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1 Clifford Algebras

All the material in this section can be found in ”Spin Geometry” by Lawson
and Michelsohn, Princeton university Press, 1989. It is a much wider treat-
ment of the subject including a classification of all real and complex Clifford
algebras and the eight-fold periodicity of the former and the two-fold peri-
odicity of the latter, as well as a discussion of the Dirac operator for spinors
on manifolds.

Let K be a field of dharacteristic 6= 2.. A quadratic form on a finite
dimensional K-vector space V is a function Q : V → K that is given as a
finite sum

Q(x) =
∑
i

Li(x)Mi(x)

where the Li and Mi are linear functions V → K. Choosing a K-basis for V
and letting {x1, . . . , xk} be the resulting coordinate functions, a quadratic
form is simply a homogeneous polynomial of degree 2 in the xi. Associated
to a quadratic form is a symmetric blinear form B : V ⊗K V → K defined
by

B(x, y) = Q(x+ y)−Q(x)−Q(y).

IfQ(x) =
∑

i Li(x)Mi(x) as above, theB(x, y) =
∑

i Li(x)Mi(y)+Li(y)Mi(x),
which is clearly a symmetric bilinear from. Notice that B(x, x) = 2Q(x). A
quadratic form is non-degerenrate iff its associated symmetric bilinear form
B(x, y) is non-degenerate in the sense that its adjoint ad(B) : V → V ∗ is an
isomorphism.
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We define the Clifford algebra CL(V,Q) as follows. It is an algebra over
K generated by v ∈ V with the relations

v2 = −Q(v). (1.1)

(It follows that v · w + w · v = −B(v, w), where the product is the product
in the Clifford algebra.). Thus, CL(V,Q) is a quotient of the tensor algebra∑

n≥0⊗nV by the two-sided ideal generated by the relations given in Equa-
tion 1.1. Since the generating relations preserve the degree modulo 2 in the
tensor algebra, there is an induced direct sum decomposition

CL(V,Q) = CL0(V,Q)⊕ CL1(V,Q).

The first factor is a subalgebra and the second is a free module on one
generator on the first factor. If e1, . . . , en is a basis for V then a K-basis
for the vector space underlying CL(V,Q) is all products ei1 · · · eir with i1 <
i2 < . . . < ir. . In particular, the dimension of CL(V,Q) over K is 2n where
n = dim(V ). An K-basis for the summand CLε(V,Q) is all such products
of length congruent modulo 2 to ε

The Clifford algebra CL(V,Q) is a quotient of the tensor algebra
∑

n≥0⊗nV .
As such it inherits an increasing filtration defined by setting Fr(CL(V,Q))
equal to the image of

∑r
n=0⊗nV . then the graded vector space

GrF∗(Cl(V,Q)) = ⊕n≥0Fn(CL(V,Q))/Fn−1(CL(V,Q))

is naturally a graded ring. Since the relations v2 = −Q(v) strictly decrease
the filtration level they have no effect on this associated graded ring. Thus,
the result is the same as for Q = 0 where the relations are that the generators
skew-commute. Thus, the associated graded ring is the exterior algebra
Λ∗(V ). Indeed if Q = 0, then the Clifford algebra is the exterior algebra. In
general it is not isomorphic to it.

1.1 Basic relationships between various Clifford algebras

In this section for K = R,C,H we denote by K[n] the algebra of n × n
matrices over K.

We say that a real quadratic form is positive definite if Q(x) > 0 for all
x ∈ V \ {0}.

Lemma 1.1. Let Q be a non-degenerate quadratic form on a finite dimen-
sional real vector space V over K. Then there is a basis {e1, . . . , en} for V
such B(ei, ej) = 0 for all i 6= j.
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Assume now that K = R. Then we can also arrange that Q(ei) = ±1
for all i. Two such Q on V and Q′ on V ′ are isomorphic if and only if
the number of basis vectors on which Q takes values 1 and the number of
basis vectors on which Q takes value −1 are the same as the corresponding
numbers for Q′.

Proof. SinceQ is non-degenerate, there is x ∈ V such thatQ(x) 6= 0. Denote
by x⊥ ⊂ V the linear subspace of elements y ∈ V such B(x, y) = 0. For any
z ∈ V we consider

z′ = z − B(z, x)

2Q(x)
x.

Direct computation shows that z′ ∈ x⊥, so that z = z′ + B(z,x)
2Q(x) x. This

shows that every element in V is a sum on an element in x⊥ and a multiple
of x. On the other hand no non-zero multiple of x is in x⊥. So we have
V = x⊥ ⊕K · x.

Arguing by induction on dimension, we have a basis e1, . . . , en−1 with
B(ei, ej) = 0 for i 6= j for x⊥. Setting en = x completes this to a basis
of mutually orthogonal (under B) vectors. In the case K = R we multiply
each vector ei by (

√
|Q(ei)|)−1 to obtain the required basis.

Lastly, still in the case K = R, we show that the number of positive
and negative diagonal elements of this representation is independent of the
choice of basis in which B is diagonal. Let us suppose that Q(ei) = 1 for
1 ≤ i ≤ r and Q(ei) = −1 for r + 1 ≤ i ≤ n. Denote P and N the
lineaer subspaces generated by the first r and last n − r basis vectors. Let
us consider any linear subspace P ′ on which Q is positive definite. Such a
subspace must have trivial intersection with N since on N for form −Q is
positive definite. (We say that Q is negative definite on N .) This means
that under the projection of V → P with kernel N the subspace P ′ embeds
in P and consequently dim(P ′) ≤ dim(P ). Thus, for any basis in which
B is diagonal, the number of diagonal entries on which Q is positive is the
maximal dimension of any linear subspace on which Q is positive definite.
Similarly, the number of negative diagonal entries is the maximal dimension
of any linear subspace on which Q is negative definite.

Definition 1.2. We denote by CLr,s the Clifford algebra of a real vec-
tor space V with a basis e1, . . . , er+s and a quadratic form Q for which
B(ei, ej) = 0 for all i 6= j and Q(ei) = 1 for i ≤ r and Q(ei) − 1 for
r + 1 ≤ i ≤ r + s. That is to say (V,Q) is the standard quadratic form of
type (r, s) over R. Any such basis is called a standard basis. We use Rn to
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denote the quadratic space given by Euclidean n-space with quadratic form
the usual positive definite form Q(x) =

∑n
i=1(xi)

2.

Lemma 1.3. Let {e1, . . . , en} be the usual basis for Rn and {e′1, . . . , e′n+1}
be the usual basis for Rn+1. Define ϕ(ei) = eien+1 ∈ CL0(Rn+1). This
extends to an isomorphism of algebras CL(Rn)→ CL0(Rn+1).

Proof. It is a direct computation that ϕ preserves the defining relations
for CL(Rn) and hence extends to a map of algebras. Clearly, since the
generators of CL(Rn) map to CL0(Rn+1) the image of the map is contained
is CL0(Rn+1). It is obviously an isomorphism of vector spaces and hence of
algebras.

An analogous argument shows:

Lemma 1.4. CL0
r+1,s

∼= CLr,s.

Lemma 1.5. CL0,r⊗RCL2,0
∼= CLr+2,0. The mod 2 grading on CLr+2,0 is

induced from the sum of the two mod 2 gradings on the factors. Similarly,
CLr,0 ⊗ CL0,2

∼= CL0,r+2.

Proof. We begin by defining a map CL(Rr+2) → CL0,r ⊗ CL2,0. Let
{e1, . . . , er} be the standard basis of Euclidean r-space but with the quadratic
form−

∑
I x

2
i . Let f2, f2 be an orthonormal basis for R2 and let {e′1, . . . , e′r+2}

be an orthonormal basis for Rr+2 We send e′i to ei ⊗ f1f2 for all 1 ≤ i ≤ r
and we send e′n+i to 1⊗ fi for i = 1, 2.. Direct computation shows that this
map preserves the defining relations and hence extends to a map of algebras.
Clearly, it is an isomorphsm and the statement about the mod two gradings
is immediate from the definition.

The other case is similar.

Lemma 1.6. CLr,s ⊗ CL1,1
∼= CLr+1,s+1.

Proof. Let e1, . . . , er+s be an orthogonal basis for vector space with a quadratic
form of type (r, s) where Q(ei) = 1 for 1 ≤ i ≤ r and Q(ei) = −1 for
r+1 ≤ r+s. Let {f1, f2} be a basis for a two-dimensional vector space with
quadratic form of type (1, 1) with B(f1, f2) = 0, Q(f1) = 1 and Q(f2) = −1.
Then the basis

{e1 ⊗ f1f2, . . . , er ⊗ f1f2, 1⊗ f1, er+1 ⊗ f1f2, . . . , er+s ⊗ f1f2, 1⊗ f2}

is an orthogonal basis for the tensor product with its product quadratic
form. The first r + 1 basis elements have value 1 under the quadratic form
and the last s + 1 have value −1 under it. Hence the tensor product with
its form is a representative of CLr+1,s+1.
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1.2 Classification of Irreducible Modules pver real Clifford
Algebras

There is a general classifcation of real clifford algebras. We let K = R,C,
or H and set jK = dimR(K).

Theorem 1.7. For every (r, s) CLr,s is isomorphic to either K[n] or K[n]⊕
K[n] for n2dK = 2r+s in the first case or n2dK = 2r+s−1 in the second case.
In the second case CL0

r,s is the diagonal subalgebra.

Theorem 1.8. Every irreducible CLr,s module is a direct sum of irreducible
CLr,s modules. For any (r, s) either there is a unique irreducible representa-
tion of CLr,s or there are two irreducible representations and their restriction
to CL0

r,s are isomorphic CL0
r,s modules.

Proof. Consider the subgroup of CL×r,s generated by ε = −1 and the elements
e1, . . . , en, of a standard basis. This is a group generated by the symbols
e1ldots, en, ε where e2i = ε, for i ≤ r and e2i = 1 for r + 1 ≤ i ≤ r + s
and eiej = εejei and ε is in the center of the group. This is clearly a finite
sub-group Fr,s of the units of CLr,s. The order of Fr,s is 2r+s+1.

We define an algebra homomorphism of the group algebra R[Fr,s] →
CLr,s. Obviously, this map is surjective and its kernel is the central subal-
gebra R(ε + 1) ⊂ R[Fr,s]. It follows that a linear representation of CLr,s is
the same thing as a linear representation of R[Fr,s] with the property that
ε acts by −1. Any such representation comes from a representation of Fr,s.
Since Fr,s is a finite group, such a representation is completely reducible (see
the lecture on Representations of Finite Groups). This proves the complete
reducibility of linear representations of CLr,s.

As to the second, for any division algebra K, any irreducible represen-
tation of K[n] is isomorphic to Kn with the action given by left matrix
multiplication, so that there is only one irreducible representation of K[n]
up to isomorphism.

In the case of K[n]⊕K[n] there are only two irreducible representations
which come by projecting the algebra to one of its factors and taking the
pullback of the irreducible representation of that factor. Since CL0

r,s is the
diagonal subalgebra these two irreducible representations become isomor-
phic when restricted to CL0

r,s.

Definition 1.9. A spin module for Rr,s is an irreducible representation of
CLr,s

Notice that there are either one of two spin modules for Rr,s up to iso-
morphism. These two are are isomorphic as CL0

r,s modules. Notice that
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we do not claim (nor is it true) that the spin modules are irreducible CL0
r,s

modules.

1.2.1 Low Dimensional Examples

In these examples Rn refers to Euclidean space with its usual positive definite
inner product and {e1, . . . , en} is an orthonormal basis.
1.) CL(R1) is generated by e1 with e21 = −1, so that CL(R1) ∼= C with
e1 7→ i. Its spin module is C with usual complex multiplication.

CL0,1 is generated by e1 with e21 = 1, so that

CL0,1 = R[e1]/{e21 − 1} = R⊕ R

where the summands are the subrings generated (1 + e1)/2 and (1− e1)/2.
Each is a subring of CL0,1 and the product of an element in the first factor
with an element in the second is 0. That is to say there is a ring isomorphism
CL0,1

∼= R ⊕ R. It has two spin modules, As vector spaces both are both
isomorphic to R The two action are given by projection of CL0,1 to one of
its summands followed by usual multiplication of this factor on R.
2.) CL(R2) is generated by e1, e2 with e21 = e22 = −1. It follows that
(e1e2)

2 = −1. There is an isomorphism CL(R2) ∼= H, where H is the
algebra of the quaternions. The map is given by e1e2 7→ i; e1 7→ j; e2 7→ k.
Notice that CL0(R2) = C. The spin module is the quaternions with the left
multipliciation action. As a CL0(R2)-module the spin module is C2 with
the usual complex multiplication.
2’.) Let V = R2 and let Q be the negative of the usual positive definite
inner product on R2. Then CL(V,Q) is generated by e1, e2 subject to the
relations that e21 = e22 = 1 and e1e2 = −e2e1.

ϕ(e1) =

(
1 0
0 −1

)
ϕ(e2) =

(
0 1
1 0

)
.

One checks easily that the relations in CL(V,Q) hold for these matrices.
Thus, this determines an algebra map

CL(V,Q)→ R[2],

which is clearly onto since Id, ϕ(e1), ϕ(e2), and ϕ(e1)ϕ(e2) are a basis for
R[2]. Since the dimension of R of CL(V,Q) is 4, the function ϕ is an algebra
isomorphism CL(V,Q) → R[2]. Under this identification, CL0(V,Q) ⊂
CL(V,Q) is the subalgebra of matrices of the form(

a b
−b a

)
.
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The spin module in this case is R2 with the action being left matrix mul-
tipliciation. CL0(V,Q) ∼= C and the action is the usual action of complex
multiplication of C on C.

It is easy to see that CL1,1
∼= CL0,2. Thus, it also is isomorphic to R[2],

again with spin module being R2 with left matrix multiplication. CL0
1,1
∼=

R ⊕ R and its action on the spin module (in an appropriate basis) is the
action of matrices whose non-zero entries are diagonal.
3.) In CL(R3) the element ω = e1e2e3 squares to 1 and is in the center of
the Clifford algebra. Hence, there is an isomorphism of algebras CL(R3) =
CL0(R3)[ω]/{ω2 = 1}. Thus, there is an R-algebra homomorphism

CL(R3) = CL0(R3)(
1 + ω

2
)⊕ CL0(R3)(

1− ω
2

).

Each of the algebra factors is isomorphic to CL0(R3). This algebra has
generators e1e2, e2e3, e3e1 each of which squares to −1 and with the product
of the first followed by the second being the third. That is to say CL0(R3) ∼=
H and hence CL(R3) is isomorphic as an algebra to the direct sum of two
copies of H. Under this decomposition CL0(R3) is the diagonal copy of H.
The spin modules are both isomorphic to H with left multiplication by one
of the factors and the other acting trivially.

(2, 1): We have CL2,1
∼= CL1,0⊗CL1,1

∼= C⊗R[2] = C[2]. The spin module
is C2 with left matrix multipllication. CL0

2,1
∼= R[2] acting by matgrix

multiplication of C2.

(1, 2): We have CL1,2
∼= CL0,1 ⊗ CL1,1

∼= (R ⊕ R) ⊗ R[2] = R[2] ⊕ R[2].
The spin modules are R2 with left multiplication from one of the factors.
CL0

1,2
∼= R[2] acting by mtrix multiplication on the spin modules.

(0, 3): CL0.3
∼= CL1,0⊗CL0,2

∼= C⊗R[2] ∼= C[2]. The spin module is C2 with
left matrix multiplication. CL0

0,3
∼= H acting on the spin module C2 = H by

quaternion mutllpilication.

1.3 CL(R4, Q)

1.3.1 The case Q is positive definitive

The discussion of CL(R4) is rich enough to justify devoting a subsection to
it.

Applying Lemma 1.5 for n = 2 we have

CL(R4) ∼= CL0,2 ⊗ CL2,0 = R[2]⊗H = H[2]).
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The spin module is H2 with the action being matrtix multiplication.
We now have two structure results: CL(R4) ∼= H[2] and CL0(R4) ∼= H⊕

H. As a first guess one could believe that CL0(R4) is simply the subalgebra
of diagonal matrices. This is not the case; things are more interesting.

Consider the element ω = e1e2e3e4 ∈ CL0(R4). It is an element of
square 1. Thus, CL(R4) decomposes CL(R4) = CL+(R4) ⊕ CL−(R4), the
summands being the +1 and −1 eigenspaces of right multiplcation by −ω.

Thus, intersecting with CL0(R4) gives a decomposition of this alge-
bra as CL0,+(R4) ⊕ CL0,−(R4). This is the decomposition of CL0(R4) as
H ⊕ H. Notice that if we take graded ring associated to the usual filtra-
tion and take the isomorphism of this graded ring to Λ∗(R2), the term in
F2(CL

0,±(R4))/F0(CL
0,±(R4)) is the self-dual, resp. anti-self dual elements

of Λ2(R4) under the usual Hodge star operator.

1.3.2 The case when Q is of signature (3, 1)

This case and the next one are a crucial case for 4-dimensional relativistic
physics.

According to Lemma 1.4 there is an isomorphism of algebras

CL3,1
∼= CL2,0 ⊗ CL1,1 = H⊗R R[2] ∼= H[2].

The spin module is H2 as in the case of (4.0).
By Lemma 1.4 we have CL0

3,1
∼= CL2,1. Also, by Lemma 1.6

CL2,1
∼= CL1.0 ⊗ CL1,1

∼= C⊗R R[2] = C[2],

the algebra of 2 × 2 complex matrices. It acts by matrix multiplication on
H2.

1.3.3 The case when Q is of signature (1, 3)

We have
CL1,3

∼= CL0,2 ⊗ CL1,1 = R[2]⊗R R[2] ∼= R[4],

the algebra of 4× 4 real matrices. Also, by Lemma 1.6 CL0
1,3
∼= CL0,3. The

spin module is R4 with matrix multiplication.
Let f1, f2, f3 be the standard generators for CL0,3, so that f2i = 1 for all

1 ≤ i ≤ 3 and fifj = −fjfi for all 1 ≤ i < j ≤ 3. We define a map CL0,3 to
C[2] be sending

f1 7→
(

1 0
0 −1

)
f2 7→

(
0 1
1 0

)
f3 7→

(
0 i
−i 0

)
.
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One sees that the relations in CL0,3 hold for these matrices, so that there
is induced an algebra homomorphism CL0,3 → C[2]. Direct computation
shows that the eight basis elements 1, f1, f2, f3, f1f2, f2f3, f1f3, f1f2f3 map
to linearly independent matrices and hence the map is an isomorphism of
algebras. This proves CL0

1,3
∼= C[2]. The inclusion CL0

1,3 → CL1,3 is the

natural map C[2] → R[4] and the action of CL0
0,3 on R4 is through this

embedding and matrix multiplication.
Lastly, CL2,2

∼= CL1,1 ⊗ CL1,1
∼= R[2]⊗ R[2] ∼= R[4], and again the spin

module is R4.

1.4 Classification of Real Clifford Algebras

I will not give the entire classification but it is clear how to proceed given
Lemmas 1.5 and 1.6. For example suppose that r ≥ s. Then repeatedly
using Lemma 1.6 we see that

CLr,s = CLr−s,0 ⊗ R[2s].

Now invoking Lemma 1.5 we see that if r − s = 4k + t with 0 ≤ t ≤ 3, then

CLr−s,0 = CLt ⊗k H[2].

Since H⊗H is isomorphic to R[4] we see that if k is even then

⊗kH[2] ∼= R[22k],

and
CLr,s ∼= CLt ⊗ R[2r+s−t)/2]]

Finally, if r − s− t = 4k + t with k odd, then

⊗kH[2] ∼= H[2k]

and
CLr,s ∼= CLt ⊗H[2(r+s−t)/4].

In this way we can deduce the structure of all the Clifford algebras when
CLr,s when r ≥ s. The other case r ≤ s is similar.

There is one general result worth pointing out. This is eight-fold peri-
odicity of real Clifford algebras..

Theorem 1.10. CLr+8,s
∼= CLr,s ⊗ R[16] = CLr,s[16].
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One proof of Bott periodicity for the homotopy groups of SO(n), namely,
πk+8(SO(n)) ∼= πk(SO(n)) for n >> k can be derived from this eight-fold
periodicity for the Clifford algebras CL(Rn).

The complex case is even simpler: the periodicity is of order 2.

Theorem 1.11. CL(Cn+2) ∼= CL(Cn)⊗C C[2 = CL(Cn)[2].

This two-fold periodicity can be used to prove Bott periodicity πk(U
n) ∼=

πk+2(U
n) for k << n.

2 Pin(V,Q) and Spin(V,Q)

2.1 Definition and Statement of Main Result

We continue with the notation: V is a finite dimensional real vector space
and Q is a non-degenerate quadratic form on V . Let CL×(V,Q) be the
multiplicative group of units in CL(V,Q). There is the adjoint action

AdV : CL×(V,Q)× CL(V,Q)→ CL(V,Q); AdV (x)(y) = xyx−1.

If v ∈ V ⊂ CL(V,Q) with Q(v) 6= 0 then v is a unit and v−1 = v
−Q(v) .

Hence, if w ∈ v⊥, then

AdV (v)(w) =
−1

Q(v)
vwv =

1

Q(v)
v2w = −w

and

AdV (v)(v) =
−1

Q(v)
vvv = v.

That is to say, AdV (v) preserves V ⊂ CL(V,Q) and acts by the identity
on v and by −1 on the orthogonal complement of v in V , v⊥ ⊂ V . That
is to say, AdV (v) : V → V is minus the orthogonal reflection in v⊥ and, in
particular, preserves Q

Of course, for any λ 6= 0, AdV λv = AdV (v). Thus, there is no harm in
restricting to v ∈ V with Q(v) = ±1. Let Pin(V,Q) ⊂ CL×(V,Q) be the
subgroup of units generated by {v ∈ V | Q(v) = ±1}. The adjoint action of
Pin(V,Q) leaves V invariant and the restriction to V determines a map

AdV : Pin(V,Q)→ O(V,Q),

where O(V,Q) is the orthogonal group of Q, i.e., the group of linear iso-
morphisms of V preserving Q. The intersection Pin(V,Q) ∩ CL0(V,Q) is
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defined to be Spin(V,Q). It consists of those elements in that are products
of an even number of elements v1 · · · v2k of elements of V with Q(vi) = ±1.
We see that the restriction of the AdV Spin(V,Q) determines a homomor-
phism Spin(V,Q) → SO(V,Q), the subgroup of O(V,Q) consisting of all
orientation-preserving elements.

Here is the main result:

Theorem 2.1. For (V,Q) a non-degenerate real quadratic form of type (r, s)
with r ≥ 2, the map

AdV : Spin(V,Q)→ SO(V,Q)

is a surjective homomorphism with kernel ±1. Furthermore, Spin(V,Q) is
connected, so that this map is a non-trivial double cover. In the case when
dim(V ) > 2 and Q is positive definite, this map expresses Spin(V,Q) as the
universal covering of SO(V,Q).

The proof of this result is given in the next subsection.

2.2 Proof of Theorem 2.1

We begin the proof by studying O(V,Q).

2.2.1 Reflections generate O(V,Q)

Definition 2.2. By a reflection mean the transformation

w 7→ w − B(w, v)

Q(v)
v

for some element v ∈ V with Q(v) = ±1. These are elements of O(V,Q).

The reflection generated by v is the identity on v⊥ and sends v 7→ −v.
Here is the relevant result.

Proposition 2.3. Every element in O(V,Q) is a product of reflections.
Every element of SO(V,Q) is a product of an even number of reflections.

Proof. First note that the second statement follows immediately from the
first since a product of reflections is in SO(V,Q) if and only if it is a product
of an even number. From now on we concentrate on the first statement.

The case dim(V ) = 1 is clear: the orthogonal group is {±1} and the
non-rivial element is a reflection.
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The case dim(V ) = 2 has three subcases: Q positive definite, Q nega-
tive definite and Q of signature (1, 1). The positive and negative cases are
classic: every rotation of the plane is a product of two reflections and every
orientation-reversing isometry of the plane is a reflection.

Let us consider the case when there is a basis {e1, e2} for V with Q(e1) =
1 and Q(e2) = −1 and B(e1, e2) = 0. Let e′1 be a vector with Q(e′1) = 1.
Then e′1 = ±(cosh(t)e1 + sinh(t)e2) for some t ∈ R∗. Since the composition
of reflection in e1 and reflection in e2 is −1, it suffices to consider the case
of positive sign. Elementary hyperbolic geometry shows that the reflection
on sinh(t/2)e1 + cosh(t/2)e2 sends e1 to cosh(t)e1 + sinh(t)e2. The case e2
and ±(cosh(t)e2 + sinh(t)e1) is analogous.

Now we argue by induction on the dimension of V . Suppose, for some
n ≥ 3 that we know the result for n − 1 and suppose that the dimension
of V is n. Let e1, . . . , en be a basis of V with Q(ei) = ±1 for all i and
B(ei, ej) = 0 for all i 6= j. Let A ∈ O(V,Q) and define e′i = A(ei).

Claim 2.4. There is a product of reflections R in O(V,Q) with the property
that R(e′1) = e1.

We complete the proof assuming the claim.
We choose R as in the claim. Then RA : V → V is an orthogonal trans-

formation fixing e1. Consequently, it fixes V ′ = (e1)
⊥. Since the dimension

of V ′ is n − 1, induction tells us that RA|V ′ = R′1 · · ·R′k for reflections of
V ′. The elements v′i ∈ V ′ defining the R′i : V

′ → V ′ also determine re-
flections of V (also called R′i) that fix e1. Then R′1 · · ·R′k|V ′ = RA|V ′ and
R′1 · · ·R′k(e1) = RA(e1) = e1. Hence, RR′1 · · ·R′k = A establishing the re-
sult. This completes the proof modulo the proof of the claim.

Proof. (of Claim) Given e1 and e′1 we must find a product of reflections of
(V,Q) carrying e′1 to e1. Recall that Q(e′1) = Q(e1) = ±1. Without loss of
generality we can assume that Q(e1) = 1. If e′1 and e1 generate the same
real subspace, then e′1 = ±e1 and the required element is either the identity
or the reflection generated by e1. So we may as well assume that e1 and
e′1 are linearly independent over R, i.e., generate a plane V0 in V . If the
restriction of Q to V0 is non-degenerate, then we invoke the two-dimensional
case to find the required reflection.

Suppose now that Q|V0 is degenerate. In this case V0 is also spanned by
e1 and some vector v with Q(v) = 0 and B(e1, v) = 0 and e′1 = ±e1 + βv
with β 6= 0.. If follows that Q|e⊥1 is non-degenerate but is neither positive

nor negative definite since e⊥1 contains a vector v 6= 0 with Q(v) = 0. Find
a diagonal basis for e⊥1 with P being the span of the basis vectors on which
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Q is positive and N the space of the basis vectors on which Q is negative.
Let p ∈ P and n ∈ N be such that v = p + n. Then Q(p) = −Q(n). We
take e2 = p/

√
Q(p) and e3 = n/

√
|Q(n)|. Then B(e2, e3) = 0, Q(e2) = 1

and Q(e3) = −1. Then Q(e1) = Q(e2) and B(e2, e3) = 0 . Notice that
v = t(e2 + e3) for t =

√
Q(p). Since B(e2, e1) = 0, the restriction of b to

the subspace spanned by e1, e2 is non-degeneratae. The restriction of B to
the subspace spanned by (e′2, e1) is also non-degenerate unless B(e2, e

′
1) =

B(e2, v) = ±1. In that case we can move e2 along the hyperboloid in the
plane generated by (e2, e3) to e′2 satisfying Q(e′2) = +1 and B(e′2, v) 6= p[m1.
Then the restriction of B to plane spanned by (e′2, e1) and the plane spanned
by (e′2, e

′
1) is non-degenerate.

Thus, applying the two-dimensional case to each of the 2-planes spanned
by {e1, e′2} and {e′1, e′2}, we can find a reflection moving e′1 to e2 and another
reflection moving e2 to e1. The product of these reflections moves e′1 to e1
as required.

This completes the proof of the theorem.

2.3 Surjectivity

At this point it is convenient to twist the AdV to ÃdV be setting ÃdV (v) =

−AdV (v) for every v ∈ V . Then ÃdV = AdV when restricted to units in

Spin(V,Q), whereas for odd elements w ∈ Pin(V,Q) ÃdV (w) = −AdV (w).

The point is that for every v ∈ V , the automoprhism of V given by ÃdV (v)
is reflection in v⊥.

Proposition 2.5. ÃdV : Pin(V,Q) → O(V,Q) and AdV : Spin(V,Q) →
SO(V ) are surjective.

Proof. Since ÃdV (Pin(V,Q)) ⊂ O(V,Q) contains every reflection, by the

Proposition 2.3 ÃdV is surjective. Since the restriction of ÃdV to Spin(V,Q)
is AdV , the second statement follows from the first, AdV : Spin(V,Q) →
SO(V,Q) is surjective.

2.4 The Kernel of AdV : Spin(V,Q)→ SO(V,Q)

Claim 2.6. Let V be a vector space of dimension at least two and let Q be a
non-degenerate quadratic form on V . Then −1 is an element of Spin(V,Q).
It is in the kernel of the map to O(V,Q).

13



Proof. If −1 ∈ Spin(V,Q), then since it is in the center of CL(V,Q) its
adjoint action is trivial. If V contains an element e with Q(e) = 1, then
e2 = −1 ∈ Spin(V,Q). Otherwise, V contains a pair of elements e1, e2
with Q(e1) = Q(e2) = −1 and B(e1, e2) = 0. In this case (e1e2)

2 = −1 ∈
Spin(V,Q).

Proposition 2.7. The kernel of Spin(V,Q)→ SO(V,Q) is a group of order
2. If dim(V ) > 1 then the kernel consists of ±1.

Proof. First let us examine the center of CL(V,Q). Fix an orthogonal basis
{e1, . . . , en} for V with Q(ei) = ±1 for each i. It is easy to see that a
standard monomial ei1 · · · eik with i1 < · · · < ik commutes with ej if and only
if the number of i1, . . . , ik not equal to j is even. Otherwise, the monomial
anti commutes with ej . It now follows that the only standard monomials in
the center of CL(V,Q) are 1 (the empty monomial) and e1 · · · en if n is odd.
Furthermore, these monomial generate the center of the Clifford algebra.

Lemma 2.8. The kernel of ÃdV : Pin(V,Q) → O(V,Q) consists of those
real multiples of the identity element that are contained in Pin(V,Q).

Proof. Certainly, the real multiples of the identity element are contained in
the kernel of ÃdV . Any even element in the kernel of ÃdV is in the kernel
of AdV , and hence commutes with all elements in V , and hence commutes
with all elements in CL(V,Q). That is to say it is an even element in the
center of CL(V,Q), which as we have already seen means it is a real multiple
of the identity.

Any odd element in the kernel of ÃdV anti-commutes with every v ∈ V .
Arguments analogous to the ones above show that this means that there are
no such odd standard monomials, and hence no such elements.

For any element x ∈ CL(V,Q) left multiplication by x induces an en-
domorphism of CL(V,Q) and there is the determinant function from the
endomorphisms of any finite dimensional real vector space to R. It is a
multiplicative function. We define the norm N(x) to be the determinant
of the endomorphism given by left multiplication by x. This is a multi-
plicative function. It is easy to see that N(e1) = (Q(ei)

dim(CL(V,Q))/2. Thus,
except in the case when dim(V ) = 1 and Q(e1) = −1 we have N(ei) = 1.
In the exceptional case N(e1) = −1. Since N is multiplicative, it follows
that any element in Pin(V,Q) has norm ±1 and any even element has norm
+1. The only multiples of 1 that have norm 1 are ±1. Hence, the kernel of
ÃdV : Pin(V,Q)→ O(V,Q) and the kernel of AdV : Spin(V,Q)→ SO(V,Q)
are both {±1}.
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Lastly, let us show that for any r ≥ 2 the element −1 is in the connected
component of the identity of Spin(r, s). Let V r,s be a vector space with
a real quadratic form of type (r, s), with r ≥ 2, Since the inclusion of
R2 ⊂ V r,s induces an inclusion of CL(R2) → CLr,s and hence an inclusion
Spin(2) → Spin(r, s). Since the inclusion of CL(R2) → CL(V r,s) is the
identity on the center, it sends −1 of CL(R2) to −1 of CL(V r,s). Thus, we
need only establish the statement for Spin(2). this statement is contained
in Problem 1.

Theorem 2.9. For any (r, s) with r ≥ 2 the natural map Spin(r, s) →
SO(r, s) is a non-trivial double covering.

Proof. Once we know that Spin(V,Q) is connected and the kernel of the map
to SO(V,Q) is±1, it follows that the Lie group homomorphism Spin(V,Q)→
SO(V,Q) is a non-trivial double covering. In case dim(V ) ≥ 3 and Q is pos-
itive definite, the fact that the fundamental group π1(SO(dim(V )), e) is a
group or order 2, means that there is only one non-trivial double covering
of SO(V,Q) ∼= SO(dim(V )), that being the universal covering.

This completes the proof of Theorem 2.1.
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