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1 CHAPTER I: SYMMETRIC FUNCTIONS

1.1 Partitions

A partition is any (finite or infinite sequence

)\: ()\17)\27-'-;)\7“7---) (11)

of non-negative integers in decreasing order:

M S>> >N >

and containing only finitely many nonzero terms. We don’t distinguish two such sequences
which differ only by a string of zeros at the end.

The nonzero \; are called the parts of A\. The number of parts is the length of A, denoted
by I(\); And the sum of the parts is the weight of A\, denote by |A| = A\ + Ay + ...

If |]A\| = n we say that A is a partition of n. The set of all partitions of n is denoted by
Z,, and the set of all partitions by &2. In particular, &, consists of a single element, the
unique partition of zero, which we denote by 0.

Sometimes it is convenient to use a notation that indicates the number of times each integer
occurs as a part:

A= (1™mome ™)

means that exactly m; parts of A are equal to 7. The number

is called the multiplicity of 7 in \.

The diagram of a partition A may be formally defined as the set of points (i, j) € Z? such
that 1 < j < \;. For example, the diagram of the partition (5441) consists of 5 points or



nodes in the top row, 4 in the second row, 4 in the third row, and 1 in the fourth row. We
shall usually denote the diagram of a partition A by the same symbol \.

The conjugate of a partition A is the partition A’ whose diagram is the transpose of the
diagram A, i.e., the diagram obtained by the reflection in the main diagonal. Hence )\, is the
number of nodes in the ith column of A, or equivalently

No=#{ N =i} (1.3)
In particular, A} = [(\) and A\ = [()\'). Obviously A" = A\. For example, the conjugate of
(5441) is (43331).
From (1.2) and (1.3) we have
) = X, = N (14)

)

For each partition A we define

n) =S - r =3 (Az) (1.5)

i>1 i>1

To be the sum of the numbers obtained by attaching a zero to each node in the top row of
the diagram of A, a 1 to each node in the second row, and so on.

Let A be a partition and let m > Ay, n > A|. Then the m + n numbers

Aitn—i(1<i<n), n—1+j-XN(1<j<m)

are a permutation of {0,1,2,....m +n — 1}.

If A\, u are partitions, we shall write A D p to mean that the diagram of A contains the
diagram of p, i.e., \; > u; for all i > 1. The set-theoretic difference § = u — v is called a skew
diagram.

A path in a skew diagram @ is as sequence xg, 1, ..., T, of squares in 6 such that z;_;
and z; have a common side, for 1 < i < m. A subset ¢ of 6 is said to be connected if any
two squares in ¢ can be connected by a path in . The maximal connected subsets of 6 are
themselves skew diagrams, called the connected components of . In the example that
A = (5441) and pu = (432), we have three connected components.

The conjugate of a skew diagram 6 = A —pis ¢ = N —p'. Let 0, = \; — p;, 0, = N — i,
and

0] =6 = [\ — |l

A skew diagram 6 is a horizontal m-strip (resp. a vertical m-strip) if |§| = m and
0 <1 (resp. 6; < 1) for each i > 1. In other words, a horizontal (resp. vertical) strip has at
most one square in each column (resp. row).



If & = X\ — p, a necessary and sufficient condition for 6 to be a horizontal (resp. vertical)
strip is that the sequence A and yu are interlaced, in the sense that Ay > py > Ao > o > ...

A skew diagram 6 is a border strip(also called a skew hook by some authors, and ribbon
by others) if # is a connected and contains no 2 x 2 block of squares so that the successive
rows (or columns) of @ overlap by exactly one square. The length of a border strip  is the
total number || of square it contains, and its height is defined to be one less than the number
of rows it occupies. If we think of a border strip 6 as a set of modes rather than squares, then
by joining contiguous nodes by horizontal or vertical line segments of unit length, we obtain a
sort of staircase, and the height of § is the number of vertical line segments or "risers" in the
staircase.

A (column-strict) tableau T is a sequence of partitions

p=A9c AV c . cA) =)

such that each skew diagram 6 = \() —\G=1)(1 < i < r) is a horizontal strip. Graphically,
T may be described by numbering each square of the skew diagram 6 with the number 4,
for 1 < i < r, and we shall often think of a tableau as a numbered skew diagram in this way.
The numbers inserted in A — g must increase strictly down each column (which explains the
adjective "column-strict") and weakly from left to right along each row. The skew diagram
A—y is called the shape of the tableau 7" and the sequence (|§™M], |§)], ..., |0)]) is the weight
of T. Throughout the book, the work tableau (unqualified) will mean a column-strict tableau,
as defined above.

Let L,, denote the reverse lexicographic ordering on the set &2, of partitions of n: that is
to say, L, is the subset of &, x &, consisting of all (A, p) such that either A = p or the first
non-vanishing difference \; — p; is positive. L, is a total ordering. For example, when n = 5,
L5 arranges &5 in the sequence

(5), (41), (32), (31%), (2°1), (21°), (1°)

Another total ordering on &7, is L], the set of all (A, ) such that either A = p or else the
first non-vanishing difference \! — p is negative, where AY = A, 41_;. The orderings L,,, L., are
distinct as soon as n > 6. In fact, we have for every \, u € &,

(A ) € Ly < (W, XN) € Ly

An ordering which is more important than either L,, or L, is the natural (partial) ordering
N,, on &, (also called the dominance partial ordering by some authors), which is defined as
follows:

Mp) ENg e M+ o+ N>+ o+, Vi > 1
As soon as n > 6, NN, is not a total ordering. We shall write A > u in place of (A, u) € N,.

Let \,p€ Z,. Then A\ > p< (A\p) € L,NL, < >N



Now, let us consider the integer vectors a = (ay,...,a,) € Z". The symmetric group S,
acts on Z" by permitting the coordinates, and the set

is a fundamental domain for this action, i.e., the S,-orbit of each a € Z"™ meets P, in
exactly one point, which we denote by a*. Thus a™ is obtained by rearranging a, ..., a, in
descending order of magnitude.

For a,b € Z™ we define a > b as before to mean a1 + ... +a; > by + ... +b;,V1 <7 <n. Let
a€Z" Then a € P, & a > wa,Yw € S,.

For each pair of integers 7,5, 1 <1 < j < n define R;; : Z" — Z" by

Rij(al, ...,an) = (Cll, ey G5+ 1, vy @y — ]_, ...,an)

Any product R = [],_; R:JJ is called a raising operator. The order of the terms in the
product is immaterial since they commute with each other.

Let a € Z™ and let R be a raising operator. Then Ra > a. Conversely, let a,b € Z" be

such that a < b and a; + ... + a, = by + ... + b,. Then there exists a raising operator R such
that b = Ra.

1.2 The ring of symmetric functions

Consider the ring Z[x1, ..., z,,] of polynomials in n independent variables z, ..., z,, with rational
integer coefficients. The symmetric group S, acts on this ring by permitting the variables,
and a polynomial is symmetric if it is invariant under this action. The symmetric polynomials
form a subring

A, = Zzy, ..., 2,5

A, is a graded ring: We have

A, = @kzoAfL

Where A¥ consists of the homogenous symmetric polynomials of degree k, together with
the zero polynomial.

For each o = (ay, ..., ;) we denote by % the polynomial

=z

Qn
n

Let A be any partition. The polynomial

m(T1, vy Tn) :Zxa (1.6)

summed over all distinct permutations a of A = (Aq, ..., A,), is clearly symmetric, and the
my (as A run through all the partitions of length < n) form a Z-basis of A,,. Hence the m,



such that I(A\) < n and |\| = k form a Z-basis of \¥. In particular, as soon as n > k, the m,
such that [A| = k form a Z-basis of A%.

Now, let us generate the theory above in the case of countably many independent variables.
Let m > n and consider the homomorphism
Zlxy,...;xp] = Zlxy, ..., 1)
which send each of x,.1, ..., x,, to zero and the other x; to themselves. On restriction to
A,, this gives a homomorphism
Pt Am — Ay,

It follows that p,,,, is subjective, and on restriction to A¥ we have homomorphism

k Ak k
pm,n : Am — An

for all £ > 0 and m > n, which are always subjective, and are bijective for m > n > k.
We now form the inverse limit

A" = limAy

of the Z-modules A¥ relative to the homomorphism p’j;w. This module has a Z-basis
consisting of the monomial symmetric functions m, (for all partitions \ of k). Therefore, A*
is a free Z-module of rank p(k), the number of partitions of k. Now let

A - ®k20Ak
so that A is the free Z-module generated by the m, for all partitions \. We have surjective
homomorphisms
Pn = EBkZOpZ A= A,
Which give A a graded ring structure.

For each integer r, the rth elementary symmetric function e, is the sum of all products
of r distinct variables z;, so that ej = 1 and

Cr = E Liy Lig e g, = MY(17)

11 <t2<...<ip

for r > 1. The generating function for the e, is

E(t) =) et" =[] +uit) (1.7)

r>0 i>1

For each partition A = (A1, Ay, ...), define

€N = €)\1€)y---

Let A be a partition, )\’ its conjugate. Then



/
ey =my+ E Axu My,
w

where the a), are non-negative integers, and the sum is over partitions y < A in the natural
ordering. Therefore, we have
A= Z[el, €9, ]

and the e, are algebraically independent over Z.

For each integer r, the rth complete symmetric function A, is the sum of all monomials
of total degree r in the variables x;, so that

hr = Z my
[A|=r
In particular, hy = 1 and h; = e;. The generating function for the h,. is

H(t) =Y ht" =] —zt) (1.8)

>0 i>1
From (1.7) and (1.8) we have H(t)E(—t) = 1, are equivalently

n

> ey =0 (1.9)

r=0
for all n > 1. Since the e, are algebraically independent, we may define a homomorphism
of graded rings

w:A— A

such that w(e,) = h, for all » > 0. The symmetry of the relations (1.9) between the e’s
and the h’s shows that w is an involution, i.e., w? is the identity map. Also, we have

A = Z[hy, ho, ..

and the h, are algebraically independent over Z.
For each partition A = (A, Ao, ...), define

h)\ == h)\lh)\2...
Then the h) form a Z-basis of A. Finally, if we define

fr=w(my)

for each partition A, then the fy, called the "forgotten" symmetric functions, together with
my, ex, hy, form four Z-bases of A.

Let N be a positive integer and consider the matrices of N 4 1 rows and columns

H = (hi—j)o<ij<n, E=((=1)"e;;)



Where e, = h, = 0 whenever 7 is negative. Both H and E are strictly lower triangular, and
HE = FH = Iy,,. Let A\, u be two partitions of length < p, such that \" and ' have length
< ¢, where p+ ¢ = N + 1. Consider the minor of H with row indices \; +p —i (1 < i < p)
and column indices y; +p —i (1 <1 < p). The complementary cofactor of £ has row indices
p—1+j—X (1<j<gq)and column indices p — 1+ j — i (1 < j < q). Hence, we have

det(h,—p;—its)1<ijep = (=) det ()N ey i4i)icij<q

The minus signs cancel out, and therefore we have

det (A, —p;—i+j)1<i<p = det(ex - —ivj)1<ii<q

ater, we will see that this could also be written as s,,,.) In particular, takin =0 we
Lat ill that thi Id also b itt /) 1 ticular, taking p = 0
have

det(hx,—i+;) = det(ex—it;)

And later, we will see that both sides are equal to the Schur function s,.

For each r > 1 the power sum is

pr= Y@ =mg

The generating function for the p; is

P(t)= t l—zl_xit—;Ebgl—mit

so that : :

P(t) = %logH(t) = H'(t)/H(t) (1.10)
Likewise, we have

P(—t) = %log E(t) = FE'(t)/E(t) (1.11)

From (1.10) and (1.11) we obtain

n

nh, = zn:prhn_r, ne, = Z(—l)r_lpren_r (1.12)

r>1 r=1

This would imply that

AQ =A Xz Q = Q[p17p27 ]
And the p, are algebraically independent over Q. Hence, if we define

Px = Px1DPx,

for each partition A = (A, Ay, ...), then the p) form a Q-basis of Aq. But they do NOT
form a Z-basis of A.



Since the involution w interchanges E(t) and H(t), it follows from (1.10) and (1.11) that

w(pn) = (=1)""pa

for all n > 1, and hence that for any partition A we have

w(pr) = eApa (1.13)
Where €, = (—1)=I),

Finally, we shall express h,, and e, as linear combinations of the p,. For any partition A,
define

Zy = H@ml -my!

i>1

Where m; = m;(\) is the number of parts of A equal to i. Then we have

H(t) =) =t EB(t) =) ez 'path (1.14)
A A

or equivalently, h, =37, _, 2 Py en = > M=n €A%y Da-

1.3 Schur functions

Let % = z{"'...z%" be a monomial, and consider the polynomial a,, obtained by antisymmetriz-
ing z%: that is to say,

Ao = Ao (T1, ..y Ty) = Z €(w) - w(z®)

WESn

Where €(w) is the sign of the permutation w. This polynomial a,, is skew-symmetric, i.e.,
we have w(a,) = €(w)a, for every w € S,,; In particular, therefore, a,, vanished unless oy, ..., a,
are all distinct. Hence we may as well assume that that oy > as > ... > «,, > 0, and therefore
we may write a = A + 0, where \ is a partition of length <n, and § = (n — 1,n —2,...,1,0).
Then

Uq = Qris = Ze(w) - w(x o)

w

Which can be written as a determinant:

Aj+n—j
axys = det(x;” " T )i<ij<n

This determinant is divisible in Z[z1, ..., x| by each of the differences z;—x;(1 < i < j < n),
and hence by their product, which is the Vandermonde determinant

H (x; —xj) = det(:c?fj) = a;

1<i<j<n



So ay.s is divisible by as in Z[x1, .., z,,|, and the quotient

Sy = SA(T1, .., T) = Arys/ s
is symmetric, i.e., is in A,,. It is called the Schur function in the variables zq, ..., x,,

corresponding to the partition A (where [(A) < n), and is homogenous of degree |\|.

The Schur functions sy, where [(\) < n, for a Z-basis of A,,; The s, for a Z-basis of A, and
for each k > 0, the s, such that |A\| = k form a Z-basis of A*.

In fact, we can write each Schur function s, as a polynomial in the elementary symmetric
functions e,, and as a polynomial in the complete symmetric functions h,. The formulas are
sx = det(hy,—ij)1<ij<n = det(ex —irj)i<ij<m (1.15)

Where n > (X)), m > [(XN). It follows that for all partitions A, we have

w(sy) = sy

Also in particular, s¢,) = hy,, and s@n) = e,.

1.4 Orthogonality

Let x = (x1,22,...) and ¥ = (y1,¥2,...) be two finite or infinite sequences of independent
variables. We shall denote the symmetric functions of the z’s by sy(x), px(x), etc., and the
symmetric functions of the y’s by s(y), pa(y), ete.

We shall give three series expansions for the product
TT0 =2y
i,

The first of these is

100 =)™ Z'ZA pA(2)pa(y)

Next, we have

irj A A
And the third identity is

H( Tiy;) Z sx(z
irj
The three identities are summed over all partitions A. We now define a scalar product on
A, ie., a Z-valued bilinear form (u,v), by requiring that the bases (h)) and (m,) should be
dual to each other:



<h>\7 mu> - 5>\#

for all partitions A, 1, where 4, is the Kronecker delta. For each n > 0, let uy, vy be the
Q-basis of A}, indexed by the partitions of n. Then the following conditions are equivalent:

(a)(ux, v,) = 0y, for all A, u;

(D)2 s ua(@valy) =TT ;(1 — wayy) ™

It follows that (px, p.) = dau2a, so that the py form an orthogonal basis of Aq. Likewise, we
have (sy, s,) = 0xu. Also, we see that the bilinear form (u, v) is symmetric and positive definite,
and the involution w is an isometry, i.e., (wu,wv) = (u,v). Finally, we have (ey, f,) = 6z,
(here f, = w(m,)), i.e., (ex) and (f)) are dual bases of A.

1.5 Skew Schur functions

Any symmetric functions f € A is uniquely determined by its scalar products with the sy;
namely

F=> (f 528

since the s, form an orthogonal basis of A.

Let A, u be partitions, and define a symmetric functions sy, by the relations

(Sx/us Su) = (85, 5u50) (1.16)

for all partitions v. The sy, are called the skew Schur functions, Equivalently, if cf‘w
are the integers defined by

SuSy = ZCMVS)\ (1.17)

then we have sy, = cﬁysy. In particular, it is clear that sy /0 = s\, where 0 denotes the zero
partition. Also ¢;, = 0 unless [A\| = |u| + ||, so that s/, is homogenous of degree || — |ul,
and is zero if |A\| < |p|. Later we will see that sy, = 0 unless A D p.

Now let = (21, x9,..) and y = (1, ¥z, ...) be two sets of variables. Then

Z 5/\/;4<I>5/\(y> = Z c;\;,usu(x)s)\(y> = Z SV(I>SH<y) = Su Z h

A A,V v

Now let us consider the case when y = (1, ..., ¥»), so that the sums above are restricted to
partitions of length < n. Recall the definition of Schur polynomials, multiplying as on both
sides, we have

> suul@)anss(y Z ho (@) mu(y)aus(y)

A

10



A+d

Compare the coefficient of ¥ on both sides, we have

sx/u(@) = det(ha,—p;—ivj)1<ij<n = det(ex—u —ivj)1<ij<m

Where n > I(A),m > [()X), and therefore w(sy/,) = sy /. Also, the skew Schur function
Sx/p 18 zero unless A D p, i.e., if \; > p; for every ¢, in which it depends on the on the skew
diagram A — p. If 6; = A\; — p1; are the components of A — i, we have s/, =[] 5,

If the number of variables z; is finite, we can say more: In fact, we have sy, (21, ...,2,) = 0
unless 0 < X, — u; < n for all i > 1.

Now let = = (21,22, ...) and y = (y1,92,...), 2 = (21, 22, ...) be three sets of independent
variables. Then we have

> sun(@)sn(2)suy) =D suly)su(z) [J(1 = wiz) ™!
A H i,k
which is furthermore equal to
H 1 — x;2k) 1H 1—yz) " :Zs,\(:v,y)s,\(z)
ik ik A

Therefore we conclude that sx(z,y) = 3, sx/u(2)s,(y) = 3, cp,5u(y)s,(x). More gen-
erally, we have sy, (2, y) = >, sx(2)S0/u(y ) summed over partitions v such that A D v D p.

We can furthermore generate this formula as follows. Let (), ..., (") be n sets of variables,
and let A\, u be partitions. Then

SA/;L L1, .0y & ZHSV@)/V@ 1) ) (1.18)

summed over all sequences (v) = (V@ ..., V(”)) of partitions, such that v© = p, v = X,
and v c v c ... cv.

We shall apply the above formula to the case that each of (), ..., 2™ consists of a single
variable z;. For a single z, it follows that s)/,(z) = 0 unless A — x is a horizontal strip, in
which case sy, (z) = 2N~ Hence each of the products in the sum on the right-hand side
of (1.18) is a monomial z{*...z9", where o; = [V — 1=V and hence we have sy, (21, ..., Z,)
expressed as a sum of monomials x®, one for each tableau T" of shape \ — pu. If the weight of
T is a = (ay, ..., ay, ), we shall write 7 for 2% Then:

N (1.19)
T
summed over all tableau T" of shape A — p.

For each partition v such that |v| = |\| — |p|, let K)_, , denote the number of tableux of
shape A — p and weight v. From (1.19) we have

11



S\/p = Z K)\—;L,l/mu (120)

and therefore

K—pw = (Sa/u, hw) = (51, 8uhw) (1.21)
so that

suhy =Y Ko_pusn (1.22)
A

In particular, suppose that 1 = (r), a partition with only one non-zero part. Then Ky_,
is 1 or 0 according to as A\ — p is or is not a horizontal r-strip, and therefore from (1.22) we
have Pieri’s formula

NEEDI (1.23)
A

summed over all partitions A such that A—y is a horizontal r-strip. Applying the involution
w to the equation above, we obtain

Suer = Zs,\ (1.24)
A

summed over all partitions A such that A — p is a vertical r-strip.

12



2 CHAPTER II: HALL POLYNOMIALS

2.1 Finite o-modules

First, let us introduce the term "discrete valuation ring". A discrete valuation ring (DVR),
denoted as o, is a principal ideal domain (PID) with exactly one non-zero maximal ideal,
denoted as p. This would indicate that o is a integral domain, and its field of fractions K is
equipped with a valuation v : K — Z U {oo} such that for all z,y € K,

(Yv(zy) = v(z)v(y)

(iv(z +y) = min{o(z),v(y)}

(iii)v(z) =co < =0

and also 0 = {z | v(x) > 0}, p = {z | v(x) > 1}

The most important example of DVR is the ring p-adic integers Z,, consisting of elements
0 and

s = Z aipi = akpk + ak+1pk+1 + ...
i=k
where v(s) =k >0, ar € {1,2,....,p — 1}, aks1, agyo,... € {0,1,2,...;p — 1}. Tts fields of
fractions is the p-adic field Q,, where we would allow k to be negative.

Now for the term finite o-module, we mean a module M with a direct sum decomposition
of the form

M= @7 o/p" (2.1)

where the \; are positive integers, which we may assume are arranged in descending order:
A=A > X > ... >\ > 0. In other words, A = (A, ..., \;) is a partition. On the other
hand, given a finite o-module M, let p; = dimy(p"~'M/p'M). Then p = (uy, po, ...) is the
conjugate of partition A. Therefore, the partition A is uniquely determined by the module M,
and we call A\ the type A of M. Clearly two finite o-modules are isomorphic if and only if
they have the same type, and every partition A occurs as a type. If X is the type of M, then
Al =Y. A; is the length [(M) of M, i.e., the length of a composition series of M. The length
is an additive function of M, this means that if

0—-M —-M-—>M" -0

is a short exact sequence of finite o-modules, then

(M"Y —1(M)+1(M") =0
If N is a submodule of M, then the cotype of N in M is defined to be the type of M/N.
A finite o-module M is cyclic, i.e., generated by one element, if and only if its type is a
partition (r) consisting of a single part r = [(M), and M is elementary, i.e., pM = 0 if and

only if the type of M is (17). If M is elementary of type (17), then M is a vector space over
k, and [(M) = dimy M = r.

13



Let M be a finite o-module. The dual of M is defined to be

M = Hom, (M, E)
Where F = ligo/p” is the "injective envelope" of k, i.e., the smallest injective o-module

which contains k as a submodule. M and M are isomorphism and have the same type. Since
F is injective, an exact sequence
0—+N—-M-—M/N—0 (2.2)

gives rise to an exact sequence

0<—N<—M<—M7N<—O (2.3)

N < N° = M7N is a one-to-one correspondence between the submodules of M, M
respectively, which maps the set of all N C M of type v and cotype p onto the set of all
N°® C M of type p and cotype p.

From now on, we suppose the residue field £ = o/p is FINITE with order ¢ < oco. If M
is a finite o-module and x is a non-zero element of M, we shall say that x has height r if
p"r = 0 and p" 'z # 0. The zero element of M is assigned height zero. We denote by M, the
submodule of M consisting of elements of height < r, so that M, = ker(p").

The number of automorphisms of a finite o-module M of type A is
ax(q) = MO T om, (N (g) = == [[ om, (M@ (2.4)
i>1 i>1

where @, (t) = (1—¢)(1—1?)...(1—t™). In fact, the number of automorphisms of M is equal
to the number of sequences (z1, ..., x,) such that z; has height A\;(1 <i <r) and M = @;0x;.

2.2 The Hall algebra
Let Ay, uV, ..., u") be partitions, and let M be a finite o-module of type A. We define

Gﬁ(l) () (0)

.....

to be the number of chains of submodules of M:

M:MoDMlDMr:O

such that M;_/M; has type @, for 1 < i < r. In particular, G} (o) is the number of
submodules N of M which have type v and cotype u. Since [(M) = I(M/N)+1(N), it is clear
that G, (0) = 0 unless |A] = || + |v].

Let H = H(o) be a free Z-module on a basis u, indexed by all partitions A. Define a
product in H by the rule

14



w = 3 gl (o)
A

The sum on the right has only finitely many non-zero terms, which makes H(0) a com-
mutative and associative ring with identity element uy. We call H(o) the Hall algebra of
0. The ring H(o0) is generated by (as a Z-algebra) by the elements - (r > 1), and they are
algebraically independent over Z.

2.3 The LR-sequence of a submodule

Let T be a tableau of shape A — p and weight v = (v4,...,1,.). Then T determines (and is
determined by) a sequence of partitions

S =\ A0

such that A® = g, A = X\ and A > XD for 1 < i < r, by the condition that
A — \0=1) s skew diagram consisting of the square occupied by the symbol i in 7' (and hence
is a horizontal strip, because 7' is a tableau).

A sequence of partitions S as above will be called a LR-sequence of type (u,v; ) if

(LRD)A® = A = X and A®) 5 A for 1 <4 <r;

(LR2)A® — X\G=D is a horizontal strip of length v;, for 1 < i < 7. (These two conditions
ensure that S determines a tableau 7T'.)

(LR3)The word w(T') obtained by reading 7" from right to left in successive rows, starting
at the top, is a lattice permutation.

For (LR3) to be satisfied, it is necessary and sufficient that, for ¢ > 1 and k& > 0, the
number of symbols ¢ in the first £ rows of T' should not be less than the number of symbols
1+ 1 in the first £ + 1 rows of 7.

Every submodule N of a finite o-module M gives rise to a LR~sequence of type (¢, v, \'),
where A, i, v are the types of M, M/N, and N respectively.

2.4 Hall polynomial

Denote Gg(0) the number of submodules N of M whose associated LR-sequence S(N) of S.
Each N has type v and cotype pu.

Let ¢ denote the number of elements in the residue field of o, and recall that n(\) =
> (i — 1))\, for any partition A. Then:

)

For each LR-sequence S of type (1/, 1/, \'), there exists a monic polynomial gs(t) € Z[t] of
degree n(A) — n(u) — n(v), independent of o, such that

9s(q) = Gs(o) (2.5)

In other words, G(0) is a polynomial in q. Now define, for any three partitions \, u, v

15



g (1) = gs(t)

S
summed over all LR-sequences S of type (1/,v'; \’). This polynomial is the Hall polyno-
mial corresponding to A, i, v. Recall from sections 1.5 and 1.9 that c)‘ denotes the coefficient

sy in the product s,s,; That CW = cfz,y, is the number of LR—sequences of type (¢/,v/; N).
Then it follows that

(i)If ¢}, = 0, the Hall polynomial g,,(t) is identically zero. In particular, g,,(t) = 0 unless
=[] ] an g

(ii)If ¢, # 0, then g, (¢) has degree n(\) — n(u) — n(v) and leading coefficient ¢},
(iii)In elther case, G’\ ,(0) =g,(0).

(iv)gp, (t) = gyu(t)
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3 CHAPTER V: THE HECKE RING OF GL, OVER A
LOCAL FIELD

3.1 Local fields

In this chapter, we assume F' is a non-archimedean local field, i.e.,

(i) F is a finite algebraic extension of Q,, for some prime p, or

(ii)F = F,(t), where F, is a finite field.

Let 0 = {a € F : |a] < 1} be the ring of integers, and p = {a € F : |a] < 1}. Let
k = |o/p| be the residue field, and let ¢ < oo be its order. Let m be a generator of p with
Tl =q".

3.2 The Hecke ring H(G, K)
Let G = GL,(F) be the group of all invertible n x n matrix over F. Also let

GT =GN M,(o)
be the subsemigroup of G consisting of all matrices € G with entries z;; € o0, and let

K=GK,(o) =GN (G")™!

so that K consisting of all x € G with entries z;; € 0 and det(z) a unit in o.

Let dx denote the unique Haar measure on G for which K has measure 1 and is both left-
and right-invariant under the multiplication of K. Under this measure, the measure of Kx
and xK is 1 for all non-zero =z € G.

Let L(G, K) denote the space of all complex-valued continuous functions of compact sup-
port of G (resp. G*) which are bi-invariant with respect to K, i.e., such that

f(kizks) = f(z)

for all z € G (resp, G1) and ky, ks € K. We may and shall regard L(G™, K) as a subspace
of L(G, K).

We define a multiplication on L(G, K) as follows: for all f,g € L(G, K),

(f % g)(x) = / Fay V) g(y)dy

(Since f and g are compactly supported, the integration is over a compact set.) This
product is associative and commutative. Since G is closed under multiplication, it follows
immediately from the definition that L(G*, K) is a subring of L(G, K).

Each function f € L(G, K) is constant on each double closet KzK in G. These double

cosets are compact and mutually disjoint. Since f has compact support, it follows that f
takes non-zero values on only finitely many double cosets Kx K, and hence can be written as
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a finite linear combination of their characteristic functions. Hence the characteristic functions
of the double cosets of K form a C-basis on L(G, K). The characteristic function of K is the
identity element of L(G, K).

If we vary the definition of the algebra L(G, K) (resp. L(G™, K)) by requiring the functions
to take their values in Z instead of C, the resulting ring is called the Hecke ring of G (resp,
G*), and we denote it by H(G, K) (resp, H(G™, K).) Clearly, we have

L(GaK) = H(GaK) Xz CaL(G+aK) = H(G+7K) ®ZC

We will soon discover that the Hecke ring H(G, K) is closely related to the Hall algebra
H (o) of the discrete evaluating ring o.

Consider a double coset KxK, where x € G. By multiplying x by a suitable power of
7 we can bring  to Gt. The theory of elementary divisors for matrices over a principal
ideal domain now shows that by pre- and post- multiplying x by suitable elements of K we
can reduce x to a diagonal matrix. Multiplying further by a diagonal matrix belonging to
x will produce a diagonal matrix whose entries are powers of m, and finally conjugation by
a permutation matrix will get the exponents in descending order. Hence, each double coset
Kz K has a unique representative of the form

= (7™, ..., )

where A\; > ... > \,. We have )\, > 0 (so that X is a paritition) if and only if z € G*.

Let ¢, denote the characteristic function of the double coset K7*K. Then we have the
cx (resp. the ¢y such that A, > 0) form a Z-basis of H(G,K) (resp. H(G',K)). The
characteristic function c¢q of K is the identity element of H(G, K) and H(G™, K). Notice that

H(G,K) = H(G", K)[cgm)
This would allows us to concentrate on H(G™, K), which has a Z-basis consisting of the

characteristic functions ¢y, where A runs through all partitions (A, ..., \,,) of length < n.

Let p1, v be partitions of length < n. The product ¢, * ¢, will be a linear combination of
the cy. In fact,

Cp*Cy = Zgzy(q)c,\ (3.1)
A

summed over all partitions A of length < n, where g;),/(q) is the "Hall polynomial" defined
in Chapter II. In fact, if we write K7 K = U;Kz;, K"K = U;Ky; as disjoint unions of left
cosets, then we have

(e = [ ey aln = Yol (32)
J
since K has measure 1. This is furthermore equal to the number of parts (, ) such that

™ = kry;
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for some k € K depending on 4, j, and thus = g;‘,j(q).

From (3.1), it follows that the mapping uy — ¢, is a homomorphism of the Hall algebra
H(o) onto H(G™, K) whose kernel is generated by the w, such that I[(\) > n. Hence from
Chapter III, we obtain a structure theorem for H(G', K) and L(GT, K): Let A,[¢""] denote
the ring of symmetric polynomials in n variables with coefficient in Z[g™'] (resp. C). Then
the Z-linear mapping 6§ of H(G*, K) into A,[¢™!] (resp. C). Then the Z-linear mapping of
H(G,K) into A,[g7'] (resp. the C-linear mapping of L(G™, K) into A, c) defined by

0(cy) = ¢ NPy (w1, s g (3.3)

for all partitions A of length < n, is an injective ring homomorphism (resp. an isomorphism
of C-algebras).

Finally, let us compute the measure of a double closet K7*K. For f € L(G*, K), let

u(f) = /G f(2)da

Then p: L(GT, K) — C is a C-algebra homomorphism, and clearly p(cy) is the measure
of K7 K. In view of (3.3) we may write u = ' o 6, where y/ : A, c — C is a C-algebra
homomorphism, hence is determined by its effect on the generators e, = Pyry (1, ..., 2n;¢7").
On the other hand, ji(cir)) is the number of subvector spaces in k™ with dimension 7, which
is equal to

From (3.3) we have i/ (e,) = ¢""=1/2 [Z] (q) =e(¢"',¢" 2, ..., 1). Hence 4/ is the mapping

q
which takes z; to ¢"7%(1 < i < n). It follows that therefore from (3.2) and (3.3) that the
measure of K7 K is ¢ "™ Py(¢" ', ¢"2,...,1;¢"). Hence, we also have the measure of K7 K
is equal to

qZ(aniJrl))\ivn(qfl)/v)\<q71) _ qQQ”))vn(q’l)/UA(q*l) (3.4)

where p = $(n—1,n—3,...,1 —n).
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