Symmary for Symmetric Functions and Hall Polynomials

Jiahe Shen, ${ }^{(\boxtimes)}$ js6157@columbia.edu ${ }^{1}$
${ }^{1}$ Department of Mathematics, Columbia University

February 6, 2024

1 CHAPTER I: SYMMETRIC FUNCTIONS

1.1 Partitions

A partition is any (finite or infinite sequence

$$
\begin{equation*}
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}, \ldots\right) \tag{1.1}
\end{equation*}
$$

of non-negative integers in decreasing order:

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r} \geq \ldots
$$

and containing only finitely many nonzero terms. We don't distinguish two such sequences which differ only by a string of zeros at the end.

The nonzero λ_{i} are called the parts of λ. The number of parts is the length of λ, denoted by $l(\lambda)$; And the sum of the parts is the weight of λ, denote by $|\lambda|=\lambda_{1}+\lambda_{2}+\ldots$.

If $|\lambda|=n$ we say that λ is a partition of n. The set of all partitions of n is denoted by \mathscr{P}_{n}, and the set of all partitions by \mathscr{P}. In particular, \mathscr{P}_{0} consists of a single element, the unique partition of zero, which we denote by 0 .

Sometimes it is convenient to use a notation that indicates the number of times each integer occurs as a part:

$$
\lambda=\left(1^{m_{1}} 2^{m_{2}} \ldots r^{m_{r}} \ldots\right)
$$

means that exactly m_{i} parts of λ are equal to i. The number

$$
\begin{equation*}
m_{i}=m_{i}(\lambda)=\#\left\{j: \lambda_{j}=i\right\} \tag{1.2}
\end{equation*}
$$

is called the multiplicity of i in λ.
The diagram of a partition λ may be formally defined as the set of points $(i, j) \in \mathbb{Z}^{2}$ such that $1 \leq j \leq \lambda_{i}$. For example, the diagram of the partition (5441) consists of 5 points or
nodes in the top row, 4 in the second row, 4 in the third row, and 1 in the fourth row. We shall usually denote the diagram of a partition λ by the same symbol λ.

The conjugate of a partition λ is the partition λ^{\prime} whose diagram is the transpose of the diagram λ, i.e., the diagram obtained by the reflection in the main diagonal. Hence λ_{i}^{\prime} is the number of nodes in the i th column of λ, or equivalently

$$
\begin{equation*}
\lambda_{i}^{\prime}=\#\left\{j: \lambda_{j} \geq i\right\} \tag{1.3}
\end{equation*}
$$

In particular, $\lambda_{1}^{\prime}=l(\lambda)$ and $\lambda_{1}=l\left(\lambda^{\prime}\right)$. Obviously $\lambda^{\prime \prime}=\lambda$. For example, the conjugate of (5441) is (43331).

From (1.2) and (1.3) we have

$$
\begin{equation*}
m_{i}(\lambda)=\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime} \tag{1.4}
\end{equation*}
$$

For each partition λ we define

$$
\begin{equation*}
n(\lambda)=\sum_{i \geq 1}(i-1) \lambda_{i}=\sum_{i \geq 1}\binom{\lambda_{i}^{\prime}}{2} \tag{1.5}
\end{equation*}
$$

To be the sum of the numbers obtained by attaching a zero to each node in the top row of the diagram of λ, a 1 to each node in the second row, and so on.

Let λ be a partition and let $m \geq \lambda_{1}, n \geq \lambda_{1}^{\prime}$. Then the $m+n$ numbers

$$
\lambda_{i}+n-i(1 \leq i \leq n), \quad n-1+j-\lambda_{j}^{\prime}(1 \leq j \leq m)
$$

are a permutation of $\{0,1,2, \ldots, m+n-1\}$.
If λ, μ are partitions, we shall write $\lambda \supset \mu$ to mean that the diagram of λ contains the diagram of μ, i.e., $\lambda_{i} \geq \mu_{i}$ for all $i \geq 1$. The set-theoretic difference $\theta=\mu-\nu$ is called a skew diagram.

A path in a skew diagram θ is as sequence $x_{0}, x_{1}, \ldots, x_{m}$ of squares in θ such that x_{i-1} and x_{i} have a common side, for $1 \leq i \leq m$. A subset φ of θ is said to be connected if any two squares in φ can be connected by a path in φ. The maximal connected subsets of θ are themselves skew diagrams, called the connected components of θ. In the example that $\lambda=(5441)$ and $\mu=(432)$, we have three connected components.

The conjugate of a skew diagram $\theta=\lambda-\mu$ is $\theta^{\prime}=\lambda^{\prime}-\mu^{\prime}$. Let $\theta_{i}=\lambda_{i}-\mu_{i}, \theta_{i}^{\prime}=\lambda_{i}^{\prime}-\mu_{i}^{\prime}$, and

$$
|\theta|=\sum_{i} \theta_{i}=|\lambda|-|\mu|
$$

A skew diagram θ is a horizontal m-strip (resp. a vertical m-strip) if $|\theta|=m$ and $\theta_{i}^{\prime} \leq 1$ (resp. $\theta_{i} \leq 1$) for each $i \geq 1$. In other words, a horizontal (resp. vertical) strip has at most one square in each column (resp. row).

If $\theta=\lambda-\mu$, a necessary and sufficient condition for θ to be a horizontal (resp. vertical) strip is that the sequence λ and μ are interlaced, in the sense that $\lambda_{1} \geq \mu_{1} \geq \lambda_{2} \geq \mu_{2} \geq \ldots$

A skew diagram θ is a border strip(also called a skew hook by some authors, and ribbon by others) if θ is a connected and contains no 2×2 block of squares so that the successive rows (or columns) of θ overlap by exactly one square. The length of a border strip θ is the total number $|\theta|$ of square it contains, and its height is defined to be one less than the number of rows it occupies. If we think of a border strip θ as a set of modes rather than squares, then by joining contiguous nodes by horizontal or vertical line segments of unit length, we obtain a sort of staircase, and the height of θ is the number of vertical line segments or "risers" in the staircase.

A (column-strict) tableau T is a sequence of partitions

$$
\mu=\lambda^{(0)} \subset \lambda^{(1)} \subset \ldots \subset \lambda^{(r)}=\lambda
$$

such that each skew diagram $\theta^{(i)}=\lambda^{(i)}-\lambda^{(i-1)}(1 \leq i \leq r)$ is a horizontal strip. Graphically, T may be described by numbering each square of the skew diagram $\theta^{(i)}$ with the number i, for $1 \leq i \leq r$, and we shall often think of a tableau as a numbered skew diagram in this way. The numbers inserted in $\lambda-\mu$ must increase strictly down each column (which explains the adjective "column-strict") and weakly from left to right along each row. The skew diagram $\lambda-\mu$ is called the shape of the tableau T and the sequence $\left(\left|\theta^{(1)}\right|,\left|\theta^{(2)}\right|, \ldots,\left|\theta^{(r)}\right|\right)$ is the weight of T. Throughout the book, the work tableau (unqualified) will mean a column-strict tableau, as defined above.

Let L_{n} denote the reverse lexicographic ordering on the set \mathscr{P}_{n} of partitions of n : that is to say, L_{n} is the subset of $\mathscr{P}_{n} \times \mathscr{P}_{n}$ consisting of all (λ, μ) such that either $\lambda=\mu$ or the first non-vanishing difference $\lambda_{i}-\mu_{i}$ is positive. L_{n} is a total ordering. For example, when $n=5$, L_{5} arranges \mathscr{P}_{5} in the sequence

$$
(5),(41),(32),\left(31^{2}\right),\left(2^{2} 1\right),\left(21^{3}\right),\left(1^{5}\right)
$$

Another total ordering on \mathscr{P}_{n} is L_{n}^{\prime}, the set of all (λ, μ) such that either $\lambda=\mu$ or else the first non-vanishing difference $\lambda_{i}^{*}-\mu_{i}^{*}$ is negative, where $\lambda_{i}^{*}=\lambda_{n+1-i}$. The orderings L_{n}, L_{n}^{\prime} are distinct as soon as $n \geq 6$. In fact, we have for every $\lambda, \mu \in \mathscr{P}_{n}$,

$$
(\lambda, \mu) \in L_{n}^{\prime} \Leftrightarrow\left(\mu^{\prime}, \lambda^{\prime}\right) \in L_{n}
$$

An ordering which is more important than either L_{n} or L_{n}^{\prime} is the natural (partial) ordering N_{n} on \mathscr{P}_{n} (also called the dominance partial ordering by some authors), which is defined as follows:

$$
(\lambda, \mu) \in N_{n} \Leftrightarrow \lambda_{1}+\ldots+\lambda_{i} \geq \mu_{1}+\ldots+\mu_{i}, \forall i \geq 1
$$

As soon as $n \geq 6, N_{n}$ is not a total ordering. We shall write $\lambda \geq \mu$ in place of $(\lambda, \mu) \in N_{n}$.
Let $\lambda, \mu \in \mathscr{P}_{n}$. Then $\lambda \geq \mu \Leftrightarrow(\lambda, \mu) \in L_{n} \cap L_{n}^{\prime} \Leftrightarrow \mu^{\prime} \geq \lambda^{\prime}$.

Now, let us consider the integer vectors $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{Z}^{n}$. The symmetric group S_{n} acts on \mathbf{Z}^{n} by permitting the coordinates, and the set

$$
P_{n}=\left\{b \in \mathbf{Z}^{n}: b_{1} \geq b_{2} \geq \ldots \geq b_{n}\right\}
$$

is a fundamental domain for this action, i.e., the S_{n}-orbit of each $a \in \mathbf{Z}^{n}$ meets P_{n} in exactly one point, which we denote by a^{+}. Thus a^{+}is obtained by rearranging a_{1}, \ldots, a_{n} in descending order of magnitude.

For $a, b \in \mathbf{Z}^{n}$ we define $a \geq b$ as before to mean $a_{1}+\ldots+a_{i} \geq b_{1}+\ldots+b_{i}, \forall 1 \leq i \leq n$. Let $a \in \mathbb{Z}^{n}$. Then $a \in P_{n} \Leftrightarrow a \geq w a, \forall w \in S_{n}$.

For each pair of integers $i, j, 1 \leq i<j \leq n$ define $R_{i j}: \mathbf{Z}^{n} \rightarrow \mathbf{Z}^{n}$ by

$$
R_{i j}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{i}+1, \ldots, a_{j}-1, \ldots, a_{n}\right)
$$

Any product $R=\prod_{i<j} R_{i j}^{r_{i j}}$ is called a raising operator. The order of the terms in the product is immaterial since they commute with each other.

Let $a \in \mathbf{Z}^{n}$ and let R be a raising operator. Then $R a \geq a$. Conversely, let $a, b \in \mathbf{Z}^{n}$ be such that $a \leq b$ and $a_{1}+\ldots+a_{n}=b_{1}+\ldots+b_{n}$. Then there exists a raising operator R such that $b=R a$.

1.2 The ring of symmetric functions

Consider the ring $\mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]$ of polynomials in n independent variables x_{1}, \ldots, x_{n} with rational integer coefficients. The symmetric group S_{n} acts on this ring by permitting the variables, and a polynomial is symmetric if it is invariant under this action. The symmetric polynomials form a subring

$$
\Lambda_{n}=\mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}
$$

Λ_{n} is a graded ring: We have

$$
\Lambda_{n}=\oplus_{k \geq 0} \Lambda_{n}^{k}
$$

Where Λ_{n}^{k} consists of the homogenous symmetric polynomials of degree k, together with the zero polynomial.

For each $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ we denote by x^{α} the polynomial

$$
x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}
$$

Let λ be any partition. The polynomial

$$
\begin{equation*}
m_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum x^{\alpha} \tag{1.6}
\end{equation*}
$$

summed over all distinct permutations α of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, is clearly symmetric, and the m_{λ} (as λ run through all the partitions of length $\leq n$) form a Z-basis of Λ_{n}. Hence the m_{λ}
such that $l(\lambda) \leq n$ and $|\lambda|=k$ form a \mathbf{Z}-basis of λ_{n}^{k}. In particular, as soon as $n \geq k$, the m_{λ} such that $|\lambda|=k$ form a Z-basis of Λ_{n}^{k}.

Now, let us generate the theory above in the case of countably many independent variables. Let $m \geq n$ and consider the homomorphism

$$
\mathbf{Z}\left[x_{1}, \ldots, x_{m}\right] \rightarrow \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]
$$

which send each of x_{n+1}, \ldots, x_{m} to zero and the other x_{i} to themselves. On restriction to Λ_{m} this gives a homomorphism

$$
\rho_{m, n}: \Lambda_{m} \rightarrow \Lambda_{n}
$$

It follows that $\rho_{m, n}$ is subjective, and on restriction to Λ_{m}^{k} we have homomorphism

$$
\rho_{m, n}^{k}: \Lambda_{m}^{k} \rightarrow \Lambda_{n}^{k}
$$

for all $k \geq 0$ and $m \geq n$, which are always subjective, and are bijective for $m \geq n \geq k$.
We now form the inverse limit

$$
\Lambda^{k}=\lim _{\check{\prime}} \Lambda_{n}^{k}
$$

of the Z-modules Λ_{n}^{k} relative to the homomorphism $\rho_{m, n}^{k}$. This module has a Z-basis consisting of the monomial symmetric functions m_{λ} (for all partitions λ of k). Therefore, Λ^{k} is a free \mathbf{Z}-module of rank $p(k)$, the number of partitions of k. Now let

$$
\Lambda=\oplus_{k \geq 0} \Lambda^{k}
$$

so that Λ is the free \mathbf{Z}-module generated by the m_{λ} for all partitions λ. We have surjective homomorphisms

$$
\rho_{n}=\oplus_{k \geq 0} \rho_{n}^{k}: \Lambda \rightarrow \Lambda_{n}
$$

Which give Λ a graded ring structure.
For each integer r, the r th elementary symmetric function e_{r} is the sum of all products of r distinct variables x_{i}, so that $e_{0}=1$ and

$$
e_{r}=\sum_{i_{1}<i_{2}<\ldots<i_{r}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{r}}=m_{\left(1^{r}\right)}
$$

for $r \geq 1$. The generating function for the e_{r} is

$$
\begin{equation*}
E(t)=\sum_{r \geq 0} e_{r} t^{r}=\prod_{i \geq 1}\left(1+x_{i} t\right) \tag{1.7}
\end{equation*}
$$

For each partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, define

$$
e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \ldots
$$

Let λ be a partition, λ^{\prime} its conjugate. Then

$$
e_{\lambda}^{\prime}=m_{\lambda}+\sum_{\mu} a_{\lambda \mu} m_{\mu}
$$

where the $a_{\lambda \mu}$ are non-negative integers, and the sum is over partitions $\mu<\lambda$ in the natural ordering. Therefore, we have

$$
\Lambda=\mathbf{Z}\left[e_{1}, e_{2}, \ldots\right]
$$

and the e_{r} are algebraically independent over \mathbf{Z}.

For each integer r, the r th complete symmetric function h_{r} is the sum of all monomials of total degree r in the variables x_{i}, so that

$$
h_{r}=\sum_{|\lambda|=r} m_{\lambda}
$$

In particular, $h_{0}=1$ and $h_{1}=e_{1}$. The generating function for the h_{r} is

$$
\begin{equation*}
H(t)=\sum_{r \geq 0} h_{r} t^{r}=\prod_{i \geq 1}\left(1-x_{i} t\right)^{-1} \tag{1.8}
\end{equation*}
$$

From (1.7) and (1.8) we have $H(t) E(-t)=1$, are equivalently

$$
\begin{equation*}
\sum_{r=0}^{n} e_{r} h_{n-r}=0 \tag{1.9}
\end{equation*}
$$

for all $n \geq 1$. Since the e_{r} are algebraically independent, we may define a homomorphism of graded rings

$$
\omega: \Lambda \rightarrow \Lambda
$$

such that $\omega\left(e_{r}\right)=h_{r}$ for all $r \geq 0$. The symmetry of the relations (1.9) between the e 's and the h 's shows that ω is an involution, i.e., ω^{2} is the identity map. Also, we have

$$
\Lambda=\mathbf{Z}\left[h_{1}, h_{2}, \ldots\right]
$$

and the h_{r} are algebraically independent over \mathbb{Z}.
For each partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, define

$$
h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \ldots
$$

Then the h_{λ} form a Z-basis of Λ. Finally, if we define

$$
f_{\lambda}=\omega\left(m_{\lambda}\right)
$$

for each partition λ, then the f_{λ}, called the "forgotten" symmetric functions, together with $m_{\lambda}, e_{\lambda}, h_{\lambda}$, form four \mathbb{Z}-bases of Λ.

Let N be a positive integer and consider the matrices of $N+1$ rows and columns

$$
H=\left(h_{i-j}\right)_{0 \leq i, j \leq N}, \quad E=\left((-1)^{i-j} e_{i-j}\right)
$$

Where $e_{r}=h_{r}=0$ whenever r is negative. Both H and E are strictly lower triangular, and $H E=E H=I_{N+1}$. Let λ, μ be two partitions of length $\leq p$, such that λ^{\prime} and μ^{\prime} have length $\leq q$, where $p+q=N+1$. Consider the minor of H with row indices $\lambda_{i}+p-i(1 \leq i \leq p)$ and column indices $\mu_{i}+p-i(1 \leq i \leq p)$. The complementary cofactor of E^{\prime} has row indices $p-1+j-\lambda_{j}^{\prime}(1 \leq j \leq q)$ and column indices $p-1+j-\mu_{j}^{\prime}(1 \leq j \leq q)$. Hence, we have

$$
\operatorname{det}\left(h_{\lambda_{i}-\mu_{j}-i+j}\right)_{1 \leq i, j \leq p}=(-1)^{|\lambda|+|\mu|} \operatorname{det}\left((-1)^{\lambda_{i}^{\prime}-\mu_{j}^{\prime}-i+j} e_{\lambda_{i}^{\prime}-\mu_{j}^{\prime}-i+j}\right)_{1 \leq i, j \leq q}
$$

The minus signs cancel out, and therefore we have

$$
\operatorname{det}\left(h_{\lambda_{i}-\mu_{j}-i+j}\right)_{1 \leq i, j \leq p}=\operatorname{det}\left(e_{\lambda_{i}^{\prime}-\mu_{j}^{\prime}-i+j}\right)_{1 \leq i, j \leq q}
$$

(Later, we will see that this could also be written as $s_{\lambda / \mu}$.) In particular, taking $\mu=0$ we have

$$
\operatorname{det}\left(h_{\lambda_{i}-i+j}\right)=\operatorname{det}\left(e_{\lambda_{i}^{\prime}-i+j}\right)
$$

And later, we will see that both sides are equal to the Schur function s_{λ}.
For each $r \geq 1$ the power sum is

$$
p_{r}=\sum_{i} x_{i}^{r}=m_{(r)}
$$

The generating function for the p_{i} is

$$
P(t)=\sum_{r \geq 1} t^{r-1}=\sum_{i \geq 1} \frac{x_{i}}{1-x_{i} t}=\sum_{i \geq 1} \frac{d}{d t} \log \frac{1}{1-x_{i} t}
$$

so that

$$
\begin{equation*}
P(t)=\frac{d}{d t} \log H(t)=H^{\prime}(t) / H(t) \tag{1.10}
\end{equation*}
$$

Likewise, we have

$$
\begin{equation*}
P(-t)=\frac{d}{d t} \log E(t)=E^{\prime}(t) / E(t) \tag{1.11}
\end{equation*}
$$

From (1.10) and (1.11) we obtain

$$
\begin{equation*}
n h_{n}=\sum_{r \geq 1}^{n} p_{r} h_{n-r}, \quad n e_{n}=\sum_{r=1}^{n}(-1)^{r-1} p_{r} e_{n-r} \tag{1.12}
\end{equation*}
$$

This would imply that

$$
\Lambda_{\mathbf{Q}}=\Lambda \otimes_{\mathbf{z}} \mathbf{Q}=\mathbf{Q}\left[p_{1}, p_{2}, \ldots\right]
$$

And the p_{r} are algebraically independent over \mathbf{Q}. Hence, if we define

$$
p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}}
$$

for each partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, then the p_{λ} form a \mathbf{Q}-basis of $\Lambda_{\mathbf{Q}}$. But they do NOT form a Z-basis of Λ.

Since the involution ω interchanges $E(t)$ and $H(t)$, it follows from (1.10) and (1.11) that

$$
\omega\left(p_{n}\right)=(-1)^{n-1} p_{n}
$$

for all $n \geq 1$, and hence that for any partition λ we have

$$
\begin{equation*}
\omega\left(p_{\lambda}\right)=\epsilon_{\lambda} p_{\lambda} \tag{1.13}
\end{equation*}
$$

Where $\epsilon_{\lambda}=(-1)^{|\lambda|-l(\lambda)}$.
Finally, we shall express h_{n} and e_{n} as linear combinations of the p_{λ}. For any partition λ, define

$$
z_{\lambda}=\prod_{i \geq 1} i^{m_{i}} \cdot m_{i}!
$$

Where $m_{i}=m_{i}(\lambda)$ is the number of parts of λ equal to i. Then we have

$$
\begin{equation*}
H(t)=\sum_{\lambda} z_{\lambda}^{-1} p_{\lambda} t^{|\lambda|}, \quad E(t)=\sum_{\lambda} \epsilon_{\lambda} z_{\lambda}^{-1} p_{\lambda} t^{|\lambda|} \tag{1.14}
\end{equation*}
$$

or equivalently, $h_{n}=\sum_{|\lambda|=n} z_{\lambda}^{-1} p_{\lambda}, e_{n}=\sum_{|\lambda|=n} \epsilon_{\lambda} z_{\lambda}^{-1} p_{\lambda}$.

1.3 Schur functions

Let $x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ be a monomial, and consider the polynomial a_{α} obtained by antisymmetrizing x^{α} : that is to say,

$$
a_{\alpha}=a_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\omega \in S_{n}} \epsilon(\omega) \cdot \omega\left(x^{\alpha}\right)
$$

Where $\epsilon(\omega)$ is the sign of the permutation ω. This polynomial a_{α} is skew-symmetric, i.e., we have $\omega\left(a_{\alpha}\right)=\epsilon(\omega) a_{\alpha}$ for every $\omega \in S_{n}$; In particular, therefore, a_{α} vanished unless $\alpha_{1}, \ldots, \alpha_{n}$ are all distinct. Hence we may as well assume that that $\alpha_{1}>\alpha_{2}>\ldots>\alpha_{n} \geq 0$, and therefore we may write $\alpha=\lambda+\delta$, where λ is a partition of length $\leq n$, and $\delta=(n-1, n-2, \ldots, 1,0)$. Then

$$
a_{\alpha}=a_{\lambda+\delta}=\sum_{\omega} \epsilon(\omega) \cdot \omega\left(x^{\lambda+\delta}\right)
$$

Which can be written as a determinant:

$$
a_{\lambda+\delta}=\operatorname{det}\left(x_{i}^{\lambda_{j}+n-j}\right)_{1 \leq i, j \leq n}
$$

This determinant is divisible in $\mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]$ by each of the differences $x_{i}-x_{j}(1 \leq i<j \leq n)$, and hence by their product, which is the Vandermonde determinant

$$
\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)=\operatorname{det}\left(x_{i}^{n-j}\right)=a_{\delta}
$$

So $a_{\lambda+\delta}$ is divisible by a_{δ} in $\mathbf{Z}\left[x_{1}, . ., x_{n}\right]$, and the quotient

$$
s_{\lambda}=s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=a_{\lambda+\delta} / a_{\delta}
$$

is symmetric, i.e., is in Λ_{n}. It is called the Schur function in the variables x_{1}, \ldots, x_{n}, corresponding to the partition λ (where $l(\lambda) \leq n$), and is homogenous of degree $|\lambda|$.

The Schur functions s_{λ}, where $l(\lambda) \leq n$, for a \mathbf{Z}-basis of Λ_{n}; The s_{λ} for a Z -basis of Λ, and for each $k \geq 0$, the s_{λ} such that $|\lambda|=k$ form a \mathbf{Z}-basis of Λ^{k}.

In fact, we can write each Schur function s_{λ} as a polynomial in the elementary symmetric functions e_{r}, and as a polynomial in the complete symmetric functions h_{r}. The formulas are

$$
\begin{equation*}
s_{\lambda}=\operatorname{det}\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i, j \leq n}=\operatorname{det}\left(e_{\lambda_{i}^{\prime}-i+j}\right)_{1 \leq i, j \leq m} \tag{1.15}
\end{equation*}
$$

Where $n \geq l(\lambda), m \geq l\left(\lambda^{\prime}\right)$. It follows that for all partitions λ, we have

$$
\omega\left(s_{\lambda}\right)=s_{\lambda^{\prime}}
$$

Also in particular, $s_{(n)}=h_{n}$, and $s_{\left(1^{n}\right)}=e_{n}$.

1.4 Orthogonality

Let $x=\left(x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{1}, y_{2}, \ldots\right)$ be two finite or infinite sequences of independent variables. We shall denote the symmetric functions of the x 's by $s_{\lambda}(x), p_{\lambda}(x)$, etc., and the symmetric functions of the y 's by $s_{\lambda}(y), p_{\lambda}(y)$, etc.

We shall give three series expansions for the product

$$
\prod_{i, j}\left(1-x_{i} y_{j}\right)^{-1}
$$

The first of these is

$$
\prod_{i, j}\left(1-x_{i} y_{j}\right)^{-1}=\sum_{\lambda} z_{\lambda}^{-1} p_{\lambda}(x) p_{\lambda}(y)
$$

Next, we have

$$
\prod_{i, j}\left(1-x_{i} y_{j}\right)^{-1}=\sum_{\lambda} h_{\lambda}(x) m_{\lambda}(y)=\sum_{\lambda} h_{\lambda}(y) m_{\lambda}(x)
$$

And the third identity is

$$
\prod_{i, j}\left(1-x_{i} y_{j}\right)^{-1}=\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y)
$$

The three identities are summed over all partitions λ. We now define a scalar product on Λ, i.e., a Z-valued bilinear form $\langle u, v\rangle$, by requiring that the bases $\left(h_{\lambda}\right)$ and $\left(m_{\lambda}\right)$ should be dual to each other:

$$
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda \mu}
$$

for all partitions λ, μ, where $\delta_{\lambda \mu}$ is the Kronecker delta. For each $n \geq 0$, let u_{λ}, v_{λ} be the \mathbf{Q}-basis of $\Lambda_{\mathbf{Q}}^{n}$, indexed by the partitions of n. Then the following conditions are equivalent:
(a) $\left\langle u_{\lambda}, v_{\mu}\right\rangle=\delta_{\lambda \mu}$ for all λ, μ;
(b) $\sum_{\lambda} u_{\lambda}(x) v_{\lambda}(y)=\prod_{i, j}\left(1-x_{i} y_{j}\right)^{-1}$.

It follows that $\left\langle p_{\lambda}, p_{\mu}\right\rangle=\delta_{\lambda \mu} z_{\lambda}$, so that the p_{λ} form an orthogonal basis of $\Lambda_{\mathbf{Q}}$. Likewise, we have $\left\langle s_{\lambda}, s_{\mu}\right\rangle=\delta_{\lambda \mu}$. Also, we see that the bilinear form $\langle u, v\rangle$ is symmetric and positive definite, and the involution ω is an isometry, i.e., $\langle\omega u, \omega v\rangle=\langle u, v\rangle$. Finally, we have $\left\langle e_{\lambda}, f_{\mu}\right\rangle=\delta_{\lambda \mu}$ (here $f_{\mu}=\omega\left(m_{\mu}\right)$), i.e., $\left(e_{\lambda}\right)$ and $\left(f_{\lambda}\right)$ are dual bases of Λ.

1.5 Skew Schur functions

Any symmetric functions $f \in \Lambda$ is uniquely determined by its scalar products with the s_{λ}; namely

$$
f=\sum_{\lambda}\left\langle f, s_{\lambda}\right\rangle s_{\lambda}
$$

since the s_{λ} form an orthogonal basis of Λ.
Let λ, μ be partitions, and define a symmetric functions $s_{\lambda / \mu}$ by the relations

$$
\begin{equation*}
\left\langle s_{\lambda / \mu}, s_{\nu}\right\rangle=\left\langle s_{\lambda}, s_{\mu} s_{\nu}\right\rangle \tag{1.16}
\end{equation*}
$$

for all partitions ν. The $s_{\lambda / \mu}$ are called the skew Schur functions, Equivalently, if $c_{\mu \nu}^{\lambda}$ are the integers defined by

$$
\begin{equation*}
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} s_{\lambda} \tag{1.17}
\end{equation*}
$$

then we have $s_{\lambda / \mu}=c_{\mu \nu}^{\lambda} s_{\nu}$. In particular, it is clear that $s_{\lambda / 0}=s_{\lambda}$, where 0 denotes the zero partition. Also $c_{\mu \nu}^{\lambda}=0$ unless $|\lambda|=|\mu|+|\nu|$, so that $s_{\lambda / \mu}$ is homogenous of degree $|\lambda|-|\mu|$, and is zero if $|\lambda|<|\mu|$. Later we will see that $s_{\lambda / \mu}=0$ unless $\lambda \supset \mu$.

Now let $x=\left(x_{1}, x_{2}, ..\right)$ and $y=\left(y_{1}, y_{2}, \ldots\right)$ be two sets of variables. Then

$$
\sum_{\lambda} s_{\lambda / \mu}(x) s_{\lambda}(y)=\sum_{\lambda, \nu} c_{\mu, \nu}^{\lambda} s_{\nu}(x) s_{\lambda}(y)=\sum_{\nu} s_{\nu}(x) s_{\mu}(y) s_{\nu}(y)=s_{\mu}(y) \sum_{\nu} h_{\nu}(x) m_{\nu}(y)
$$

Now let us consider the case when $y=\left(y_{1}, \ldots, y_{n}\right)$, so that the sums above are restricted to partitions of length $\leq n$. Recall the definition of Schur polynomials, multiplying a_{δ} on both sides, we have

$$
\sum_{\lambda} s_{\lambda / \mu}(x) a_{\lambda+\delta}(y)=\sum_{\nu} h_{\nu}(x) m_{\nu}(y) a_{\mu+\delta}(y)
$$

Compare the coefficient of $y^{\lambda+\delta}$ on both sides, we have

$$
s_{\lambda / \mu}(x)=\operatorname{det}\left(h_{\lambda_{i}-\mu_{j}-i+j}\right)_{1 \leq i, j \leq n}=\operatorname{det}\left(e_{\lambda_{i}^{\prime}-\mu_{j}^{\prime}-i+j}\right)_{1 \leq i, j \leq m}
$$

Where $n \geq l(\lambda), m \geq l\left(\lambda^{\prime}\right)$, and therefore $\omega\left(s_{\lambda / \mu}\right)=s_{\lambda^{\prime} / \mu^{\prime}}$. Also, the skew Schur function $s_{\lambda / \mu}$ is zero unless $\lambda \supset \mu$, i.e., if $\lambda_{i} \geq \mu_{i}$ for every i, in which it depends on the on the skew diagram $\lambda-\mu$. If $\theta_{i}=\lambda_{i}-\mu_{i}$ are the components of $\lambda-\mu$, we have $s_{\lambda / \mu}=\prod s_{\left(\theta_{i}\right)}$.

If the number of variables x_{i} is finite, we can say more: In fact, we have $s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right)=0$ unless $0 \leq \lambda_{i}^{\prime}-\mu_{i}^{\prime} \leq n$ for all $i \geq 1$.

Now let $x=\left(x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{1}, y_{2}, \ldots\right), z=\left(z_{1}, z_{2}, \ldots\right)$ be three sets of independent variables. Then we have

$$
\sum_{\lambda, \mu} s_{\lambda / \mu}(x) s_{\lambda}(z) s_{\mu}(y)=\sum_{\mu} s_{\mu}(y) s_{\mu}(z) \prod_{i, k}\left(1-x_{i} z_{k}\right)^{-1}
$$

which is furthermore equal to

$$
\prod_{i, k}\left(1-x_{i} z_{k}\right)^{-1} \prod_{j, k}\left(1-y_{j} z_{k}\right)^{-1}=\sum_{\lambda} s_{\lambda}(x, y) s_{\lambda}(z)
$$

Therefore we conclude that $s_{\lambda}(x, y)=\sum_{\mu} s_{\lambda / \mu}(x) s_{\mu}(y)=\sum_{\mu, \nu} c_{\mu, \nu}^{\lambda} s_{\mu}(y) s_{\nu}(x)$. More generally, we have $s_{\lambda / \mu}(x, y)=\sum_{\nu} s_{\lambda / \nu}(x) s_{\nu / \mu}(y)$, summed over partitions ν such that $\lambda \supset \nu \supset \mu$.

We can furthermore generate this formula as follows. Let $x^{(1)}, \ldots, x^{(n)}$ be n sets of variables, and let λ, μ be partitions. Then

$$
\begin{equation*}
s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right)=\sum_{(\nu)} \prod_{i=1}^{n} s_{\nu^{(i)} / \nu^{(i-1)}}\left(x^{(i)}\right) \tag{1.18}
\end{equation*}
$$

summed over all sequences $(\nu)=\left(\nu^{(0)}, \ldots, \nu^{(n)}\right)$ of partitions, such that $\nu^{(0)}=\mu, \nu^{(n)}=\lambda$, and $\nu^{(0)} \subset \nu^{(1)} \subset \ldots \subset \nu^{(n)}$.

We shall apply the above formula to the case that each of $x^{(1)}, \ldots, x^{(n)}$ consists of a single variable x_{i}. For a single x, it follows that $s_{\lambda / \mu}(x)=0$ unless $\lambda-\mu$ is a horizontal strip, in which case $s_{\lambda / \mu}(x)=x^{|\lambda|-|\mu|}$. Hence each of the products in the sum on the right-hand side of (1.18) is a monomial $x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$, where $\alpha_{i}=\left|\nu^{(i)}-\nu^{(i-1)}\right|$, and hence we have $s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right)$ expressed as a sum of monomials x^{α}, one for each tableau T of shape $\lambda-\mu$. If the weight of T is $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, we shall write x^{T} for x^{α}. Then:

$$
\begin{equation*}
s_{\lambda / \mu}=\sum_{T} x^{T} \tag{1.19}
\end{equation*}
$$

summed over all tableau T of shape $\lambda-\mu$.
For each partition ν such that $|\nu|=|\lambda|-|\mu|$, let $K_{\lambda-\mu, \nu}$ denote the number of tableux of shape $\lambda-\mu$ and weight ν. From (1.19) we have

$$
\begin{equation*}
s_{\lambda / \mu}=\sum_{v} K_{\lambda-\mu, \nu} m_{\nu} \tag{1.20}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
K_{\lambda-\mu, \nu}=\left\langle s_{\lambda / \mu}, h_{\nu}\right\rangle=\left\langle s_{\lambda}, s_{\mu} h_{\nu}\right\rangle \tag{1.21}
\end{equation*}
$$

so that

$$
\begin{equation*}
s_{\mu} h_{\nu}=\sum_{\lambda} K_{\lambda-\mu, \nu} s_{\lambda} \tag{1.22}
\end{equation*}
$$

In particular, suppose that $\mu=(r)$, a partition with only one non-zero part. Then $K_{\lambda-\mu,(r)}$ is 1 or 0 according to as $\lambda-\mu$ is or is not a horizontal r-strip, and therefore from (1.22) we have Pieri's formula

$$
\begin{equation*}
s_{\mu} h_{r}=\sum_{\lambda} s_{\lambda} \tag{1.23}
\end{equation*}
$$

summed over all partitions λ such that $\lambda-\mu$ is a horizontal r-strip. Applying the involution ω to the equation above, we obtain

$$
\begin{equation*}
s_{\mu} e_{r}=\sum_{\lambda} s_{\lambda} \tag{1.24}
\end{equation*}
$$

summed over all partitions λ such that $\lambda-\mu$ is a vertical r-strip.

2 CHAPTER II: HALL POLYNOMIALS

2.1 Finite o-modules

First, let us introduce the term "discrete valuation ring". A discrete valuation ring (DVR), denoted as \mathfrak{o}, is a principal ideal domain (PID) with exactly one non-zero maximal ideal, denoted as \mathfrak{p}. This would indicate that \mathfrak{o} is a integral domain, and its field of fractions K is equipped with a valuation $v: K \rightarrow \mathbb{Z} \cup\{\infty\}$ such that for all $x, y \in K$,
(i) $v(x y)=v(x) v(y)$
(ii) $v(x+y) \geq \min \{v(x), v(y)\}$
(iii) $v(x)=\infty \Leftrightarrow x=0$
and also $\mathfrak{o}=\{x \mid v(x) \geq 0\}, \mathfrak{p}=\{x \mid v(x) \geq 1\}$
The most important example of DVR is the ring p-adic integers \mathbf{Z}_{p} consisting of elements 0 and

$$
s=\sum_{i=k}^{\infty} a_{i} p^{i}=a_{k} p^{k}+a_{k+1} p^{k+1}+\ldots
$$

where $v(s)=k \geq 0, a_{k} \in\{1,2, \ldots, p-1\}, a_{k+1}, a_{k+2}, \ldots \in\{0,1,2, \ldots, p-1\}$. Its fields of fractions is the p-adic field \mathbf{Q}_{p}, where we would allow k to be negative.

Now for the term finite \mathfrak{o}-module, we mean a module M with a direct sum decomposition of the form

$$
\begin{equation*}
M \cong \oplus_{i=1}^{r} \mathfrak{o} / \mathfrak{p}^{\lambda_{i}} \tag{2.1}
\end{equation*}
$$

where the λ_{i} are positive integers, which we may assume are arranged in descending order: $\lambda=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}>0$. In other words, $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ is a partition. On the other hand, given a finite \mathfrak{o}-module M, let $\mu_{i}=\operatorname{dim}_{k}\left(\mathfrak{p}^{i-1} M / \mathfrak{p}^{i} M\right)$. Then $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right)$ is the conjugate of partition λ. Therefore, the partition λ is uniquely determined by the module M, and we call λ the type λ of M. Clearly two finite \mathfrak{o}-modules are isomorphic if and only if they have the same type, and every partition λ occurs as a type. If λ is the type of M, then $|\lambda|=\sum_{i} \lambda_{i}$ is the length $l(M)$ of M, i.e., the length of a composition series of M. The length is an additive function of M, this means that if

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

is a short exact sequence of finite \mathfrak{o}-modules, then

$$
l\left(M^{\prime}\right)-l(M)+l\left(M^{\prime \prime}\right)=0
$$

If N is a submodule of M, then the cotype of N in M is defined to be the type of M / N.
A finite \mathfrak{o}-module M is cyclic, i.e., generated by one element, if and only if its type is a partition (r) consisting of a single part $r=l(M)$, and M is elementary, i.e., $\mathfrak{p} M=0$ if and only if the type of M is $\left(1^{r}\right)$. If M is elementary of type $\left(1^{r}\right)$, then M is a vector space over k, and $l(M)=\operatorname{dim}_{k} M=r$.

Let M be a finite \mathfrak{o}-module. The dual of M is defined to be

$$
\hat{M}=\operatorname{Hom}_{\mathfrak{o}}(M, E)
$$

Where $E=\xrightarrow{\lim } \mathfrak{o} / \mathfrak{p}^{n}$ is the "injective envelope" of k, i.e., the smallest injective \mathfrak{o}-module which contains k as a submodule. \hat{M} and M are isomorphism and have the same type. Since E is injective, an exact sequence

$$
\begin{equation*}
0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0 \tag{2.2}
\end{equation*}
$$

gives rise to an exact sequence

$$
\begin{equation*}
0 \leftarrow \hat{N} \leftarrow \hat{M} \leftarrow \hat{M / N} \leftarrow 0 \tag{2.3}
\end{equation*}
$$

$N \leftrightarrow N^{0}=\hat{M / N}$ is a one-to-one correspondence between the submodules of M, \hat{M} respectively, which maps the set of all $N \subset M$ of type ν and cotype μ onto the set of all $N^{0} \subset \hat{M}$ of type μ and cotype μ.

From now on, we suppose the residue field $k=\mathfrak{o} / \mathfrak{p}$ is FINITE with order $q<\infty$. If M is a finite \mathfrak{o}-module and x is a non-zero element of M, we shall say that x has height r if $\mathfrak{p}^{r} x=0$ and $\mathfrak{p}^{r-1} x \neq 0$. The zero element of M is assigned height zero. We denote by M_{r} the submodule of M consisting of elements of height $\leq r$, so that $M_{r}=\operatorname{ker}\left(\mathfrak{p}^{r}\right)$.

The number of automorphisms of a finite \mathfrak{o}-module M of type λ is

$$
\begin{equation*}
a_{\lambda}(q)=q^{|\lambda|+2 n(\lambda)} \prod_{i \geq 1} \varphi_{m_{j}}(\lambda)\left(q^{-1}\right)=q^{\sum_{i \geq 1} \lambda_{i}^{2}} \prod_{i \geq 1} \varphi_{m_{j}}(\lambda)\left(q^{-1}\right) \tag{2.4}
\end{equation*}
$$

where $\varphi_{m}(t)=(1-t)\left(1-t^{2}\right) \ldots\left(1-t^{m}\right)$. In fact, the number of automorphisms of M is equal to the number of sequences $\left(x_{1}, \ldots, x_{r}\right)$ such that x_{i} has height $\lambda_{i}(1 \leq i \leq r)$ and $M=\oplus_{i} \mathfrak{o} x_{i}$.

2.2 The Hall algebra

Let $\lambda_{1}, \mu^{(1)}, \ldots, \mu^{(r)}$ be partitions, and let M be a finite \mathfrak{o}-module of type λ. We define

$$
G_{\mu^{(1)}, \ldots, \mu^{(r)}}^{\lambda}(\mathfrak{o})
$$

to be the number of chains of submodules of M :

$$
M=M_{0} \supset M_{1} \supset M_{r}=0
$$

such that M_{i-1} / M_{i} has type $\mu^{(i)}$, for $1 \leq i \leq r$. In particular, $G_{\mu \nu}^{\lambda}(\mathfrak{o})$ is the number of submodules N of M which have type ν and cotype μ. Since $l(M)=l(M / N)+l(N)$, it is clear that $G_{\mu \nu}^{\lambda}(\mathfrak{o})=0$ unless $|\lambda|=|\mu|+|\nu|$.

Let $H=H(\mathfrak{o})$ be a free \mathbf{Z}-module on a basis u_{λ} indexed by all partitions λ. Define a product in H by the rule

$$
u_{\mu} u_{\nu}=\sum_{\lambda} g_{\mu \nu}^{\lambda}(\mathfrak{o}) u_{\lambda}
$$

The sum on the right has only finitely many non-zero terms, which makes $H(\mathfrak{o})$ a commutative and associative ring with identity element u_{0}. We call $H(\mathfrak{o})$ the Hall algebra of \mathfrak{o}. The ring $H(\mathfrak{o})$ is generated by (as a \mathbf{Z}-algebra) by the elements $u_{\left(1^{r}\right)}(r \geq 1)$, and they are algebraically independent over \mathbf{Z}.

2.3 The LR-sequence of a submodule

Let T be a tableau of shape $\lambda-\mu$ and weight $\nu=\left(\nu_{1}, \ldots, \nu_{r}\right)$. Then T determines (and is determined by) a sequence of partitions

$$
S=\left(\lambda^{(0)}, \ldots, \lambda^{(r)}\right)
$$

such that $\lambda^{(0)}=\mu, \lambda^{(r)}=\lambda$, and $\lambda^{(i)} \supset \lambda^{(i-1)}$ for $1 \leq i \leq r$, by the condition that $\lambda^{(i)}-\lambda^{(i-1)}$ is skew diagram consisting of the square occupied by the symbol i in T (and hence is a horizontal strip, because T is a tableau).

A sequence of partitions S as above will be called a $L R$-sequence of type ($\mu, \nu ; \lambda$) if $(\mathrm{LR} 1) \lambda^{(0)}=\mu, \lambda^{(r)}=\lambda$, and $\lambda^{(i)} \supset \lambda^{(i-1)}$ for $1 \leq i \leq r$;
$(\operatorname{LR} 2) \lambda^{(i)}-\lambda^{(i-1)}$ is a horizontal strip of length ν_{i}, for $1 \leq i \leq r$. (These two conditions ensure that S determines a tableau T.)
(LR3)The word $w(T)$ obtained by reading T from right to left in successive rows, starting at the top, is a lattice permutation.

For (LR3) to be satisfied, it is necessary and sufficient that, for $i \geq 1$ and $k \geq 0$, the number of symbols i in the first k rows of T should not be less than the number of symbols $i+1$ in the first $k+1$ rows of T.

Every submodule N of a finite \mathfrak{o}-module M gives rise to a LR-sequence of type ($\mu^{\prime}, \nu^{\prime}, \lambda^{\prime}$), where λ, μ, ν are the types of $M, M / N$, and N respectively.

2.4 Hall polynomial

Denote $G_{S}(\mathfrak{o})$ the number of submodules N of M whose associated LR-sequence $S(N)$ of S. Each N has type ν and cotype μ.

Let q denote the number of elements in the residue field of \mathfrak{o}, and recall that $n(\lambda)=$ $\sum_{i}(i-1) \lambda_{i}$, for any partition λ. Then:

For each LR-sequence S of type $\left(\mu^{\prime}, \nu^{\prime}, \lambda^{\prime}\right)$, there exists a monic polynomial $g_{S}(t) \in \mathbf{Z}[t]$ of degree $n(\lambda)-n(\mu)-n(\nu)$, independent of \mathfrak{o}, such that

$$
\begin{equation*}
g_{s}(q)=G_{S}(\mathfrak{o}) \tag{2.5}
\end{equation*}
$$

In other words, $G_{S}(\mathfrak{o})$ is a polynomial in \mathfrak{q}. Now define, for any three partitions λ, μ, ν

$$
g_{\mu \nu}^{\lambda}(t)=\sum_{S} g_{S}(t)
$$

summed over all LR-sequences S of type $\left(\mu^{\prime}, \nu^{\prime} ; \lambda^{\prime}\right)$. This polynomial is the Hall polynomial corresponding to λ, μ, ν. Recall from sections 1.5 and 1.9 that $c_{\mu \nu}^{\lambda}$ denotes the coefficient s_{λ} in the product $s_{\mu} s_{\nu}$; That $c_{\mu \nu}^{\lambda}=c_{\mu^{\prime} \nu^{\prime}}^{\lambda^{\prime}}$ is the number of LR-sequences of type $\left(\mu^{\prime}, \nu^{\prime} ; \lambda^{\prime}\right)$. Then it follows that
(i)If $c_{\mu \nu}^{\lambda}=0$, the Hall polynomial $g_{\nu \mu}(t)$ is identically zero. In particular, $g_{\nu \mu}(t)=0$ unless $|\lambda|=|\mu|+|\nu|$ and $\mu, \nu \subset \lambda$.
(ii)If $c_{\mu \nu}^{\lambda} \neq 0$, then $g_{\mu \nu}^{\lambda}(t)$ has degree $n(\lambda)-n(\mu)-n(\nu)$ and leading coefficient $c_{\mu \nu}^{\lambda}$.
(iii)In either case, $G_{\mu \nu}^{\lambda}(\mathfrak{o})=g_{\mu \nu}^{\lambda}(q)$.
(iv) $g_{\mu \nu}^{\lambda}(t)=g_{\nu \mu}^{\lambda}(t)$.

3 CHAPTER V: THE HECKE RING OF $G L_{n}$ OVER A LOCAL FIELD

3.1 Local fields

In this chapter, we assume F is a non-archimedean local field, i.e.,
(i) F is a finite algebraic extension of \mathbf{Q}_{p} for some prime p, or
(ii) $F=\mathbf{F}_{q}(t)$, where \mathbf{F}_{q} is a finite field.

Let $\mathfrak{o}=\{a \in F:|a| \leq 1\}$ be the ring of integers, and $\mathfrak{p}=\{a \in F:|a|<1\}$. Let $k=|\mathfrak{o} / \mathfrak{p}|$ be the residue field, and let $q<\infty$ be its order. Let π be a generator of \mathfrak{p} with $|\pi|=q^{-1}$.

3.2 The Hecke ring $H(G, K)$

Let $G=G L_{n}(F)$ be the group of all invertible $n \times n$ matrix over F. Also let

$$
G^{+}=G \cap M_{n}(\mathfrak{o})
$$

be the subsemigroup of G consisting of all matrices $x \in G$ with entries $x_{i j} \in \mathfrak{o}$, and let

$$
K=G K_{n}(\mathfrak{o})=G^{+} \cap\left(G^{+}\right)^{-1}
$$

so that K consisting of all $x \in G$ with entries $x_{i j} \in \mathfrak{o}$ and $\operatorname{det}(x)$ a unit in \mathfrak{o}.
Let $d x$ denote the unique Haar measure on G for which K has measure 1 and is both leftand right-invariant under the multiplication of K. Under this measure, the measure of $K x$ and $x K$ is 1 for all non-zero $x \in G$.

Let $L(G, K)$ denote the space of all complex-valued continuous functions of compact support of G (resp. G^{+}) which are bi-invariant with respect to K, i.e., such that

$$
f\left(k_{1} x k_{2}\right)=f(x)
$$

for all $x \in G\left(\operatorname{resp}, G^{+}\right)$and $k_{1}, k_{2} \in K$. We may and shall regard $L\left(G^{+}, K\right)$ as a subspace of $L(G, K)$.

We define a multiplication on $L(G, K)$ as follows: for all $f, g \in L(G, K)$,

$$
(f * g)(x)=\int_{G} f\left(x y^{-1}\right) g(y) d y
$$

(Since f and g are compactly supported, the integration is over a compact set.) This product is associative and commutative. Since G^{+}is closed under multiplication, it follows immediately from the definition that $L\left(G^{+}, K\right)$ is a subring of $L(G, K)$.

Each function $f \in L(G, K)$ is constant on each double closet $K x K$ in G. These double cosets are compact and mutually disjoint. Since f has compact support, it follows that f takes non-zero values on only finitely many double cosets $K x K$, and hence can be written as
a finite linear combination of their characteristic functions. Hence the characteristic functions of the double cosets of K form a C-basis on $L(G, K)$. The characteristic function of K is the identity element of $L(G, K)$.

If we vary the definition of the algebra $L(G, K)$ (resp. $L\left(G^{+}, K\right)$) by requiring the functions to take their values in \mathbf{Z} instead of C, the resulting ring is called the Hecke ring of G (resp, G^{+}), and we denote it by $H(G, K)$ (resp, $H\left(G^{+}, K\right)$.) Clearly, we have

$$
L(G, K) \cong H(G, K) \otimes_{\mathbf{z}} \mathbf{C}, L\left(G^{+}, K\right) \cong H\left(G^{+}, K\right) \otimes_{\mathbf{z}} \mathbf{C}
$$

We will soon discover that the Hecke ring $H(G, K)$ is closely related to the Hall algebra $H(\mathfrak{o})$ of the discrete evaluating ring \mathfrak{o}.

Consider a double coset $K x K$, where $x \in G$. By multiplying x by a suitable power of π we can bring x to G^{+}. The theory of elementary divisors for matrices over a principal ideal domain now shows that by pre- and post- multiplying x by suitable elements of K we can reduce x to a diagonal matrix. Multiplying further by a diagonal matrix belonging to x will produce a diagonal matrix whose entries are powers of π, and finally conjugation by a permutation matrix will get the exponents in descending order. Hence, each double coset $K x K$ has a unique representative of the form

$$
\pi^{\lambda}=\left(\pi^{\lambda_{1}}, \ldots, \pi^{\lambda_{n}}\right)
$$

where $\lambda_{1} \geq \ldots \geq \lambda_{n}$. We have $\lambda_{n} \geq 0$ (so that λ is a paritition) if and only if $x \in G^{+}$.
Let c_{λ} denote the characteristic function of the double coset $K \pi^{\lambda} K$. Then we have the c_{λ} (resp. the c_{λ} such that $\lambda_{n} \geq 0$) form a Z-basis of $H(G, K)$ (resp. $H\left(G^{+}, K\right)$). The characteristic function c_{0} of K is the identity element of $H(G, K)$ and $H\left(G^{+}, K\right)$. Notice that

$$
H(G, K)=H\left(G^{+}, K\right)\left[c_{\left(1^{n}\right)}^{-1}\right]
$$

This would allows us to concentrate on $H\left(G^{+}, K\right)$, which has a Z-basis consisting of the characteristic functions c_{λ}, where λ runs through all partitions $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of length $\leq n$.

Let μ, ν be partitions of length $\leq n$. The product $c_{\mu} * c_{\nu}$ will be a linear combination of the c_{λ}. In fact,

$$
\begin{equation*}
c_{\mu} * c_{\nu}=\sum_{\lambda} g_{\mu \nu}^{\lambda}(q) c_{\lambda} \tag{3.1}
\end{equation*}
$$

summed over all partitions λ of length $\leq n$, where $g_{\mu \nu}^{\lambda}(q)$ is the "Hall polynomial" defined in Chapter II. In fact, if we write $K \pi^{\mu} K=\cup_{j} K x_{j}, K \pi^{\nu} K=\cup_{j} K y_{j}$ as disjoint unions of left cosets, then we have

$$
\begin{equation*}
\left(c_{\mu} * c_{\nu}\right)\left(\pi^{\lambda}\right)=\int_{G} c_{\mu}\left(\pi^{\lambda} y^{-1}\right) c_{\nu}(y) d y=\sum_{j} c_{\mu}\left(\pi^{\lambda} y_{j}^{-1}\right) \tag{3.2}
\end{equation*}
$$

since K has measure 1. This is furthermore equal to the number of parts (i, j) such that

$$
\pi^{\lambda}=k x_{i} y_{j}
$$

for some $k \in K$ depending on i, j, and thus $=g_{\mu \nu}^{\lambda}(q)$.
From (3.1), it follows that the mapping $u_{\lambda} \mapsto c_{\lambda}$ is a homomorphism of the Hall algebra $H(\mathfrak{o})$ onto $H\left(G^{+}, K\right)$ whose kernel is generated by the u_{λ} such that $l(\lambda)>n$. Hence from Chapter III, we obtain a structure theorem for $H\left(G^{+}, K\right)$ and $L\left(G^{+}, K\right)$: Let $\Lambda_{n}\left[q^{-1}\right]$ denote the ring of symmetric polynomials in n variables with coefficient in $\mathbf{Z}\left[q^{-1}\right]$ (resp. C). Then the Z-linear mapping θ of $H\left(G^{+}, K\right)$ into $\Lambda_{n}\left[q^{-1}\right]$ (resp. C). Then the Z-linear mapping of $H(G, K)$ into $\Lambda_{n}\left[q^{-1}\right]$ (resp. the C-linear mapping of $L\left(G^{+}, K\right)$ into $\Lambda_{n, \mathbf{C}}$) defined by

$$
\begin{equation*}
\theta\left(c_{\lambda}\right)=q^{-n(\lambda)} P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q^{-1}\right) \tag{3.3}
\end{equation*}
$$

for all partitions λ of length $\leq n$, is an injective ring homomorphism (resp. an isomorphism of \mathbf{C}-algebras).

Finally, let us compute the measure of a double closet $K \pi^{\lambda} K$. For $f \in L\left(G^{+}, K\right)$, let

$$
\mu(f)=\int_{G} f(x) d x
$$

Then $\mu: L\left(G^{+}, K\right) \rightarrow \mathbf{C}$ is a \mathbf{C}-algebra homomorphism, and clearly $\mu\left(c_{\lambda}\right)$ is the measure of $K \pi^{\lambda} K$. In view of (3.3) we may write $\mu=\mu^{\prime} \circ \theta$, where $\mu^{\prime}: \Lambda_{n, \mathbf{C}} \rightarrow \mathbf{C}$ is a C-algebra homomorphism, hence is determined by its effect on the generators $e_{r}=P_{\left(1^{r}\right)}\left(x_{1}, \ldots, x_{n} ; q^{-1}\right)$. On the other hand, $\mu\left(c_{\left(1^{r}\right)}\right)$ is the number of subvector spaces in k^{n} with dimension r, which is equal to

$$
\mu\left(c_{\left(1^{r}\right)}\right)=\left[\begin{array}{l}
n \\
r
\end{array}\right](q)
$$

From (3.3) we have $\mu^{\prime}\left(e_{r}\right)=q^{r(r-1) / 2}\left[\begin{array}{l}n \\ r\end{array}\right](q)=e_{r}\left(q^{n-1}, q^{n-2}, \ldots, 1\right)$. Hence μ^{\prime} is the mapping which takes x_{i} to $q^{n-i}(1 \leq i \leq n)$. It follows that therefore from (3.2) and (3.3) that the measure of $K \pi^{\lambda} K$ is $q^{-n(\lambda)} P_{\lambda}\left(q^{n-1}, q^{n-2}, \ldots, 1 ; q^{-1}\right)$. Hence, we also have the measure of $K \pi^{\lambda} K$ is equal to

$$
\begin{equation*}
q^{\sum(n-2 i+1) \lambda_{i}} v_{n}\left(q^{-1}\right) / v_{\lambda}\left(q^{-1}\right)=q^{2(\lambda, \rho)} v_{n}\left(q^{-1}\right) / v_{\lambda}\left(q^{-1}\right) \tag{3.4}
\end{equation*}
$$

where $\rho=\frac{1}{2}(n-1, n-3, \ldots, 1-n)$.

