Modern Algebra II, spring 2022

Homework 9, due Wednesday April 6.

1. (20 points) Which of the following numbers are constructible using a ruler and compass? Briefly justify your answer.

\[\frac{\sqrt{3}}{2}, \sqrt{6 + \sqrt{7}}, \sqrt{5} - 1, \sqrt{2} + 1. \]

2. (20 points) Briefly sketch the steps involved into constructing numbers \(\sqrt{2} \), \(\sqrt{\sqrt{2} + 1} \) and \(\sqrt{\sqrt{\sqrt{2} + \sqrt{3} + 1}} \) using a ruler and compass.

3. (20 points) Suppose we have a ruler and compass, as before, but are given 3 points \(A, B, C \) on a line in the plane, with \(B \) between \(A \) and \(C \) and distances \(|AB| = 1, |BC| = \sqrt{2} \). Explain how to modify the arguments in this week’s lectures to show that \(\sqrt{2} \) is not constructible with these assumptions. (Hint: What are the properties of the tower of fields \(\mathbb{Q} \subset K_0 \subset K_1 \subset \cdots \subset K_n \) where the field \(K_i \) is generated by the coordinates of \(A, B, C \) and of the next \(i \) points that we create? What can you say about the degree \([K_n : \mathbb{Q}] \)?)

4. (20 points) (a) Recall the definition of a normal extension \(E/F \) (or see our usual references). Explain in your own words what is an obstacle for an extension to be normal.

(b) Let \(E/F \) be a degree two extension. Prove that \(E \) is normal. Hint: pick an element \(\alpha \in E \setminus F \). Write down its irreducible polynomial \(f(x) \). Can you show that \(E \) is a splitting field of \(f(x) \)? You need to check that \(E \) contains all roots of \(f(x) \), not just \(\alpha \).

(c) Look through class notes and find an example of degree 3 extension of \(\mathbb{Q} \) which is not normal. Generalize that example and describe a degree \(n \) extension of \(\mathbb{Q} \) which is not normal, for any \(n \geq 3 \).

(d) Explain why any extension of finite fields \(\mathbb{F}_q \subset \mathbb{F}_{q^n} \) is normal.

5. (20 points) For any automorphism \(\sigma \) of a ring \(R \) we can define the subring \(R^\sigma \) of elements fixed by \(\sigma \).

(a) Give a definition of \(R^\sigma \) using mathematical notations (via sets and quantifiers) and prove that \(R^\sigma \) is a subring.

(b) Suppose \(R = F[x] \), where \(F \) is a field, and \(\sigma \) takes a polynomial \(f(x) \) to \(f(-x) \). For instance, if \(f(x) = a + bx + cx^2 \), then \(\sigma(f) \) is the polynomial \(a - bx + cx^2 \). Prove that the subring \(R^\sigma \) of polynomials invariant under \(\sigma \) (equivalently, fixed by \(\sigma \)) is the subring \(F[x^2] \) if \(\text{char } F \neq 2 \). What happens when \(F \) has characteristic two?