the mappings into K(n, n) mentioned in §2:

Corollary. H'(X, n) = II(X, K(n, n)).

Consider the composition €,(K(rn, n))—H (K(n, n)) = n,(K(n, n)) = n, where the
first homomorphism arises in consequence of €, _ ;(K(=n, n)) = O (the cell structure of
K(m, n) is given as in §10) and €, coincides with the group of cycles, 1. e. H, is a quotient
group of €,,. The result is a cochain in 6" (K(z, n); 7). An alternative description: each n-
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dimensional cell of K(r, n) corresponds to an element of the group 7, which extends by
linearity to a homomorphism %, (K(z, n))—n.
The cochain e e "(K(n, n); m) arising may also be described as the difference cochain
} g for the M inclusion f: K"(m,n)—>K(n,n) and the constant mapping g:
K"(r,n)~ Kf4m). Both of them extend to K(m,n)— L(m,n), thus cf=cy=0and de=
=4dd} ,=0,1.e. eisa cocycle.

The cohomology class of e is called the fundamental cohomology class of K(r, n) and
will be denoted by ee H"(K(n,n); =), too. We remark that the fundamental class
ex € H'(X; m,(X)) of any space X for which no(X) = ... = m,_ (X) = 0, (n>1) can be
defined similarly. Later on we shall return to this notion.

Theorem. For any CW complex X the mapping assigning to f: X—K(n,n) the class
f*(e)e H"(X ; m) gives rise to a one-to-one correspondence between H"(X ; 7) and the set

II(X; K(r, n)) of homotopy classes of mappings of X into K(z, n).

This theorem was already annoéunced in §2.

Proof. Let e H'(X, m). We prove that there exists some f such that f*(e) = a.

Let arepresent . We construct f: X— K(n, n). Let X"~ ! be mapped onto the base point
of K(m,n). Next we define f on X". Let e" be an n-cell of X. Then a(e®)en
Because the boundary of the cell e” is mapped onto a single point, the mapping must
be a spheroid in K(r, n). We choose for it an arbitrary spheroid that represents a(e”).
Clearly a e ¢"(X; =) is a difference cochain between f: X"— K(x, n) and the constant
mapping g: X" K(zn, n). We have 0 = da = ct—cy(c; = 0, as g extends to the whole
X),1.e.c} = 0,and fmay be continued on X"~ 1. The obstructions to extending it onto
X"P2 XT3, etc. are in trivial groups, i. e. m,, (K(m,n))=m,,,(K(r,n))=. ..
=0. Thus there exists a mapping f: X—K(zx,n). The composite

‘5,,(X)—f1—~>(€,,(K(n, n))~—e—+n obviously coincides with a, so f*(e)=ua.

It is left to show that for any pair f, g: X > K(x, n), f*(e) = g*(e) implies f ~g.

It suffices to consider cellular fand g. Because K" }(m, n) = *, flyn-1 = glyn-1 18
immediate. Thus f| y» and g| 4. correspond to certain cocycles a, be €"(X; n) in the
same way as above in the first part of the proof. These cocycles are in fact the images of
e €¢"(K(m, n)) under the cochain homomorphisms defined by fand g. Further.a = d7 ,
and bid;,h where h: X" — K(n, n) is a mapping onto a single point. We have d} =
=—dy ,=a—b~0.

By theorem 3, f | yn~g| xn 1. €. g is homotopic to a mapping g : X — K(r, n) such that
Slxn = g|x~ (by the Borsuk theorem). Now f and § are clearly homotopic as the
differenc cochains are taken with coefficients in trivial groups. Q.e.d.
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Obstruction to extending a section of a fibration

Let (E, B, F, p) be a fibration (whether a locally trivial or Serre one, it
does not matter now). We assume that the fibre is simple and the base is simply
connected. The latter is unnecessary; actually it would suffice to have “simple”
fibrations in the following sense. If s, s, : I - B are paths which connect the points x,
yeBand ¢, y,: p~ !(x)—E are homotopies such that g, =y, p" ' (X)<E, @, (p”'(x)) =
cp” Ns(0), ¥ lp~ 1(x)) = p~ Ys,(t)) (they exist as guaranteed by the covering homotopy
theorem). Then the mappings ¢, ¥, : p~ *(x)— E are homotopic. This assumption may
also be satisfied in the case of a base which is not a simply connected as the example of
tangent unit vectors to an oriented manifold shows.

Suppose that B is a CW complex and that we are given a section over the (n—1)-
skeleton of the base. Let ¢” be an n-dimensional cell of the base and f: B"—> B the
characteristic mapping. The fibration induced by f cver B is trivial. The section over
the (n— 1)-skeleton induces a section of the induced fibration over B" = 5" ! i.e. a
mapping S" ' - B"x F, i. e. an element of n,_(B" X F) = =n,_,(F). (Here we assumed
the fibration to be locally trivial. The situation is nevertheless the same in Serre’s case,
too. Indeed, there exists a canonical isomorphism between the (n— 1)-dimensional
homotopy group of an arbitrary fibre and the standard copy of the fibre, as it follows
from the simply-connectedness of the base.) The function assigning to each cell ¢” an
element of m,_,(F) gives rise to a cochain ¢" of €"(B; =,_,(F)). Its properties are
proved analogously to those of the obstructions to extending continuous mappings.
We list them here without giving the proofs.

1. A section extends to a section over the n-skeleton of the base if and only if ¢"=0.

2. 8c"=0.

3. The cohomology class of the cocycle ¢" is zero if and only if the section may be
altered on the (n— 1)-skeleton of the base, without being changed over the (n—2)-
skeleton, so that it would extend onto the whole n-skeleton.

The difference cochain is also defined. The notion of obstruction to extending a
mapping is a special case of the more general notion of obstruction to extending a
section. Indeed, any mapping K— X is equivalent to its graph K—K x X which is a
section of trivial fibration. Obstructions to extending a mapping or its graph are the
same. :

On the other hand, the notion of obstruction to a section does not reduce to the
special case of mappings, as it follows from the following remark.

Let ng(F) = ... = =n,_,(F) = 0. The obstruction to extending sections to the k-
skeleton of the base is zero for k<n, as its values are taken in trivial groups.
Obstruction to extending a section to the n-skeleton is not necessarily trivial anymore.
Its cohomology class is in H'(B; n,,_ ,(F)) and it is independent of what the section is on
the previous skeleton. This fact is almost obvious and it is proved by using
difference cochains and the analogue of lemma 2 (i. e. the formula éd} ' =c} —c}).
So the class is defined by the fibration alone and it is called the characteristic class of the
fibration.
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Exercise (the basic property of characteristic classes). If ¢ € H'(B; n,_,(F)) is the
characteristic class of a fibration (E, B, F, p) and f: B'= B is a continuous mapping then
the characteristic class of the fibration induced by f'is f*(&).

Exercise. The characteristic class of a fibration is independent of the particular cell
structure given on the base.

Let us still add the following interesting observation. The characteristic class of the

Q
Serre fibration EX —3(——>X regarded as an element of H(X; n,_,(2X)) = H'(X; n,(X)),

where ny(X)= ... =n, (X)=0, is nothing else than the fundamental class of X.
(Prove it!) Hence the invariance of the notion.

APPENDIX 1
TWO REMARKABLE EXAMPLES
OF CONTINUOUS MAPPINGS

Any sufficiently good topological space, say CW complex, whose homotopy groups
vanish was proved to be contractible. If in addition the space is simply connected this
follows from triviality of the homology groups, as well.

Suppose now that a mapping induces the null homomorphism between the
homotopy groups, or homology groups. Is it necessarily homotopic to constant?

The answer is negative even for mappings that are trivial both on homotopy and
homology groups, as shown by the following counterexample.

Let p: $?—S? be the Hopf fibration. The three-dimensional torus T3 =S x §! x
x S' is mapped onto S* by its 2-dimensional skeleton being contracted to a single
point. The composite f: T3—S?

is not null homotopic, otherwise by the covering homotopy theorem, the homotopy in
point could be covered in S3, which would imply that g: 7283 is homotopic to the
mapping which sends T2 into S and so, as §! is contractible in S, g would be null
homotopic, too.

Let us now examine what kind of mappings are induced by f: T3—S$2 in the
homology and homotopy groups.

By consideration of the dimensions one immediately gets that the homomorphisms
HY(S?)—H'(T?)are trivial. As for the homotopy groups, we have ,(T%) = Z@ Z P Z;
m(T°)=0, k>2; n,(S%)=0; thus the mappings n,(T?)— n,(S?) are trivial, too.

In a mind cultivated by topology the suspicion would naturally arise that the
existence of such an extraordinary mapping must be somehow connected with the fact
that T3 is not simply connected, similarly to many other phenomena.
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Nevertheless it has no significance in the present case, as it will be shown on the next
construction which only involves simply connected spaces. Let X = $%"~2 x S Then
X is a complex consisting of one cell in each dimension 0, 3, 2n—2, and 2n+1. By
contracting the 2n-skeleton to a point we obtain $277% x §3—S§2"*! Let S?"*! be
fibred over CP” *ith fitre §1 The composite mapping $" 7% x §? - §2"*! - CP"isnot
null homotopic as it may be proved analogously to the above while it induces trivial
homology and homotopy homomorphisms.

Indeed, the mapping between homology groups is trivial as it goes through
while dim CP"=2n. .

Still easier is the case with homotopy groups. Actually $*"~% x §°—S§>"*! already
induces null homomorphism, as

S2n+ 1

imbedding 212 % §3 g2n+1

S2n -2 vV S3
where $2~2 V $?is mapped onto a single point. Let us be given an element of T (S22 %
x §3),i. e. a mapping f: S*—8%" "% x §3,i. . a pair (f;,f,) such that f, : S*»8*""* and
f,: S¥—S3. Because the union is mapped into a single point, f is homotopic to
constant.

APPENDIX 2
THE EXACT SEQUENCE OF PUPPE

Let X" and X be arbitrary CW complexes and f: X'— X an arbitrary continuous
mapping. Let us consider a further space Y and the pointed sets IT( X", Y), II(X, Y), II{(Y,
X'), I(Y, X). For any continuous mapping a we shall denote by [a] the corresponding
element of II(.. .; .. .).

A three-termed sequence X’ —f+X 9, X" is said to be exact if for any space Y the

sequence

Iy, X2y, X~ my, xv

is exact. (Exactness means that the pre-image of the base point coincides with the image
of the previous set.)
Dually, a sequence is coexact if the following sequence

. %* *
X", Y)—2— X, Y)——I1(X', Y)
is exact for any Y. '

Asequence ...—X,,, L > X, f"_‘%X,,_l—n.. is said to be exact (resp. coex-

act) if its three-terms subsequences X;, ,—X;— X, are exact (coexact).
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Let us denote the cone of the mapping /by C,,i.e. C, = X U, CX'. We construct
the following sequence of CW complexes

. . . . .
yLoxte, Lozxy Mozx- e

where i is imbedding, j the natural projection: j: C;,—» C,;/X=XX"'; Lf denotes the
suspension mapping over f, etc.
Theorem 1. For any continuous mapping f: X’ — X the sequence

| = o .
Loy, ey El e, El gy

I
C}"nf

is coexact.

Proof. At first we prove the coexactness of X’ —f—>X —c s»1e.forany Y we prove
the exactness of
i* f*
e, Y)—IX, Y)—II(X', Y).

Let [a]e (X, Y), [fleI(C,, Y) and a = i*(f), i. e. let us have a commutative
diagram

N2

Y

By f*a=ao f=fcio f the mapping f*« extends to a mapping of the cone C, 1. €.
f*[a] = 0. Assume now thatf *[a] = 0; thena = f-iby the diagram, where f has been
given as a homotopy that connects f with the constant mapping. Coexactness is proved.

Next we notice that C;~C;/CX=C,/X=ZXX', where CX is the cone over X.
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As 1t has already been proved, the sequence X ’—f—>X —i>C j—K—>C,~——t—>Ck 1s

coexact. The diagram

C; > C,
lez
+ XX

is clearly commutative. Here p, and p, are homotopy equivalences, j is the natural
projection C;—C,/X and Zf is the suspension over /. This proves the coexactness of

i j z
the five-term sequence X’ /., X— C, 2, xx L >X.

In order to extend it to the right without loosing its coexactness we notice

the following simple fact: if X ’L» X5, x7is coexact, then so is the sequence

z . .
/ » X Zgﬁ‘ 2X". Indeed, in view of I[I(ZX, Y)=II(X, QY) the diagram

XX’

neEx, n-22, nex, - nex. v
- - -

nx, e —- . nw, ev)—L nw, ey

is commutative. The second row is known to be exact, thus the first row is exact as well.
We obtain that

had bR i B n+1
oy 2L ey FE, Conj—L wrtiyy 20T yneiy

is coexact. Q.e.d.

Let us now consider the exact sequence

i

nx, v nx, v e, nLnex, v ...

. n % ok ¥ i
e IEX, V) L pzx, vy 1(Chy, 1) iy, vy
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All terms of the sequence, except the first three ones are groups, and all but the first
three groups are Abelian. The mappings between the groups are homomorphisms. The
first three terms are simply sets with base points and f*, i* and j* are mappings of sets
compatible with base points.

As it turns out there is a left action of the group IT(ZX’, Y) on the set n(c,, v,
dividing it into a set of orbits. Then this orbit space is injectively mapped by i* into
the set IT(X, Y). The action of II(ZX’, Y) on I(C;, Y)is given in the following way.
For [o]e II(2X", Y) and [B]e II(C;, Y) we denote by a O f: C; — Y the mapping

1
ox', 2t), Ogtgz, x'eX,
@®B (X, 1) =

B(x',2t—1), =<i<1,x'eX’;

DI =

@@ B (x) = f(x), xe X.

Remark. Obviously («x O )|y = Bl .
The reader will easily prove the following statements.

then a; O B, ~a, O B, (rel X). (here (rel X) means the existence of a homotopy stable
on X.)

(1) If () is a constant mapping, then (x) © B~Pp (rel X).

(iii) (a; @ o) O f~(2; O (a; O B)) (rel X), where @ is the group operation given
in the group I (XX’, Y).

(iv)ya; O (ay 0 j)~((oy + ) j) (rel X), where j: C,— ZX'is the natural projeciion.
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(1v) ay O (3 0j)~((o; +0;)°j) (mod X), where j: C,—) X' is the natural projection.
We introduce a further operation d(8;, f,) for classes [8,], [8,]€ II(C s, Y) which
can be represented by f, and f, for which ;] = B,|«.

The mapping d(B,, B,): ZX'— Y is defined by the formula

1
B.(x', 2t), for OSISE,x’eX’
dB, B) (X', t) = ' 1

ﬁz(x',Z—Zt)a for §< SI,XIEX'

Bilx', 1) = By(x', 1)
(x,)eX

The reader 1s encouraged to check that
(v) By~ P (rel X) and B, ~ B (rel X) imply

d(ﬁl ’ ﬁ2)~d(ﬁ’1 s .BlZ)>
(vi) d(By, B,) +d(B,, B3)~d(B,, Bs).

(The cone regarded as having been passed doubly, conditionally denoted by f, — BZ on

the picture, is contractible on f, ( f(X").)
(vi)) d(a © B, B)~a.

'
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Suppose now that d(f, B,)~ *. By (viii) we have Bi~[d(By, ) ©B,] (rel X)~
~[(x) DByl (el X3~B, (rel X), i. e. B~f, (rel X). Conversely, if g, ~
~ B, (rel Xy thend(B,, B,)~d(B,, B,)~d((*) D B,, B,)~ (%), as follows from (vii), 1. e.
d(By B2)~(x). Hence f, ~f, (rel X) if and only if the mapping d(8, B,) is null
homotopic. By (i—iii) there exists an action of I1(ZX’ Y) on the set I(C;, Y)fromthe
left, given by

[«]OLA] = [« DA,

where [a] e IT(ZX", Y),[Blell (C;, Y). So weare ready now to formulate the theorem
“on the action”.

Theorem 2. Let [B,], [B,]€ I(C,, Y). Then i*[,] if and only if there exists an
[e]e II(ZX’, Y) such that [,]=[a] ©[B,].

Proof. For [§,] = [«] O [B,] we have i*(B;) = i@ D B,) = (@D B,)|x = B2lx =
i*(B,). Conversely, let i*[ f,] = i*[ ,]. Then there exist §, and §, representing [ 8,] and
[B.], respectively, such that B, |y = B, . Taking (viii) into account we get [[3 J =
[d(By, B2) © B;] = [d(B,, B2)1D [B,] Qed.

Let us examine the group I1(ZX’, ¥). Since I1(C s» Y) is not a group the equality
J*[o]1 = j*[a,] does not imply a relation [a,] = [o,]+ (Z2f*) y]- Nevertheless the
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relation is valid, i. e. exactness in the term [1(ZX’, Y) has a meaning analogous to the
case when the left side is a group.

Theorem 3. Let [«,], [«,] € I(ZX’, Y). Then J*[a] = j*[a,] if and only if there
exists a coset ye [1(ZX, Y) such that [a,]—[«,] = ZH*lyl

Proof. Assume [a,] = [o,]4+(Zf)*[y]. Let @o and f, denote the constant
mappings 2X' — *€ Y and C s> *€Y, respectively. Then j*[«,] = [B,] and by (iv),

Jlag+Ef) = [aJOG* (ZN)* ).

The mapping j*(Zf)*y=y0(Zf)ojis null homotopic.

Indeed, it is defined on C 7> S0 we have to show that it extends to a mapping of CX
(as the mapping f may be substituted by an imbedding X'»X where X is a space
homotopy equivalent with X).

The extension is defined by mapping 4B onto MN and BC onto N Q. Thus
M+ EN) =[] O [Bol=[n,] D j* o) =j*[oty +ato]=j*[ar,1,

i e j*[a;] = j*[a,].

Conversely, assume j*[a,]=j*[o,] and consider [0 —oy] and j*[o, —a,]e(a, —
—oy)oj. Wehave (a, —ay)o j~a; O ((—ay)o ). Now (—a,)ej~(—a,)oj,asshown
on the picture. '

ARG

Hence

ay O((—az)ej)~a, O((—~ay)of)~(a; —ay) oj~Bo,

L e j*[a;—a,]=[Bo], [2; —ay]=[a;] —[a;]=(Zf)*[y] as claimed. Q. e. d.
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Remark 1. If we choose Y = K(n, n) then the Puppe exact sequence becomes (in
part) the exact cohomology sequence of the pair (X', X) (here we suppose that X' is
substituted by a homotopy equivalent space such that f: X — X' is an imbedding):

H'"(X'; m)« HY(X; )« H"(C;; 1)« H" ' (X'; i)« H" Y (X; m)+ ...

As for large N any mapping Z¥ X — K(m, n) is null homotopic, the groups with
indexes n—k, where k > n vanish and the sequence is continued to the right by zeros. As
fis imbedding, H(C,; n) = H"(X'/X; n) = HX', X; 7).
Exercise. The reader is advised to try to dualise the construction used in theorems 1—
3. For this, one has to prove the exactness of
Qf

Lo ——ox —w, “.x L,y

Here W} is the space of pairs (x, 5s) where x € X and s is a path in X" such that s(1) =
= f(x), s(0) = * (* stands for the base point of X") and (x, s) = s(1) = f (x)eX,asf
may be assumed to be an imbedding. The mapping 7 is a fibration with fibre QX"

Remark 2. If Y = §", the above exact sequence becomes the exact homotopy
sequence of the pair (X', X). Indeed ‘

L= II(S", QX) - TI(S™, QX") - 11(S", W ;) - TI(S", X) - II(S", X'),
i e.
s, I(X)_’nn+ 1(X’)~P7tn(X', X)-*TC"(X)—)TC"(X’),.

because n,(X’, X) = n,(W ) is obvious (simply the absolute spheroids in W r are the
same as the relative spheroids of the pair (X', X)).







