Complex Homework I

1. Write in the form \(a + bi \):

 (a) \((2 + i) - (3 + i)\);
 (b) \(\left(\frac{2}{3} + \frac{1}{4} i\right) + \left(\frac{3}{2} + i\right)\);
 (c) \((1 + 4i)(2 + 4i)\);
 (d) \((2 - 3i)(2 + 3i)\).

2. Write in the form \(a + bi \):

 (a) \(\frac{2 + i}{3 + i}\);
 (b) \(\frac{1 + 4i}{2 + 8i}\);
 (c) \(\frac{2 - 3i}{3 + 2i}\).

3. Write in polar form:

 (a) \(1 - \sqrt{3}i\);
 (b) \(-5 + 5i\);
 (c) \(\pi i\).

4. Write in the form \(a + bi \) (using De Moivre’s Theorem):

 (a) \((\sqrt{3} - i)^7\);
 (b) \((1 + i)^9\).

5. Write in the form \(a + bi \):

 (a) \(e^{-\pi i/4}\);
 (b) \(e^{1+\pi i}\);
 (c) \(e^{3i+i}\).

6. Find all complex numbers \(z \) such that \(z^4 = -1 \). Write the answer in both polar and cartesian coordinates. How many different solutions are there?

7. Find all complex numbers \(z \) such that \(z^5 = -2 - 2i \). (You can leave your answer in polar form.) How many different solutions are there?

8. Solve the equation \(z^2 + \sqrt{32}iz - 6i = 0 \).

9. Recall from class that for any two complex numbers \(z_1, z_2 \in \mathbb{C} \), we have the triangle inequality:

 \[|z_1 + z_2| \leq |z_1| + |z_2| \]

 (a) Give an example when this inequality is strict; that is, when \(|z_1 + z_2| < |z_1| + |z_2| \).

 (b) When can equality occur?

 (c) Using the triangle inequality and a judicious choice of \(z_1 \) and \(z_2 \), prove the reverse triangle inequality:

 \[|z_1 - z_2| \geq |z_1| - |z_2| \]

10. Write the function \(f(z) \) in the form \(u + iv \):

 (a) \(z + iz^2\);
 (b) \(1/z^2\);
 (c) \(\mathcal{Z}/z\).

11. Is the function \(\mathcal{Z}/z \) continuous at 0? Why or why not? Is the function \(\mathcal{Z}/z \) analytic where it is defined? Why or why not?

12. Compute the derivatives of the following analytic functions:

 (a) \(\frac{iz + 3}{z^2 - (2 + i)z + (4 - 3i)}\);
 (b) \(e^{z^2}\);
 (c) \(\frac{1}{e^z + e^{-z}}\).

13. Let \(f(z) \) be a complex function. Is it possible for both \(f(z) \) and \(f(z) \) to be analytic? (Hint: if they are both analytic, they both satisfy the Cauchy-Riemann equations.)