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1 CHAPTER I: SYMMETRIC FUNCTIONS

1.1 Partitions

A partition is any (finite or infinite sequence

λ = (λ1, λ2, ..., λr, ...) (1.1)

of non-negative integers in decreasing order:

λ1 ≥ λ2 ≥ ... ≥ λr ≥ ...

and containing only finitely many nonzero terms. We don’t distinguish two such sequences
which differ only by a string of zeros at the end.

The nonzero λi are called the parts of λ. The number of parts is the length of λ, denoted
by l(λ); And the sum of the parts is the weight of λ, denote by |λ| = λ1 + λ2 + ....

If |λ| = n we say that λ is a partition of n. The set of all partitions of n is denoted by
Pn, and the set of all partitions by P. In particular, P0 consists of a single element, the
unique partition of zero, which we denote by 0.

Sometimes it is convenient to use a notation that indicates the number of times each integer
occurs as a part:

λ = (1m12m2 ...rmr ...)

means that exactly mi parts of λ are equal to i. The number

mi = mi(λ) = #{j : λj = i} (1.2)

is called the multiplicity of i in λ.

The diagram of a partition λ may be formally defined as the set of points (i, j) ∈ Z2 such
that 1 ≤ j ≤ λi. For example, the diagram of the partition (5441) consists of 5 points or
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nodes in the top row, 4 in the second row, 4 in the third row, and 1 in the fourth row. We
shall usually denote the diagram of a partition λ by the same symbol λ.

The conjugate of a partition λ is the partition λ′ whose diagram is the transpose of the
diagram λ, i.e., the diagram obtained by the reflection in the main diagonal. Hence λ′

i is the
number of nodes in the ith column of λ, or equivalently

λ′
i = #{j : λj ≥ i} (1.3)

In particular, λ′
1 = l(λ) and λ1 = l(λ′). Obviously λ′′ = λ. For example, the conjugate of

(5441) is (43331).
From (1.2) and (1.3) we have

mi(λ) = λ′
i − λ′

i+1 (1.4)

For each partition λ we define

n(λ) =
∑
i≥1

(i− 1)λi =
∑
i≥1

(
λ′
i

2

)
(1.5)

To be the sum of the numbers obtained by attaching a zero to each node in the top row of
the diagram of λ, a 1 to each node in the second row, and so on.

Let λ be a partition and let m ≥ λ1, n ≥ λ′
1. Then the m+ n numbers

λi + n− i(1 ≤ i ≤ n), n− 1 + j − λ′
j(1 ≤ j ≤ m)

are a permutation of {0, 1, 2, ...,m+ n− 1}.

If λ, µ are partitions, we shall write λ ⊃ µ to mean that the diagram of λ contains the
diagram of µ, i.e., λi ≥ µi for all i ≥ 1. The set-theoretic difference θ = µ− ν is called a skew
diagram.

A path in a skew diagram θ is as sequence x0, x1, ..., xm of squares in θ such that xi−1

and xi have a common side, for 1 ≤ i ≤ m. A subset φ of θ is said to be connected if any
two squares in φ can be connected by a path in φ. The maximal connected subsets of θ are
themselves skew diagrams, called the connected components of θ. In the example that
λ = (5441) and µ = (432), we have three connected components.

The conjugate of a skew diagram θ = λ− µ is θ′ = λ′ − µ′. Let θi = λi − µi, θ
′
i = λ′

i − µ′
i,

and

|θ| =
∑
i

θi = |λ| − |µ|

A skew diagram θ is a horizontal m-strip (resp. a vertical m-strip) if |θ| = m and
θ′i ≤ 1 (resp. θi ≤ 1) for each i ≥ 1. In other words, a horizontal (resp. vertical) strip has at
most one square in each column (resp. row).
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If θ = λ − µ, a necessary and sufficient condition for θ to be a horizontal (resp. vertical)
strip is that the sequence λ and µ are interlaced, in the sense that λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ ...

A skew diagram θ is a border strip(also called a skew hook by some authors, and ribbon
by others) if θ is a connected and contains no 2 × 2 block of squares so that the successive
rows (or columns) of θ overlap by exactly one square. The length of a border strip θ is the
total number |θ| of square it contains, and its height is defined to be one less than the number
of rows it occupies. If we think of a border strip θ as a set of modes rather than squares, then
by joining contiguous nodes by horizontal or vertical line segments of unit length, we obtain a
sort of staircase, and the height of θ is the number of vertical line segments or "risers" in the
staircase.

A (column-strict) tableau T is a sequence of partitions

µ = λ(0) ⊂ λ(1) ⊂ ... ⊂ λ(r) = λ

such that each skew diagram θ(i) = λ(i)−λ(i−1)(1 ≤ i ≤ r) is a horizontal strip. Graphically,
T may be described by numbering each square of the skew diagram θ(i) with the number i,
for 1 ≤ i ≤ r, and we shall often think of a tableau as a numbered skew diagram in this way.
The numbers inserted in λ − µ must increase strictly down each column (which explains the
adjective "column-strict") and weakly from left to right along each row. The skew diagram
λ−µ is called the shape of the tableau T and the sequence (|θ(1)|, |θ(2)|, ..., |θ(r)|) is the weight
of T . Throughout the book, the work tableau (unqualified) will mean a column-strict tableau,
as defined above.

Let Ln denote the reverse lexicographic ordering on the set Pn of partitions of n: that is
to say, Ln is the subset of Pn ×Pn consisting of all (λ, µ) such that either λ = µ or the first
non-vanishing difference λi − µi is positive. Ln is a total ordering. For example, when n = 5,
L5 arranges P5 in the sequence

(5), (41), (32), (312), (221), (213), (15)

Another total ordering on Pn is L′
n, the set of all (λ, µ) such that either λ = µ or else the

first non-vanishing difference λ∗
i −µ∗

i is negative, where λ∗
i = λn+1−i. The orderings Ln, L

′
n are

distinct as soon as n ≥ 6. In fact, we have for every λ, µ ∈Pn,

(λ, µ) ∈ L′
n ⇔ (µ′, λ′) ∈ Ln

An ordering which is more important than either Ln or L′
n is the natural (partial) ordering

Nn on Pn (also called the dominance partial ordering by some authors), which is defined as
follows:

(λ, µ) ∈ Nn ⇔ λ1 + ...+ λi ≥ µ1 + ...+ µi, ∀i ≥ 1

As soon as n ≥ 6, Nn is not a total ordering. We shall write λ ≥ µ in place of (λ, µ) ∈ Nn.

Let λ, µ ∈Pn. Then λ ≥ µ⇔ (λ, µ) ∈ Ln ∩ L′
n ⇔ µ′ ≥ λ′.
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Now, let us consider the integer vectors a = (a1, ..., an) ∈ Zn. The symmetric group Sn

acts on Zn by permitting the coordinates, and the set

Pn = {b ∈ Zn : b1 ≥ b2 ≥ ... ≥ bn}

is a fundamental domain for this action, i.e., the Sn-orbit of each a ∈ Zn meets Pn in
exactly one point, which we denote by a+. Thus a+ is obtained by rearranging a1, ..., an in
descending order of magnitude.

For a, b ∈ Zn we define a ≥ b as before to mean a1 + ...+ ai ≥ b1 + ...+ bi,∀1 ≤ i ≤ n. Let
a ∈ Zn. Then a ∈ Pn ⇔ a ≥ wa,∀w ∈ Sn.

For each pair of integers i, j, 1 ≤ i < j ≤ n define Rij : Z
n → Zn by

Rij(a1, ..., an) = (a1, ..., ai + 1, ..., aj − 1, ..., an)

Any product R =
∏

i<j R
rij
ij is called a raising operator. The order of the terms in the

product is immaterial since they commute with each other.

Let a ∈ Zn and let R be a raising operator. Then Ra ≥ a. Conversely, let a, b ∈ Zn be
such that a ≤ b and a1 + ... + an = b1 + ... + bn. Then there exists a raising operator R such
that b = Ra.

1.2 The ring of symmetric functions

Consider the ring Z[x1, ..., xn] of polynomials in n independent variables x1, ..., xn with rational
integer coefficients. The symmetric group Sn acts on this ring by permitting the variables,
and a polynomial is symmetric if it is invariant under this action. The symmetric polynomials
form a subring

Λn = Z[x1, ..., xn]
Sn

Λn is a graded ring: We have

Λn = ⊕k≥0Λ
k
n

Where Λk
n consists of the homogenous symmetric polynomials of degree k, together with

the zero polynomial.

For each α = (α1, ..., αn) we denote by xα the polynomial

xα = xα1
1 ...xαn

n

Let λ be any partition. The polynomial

mλ(x1, ..., xn) =
∑

xα (1.6)

summed over all distinct permutations α of λ = (λ1, ..., λn), is clearly symmetric, and the
mλ (as λ run through all the partitions of length ≤ n) form a Z-basis of Λn. Hence the mλ
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such that l(λ) ≤ n and |λ| = k form a Z-basis of λk
n. In particular, as soon as n ≥ k, the mλ

such that |λ| = k form a Z-basis of Λk
n.

Now, let us generate the theory above in the case of countably many independent variables.
Let m ≥ n and consider the homomorphism

Z[x1, ..., xm]→ Z[x1, ..., xn]

which send each of xn+1, ..., xm to zero and the other xi to themselves. On restriction to
Λm this gives a homomorphism

ρm,n : Λm → Λn

It follows that ρm,n is subjective, and on restriction to Λk
m we have homomorphism

ρkm,n : Λk
m → Λk

n

for all k ≥ 0 and m ≥ n, which are always subjective, and are bijective for m ≥ n ≥ k.

We now form the inverse limit

Λk = lim←−Λ
k
n

of the Z-modules Λk
n relative to the homomorphism ρkm,n. This module has a Z-basis

consisting of the monomial symmetric functions mλ (for all partitions λ of k). Therefore, Λk

is a free Z-module of rank p(k), the number of partitions of k. Now let

Λ = ⊕k≥0Λ
k

so that Λ is the free Z-module generated by the mλ for all partitions λ. We have surjective
homomorphisms

ρn = ⊕k≥0ρ
k
n : Λ→ Λn

Which give Λ a graded ring structure.

For each integer r, the rth elementary symmetric function er is the sum of all products
of r distinct variables xi, so that e0 = 1 and

er =
∑

i1<i2<...<ir

xi1xi2 ...xir = m(1r)

for r ≥ 1. The generating function for the er is

E(t) =
∑
r≥0

ert
r =

∏
i≥1

(1 + xit) (1.7)

For each partition λ = (λ1, λ2, ...), define

eλ = eλ1eλ2 ...

Let λ be a partition, λ′ its conjugate. Then
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e′λ = mλ +
∑
µ

aλµmµ

where the aλµ are non-negative integers, and the sum is over partitions µ < λ in the natural
ordering. Therefore, we have

Λ = Z[e1, e2, ...]

and the er are algebraically independent over Z.

For each integer r, the rth complete symmetric function hr is the sum of all monomials
of total degree r in the variables xi, so that

hr =
∑
|λ|=r

mλ

In particular, h0 = 1 and h1 = e1. The generating function for the hr is

H(t) =
∑
r≥0

hrt
r =

∏
i≥1

(1− xit)
−1 (1.8)

From (1.7) and (1.8) we have H(t)E(−t) = 1, are equivalently

n∑
r=0

erhn−r = 0 (1.9)

for all n ≥ 1. Since the er are algebraically independent, we may define a homomorphism
of graded rings

ω : Λ→ Λ

such that ω(er) = hr for all r ≥ 0. The symmetry of the relations (1.9) between the e’s
and the h’s shows that ω is an involution, i.e., ω2 is the identity map. Also, we have

Λ = Z[h1, h2, ...]

and the hr are algebraically independent over Z.
For each partition λ = (λ1, λ2, ...), define

hλ = hλ1hλ2 ...

Then the hλ form a Z-basis of Λ. Finally, if we define

fλ = ω(mλ)

for each partition λ, then the fλ, called the "forgotten" symmetric functions, together with
mλ, eλ, hλ, form four Z-bases of Λ.

Let N be a positive integer and consider the matrices of N + 1 rows and columns

H = (hi−j)0≤i,j≤N , E = ((−1)i−jei−j)
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Where er = hr = 0 whenever r is negative. Both H and E are strictly lower triangular, and
HE = EH = IN+1. Let λ, µ be two partitions of length ≤ p, such that λ′ and µ′ have length
≤ q, where p + q = N + 1. Consider the minor of H with row indices λi + p − i (1 ≤ i ≤ p)
and column indices µi + p− i (1 ≤ i ≤ p). The complementary cofactor of E ′ has row indices
p− 1 + j − λ′

j (1 ≤ j ≤ q) and column indices p− 1 + j − µ′
j (1 ≤ j ≤ q). Hence, we have

det(hλi−µj−i+j)1≤i,j≤p = (−1)|λ|+|µ| det((−1)λ′
i−µ′

j−i+jeλ′
i−µ′

j−i+j)1≤i,j≤q

The minus signs cancel out, and therefore we have

det(hλi−µj−i+j)1≤i,j≤p = det(eλ′
i−µ′

j−i+j)1≤i,j≤q

(Later, we will see that this could also be written as sλ/µ.) In particular, taking µ = 0 we
have

det(hλi−i+j) = det(eλ′
i−i+j)

And later, we will see that both sides are equal to the Schur function sλ.

For each r ≥ 1 the power sum is

pr =
∑
i

xr
i = m(r)

The generating function for the pi is

P (t) =
∑
r≥1

tr−1 =
∑
i≥1

xi

1− xit
=

∑
i≥1

d

dt
log

1

1− xit

so that

P (t) =
d

dt
logH(t) = H ′(t)/H(t) (1.10)

Likewise, we have

P (−t) = d

dt
logE(t) = E ′(t)/E(t) (1.11)

From (1.10) and (1.11) we obtain

nhn =
n∑

r≥1

prhn−r, nen =
n∑

r=1

(−1)r−1pren−r (1.12)

This would imply that

ΛQ = Λ⊗Z Q = Q[p1, p2, ...]

And the pr are algebraically independent over Q. Hence, if we define

pλ = pλ1pλ2

for each partition λ = (λ1, λ2, ...), then the pλ form a Q-basis of ΛQ. But they do NOT
form a Z-basis of Λ.
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Since the involution ω interchanges E(t) and H(t), it follows from (1.10) and (1.11) that

ω(pn) = (−1)n−1pn

for all n ≥ 1, and hence that for any partition λ we have

ω(pλ) = ϵλpλ (1.13)

Where ϵλ = (−1)|λ|−l(λ).

Finally, we shall express hn and en as linear combinations of the pλ. For any partition λ,
define

zλ =
∏
i≥1

imi ·mi!

Where mi = mi(λ) is the number of parts of λ equal to i. Then we have

H(t) =
∑
λ

z−1
λ pλt

|λ|, E(t) =
∑
λ

ϵλz
−1
λ pλt

|λ| (1.14)

or equivalently, hn =
∑

|λ|=n z
−1
λ pλ, en =

∑
|λ|=n ϵλz

−1
λ pλ.

1.3 Schur functions

Let xα = xα1
1 ...xαn

n be a monomial, and consider the polynomial aα obtained by antisymmetriz-
ing xα: that is to say,

aα = aα(x1, ..., xn) =
∑
ω∈Sn

ϵ(ω) · ω(xα)

Where ϵ(ω) is the sign of the permutation ω. This polynomial aα is skew-symmetric, i.e.,
we have ω(aα) = ϵ(ω)aα for every ω ∈ Sn; In particular, therefore, aα vanished unless α1, ..., αn

are all distinct. Hence we may as well assume that that α1 > α2 > ... > αn ≥ 0, and therefore
we may write α = λ+ δ, where λ is a partition of length ≤ n, and δ = (n− 1, n− 2, ..., 1, 0).
Then

aα = aλ+δ =
∑
ω

ϵ(ω) · ω(xλ+δ)

Which can be written as a determinant:

aλ+δ = det(x
λj+n−j
i )1≤i,j≤n

This determinant is divisible in Z[x1, ..., xn] by each of the differences xi−xj(1 ≤ i < j ≤ n),
and hence by their product, which is the Vandermonde determinant∏

1≤i<j≤n

(xi − xj) = det(xn−j
i ) = aδ
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So aλ+δ is divisible by aδ in Z[x1, .., xn], and the quotient

sλ = sλ(x1, ..., xn) = aλ+δ/aδ

is symmetric, i.e., is in Λn. It is called the Schur function in the variables x1, ..., xn,
corresponding to the partition λ (where l(λ) ≤ n), and is homogenous of degree |λ|.

The Schur functions sλ, where l(λ) ≤ n, for a Z-basis of Λn; The sλ for a Z-basis of Λ, and
for each k ≥ 0, the sλ such that |λ| = k form a Z-basis of Λk.

In fact, we can write each Schur function sλ as a polynomial in the elementary symmetric
functions er, and as a polynomial in the complete symmetric functions hr. The formulas are

sλ = det(hλi−i+j)1≤i,j≤n = det(eλ′
i−i+j)1≤i,j≤m (1.15)

Where n ≥ l(λ),m ≥ l(λ′). It follows that for all partitions λ, we have

ω(sλ) = sλ′

Also in particular, s(n) = hn, and s(1n) = en.

1.4 Orthogonality

Let x = (x1, x2, ...) and y = (y1, y2, ...) be two finite or infinite sequences of independent
variables. We shall denote the symmetric functions of the x’s by sλ(x), pλ(x), etc., and the
symmetric functions of the y’s by sλ(y), pλ(y), etc.

We shall give three series expansions for the product∏
i,j

(1− xiyj)
−1

The first of these is ∏
i,j

(1− xiyj)
−1 =

∑
λ

z−1
λ pλ(x)pλ(y)

Next, we have ∏
i,j

(1− xiyj)
−1 =

∑
λ

hλ(x)mλ(y) =
∑
λ

hλ(y)mλ(x)

And the third identity is ∏
i,j

(1− xiyj)
−1 =

∑
λ

sλ(x)sλ(y)

The three identities are summed over all partitions λ. We now define a scalar product on
Λ, i.e., a Z-valued bilinear form ⟨u, v⟩, by requiring that the bases (hλ) and (mλ) should be
dual to each other:
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⟨hλ,mµ⟩ = δλµ

for all partitions λ, µ, where δλµ is the Kronecker delta. For each n ≥ 0, let uλ, vλ be the
Q-basis of Λn

Q, indexed by the partitions of n. Then the following conditions are equivalent:
(a)⟨uλ, vµ⟩ = δλµ for all λ, µ;
(b)

∑
λ uλ(x)vλ(y) =

∏
i,j(1− xiyj)

−1.

It follows that ⟨pλ, pµ⟩ = δλµzλ, so that the pλ form an orthogonal basis of ΛQ. Likewise, we
have ⟨sλ, sµ⟩ = δλµ. Also, we see that the bilinear form ⟨u, v⟩ is symmetric and positive definite,
and the involution ω is an isometry, i.e., ⟨ωu, ωv⟩ = ⟨u, v⟩. Finally, we have ⟨eλ, fµ⟩ = δλµ
(here fµ = ω(mµ)), i.e., (eλ) and (fλ) are dual bases of Λ.

1.5 Skew Schur functions

Any symmetric functions f ∈ Λ is uniquely determined by its scalar products with the sλ;
namely

f =
∑
λ

⟨f, sλ⟩sλ

since the sλ form an orthogonal basis of Λ.

Let λ, µ be partitions, and define a symmetric functions sλ/µ by the relations

⟨sλ/µ, sν⟩ = ⟨sλ, sµsν⟩ (1.16)

for all partitions ν. The sλ/µ are called the skew Schur functions, Equivalently, if cλµν
are the integers defined by

sµsν =
∑
λ

cλµνsλ (1.17)

then we have sλ/µ = cλµνsν . In particular, it is clear that sλ/0 = sλ, where 0 denotes the zero
partition. Also cλµν = 0 unless |λ| = |µ| + |ν|, so that sλ/µ is homogenous of degree |λ| − |µ|,
and is zero if |λ| < |µ|. Later we will see that sλ/µ = 0 unless λ ⊃ µ.

Now let x = (x1, x2, ..) and y = (y1, y2, ...) be two sets of variables. Then

∑
λ

sλ/µ(x)sλ(y) =
∑
λ,ν

cλµ,νsν(x)sλ(y) =
∑
ν

sν(x)sµ(y)sν(y) = sµ(y)
∑
ν

hν(x)mν(y)

Now let us consider the case when y = (y1, ..., yn), so that the sums above are restricted to
partitions of length ≤ n. Recall the definition of Schur polynomials, multiplying aδ on both
sides, we have ∑

λ

sλ/µ(x)aλ+δ(y) =
∑
ν

hν(x)mν(y)aµ+δ(y)
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Compare the coefficient of yλ+δ on both sides, we have

sλ/µ(x) = det(hλi−µj−i+j)1≤i,j≤n = det(eλ′
i−µ′

j−i+j)1≤i,j≤m

Where n ≥ l(λ),m ≥ l(λ′), and therefore ω(sλ/µ) = sλ′/µ′ . Also, the skew Schur function
sλ/µ is zero unless λ ⊃ µ, i.e., if λi ≥ µi for every i, in which it depends on the on the skew
diagram λ− µ. If θi = λi − µi are the components of λ− µ, we have sλ/µ =

∏
s(θi).

If the number of variables xi is finite, we can say more: In fact, we have sλ/µ(x1, ..., xn) = 0
unless 0 ≤ λ′

i − µ′
i ≤ n for all i ≥ 1.

Now let x = (x1, x2, ...) and y = (y1, y2, ...), z = (z1, z2, ...) be three sets of independent
variables. Then we have∑

λ,µ

sλ/µ(x)sλ(z)sµ(y) =
∑
µ

sµ(y)sµ(z)
∏
i,k

(1− xizk)
−1

which is furthermore equal to∏
i,k

(1− xizk)
−1

∏
j,k

(1− yjzk)
−1 =

∑
λ

sλ(x, y)sλ(z)

Therefore we conclude that sλ(x, y) =
∑

µ sλ/µ(x)sµ(y) =
∑

µ,ν c
λ
µ,νsµ(y)sν(x). More gen-

erally, we have sλ/µ(x, y) =
∑

ν sλ/ν(x)sν/µ(y), summed over partitions ν such that λ ⊃ ν ⊃ µ.

We can furthermore generate this formula as follows. Let x(1), ..., x(n) be n sets of variables,
and let λ, µ be partitions. Then

sλ/µ(x1, ..., xn) =
∑
(ν)

n∏
i=1

sν(i)/ν(i−1)(x(i)) (1.18)

summed over all sequences (ν) = (ν(0), ..., ν(n)) of partitions, such that ν(0) = µ, ν(n) = λ,
and ν(0) ⊂ ν(1) ⊂ ... ⊂ ν(n).

We shall apply the above formula to the case that each of x(1), ..., x(n) consists of a single
variable xi. For a single x, it follows that sλ/µ(x) = 0 unless λ − µ is a horizontal strip, in
which case sλ/µ(x) = x|λ|−|µ|. Hence each of the products in the sum on the right-hand side
of (1.18) is a monomial xα1

1 ...xαn
n , where αi = |ν(i)− ν(i−1)|, and hence we have sλ/µ(x1, ..., xn)

expressed as a sum of monomials xα, one for each tableau T of shape λ− µ. If the weight of
T is α = (α1, ..., αn), we shall write xT for xα. Then:

sλ/µ =
∑
T

xT (1.19)

summed over all tableau T of shape λ− µ.

For each partition ν such that |ν| = |λ| − |µ|, let Kλ−µ,ν denote the number of tableux of
shape λ− µ and weight ν. From (1.19) we have
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sλ/µ =
∑
v

Kλ−µ,νmν (1.20)

and therefore

Kλ−µ,ν = ⟨sλ/µ, hν⟩ = ⟨sλ, sµhν⟩ (1.21)

so that

sµhν =
∑
λ

Kλ−µ,νsλ (1.22)

In particular, suppose that µ = (r), a partition with only one non-zero part. Then Kλ−µ,(r)

is 1 or 0 according to as λ − µ is or is not a horizontal r-strip, and therefore from (1.22) we
have Pieri’s formula

sµhr =
∑
λ

sλ (1.23)

summed over all partitions λ such that λ−µ is a horizontal r-strip. Applying the involution
ω to the equation above, we obtain

sµer =
∑
λ

sλ (1.24)

summed over all partitions λ such that λ− µ is a vertical r-strip.
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2 CHAPTER II: HALL POLYNOMIALS

2.1 Finite o-modules

First, let us introduce the term "discrete valuation ring". A discrete valuation ring (DVR),
denoted as o, is a principal ideal domain (PID) with exactly one non-zero maximal ideal,
denoted as p. This would indicate that o is a integral domain, and its field of fractions K is
equipped with a valuation v : K → Z ∪ {∞} such that for all x, y ∈ K,

(i)v(xy) = v(x)v(y)
(ii)v(x+ y) ≥ min{v(x), v(y)}
(iii)v(x) =∞⇔ x = 0
and also o = {x | v(x) ≥ 0}, p = {x | v(x) ≥ 1}

The most important example of DVR is the ring p-adic integers Zp consisting of elements
0 and

s =
∞∑
i=k

aip
i = akp

k + ak+1p
k+1 + ...

where v(s) = k ≥ 0, ak ∈ {1, 2, ..., p − 1}, ak+1, ak+2, ... ∈ {0, 1, 2, ..., p − 1}. Its fields of
fractions is the p-adic field Qp, where we would allow k to be negative.

Now for the term finite o-module, we mean a module M with a direct sum decomposition
of the form

M ∼= ⊕r
i=1o/p

λi (2.1)

where the λi are positive integers, which we may assume are arranged in descending order:
λ = λ1 ≥ λ2 ≥ ... ≥ λr > 0. In other words, λ = (λ1, ..., λr) is a partition. On the other
hand, given a finite o-module M , let µi = dimk(p

i−1M/piM). Then µ = (µ1, µ2, ...) is the
conjugate of partition λ. Therefore, the partition λ is uniquely determined by the module M ,
and we call λ the type λ of M . Clearly two finite o-modules are isomorphic if and only if
they have the same type, and every partition λ occurs as a type. If λ is the type of M , then
|λ| =

∑
i λi is the length l(M) of M , i.e., the length of a composition series of M . The length

is an additive function of M , this means that if

0→M ′ →M →M ′′ → 0

is a short exact sequence of finite o-modules, then

l(M ′)− l(M) + l(M ′′) = 0

If N is a submodule of M , then the cotype of N in M is defined to be the type of M/N .

A finite o-module M is cyclic, i.e., generated by one element, if and only if its type is a
partition (r) consisting of a single part r = l(M), and M is elementary, i.e., pM = 0 if and
only if the type of M is (1r). If M is elementary of type (1r), then M is a vector space over
k, and l(M) = dimk M = r.
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Let M be a finite o-module. The dual of M is defined to be

M̂ = Homo(M,E)

Where E = lim−→ o/pn is the "injective envelope" of k, i.e., the smallest injective o-module
which contains k as a submodule. M̂ and M are isomorphism and have the same type. Since
E is injective, an exact sequence

0→ N →M →M/N → 0 (2.2)

gives rise to an exact sequence

0← N̂ ← M̂ ← ˆM/N ← 0 (2.3)

N ↔ N0 = ˆM/N is a one-to-one correspondence between the submodules of M , M̂
respectively, which maps the set of all N ⊂ M of type ν and cotype µ onto the set of all
N0 ⊂ M̂ of type µ and cotype µ.

From now on, we suppose the residue field k = o/p is FINITE with order q < ∞. If M
is a finite o-module and x is a non-zero element of M , we shall say that x has height r if
prx = 0 and pr−1x ̸= 0. The zero element of M is assigned height zero. We denote by Mr the
submodule of M consisting of elements of height ≤ r, so that Mr = ker(pr).

The number of automorphisms of a finite o-module M of type λ is

aλ(q) = q|λ|+2n(λ)
∏
i≥1

φmj
(λ)(q−1) = q

∑
i≥1 λ

′2
i

∏
i≥1

φmj
(λ)(q−1) (2.4)

where φm(t) = (1−t)(1−t2)...(1−tm). In fact, the number of automorphisms of M is equal
to the number of sequences (x1, ..., xr) such that xi has height λi(1 ≤ i ≤ r) and M = ⊕ioxi.

2.2 The Hall algebra

Let λ1, µ
(1), ..., µ(r) be partitions, and let M be a finite o-module of type λ. We define

Gλ
µ(1),...,µ(r)(o)

to be the number of chains of submodules of M :

M = M0 ⊃M1 ⊃Mr = 0

such that Mi−1/Mi has type µ(i), for 1 ≤ i ≤ r. In particular, Gλ
µν(o) is the number of

submodules N of M which have type ν and cotype µ. Since l(M) = l(M/N)+ l(N), it is clear
that Gλ

µν(o) = 0 unless |λ| = |µ|+ |ν|.

Let H = H(o) be a free Z-module on a basis uλ indexed by all partitions λ. Define a
product in H by the rule

14



uµuν =
∑
λ

gλµν(o)uλ

The sum on the right has only finitely many non-zero terms, which makes H(o) a com-
mutative and associative ring with identity element u0. We call H(o) the Hall algebra of
o. The ring H(o) is generated by (as a Z-algebra) by the elements u(1r)(r ≥ 1), and they are
algebraically independent over Z.

2.3 The LR-sequence of a submodule

Let T be a tableau of shape λ − µ and weight ν = (ν1, ..., νr). Then T determines (and is
determined by) a sequence of partitions

S = (λ(0), ..., λ(r))

such that λ(0) = µ, λ(r) = λ, and λ(i) ⊃ λ(i−1) for 1 ≤ i ≤ r, by the condition that
λ(i)−λ(i−1) is skew diagram consisting of the square occupied by the symbol i in T (and hence
is a horizontal strip, because T is a tableau).

A sequence of partitions S as above will be called a LR-sequence of type (µ, ν;λ) if
(LR1)λ(0) = µ, λ(r) = λ, and λ(i) ⊃ λ(i−1) for 1 ≤ i ≤ r;
(LR2)λ(i) − λ(i−1) is a horizontal strip of length νi, for 1 ≤ i ≤ r. (These two conditions

ensure that S determines a tableau T .)
(LR3)The word w(T ) obtained by reading T from right to left in successive rows, starting

at the top, is a lattice permutation.
For (LR3) to be satisfied, it is necessary and sufficient that, for i ≥ 1 and k ≥ 0, the

number of symbols i in the first k rows of T should not be less than the number of symbols
i+ 1 in the first k + 1 rows of T .

Every submodule N of a finite o-module M gives rise to a LR-sequence of type (µ′, ν ′, λ′),
where λ, µ, ν are the types of M,M/N , and N respectively.

2.4 Hall polynomial

Denote GS(o) the number of submodules N of M whose associated LR-sequence S(N) of S.
Each N has type ν and cotype µ.

Let q denote the number of elements in the residue field of o, and recall that n(λ) =∑
i(i− 1)λi, for any partition λ. Then:

For each LR-sequence S of type (µ′, ν ′, λ′), there exists a monic polynomial gS(t) ∈ Z[t] of
degree n(λ)− n(µ)− n(ν), independent of o, such that

gs(q) = GS(o) (2.5)

In other words, GS(o) is a polynomial in q. Now define, for any three partitions λ, µ, ν

15



gλµν(t) =
∑
S

gS(t)

summed over all LR-sequences S of type (µ′, ν ′;λ′). This polynomial is the Hall polyno-
mial corresponding to λ, µ, ν. Recall from sections 1.5 and 1.9 that cλµν denotes the coefficient
sλ in the product sµsν ; That cλµν = cλ

′

µ′ν′ is the number of LR-sequences of type (µ′, ν ′;λ′).
Then it follows that

(i)If cλµν = 0, the Hall polynomial gνµ(t) is identically zero. In particular, gνµ(t) = 0 unless
|λ| = |µ|+ |ν| and µ, ν ⊂ λ.

(ii)If cλµν ̸= 0, then gλµν(t) has degree n(λ)− n(µ)− n(ν) and leading coefficient cλµν .
(iii)In either case, Gλ

µν(o) = gλµν(q).
(iv)gλµν(t) = gλνµ(t).
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3 CHAPTER V: THE HECKE RING OF GLn OVER A
LOCAL FIELD

3.1 Local fields

In this chapter, we assume F is a non-archimedean local field, i.e.,
(i)F is a finite algebraic extension of Qp for some prime p, or
(ii)F = Fq(t), where Fq is a finite field.
Let o = {a ∈ F : |a| ≤ 1} be the ring of integers, and p = {a ∈ F : |a| < 1}. Let

k = |o/p| be the residue field, and let q < ∞ be its order. Let π be a generator of p with
|π| = q−1.

3.2 The Hecke ring H(G,K)

Let G = GLn(F ) be the group of all invertible n× n matrix over F . Also let

G+ = G ∩Mn(o)

be the subsemigroup of G consisting of all matrices x ∈ G with entries xij ∈ o, and let

K = GKn(o) = G+ ∩ (G+)−1

so that K consisting of all x ∈ G with entries xij ∈ o and det(x) a unit in o.

Let dx denote the unique Haar measure on G for which K has measure 1 and is both left-
and right-invariant under the multiplication of K. Under this measure, the measure of Kx
and xK is 1 for all non-zero x ∈ G.

Let L(G,K) denote the space of all complex-valued continuous functions of compact sup-
port of G (resp. G+) which are bi-invariant with respect to K, i.e., such that

f(k1xk2) = f(x)

for all x ∈ G (resp, G+) and k1, k2 ∈ K. We may and shall regard L(G+, K) as a subspace
of L(G,K).

We define a multiplication on L(G,K) as follows: for all f, g ∈ L(G,K),

(f ∗ g)(x) =
∫
G

f(xy−1)g(y)dy

(Since f and g are compactly supported, the integration is over a compact set.) This
product is associative and commutative. Since G+ is closed under multiplication, it follows
immediately from the definition that L(G+, K) is a subring of L(G,K).

Each function f ∈ L(G,K) is constant on each double closet KxK in G. These double
cosets are compact and mutually disjoint. Since f has compact support, it follows that f
takes non-zero values on only finitely many double cosets KxK, and hence can be written as
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a finite linear combination of their characteristic functions. Hence the characteristic functions
of the double cosets of K form a C-basis on L(G,K). The characteristic function of K is the
identity element of L(G,K).

If we vary the definition of the algebra L(G,K) (resp. L(G+, K)) by requiring the functions
to take their values in Z instead of C, the resulting ring is called the Hecke ring of G (resp,
G+), and we denote it by H(G,K) (resp, H(G+, K).) Clearly, we have

L(G,K) ∼= H(G,K)⊗Z C, L(G+, K) ∼= H(G+, K)⊗Z C

We will soon discover that the Hecke ring H(G,K) is closely related to the Hall algebra
H(o) of the discrete evaluating ring o.

Consider a double coset KxK, where x ∈ G. By multiplying x by a suitable power of
π we can bring x to G+. The theory of elementary divisors for matrices over a principal
ideal domain now shows that by pre- and post- multiplying x by suitable elements of K we
can reduce x to a diagonal matrix. Multiplying further by a diagonal matrix belonging to
x will produce a diagonal matrix whose entries are powers of π, and finally conjugation by
a permutation matrix will get the exponents in descending order. Hence, each double coset
KxK has a unique representative of the form

πλ = (πλ1 , ..., πλn)

where λ1 ≥ ... ≥ λn. We have λn ≥ 0 (so that λ is a paritition) if and only if x ∈ G+.

Let cλ denote the characteristic function of the double coset KπλK. Then we have the
cλ (resp. the cλ such that λn ≥ 0) form a Z-basis of H(G,K) (resp. H(G+, K)). The
characteristic function c0 of K is the identity element of H(G,K) and H(G+, K). Notice that

H(G,K) = H(G+, K)[c−1
(1n)]

This would allows us to concentrate on H(G+, K), which has a Z-basis consisting of the
characteristic functions cλ, where λ runs through all partitions (λ1, ..., λn) of length ≤ n.

Let µ, ν be partitions of length ≤ n. The product cµ ∗ cν will be a linear combination of
the cλ. In fact,

cµ ∗ cν =
∑
λ

gλµν(q)cλ (3.1)

summed over all partitions λ of length ≤ n, where gλµν(q) is the "Hall polynomial" defined
in Chapter II. In fact, if we write KπµK = ∪jKxj, KπνK = ∪jKyj as disjoint unions of left
cosets, then we have

(cµ ∗ cν)(πλ) =

∫
G

cµ(π
λy−1)cν(y)dy =

∑
j

cµ(π
λy−1

j ) (3.2)

since K has measure 1. This is furthermore equal to the number of parts (i, j) such that

πλ = kxiyj
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for some k ∈ K depending on i, j, and thus = gλµν(q).

From (3.1), it follows that the mapping uλ 7→ cλ is a homomorphism of the Hall algebra
H(o) onto H(G+, K) whose kernel is generated by the uλ such that l(λ) > n. Hence from
Chapter III, we obtain a structure theorem for H(G+, K) and L(G+, K): Let Λn[q

−1] denote
the ring of symmetric polynomials in n variables with coefficient in Z[q−1] (resp. C). Then
the Z-linear mapping θ of H(G+, K) into Λn[q

−1] (resp. C). Then the Z-linear mapping of
H(G,K) into Λn[q

−1] (resp. the C-linear mapping of L(G+, K) into Λn,C) defined by

θ(cλ) = q−n(λ)Pλ(x1, ..., xn; q
−1) (3.3)

for all partitions λ of length ≤ n, is an injective ring homomorphism (resp. an isomorphism
of C-algebras).

Finally, let us compute the measure of a double closet KπλK. For f ∈ L(G+, K), let

µ(f) =

∫
G

f(x)dx

Then µ : L(G+, K) → C is a C-algebra homomorphism, and clearly µ(cλ) is the measure
of KπλK. In view of (3.3) we may write µ = µ′ ◦ θ, where µ′ : Λn,C → C is a C-algebra
homomorphism, hence is determined by its effect on the generators er = P(1r)(x1, ..., xn; q

−1).
On the other hand, µ(c(1r)) is the number of subvector spaces in kn with dimension r, which
is equal to

µ(c(1r)) =

[
n
r

]
(q)

From (3.3) we have µ′(er) = qr(r−1)/2

[
n
r

]
(q) = er(q

n−1, qn−2, ..., 1). Hence µ′ is the mapping

which takes xi to qn−i(1 ≤ i ≤ n). It follows that therefore from (3.2) and (3.3) that the
measure of KπλK is q−n(λ)Pλ(q

n−1, qn−2, ..., 1; q−1). Hence, we also have the measure of KπλK
is equal to

q
∑

(n−2i+1)λivn(q
−1)/vλ(q

−1) = q2⟨λ,ρ⟩vn(q
−1)/vλ(q

−1) (3.4)

where ρ = 1
2
(n− 1, n− 3, ..., 1− n).

19


	CHAPTER I: SYMMETRIC FUNCTIONS
	Partitions
	The ring of symmetric functions
	Schur functions
	Orthogonality
	Skew Schur functions

	CHAPTER II: HALL POLYNOMIALS
	Finite o-modules
	The Hall algebra
	The LR-sequence of a submodule
	Hall polynomial

	CHAPTER V: THE HECKE RING OF GLn OVER A LOCAL FIELD
	Local fields
	The Hecke ring H(G,K)


