Midterm exam, Wednesday November 4.

NAME:

Books, notebooks, laptops, calculators, etc. are not allowed on the exam. All representations are considered over complex numbers.

1 (15 points). Mark the squares that are followed by correct statements.

- \square Any free module over the ring $\mathbb{R}[x]$ is irreducible.
- \Box The set of even integers is an ideal of \mathbb{Z} .
- \Box The sum I + J of two ideals of a commutative ring R is an ideal of R.
- \Box Any module over \mathbb{Z} is completely reducible.
- \Box The sum of two idempotents in a commutative ring R is an idempotent.

2 (15 points). Mark the squares that are followed by correct statements.

 \Box The group $\mathbb{Z}/3\times\mathbb{Z}/3$ has 6 isomorphism classes of irreducible representations.

 \Box Any irreducible representation of a finite group G is contained in the regular representation $\mathbb{C}[G]$.

 \square Any one-dimensional representation of the group $\mathbb{Z}/5$ is irreducible.

 $\hfill\square$ The group \mathbbm{Z} has infinitely many isomorphism classes of irreducible representations.

3 (10 points). Among the rings below, circle those that are commutative.

 $\mathbb{Z} \quad \mathbb{Z} \times \mathbb{R} \quad \mathbb{H} \quad \operatorname{Mat}_2(\mathbb{C}) \quad \mathbb{Z}/5 \quad \mathbb{C}[\mathbb{Z}/4] \quad \mathbb{R}[S_3]$

Here $\mathbb{R}[S_3]$ is the group algebra of S_3 with real coefficients, and $Mat_2(\mathbb{C})$ is the algebra of 2 by 2 matrices with complex coefficients.

4 (20 points) (a) Write down the character table of the group $\mathbb{Z}/3$.

(b) What's the character of the regular representation $V = \mathbb{C}[\mathbb{Z}/3]$ of $\mathbb{Z}/3$?

(c) What are the multiplicities of irreducible representations in $V \otimes V$?

5 (40 points). Let V_0, V_1, V_2 be the trivial, the sign, and the two-dimensional irreducible representations of the symmetric group S_3 .

- (a) Write down the character table of S_3 .
- (b) Find the characters and dimensions of the following representations:

$$S^2(V_2), \qquad \Lambda^2(V_1), \qquad \Lambda^2(V_0 \oplus V_1).$$

Which of these representations are irreducible?

(c) Among the following representations, circle those that are irreducible:

 $V_0\otimes V_2 \qquad V_1\otimes V_2 \qquad V_2\otimes V_2 \qquad \Lambda^2(V_2), \qquad S^2(V_1).$

(d) Which irreducible representations of S_3 are self-dual? Which are faithful?

(e) Find multiplicities of irreducible representations in $V_2 \otimes V_2 \otimes V_2$.

6^{*} (optional) Suppose that representation V of a group G is reducible (i.e. not irreducible). Prove that $S^2(V)$ is reducible as well. Give an example when $\Lambda^2(V)$ is irreducible.