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81. Finite Subgroups of  SU
'ConJ'u agy closses in Lk
Recall the J%Hoooing standard foct fbm linear olgebra

Any matrix in Uy is conjugate to a diagonal matnix. i.e.
VA€Um, 3BeUm st BAB = dizgth. . M), where reSec”
The Xi's are ncﬁhing but the eigenualues gf A.

Note that the order of Ai‘s is unimportert Snce permuding Ai's oo
be replizeq b\Lj cory'ugatfng by a matrix in U,

Consequently , the conjugacy closs of o mamx Aeln) is determined
by the unordered set of its eigenualues.

The some story apples to SUm) without much effort « the conjugany
doss of o matnix AeSUm) is Oetermined by its unordered get of
eigenualues .~ Al A=dn=11 In ﬁcf Uy is geremated by SUeny
ond Um={AId | (Al=1}, but under conjugation, U octs ’mun‘alg.

E'S' SU2)
In this ase, the conugacy Classes ore pammetrized by 16 ) =1} =Ua,
upto ident«ﬁmﬁon of Aand A=)

* The conjugation representation of U on Mattn.©.
Let Um act on Matin.©) by @njugation. We shall decompose it into
treal) ireolucible subrepresentations.

The J‘fmt obseruation to make 8 that Uy preSerues the Subspaces




gf Hermition ondl anti-Hermition matrices
Matn.C) = (Hemmitian) @ (Anti- Hermition)
8 +8* B-8*
B _ ( 2 ) 2 )
ond the Uy action preserves these subspaces:
B Hemition, AcUmn) = (ABA™)* =(A"*R*A* = ABA™
B anti-Hemition, A€l == (ABA™ ) =(A"*B*A* = - ABA"

Notation:
Wi £ the spoce of Hermition matrices
W-£ the space of arti-Hemitian matrices

Note that these are only real represertations of Uy and muttiplication
by ( is on isomorphism of real U - modules:

mn;_\* -

We an do @ Lttle better, since conjugation preserves tmoes :

W+ = {Trce 0 Hemmitian matrices} @ {\Id | XeIR}

B — -8y , Pu)
Denote WS 2 {Twme 0 Hemition matrices}, W22 {Trace 0 anti- Hemitian matrices} .
We have shown that:

Lemma 1 As real representations of Um)
Mat(n. €)= IR Id® W3 ©iRId ® W2 -

® The double cover S — SO

We shall 1y to relate jinte subgroups of Sl to finite subgroups of
SO, since SO, being the rotational §ymmetry group of the unit
sphere S in IR, is more intuitive.



Consider o 2x2 inuertible complex matrix
A- ( Q b)
c d

et 2
¢ @
Thus J%r* such an A to le in SU, we just need
OetA =|
f d -b _[a ¢
(-c a)_(B 5!)
ie. a=d, c=-b, and detA=ad-bo=102+bi*=1, LIrite Q="+ i%:. D=%Xat i,
This identifies SUc2) as

S _{(a b)
U2y = i3

= { K2t e+ X3+ X = | l 'X.‘éIQ} =QPc R
the unit 3-sphere in the 4-diml Euclidean Space.

whose inverse i8

&bec}

Continuting our eorleer example of aonjugany classes of SU, we see
that, the conjugoay - closs ef AeSUw) is completely determined by
A= Q= 2%
Conversely. the set of eigenualues {X. X} is determined ty:
foxtifioxz}
A
ANO , . A.X are roots of the equation

) X2- THAYX +detA = X= 2% X+1 = O

Thus, each conjugacy closs of SUy s just the set of matrices in
SUe) with a fixed tmace ualue 2% (-1<x€1), which is identified as
{xiendena=1-x2} = SU=)



Q two Sphere cf redius =2, (Wohen =11, this Says that the matrices
11 J%rm their own conjugacy closs ). Pfctorfal)ﬁ :

Imagine this to be the 3-grhere
‘%% of SU. The conjugay closses
-1 / 1 are just preimoges of trAd=2x
‘ W Except for the poles” 11, these
= conjugacy closses are topologicaliy

e o 2% 2-gpheres with uarious reolii.
-2 2

A[Jrematjue(ﬁ, SU@) an be described as the goup of unit quaternions. In
Joct. quatemions H may be identifled as
Hz=IRIdBW:E Mat2,C)
| | — Id
e S R e (RN E S T 'Y
Recall that we hove Shown : under the conjugation action of Suc, W2 is
invariant . Now
N =4 Traceless anti- hermitian matrices}
=RLBIRL DIRR
Moreover .
{AeSU@ | TrA=0} = {(“x:o::@ ;t?x)(:) }2"('=°. Kix x4 +kl =) }
= { Mkt %iv i | xS iz}
beng a conjugacy closs in SU@). is also the unit sphere in W2
= The conjugation action g“ SUc on WS acts transitively on the

“unit sphere” = {troceless elements in Sl },

Now we are close to what we need: We have produced o representation
SU — GLIWY 2 GLE.R) so that Sl presenes the “unit gphere” of
R® (e shall impose a norm on WS so that SUc2) preserves the nom,
ond the “unit sphere” becomes the genuine unit sphere under this nom.



By the Some consideration s J%r‘ Uny(YMatin.€©), @ natual candidate
Jor the norm g (X.YYETn(XYy gnce Tr on WS s preserved
under conjugation action by SUc): VAeSU@. X.YeW?:
(AX,AYY=TrAXA AYAY
=Tr (AXYA™)
=TTr (XY)
= (XYY
ond it's r‘eaoh‘hj Seen to be bilinear. Furthermore, we have :
Trel-iy=-2 TreL-d)y=0
Trtdid=-2 Tr-Ry=o
Tr(R-RY= T -RY=0.
Hence f we resale (X, Y)YZ-3(X.YY=-3Tr(XY), Wwe obtain a Eudidean
inner product on W2, w.r.t. which 4i,i Ry forms an on.b.

Combining the aboue dliscussion. we  have exhibited 0. map -
SU) — Aut(We, (.9 = Aut(IR3, (, ) = O®).
It remains to show that:
(. The image of SUy lies in SOy ;
(. The map Su)y >80 s Sunjective ;
(i), Ana!@ze Kery =7

(y s eosily guanranteed by the fopolagy of SUey: The groyp homomarphism
SUR) — O3> is Continuous (i.e. elements in SU@) close to Id moues
ectons in W2 only @ litle) , and SUcy is connected, being o sphere.
Thus its image in O must be connected. Since SOR) is the conected
component qf Qc3) Com‘ajng I, imcSUR) € SO, We shall denote the
homomonphism :

Y: Su) — SO0
Exercise: Show that any continuous homomorphism  §'— G, where G is @



discrete group, I8 the rivial ore.

(iy. To show that ¥ 78 Sunjective , consider the action of
A((p):(emp o) (0@ <)
o ¢°
on W?:
Ay R = Aprk Ac-pr =R
ond on the plane RioRi={(3 5)|zec}=C A ats as
A«p)(o iz)AHm:(o €%

. 2i¢
|1z 0

ez 0
ie. it acts as clockwise rotation of the complex plane by the ongle 2.
J

\ L

Z-plane

In sunmay, Ay acts on W° as the rotation about the R-axis by
an angle of 2¢ (o<2p<an : all the rotations).

Next. we have shown that Sl octs transitively on the unit sphere
S of WS Now VPe S, 3BeSUm st B.R= BRB'=P. The the
subgroup BA@B™ S SU (020<m) consists of all rotations about the
oxis through 1P, -P} :

Je-

Now we conclude ﬁom the well- known fact that S0@) consists of all rotations
obout uaous axis through the origin that ¥ mops SUy surjectively onto
S0®».



v, What's the kemel of v: SUm— SO 7
AeKery < A acts trivially on WS : ¥XeW?, AXA™=X.
(But A commutes with (IR tniuiolly )
< A acts trivially on W- = IR W?.
(-0 W- =55 Wi+ an isomorphism o SUa reps)
< A octs trivially on Mat2 €)% WO W-.
< Ae Z(Mat2.€) NSW2) = €-Id NSue) = {21},

Ex. Show that Z(SUm) = {3R Id | 3= e ,0zken-t
In summary, we hove Shown:

Thm. 2. There exists a 21, Burjective group homomorphism
y: Sl — S0@»
of (Liey groups , with Ker? ={Id},

® Finite subgroups o SO
We shall use the fol(owirg well-Rnowon:

Thm 3. Finte subgroups of  SO@) are classified as follows:
There are 1o infinite families:
®* Cn: cyelic growp of order n.
® Don: dihedral group of order 2n ;
and 3 more exceptional Coses:
® As: the rotational symmetry group of o tetraheolron.
* & the rotational Symmetry group gf a. cube/ octohedron
® As: the rotational gymmetny group of an icosahedron/ dodecmhediron.

For @ proof, see M. Artin : Abebra.



More  geametrically, we have the following presentation o' these groups:

G e O |G| | Geometric odeseription of genemtors

\Q

Ch=<ala"=1> n ZD/
b

Dh=<a.bla=b=wby=i> | 2n /i;

b
Ax={abla=b=pb¥=1> | n k\‘

Si={a.bl@=b=b*) | 24 I

As={a.blo*=b=wb’=1) | 60 b

* Finite  subgroups of Suw

Observe that in SUc, there is only one element of order 2. namely -1.
This is because any matrix A€SU can be conjugated to a disgonal
matrix of the fom (*x) and for it to be of order 2. A=-1. In
controst, there ore lots of elements of order 2 in SOG) (toke any
rotation by T about any direction in IR*!). Thus the preimages of these
order 2 elements in R® under ¥ are all of order 4.

Now, let G be a finite subgraup of SU™ and H=(G) be its image



in S0, Since ¥ g 2:1, there are two possibilites
M. IGl=IHI, and vla: G =oH,
. IG1=2IH\, and -1€G, HeG/{iI}
Also note that from our classifiaation Ust for SO@), IHI is even unless
Hz= Can is cyelic of odd order. Other than this IHI is even = IG[ is

even = (3 hos an order 2 element (elementary group theory 'y, and we are
in Case (i,

We analyse aase bg case
. He Cn. There are two possbilites:
@iy n=2k+1. Then GaHz G or GzGxHz Coohey
@iy Nn=2k. Then G/{ilta2HzCk => G2 Cak or GxGr, The later
is ruled out Since there would be more thon | order 2 elements in G.
Thus G is always cydic. Such G s always conjugate to one of the

form: Lo

G {ft 2 3ee®. oske]

. HzDan. = H=G/{tI}, In this case H2Cn as & (normaly Subgroup
= VU =GnEG by e ), of index 2, and thus must be
normal . Since Dan=Crlla-Ch (@ (30 order 2V => G=Y"(H)= Gn Ll O'C:n, where
voh=0 and @ must have order 4. Then G can be conjugoted to the group
enerated by

: Y [ 3.6 0=l s-e"  ocrem}

wi denote this group by Din, alled the binory dihedral group. Note that
Dan ¢ Dan gince the latter hos mony order 2 elements.

D;n ——V—’ Dzn 0 1\
/| \V/ (A)l"eﬂ V(-l o)": [
Con —— Ca



Rmk: It's not had to figue out the structwe of Dan directly flom elementary
group theory: Let t be the geremtor of Can. s=vct)€Cn (SDan) @ genenator.
Then vy o™ = asa'= 8" = vty = a'ta?=t" or -t*. But if ate=-t"
= @tY=-ta'a't=1 = Ot=t=7@y"=>t=30'= G is abelian. Contradiction.
So ata'=t" and it's isomorphic to the group above,

©. Hz A, & As. = H=GH1IE In these cases the comesponding G's
ae Oenoted Ai. Si. A5, called the binary tetrahedron group, binary
octahedron group.  binary - icosshedron: group respectively.

Rmk: Note that A% ¢S4 A5 2Ss. since Sa. Ss have more than |
order 2 elements.

By now, we have clossified all Afinite subgroups of Suc:

Thm 4. Finte subgroups of  SU) are classified as follaws:

(G S SU) Presentation IG|
Cn calah=1> n
Din La.bl0*=F=w@b" | 4n
Ay «0.bla’=b*= coby® | 24
Sa .bloxb= byt | 48
As a.blox=b= @b’ | 120




82, The McKay Graph

Let V=" be the 2-dimensional representation of SUt2). By restricting it
to any ginte Qubgroup G of SU , we obmin @ 2-diml representation
of G. dfil denoted by V. Note that V is imeducible unless G =Cn,
the only finite abelan subgroups of  SU (othenwise VEUBW 8
o sum of 2 1-dm'l representatins => G S C*xC™ is abelian). This
representation plays a pivotal role in wohat follows.

Lemma 5. V is & elf-duol representation.
Pf: V9eG. 3BeSU st BQB"=(3 x') . where IA1=1. Thus
Nu@y = trv@@) = trv(BgB™M=ArX! =242 €R
= Xv i8 real = V is self-dual. =

Rmk: Using choreter theory for connected compact Lie groups , we can See
V 8 a self-dual representation jor SU@. Such on isomorphism V— V/*
iS not hard to exihibit:
vg=(2Resu=g= (4 7)== (g™t= (575). Let h=(®3). Then
h'gh =(g"t=g*.

Let Vi.Vj be two imep's of G. Consider the multiplicity of Vi in Vj@V.
m(Vi, V@V = olim Homa(Vi. V@V, = dim Home (V®V; . Vi),

Lemma 6. mMCVi, V@V)) = m(vj, Vo).
Pf: Since mcVi, V@V)) € Zz0, MVi, VOV)) = M(Vi, VOV)). =
Ta Zgea K@ W@ i) = (%Ki, Ko}
= m(Vi, VeV
mcVi, Vo))
T8 Saca Kitg) XuXi(0)
& LgeG %@ WG K




=& Ygeq NPNG %@  (V is self-dual
(/XJ'. XiXv)
= m(Vj. VeV, O

I

Rmk: In gereral. it's true that v X.Y,Z reps of G-
Homa (X, Z® Y ) & Home(X®Z", Y)
If X2Vi. Y&V], Z=Va V7, fala‘ng dimension Qf both Sides, we obtain:
MVi. VV;) = dimHoma (Vi, V@V;)
= clim Homa(Vi®V, Vj)
= m(V;. Viev).

* Construction of the graph
Notation:  Gij& m(Vi.v®V;) . Then Qj=0;:

Now to each finite subgroup G of SUw), we associate with it a graph
I' as J%“OUOS:

Vertices: Irvep's Vi of G

Edges: The i) th vertices are connected by Qi €dges.
Moreover, to each uvertex, we ossgn to it a wefght di=dimVi.

Eg. Gelh=<ala=1>.
We know that in this cose, Irrep's qf G are all 1 dimensional:
Tvep(@) ={ Vo, Vi, = Vol
where @ octs on Ve by multiplioation by 4*=e™ . ozk<n. Moreover,
since a=(" &), we see that VEV@Va (Vi=Vni). Thus \AY
\/J' ®V = VJ ®(VidV-) ’EVJ'H @\/J'—l.
Hence in the groph: Vi Ve

Vind



and the groph (ooks like:

\/n-\ Vo

V-2
\

® Common J%atwvs cf MecKoy - graphs.
Now we discuss about Qenerul properties of the graph.

Note that ﬁ)r G non-abelian, V is irreducible. COV=v. Thus T’
always contoins & portion like:

| 2_/'

C \'

For ony vertex Vi. consider all the uertices Connected to it:
d;

Vi

\V/. ' ol
Vi
Then by Oefinition, Vi®V = EB\/J-QU. Toking dimension of both sides, we
get:

2di = 2 Qjd.
Later we will show that, except for two ocegenerate cases, uertices in
any McKoy groph are comnected by at most | edge.

Thm. ¥ MdcKay graphs are connected.
Pf: By the example abote. it suffices to prove for G nonabelion. We
shall prowe by contradiction.

Assume J%r‘ some G, I” is not connected. Then, b\nj our dliscussion



obove, 3 irep Vi of G ot contoined in the Connected component of

o
C V
Note that the imeps of G occuring in this component are precisely
those imeps occuring inside V®" for urious ne Zxo <ty definition).
Thus Such Vi must Sat«'sfg:
(N %P =0, ¥Nnz0
& (N, X0)=0, vynzo
& 61 g N g = 0
& GNP K@ =0 (Vs self-olual)

By eardier discussion in §1. K@ €l2.21 and Ku@=-2 iff g=-1,
Xui)=2 gﬁf g=L Since we have assumed that G is non-obelian, -1€G.
Divide both Sdes of the €quation by 2, and multiplying by 1GI, we obtain:

Zg i) (fx;zg))n =0 , VN20
& XD + KD "+ Ziugia 'X.'cg)(lxv—z(g))%o . ¥ n20
Since -1€ 23, by Shurs lemma, -1 acts on Vi by a smlar matrix. Since
CI=I. it an only oct a8 tldvi. Hence Nuwi¢-Iy=trvictIovd=1di. Now,
divide both Sides of the equation by di. we have:

I+ ¢+ Zl'xvtg>/z|<|%“’x7wg)!n=0 , YNn2o,
where £=l&l,-_—1)=il iS jn’xed J%r Vi. Takl'ng n>>0, Since |%£‘9>\<\. the
rest of the Summation s arbitranly small and has to be on integer,
it must be 0. Hence we get an equation for alk n>>o -

I+ €c-N" =0
This is impossible and lerds to the desired contradiction. O

(o~ 8. Qij <1 unless GzY or G.

Pf- Gz{} = T hos only | vertex, namely Vo=C. VZVo®Vo =
Q=2 T" looks Like



Y O (the edige. considered leauing and entenng,
connects Vo twice)

For (3. we have Shown that its groph is like:

>

Conuerseuj. assume that G {1}, and there 8 @ multidle edge betueen

Vi and V:
\k d; de

R di \/J .
Vi

Ve

we hawe 0j=qji22
{ 2di = Qijdj + Zirde
20, = Qjidi + =0je0ke
= 2di =20 + (-2 0j+ Z0irde = Qjidi + (Qj-2)0j + 2 A0k
= 2(Qj -0+ Akl =0
= 0k=0, Qk=0, Qj=2. i.e. no vertex cther than V; Comets to \/
By symmetry. this must also be true for Vj. Since we know that [ is
connected, I' must then be:
«c——»

ond G=Z/2 (the only group with only 2 conjugacy dosses).

° |ist Qf MeKay - graphs
We have seen that the McKay groph for Cn is

\/n-| Vo

Vha
\

This graph is alled  An-



The groph ﬁ)r Dan is the Jollowing with n+3 vertices :

The groph is called Dra. One aon check the relation:
Gl = £ d
fom: 4n= 4% (n-»-2*

The exceptional groups:
|

2

o *—e
L2 3 2 |

Ax : the groph =

2
[ O O L —— @- @
] 2 3 4 3 2

St the groph Es

IB
*—e -—o *—eo—o
2 4 6 5 4 3 2 !

A5 the gaph Eg

We shall prove, in the next 8ection, that these are the only possibilities

Thm. Any connected graph I with positive integal woeights Ol assigned to



each vertex  satisfying:
. godcdiy=I
(. 20i= i 0
s one of ‘the grophs listed above.



