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We turn now to the s-cobordism theorem, which is the non-simpy con-
nected version of the h-cobordism theorem. Before we can state the result
we need some basic definitions from algebraic K-theory.

1 K0

Even though it is not relevant for the s-cobordism theorem, we start with a
brief review of K0. Let A be a ring. The set of finitely generated projective
A-modules forms a semi-group under direct sum. We define K0(A) to be
the Grothendieck group of this semi-group. That is to say we take pairs
(M0,M1) of finitely generated projective modules and we set [M0,M1] =
[M ′0.M

′
1] if M0 ⊕M ′1 is isomorphic to M1 ⊕M ′0.

Since every finitely generated projective Z-module is free, K0(Z) ≡ Z
with the isomorphism being given by the identity.

Let M be a compact, smooth manifold. Let us show that a finitely
generated projective module over C∞(M) is the same thing as a smooth
vector bundle over M . The correspondence sends a vector bundle to its
group of global sections with its obvious module structure over C∞(M). If
P is a finitely generated projective then there is a short exact sequenc

0→ K → F → P → 0

where F is free and finitely generated. Since P is projective, this sequence
splits so that F ≡ P ⊕K. Localizing at any point we see that Fx = Kx⊕Px

where Mx means M⊗C∞(M)R where the map C∞(M)→ R sends f 7→ f(x).
The restriction to x of the sections of the trivial bundle that lie in K generate
Kx ⊂ Fx = Rn. Clearly, the dimension of Kx is upper semi continuous
function of x. The same is true for Px, so that these functions are both
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locally constant. It follows that the Kx ⊂ Fx form a smoothly varying
family of subspaces of Rn of locally constant dimension. It is then easy to
see that the space Kx for a smooth sub-bundle of the trivial bundle whose
sections are the submodule K ⊂ F . The quotient of the trivial bundle by
this sub-bundle gives a smooth bundle whose sections are identiried with P .

This shows that K0(C
∞(M)) is identified with the usual smooth topolog-

ical K-theory of M (the Grothendieck group of smooth, finite dimensional
vector bundles over M). A free module of rank k over C∞(M) is the space
of sections of the trivial rank-k smooth vector bundle over M . In a similar
vein, if X is a topological space then K0(C

0(X)) is identified with the usual
topological K-theory, K0(X).

The following is an easy exercise.

Claim 1.1. A finitely generated projective A-module represents the trivial
element in K0(A) if and only if it is stably free, i.e., its direct sum with a
finitely generated free A-module is a finitely generated, free A-module.

2 K1 and the Whitehead group

Definition 2.1. For any ring A, we define K1(A). Let GL(A) be the direct
limit under the natural inclusions of GLn(A) of invertible n×n matrices over
A. This is a group under matrix multiplication. The group K1(A) is defined
as the quotient of GL(A) by the subgroup generated by the elementary
matrices, where an elementary matrix by definition has 1s down the main
diagonal and only one non-diagonal entry. This turns out to be the quotient
of GL(A) by its commutator subgroup, so that K1(A) is the abelian quotient
of GL(A). It is easy to see that K1(Z) is isomorphic to Z/2Z with the
isomorphism being the determinant.

Now consider the case A = Z[G], the integral group ring of a group G.
We have a natural inclusion G×{±1} ⊂ GL(A) given by sending (g,±1) to
the one-by-one invertible matrix (±g) in GL1(Z[G]). The Whitehead group
of G, denoted Wh(G), is defined by

Wh(G) = K1(Z[G])/G× {±1}.

Any M ∈ GLn(Z[G]) has its Whitehead torsion Wh(M) ∈Wh(G). Said
another way if L and L′ are free Z[G]-modules of finite rank with ordered
bases and α : L→ L′ is an isomorphism then its Whitenead torsion Wh(α),
which by the definition is the Whitehead torsion of the matrix describing α
in the given bases.
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Proposition 2.2. The Whitehead torsion of a matrix M ∈ GLn(Z[G]) is
trivial if and only if after stabilizing M by including it in GLN (Z[G]) for
some N < ∞ there is a finite sequence of elementary column operations
that transform M + IdN−n to the identity matrix where elementary column
operations are:

• Multiply a column by ±g for any g ∈ G and leave all others unchanged.

• Replace a column by its sum with an arbitrary Z[G]-multiple of another
column.

• Permute the columns.

Proof. If [M ] ∈ Wh(G) is trivial, then the image of M in GL(Z[G]) is in
the subgroup generated by elementary matrices and ±g. Each elementary
elementary matrix lies in GLN (Z[G]) for some N and hence the same is
true for any finite set of them. Thus, in GLN (Z[G]) for some N < ∞ the
element M ⊕ IdN−n can be written as a product of elementary matrices and
matrices ±g. Hence, multiplying M ⊕ IdN−n by a sequence of inverses of
elementary matrices and matrices ±g from GL1 makes it the identity. But
the inverse of an elementary matrix is an elementary matrix and the inverse
of ±g is ±g−1. Thus, multiplying M ⊕ IdN−n (on the left) by a sequence of
elementary matrices and ±g turns it into the identity. These multiplications
do the column operations on M ⊕ IdN−n listed in the proposition.

Exedrcises. 1. Show that any finite permutation matrix represents the
zero element in Wh(G).
2. Show that an element T of GL(Z[G]) represents the trivial element of
Wh(G) if and only if there is a sequence of consisting of elementary matrices
and matrices that are the images of elements (±g) ∈ GL1(Z[G]) whose
product is equal to T . Said another way, viewing T as an isomorphism from
a finitely generated free Z[G] module M1 with a given basis to another M2,
it represents the trivial element in Wh(G) if and only if there is a sequence
of elementary changes of bases carrying the given basis for M1 to the image
under T−1 of the given basis for M2. The elementary transformations are
(i) permutation of the basis elements, (ii) multiply the first basis element
by ±g for any g ∈ G and leave the other basis elements unchanged, and (iii)
for some α ∈ Z[G] replace the first basis element by the sum of it plus α
times the second basis element and leave the rest of the basis unchanged.

Definition 2.3. Let C∗ be a chain complex of free modules of finite rank
over Z[G], only finitely many of which are non-zero, and fix ordered bases
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for the chain modules. Suppose that the homology of C∗ is zero. Then
there is a chain homotopy h : C∗ → C∗+1 between the identity and 0; i.e.,
∂◦h+h◦∂ = Id. Let Ceven = ⊕kC2k and Codd = ⊕kC2k+1. These are finitely
generated free Z[G]-modules with given bases, and for any chain homotopy
h as before the map

∂ + h : Ceven → Codd

induces an isomorphism whose class in Wh(G) is independent of h and is
called the Whitehead torsion of C∗.

The following is an easy exercise.

Proposition 2.4. Let C∗ be a free, finitely generated chain complex over
Z[G] with trivial homology with a given ordered basis for each chain group.
After replacing C∗ by its sum with a finite number of chain complexes of the
form ∂ : Di+1 → Di where Di+1 and Di are finitely generated free modules
with given bases and in these bases ∂ is given by the identity matrix, the fol-
lowing holds. After making a finite sequence of elementary transformations
of the bases of the chain groups Ci the following holds. Suppose that Ci is
the non-zero only for 0 ≤ i ≤ n and fix 0 ≤ k < n. For every 0 ≤ i ≤ n we
can write write Ci = Ai ⊕Bi where:

• Ai and Bi are free finitely generated Z[G]-modules,

• the ordered basis for Ci is the concatenation of an ordered basis for Ai

followed by an ordered basis for Bi,

• ∂ : Ai+1 ⊕ Bi+1 → Ai ⊕ Bi is the composition of the projection of
the domain onto Bi+1 followed by an isomorphism hi+1 : Bi+1 → Ai

followed by the inclusion of Ai into Ai ⊕Bi, and

• for all i 6= k the matrix for the map hi+1 : Bi+1 → Ai with respect to
the given bases is the identity.

Once we have arranged all of this, the Whitehead torsion of C∗ is (−1)k+1

times the Whitehead torsion of the isomorphism hk+1 : Bk+1 → Ak.

Corollary 2.5. Let C∗ be a chain complex over Z[G] with only finitely many
non-trivial chain groups each being a finitely generated free module with an
ordered basis. If the Whitehead torsion of C∗ is zero, then after replacing C∗
by its sum with a finite number of two-term complexes as in the statement
of the proposition and after a finite number of elementary transformations
of the bases of the Ci, for every i we have Ci = Ai ⊕ Bi with Ai and Bi
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being generated by complementary subsets of the basis elements of Ci and
∂ : Ci+1 → Ci is the composition of the projection of Ci+1 → Bi+1 and
isomorphism Bi+1 → Ai represented by the identity matrix in the given
bases and the inclusion of Ai → Ci.

3 The Whitehead torsion of a chain equivalence
and of a homotopy equivalence

Let A∗ and B∗ be chain complexes over Z[G]. Suppose that ϕ : A∗ → B∗ is
a Z[G] chain map. The mapping cylinder for ϕ, M(ϕ) is a chain complex
over Z[G] with M(ϕ)n = Bn ⊕An−1 and differential given by(

∂B ϕ
0 −∂A

)
.

It is easy to see that there is a long exact sequence of homology

· · · → Hn(A)
ϕ∗−→ Hn(B)→ Hn(M(ϕ))→ Hn−1(A)→ · · · .

Now suppose that A and B are free and finitely generated Z[G]-modules
with given (homogeneous degree) bases. Suppose also that that ϕ induces
an isomorphism on homology. Notice that M(ϕ) is a free, finitely generated
Z[G] module with an induced basis. Also, the homology of M(ϕ) is zero.

Definition 3.1. The Whitehead torsion of M(ϕ) with its induced basis is
the Whitehead torsion of the map ϕ : A→ B. It is denoted Wh(ϕ).

Lemma 3.2. Let C∗, C
′
∗, C

′′
∗ be free, finitely generated complexes over Z[G],

each with an ordered basis. Suppose ϕ : C∗ → C ′∗ and ψ : C ′∗ → C ′′∗ are
chain maps inducing an isomorphism on homology. Then Wh(ψ ◦ ϕ) =
Wh(ψ) +Wh(ϕ).

The Whitehead torsion of ϕ of course depends on the choice of ordered
bases. As a special case of the previous lemma, we see that changing either
ordered basis by an automorphism will change the Whitehead torsion of ϕ
by adding the Whitehead torsion of the automorphism.

Fix a finite CW complex X and a base point x that is a 0-cell. For
each cell c in X chose a path ω(c) from x to the central point of the cell.
Also, choose an orientation for the cell. Let C∗(X) be the chain complex
over Z[π1(X,x)] whose kth-chain group is freely generated by these k-cells
with their orientations. The boundary map is given as follows: we can
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deform the attaching maps for the k-cells bik : ∂eik → Xk−1 so that they are

transverse to the central points aj ∈ ejk−1 of the (k−1)-cells. For each point

in y ∈ (bjk)−1(aj) we form a loop in X based at x

ω(eik) ∗ γy ∗ (ω(ejk−1)
−1

where γy is an arc in eik from aik to y. It class in π1(X,x) is denoted

g(y). Then the coefficient of ejk−1 in ∂eik is the sum over y ∈ (bik)−1(aj) of

±g(y) where the sign compares the boundary orientation of ∂eik at y with

the orientation of eyk−1 at ajk−1. This defines a free finitely generated chain
complex over Z[π1(X,x)], denoted C∗(X;Z[π1(X,x)]). Reordering the cells
and changing the orientation of cells and changing the paths connecting the
central points of the cells to the base point changes the basis by a sequence
of elementary transformations.

There is another way to view this construction. Let X̃ be the universal
covering of X. There is an induced cell structure on X̃. Fix a 0-cell x̃ in
X̃ above x. Then for each cell c in X there is a lifting of c to a cell c̃ in
X̃ such that the lift of ω(c) to X̃ beginning at x̃ ends at the midpoint of
c̃. The fundamental group π1(X,x) acts on X̃ and this action preserves
the cell structure of X̃ and acts freely on the set of k-cells for each k.
Thus, it makes the CW complex of X̃ with Z-coefficients into a free, finitely
generated chain complex over Z[π1(X,x)], and the choice of paths ω(c), or
equivalently the choice of lifts c̃, for each cell c determines a basis for each
chain group. The CW chain complex for X̃ with Z-coefficients is identified
with C∗(X;Z[π1(X,x)]). It follows that our first definition indeed defines a
chain complex, i.e., that ∂2 = 0.

Let X and Y be finite, connected CW complexes with given cell struc-
tures and suppose that f : X → Y is a homotopy equivalence. Our goal here
is to define the Whitehead torsion of f . First we deform f by homotopy
until it is a cellular map. We choose as base points x, a 0-cell in X, and the
image y = f(x), a 0-cell in Y . Since f is a homotopy equivalence it induces
an isomorphism π1(X,x)→ π1(Y, y). The map f also induces a map of the
CW chain complexes associated with the cell structures on X and Y .

Definition 3.3. Now suppose that f : X → Y is a cellular map induc-
ing an isomorphism on fundamental groups and on the homology on the
universal coverings. (This is equivalent to supposing that f is a homo-
topy equivalence.) Then f induces a chain map f∗ : C∗(X;Z[π1(X,x)]) →
C∗(Y ;π1(Y, y)]) which is a Z[π1(X,x)] module map. (The group π1(X,x)
acts on C∗(Y ) through the isomorphism f∗ : π1(X,x) → π1(Y, y).) The
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Whitehead torsion of f∗ is the Whitehead torsion of f with respect to any or-
dered basis for C∗(X;Z[π1(X,x)]) and C∗(Y ;Z[π1(X,x)]) coming for choices
of ordering and orienting the cells of X and Y and connecting them by paths
to the base points. Since changing these choices acts of the bases by a se-
quence of elementary transformations, it follows that the Whitehead torsion
of f∗ is independent of these choices. If the Whitehead torsion of f is zero,
then f is said to be a simply homotopy equivalence.

Even more is true:

Lemma 3.4. Suppose that f, g : X → Y are cellular maps between finite
CW complexes that are homotopic and are homotopy equivalences. Then
the Whitehead torsion of f∗ equals the Whtiehead torsion of g∗.

Proof. We can approximate the homotopy from f to g by a cellular map
H : X×I → Y that is a homotopy from f to g. Since the inclusions X×{0}
and X × {1} into X × I are easily seen to have zero Whtiehead torsion, it
follows that the Whtiehead of f∗ and of g∗ both agree with the Whitehead
torsion of H∗.

Definition 3.5. Let f : X → Y be a homotopy equivalence between fi-
nite CW complexes. Then the Whitehead torsion of f is defined to be the
Whitehead torsion of any cellular map f ′ homotopic to f .

Since any smooth manifold has a smooth triangulation combinatori-
ally unique up to subdivision, any homotopy equivalence between compact
smooth manifolds has a well-defined Whitehead torsion.

4 Morse chain complex over Z[π1(W )]

Let W be a compact, connected n manifold and suppose that ∂−W is con-
nected. Fix a base point w0 ∈ ∂−W , and suppose that inclusion ∂−W →W
induces an isomorphism π1(∂−W,w0) → π1(W,w0). Let f : W → R be a
Morse function with df positive on inward pointing tangent at points of ∂−W
and negative on inward pointing tangent vectors along ∂+W = ∂W \ ∂−W
and let χ be a gradient-like vector field. We assume that f is self-indexing
and that we have fixed an ordering of the critical points of each index. For
each critical point pi we choose a path ω(pi) from the base point x0 to pi.
Only the homotopy class of this path relative to its endpoints will matter.
Fix a gradient-like vector field χ for f and orient the descending manifold
of each critical point. The Morse chain complex C∗(f, χ;Z[π1(W,w0)])) is
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defined to be the free Z[π1(W )])-module with basis given by the critical
points pj with the given orientation of the descending manifolds and paths
connecting the critical points to w0. To define the boundary map for this
chain complex, suppose, as before, that for each k the intersections of the
descending spheres Sk

i in f−1((2k+1)/2) from the critical points qi of index
k + 1 intersect transversely the ascending spheres Sn−k−1

j from the critical
points pj of index k. To each point y of intersection we associate an ele-
ment in Z[G] of the form α(y) = ±g(y) for some g(y) ∈ G. The sign is
determined as before by comparing the orientation of Sk

i and the normal
orientation of Sn−k−1

j at the point of intersection. The element g(y) is the
class represented by the loop

ω(qi) ∗ γ(qi, y) ∗ γ(y, pj) ∗ ω(pj)
−1

based at x0, Here, γ(qi, y) is any arc in the descending disk from qi to
y and γ(y, pj) is any arc in the ascending disk of pi from y to pi. It is
clear that the element g(y) depends only on the choice of the homotopy
class of paths from x0 to the critical points qi and pj and the point y in
their intersection. Summing over all points of intersection Sk

i ∩ S
n−k−1
j

determines an element αij ∈ Z[G], called the algebraic intersection of Sk
i

and Sn−k−1
j . We define ∂(qi) =

∑
j αijpj . In this way we construct the

Morse chain complex (C∗(f, χ;Z[π1(W,w0)])]. The chain groups are free
and finitely generated with given ordered bases. This is the Morse chain
complex.

If we change the order of the critical points of index k, we change the
basis by a permutation. If we change the orientation of the descending
manifold of a critical point, we replace the corresponding basis element by
its negative. If we change the basis by choosing a different path from the
base point to its center, we change the basis element by multiplying by an
element of π1(W,w0).

Now suppose that W is an h-cobordism, i.e., that the inclusions ∂±W →
W are homotopy equivalences. Arguments analogous to the ones above
show that the chain complex C(f, χ;Z([π1(W,w0)])) is identified with for

the Morse chain complex for f̃ : W̃ → R and vector field χ̃ on the universal
covering W̃ of W , and the choice of lifts of the critical points of f determined
by the paths connecting these critical points to w0 gives a Z[π1(W,w0)]-
basis for the C(f̃ , χ̃;Z[π1(W,w0)]). Since f̃ is a homotopy equivalence, the
homology of this Morse complex is trivial and hence we have its Whitehead
torsion. Clearly, deforming the gradient-like vector field χ does not change
the Whitehead torsion of the complex. Also cancelling pairs of critical points
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of f by the cancellation lemmas and by handle slides does not change the
Whitehead torsion of the Morse complex, so that the torsion of the Morse
complex is independent of the choice of Morse function. In fact, it is not
hard to see:

Proposition 4.1. The Whitehead torsion of any Morse complex C∗(f, χ;Z[π1(W,w0)])
for (W,∂−W ) is identified with the Whitehead torsion of the inclusion of
smooth manifolds ∂−W →W .

Proof. (Sketch) The retraction maps of a cobordism W with a single critical
point, a non-degenerate critical point of index k, onto ∂−W ∪ Dk is easily
seen to be a simple homotopy equivalence. Arguing by induction on the
critical points of a self-indexing Morse function, one proves this result.

Now we come to the s-cobordism theorem

Theorem 4.2. (s-cobordism theorem) Let (W,∂−W,∂+W ) be a compact h-
cobordism with the dimension of W being at least 6. Then (W,∂−W,∂+W )
is diffeomorphic to (∂−W × I, ∂−W × {0}, ∂−W × {1}) if and only if the
inclusion ∂−W → W is a simply homotopy equivalence if and only if for
any Morse function f the Whitenead torsion of the Morse complex for f is
zero.

Proof. (Sketch) if (W,∂−W ) is diffeomorphic to (∂−W×I, ∂−W×{0}), then
the inclusion of ∂−W → W is a simple homotopy equivalence, and hence
the Whitehead torsion of any Morse complex for (W,∂−W ) is zero. (This
argument holds in all dimensions.)

We consider the converse. It is easy to see that the special arguments for
removing the critical points of index 0, 1, n−1, n are valid in the non-simply
connected case. Thus, we can assume that all critical points have indices be-
tween 2 and n− 2. We orient the descending manifolds and for each critical
point p we fix a path ω(p) from the base point in w0 ∈ ∂−W to p. This pro-
duces a basis for the Morse complex over Z[π1(W,w0)]. We can add trivial
summands of the form ∂ : Di+1 → Di as in the statement of Proposition 2.4
to the Morse complex by creating births of various dimensions. Changing
bases by elementary transformations is accomplished by changing the order-
ing of the critical points, the orientations of their descending disks, and the
paths connecting w0 to the critical points, and handle slides. In making a
handle slide we need to choose an arc γ connecting the descending sphere of
one critical point p index k to the ascending sphere of another critical point
q index k in order to add ± the second critical point to the first. Any choice
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of γ determines an element g(γ) ∈ π1(W,w0) given

ω(p) ∗ α ∗ γ ∗ β ∗ ω(q)−1

where α is a path in the descending manifold for p from p to the initial point
of γ and β is a path in the ascending manifold for q from the final point of γ
to q. Using the arc γ gives a change in the basis element associated to p by
adding to it ±g(γ) times the basis element determined by q. By changing γ
we can change g(γ) to be an arbitrary element of π1(W,w0). In this way we
do an elementary transformation adding an arbitrary multiple of the form
±g of the basis element associated with q to the basis element associated
with p.

Thus, we can assume that we have made choices that give bases for the
Morse complex as in the conclusion of Proposition 2.4 where the exceptional
degree is fixed to be n− 3 so that for every i < n− 3 the map Bi+1 → Ai is
given by the identity matrix and the Whitehead torsion of the Morse complex
is equal to the Whitehead torsion of the boundary map Cn−2 → An−3, which
is an isomorphism.

Lemma 4.3. (non-simply connected version of the Whitney trick) Suppose
that n ≥ 6 and f has no critical points of index 0, 1, n− 1, n. Suppose that
k is the smallest index of a critical point and that p has index k. Suppose x
and y are two points of Sk

i ∩ S
n−k−1
j . Then we can apply the Whitney trick

to cancel these two points of intersection if and only if g(x) = g(y) and the
local intersection numbers, ε(x) and ε(y), of these points are opposite, that
is to say if and only if ε(x)g(x) + ε(y)g(y) = 0 in Z[G].

Proof. To perform the Whitney trick we need an embedded disk meeting
each of Sk

i and Sn−k−1
j in an arc from x to y and otherwise disjoint from

all ascending disks from critical points of index k and descending spheres
from. The cancelling signs are necessary just as in the simply connected
case and provided that the signs cancel there is a thin annulus meeting
the spheres as required an otherwise disjoint. We need the other boundary
component of the annulus to bound an embedded disk in the complement of
the ascending and descending manifolds from the critical points of indices
k and k + 1, respectively, or equivalently to be homotopically trivial in this
manifold. By the argument in the simply connected case, the inclusion
of the complement of these spheres in f−1((2k + 1)/2) into W induces an
isomorphism on the fundamental groups. Thus, we need the other boundary
of the thin annulus to be homotopically trivial in W . The boundary of
the annulus is freely homotopic in W to a loop representing the element
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g(x)g(y)−1. Thus, the Whitney trick can be applied to cancel these two
points, x and y, of intersection if and only if ε(x)g(x) + ε(y)g(y) = 0 in
Z[π1(W )].

Corollary 4.4. We can perform the Whitney trick until there is only one
point of intersection between Sk

i and Sn−k−1
j , that being a point of transverse

intersection if and only if the algebraic intersection in Z[π1(W )] of these
spheres is of the form ±g for some element g ∈ G.

Let 2 ≤ k < n−3 be the smallest index of a critical point. Then Ck = Ak.
Let p be a critical point of index k corresponding to a basis element e for
Ak. Let q the critical point of index k+ 1 that cancels it algebraically in the
sense that q determines the basis element f for Bk+1 with ∂f = e. Using the
non-simply connected version of the Whitney trick we arrange that there is
a unique flow line connecting p and q and this is a transverse flow line. The
first cancellation theorem lets us cancel p and q. Continuing in this way, we
cancel all critical points of index k.

By induction on k we cancel all critical points of index ≤ n− 4. We are
left with critical points of index n−3 and n−2. The remaining critical points
of index n− 3 give the basis for An−3 and the critical points of index n− 2
give the basis for Cn−2 = Bn−2. The Whitehead torsion of the boundary
map Cn−2 → An−3 is the Whitehead torsion of the original Morse complex,
which is trivial by assumption. Thus, we can change the basis for Cn−2 by
elementary transformations so that the matrix for the boundary map is the
identity, and hence there is a sequence of operations consisting of reordering
the critical points of index n−2, changing the orientations of their descending
manifolds and choosing other paths connecting these critical points to the
base point w0, so that the non-simply connected version of the Whitney
trick applies to produce a single transverse flow line connecting each critical
point of index n − 3 to a critical point of index n − 2. We then use the
first cancellation theorem to cancel these critical points in pairs leaving no
critical points and proving that W ∼= ∂−W × I.
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