Name:

Representations of finite groups. Final exam.

In all problems below only complex representations are considered.

1. (30 points) Mark those squares that are followed by correct statements.

 \Box Any representation of a finite group is completely reducible.

 \Box The alternating group A_4 has five isomorphism classes of irreducible representations.

 \Box The tensor product $V \otimes W$ of representations of G is an irreducible representation of $G \times G$ if and only if both V and W are irreducible.

 \Box Representations V and W of a finite group G are isomorphic if and only if they have equal characters.

 \Box If any irreducible representation of G is one-dimensional then G is cyclic.

 \Box The group SU(2) has a subgroup of order 100.

 $\Box \quad \text{Induced representation } U \uparrow G \text{ is trivial if } U \text{ is a trivial representation } of \ H \subset G.$

 \Box Direct sum of two irreducible representations is reducible.

 \Box A subrepresentation of a faithful representation is faithful.

2. (20 points) (a) Give the definition of a representation V of a group G.

(b) State the row orthogonality relations for irreducible characters of a finite group G.

3. (10 points) Give an example of a group G and a representation V which is reducible but not completely reducible.

4. (50 points) (a) Write down all irreducible representations of the symmetric group S_4 and the character table.

(b) Which of these representations are faithful?

(c) What are the multiplicities of irreducible representations in the regular representation of S_4 ?

(d) Compute the inner product $\langle \chi_{reg}, \chi_{reg} \rangle$ where χ_{reg} is the character of the regular representation of S_4 .

(e) Pick an irreducible 3-dimensional representation V of S_4 and determine multiplicities of irreducible representations in $V \otimes V$ and $S^2(V)$.

(f) Consider the inclusion of groups $A_4 \subset S_4$. Determine multiplicities of irreducible representations of S_4 in the representations induced from irreducible representations of A_4 . Write down the Frobenius matrix.

5. (10 points) What can you say about a representation V given that $\langle \chi_V, \chi_V \rangle = 2$?

6. (20 points) (a) State Frobenius reciprocity law.

(b) State the formula for the dimension of the induced representation $U \uparrow G$, where U is a representation of a subgroup $H \subset G$.

7. (20 points) List all affine graphs together with numbers d_i assigned to their vertices.

8. (20 points) (a) Give an example of a group G and an irreducible representation V such that $\Lambda^2(V)$ is irreducible.

(b) Same problem but with $\Lambda^2(V)$ reducible.

Extra credit: Does there exist a finite group which has exactly ten isomorphism classes of irreducible representations, of dimensions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively? Justify your answer.