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STUDYING LINKS VIA CLOSED BRAIDS. V: THE UNLINK

JOAN S. BIRMAN AND WILLIAM W. MENASCO

ABSTRACT. The main result is a version of Markov’s Theorem which does not
involve stabilization, in the special case of the r-component link. As a corollary,
it is proved that the stabilization index of a closed braid representative of the
unlink is at most 1. To state the result, we need the concept of an “exchange
move”, which modifies a closed braid without changing its link type or its braid
index. For generic closed braids exchange moves change conjugacy class. Theo-
rem 1 shows that exchange moves are the only obstruction to reducing a closed
n-braid representative of the r-component unlink to the standard closed r-braid
representative, through a sequence of braids of nonincreasing braid index.

1. INTRODUCTION

Let K be an oriented link type in oriented S3, K a representative of K,
and A an unknotted curve in S3. K is a closed n-braid with braid axis A
if K winds monotonically about A with total winding number n. “Mono-
tonically” means that if A is the z-axis in R3, parametrized by cylindrical
coordinates (r(z), 6(¢), z(¢)), then 6(¢) is a strictly increasing function of ¢.
This is equivalent to the assertion that if {H, : ¢t € [0, 2x]} is a fibration of
S3 — A by meridian discs then K meets each H; transversally in exactly n
coherently oriented intersections. Alexander proved in [A] that every link could
be so-represented (in many ways). The theorem which is known as Markov’s
theorem describes how the various closed braid representatives of a given link
type are related. Markov’s Theorem was announced in [Ma], with a working
outline for a proof. It has been important in recent years because of its central
role in the theory of knot polynomials [J]. The first complete proof was given
in [Bi], using the methods suggested by Markov. Two other proofs have been
given more recently in [Be, Mo,2].

Markov’s Theorem. Let K be an arbitrary closed n-braid representatives of K,
and let X' be an arbitrary closed n'-braid representative. Then there is a finite
sequence of closed braid representatives of K :

K=Ky~ K -K,— - =K, =K
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such that each K;,, is obtained from K; by one of the following moves:
(Mi) Addition or deletion of a trivial loop (see Figure 1).
(Mii) Isotopy in the complement of the axis (or, equivalently, conjugation in
the braid group).

In the chain of closed braids which take K to K’ in Markov’s theorem the
braid index will in general go up to values larger than n, i.e. “stabilization”
will occur. One may show without too much difficulty (although we shall not
do so) that the braid indices n; of the braids K; in the chain may be assumed
to satisfy: ny < np < --- < ng > ngy > Ngyp > -+ > Ny The number ¢,
however, seems to be elusive and in fact it has not even been well understood
what is being accomplished by stabilization.

In the manuscript [Mo,2] Hugh Morton gave an example of a 4-braid rep-
resentative of the unknot which cannot be simplified to the trivial 1-braid rep-
resentative without first increasing the string index to 5. His example is of
central importance in any attempt to understand all of the braid representatives
of a link. The first reason is that it shows that stabilization is an essential part
of Markov’s theorem. The second reason is that, while Morton’s example is
special, any braid representative of any link may be changed to a new braid
representative of the same link by connect-summing with a braid representative
of the unknot, so that the phenomenon exhibited by his example is pervasive.
A similar example for the 2-component unlink was given by Rudolph on p. 27
of [R].

The work in this paper began with attempts to understand the role of stabi-
lization in Morton’s example. Ultimately, we were led to conjecture and prove
a special version of Markov’s theorem which avoids stabilization, in the case
when K is the unlink of » components. To state our results we introduce in
Figure 2 the concept of an exchange move. Assume that the braid axis A is
the z axis, and that the arc which is labeled n3 lies in the x-y plane. Up to
isotopy of S3, an exchange is defined to be an isotopy of K which moves the
arc which is labeled n, from a position which is a little bit above (or below)
the x-y plane to a position which is a little bit below (or above) the x-y plane,
keeping the rest of K invariant. The labels on the strands mean that a single
strand which is labeled “n;” is to be replaced by n; parallel strands. We al-
low any type of braiding on the n; + n, (respectively n; + n3) strands in the
boxes which are labeled X (respectively Y and Z). An exchange move takes
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n-braids to n-braids, but need not preserve conjugacy class because the isotopy
of K in S? is in general not realizable in the complement of the axis A.

We remark that exchange moves are only applicable when a link admits a
rather special type of braid representation. Figure 3 shows the projection of
Figure 2, deformed so that the strands which are labeled n, and n, are pulled
apart. There is then a 2-sphere S(C) which intersects K in two generalized
points (or n; + n3 points) and is pierced twice by the axis A. In the special
case whenn, = n3 = 1 the link K is composite and S(C) exhibits K as
a “composite closed braid”, so we say that any closed braid which admits an
exchange is (up to conjugacy) a G-composite closed braid.

In §2 we will define a complexity function, with domain the collection of all
closed braid representatives of the r-component unlink. Our main result is

Theorem 1. Let K be an arbitrary closed n-braid representative of the unlink
of r components, r > 1. Let U, be the standard closed r-braid representative.
Then there is a finite sequence of closed-braid representatives of the unlink:

K=K - K —-Ky—--- =K, =0,
~ such that each K;,, is obtained from K; by one of the following moves:
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(i) A complexity-reducing exchange move.
(ii) A complexity-reducing deletion of a trivial loop.
(iii) A complexity-preserving isotopy in the complement of the axis (or, equiv-
alently, conjugation in the braid group).

There are two challenging open problems suggested by Theorem 1. The first
is to estimate the complexity of an algorithm for recognizing the unlink, using
the ideas introduced in the proof of Theorem 1. A second problem, in principal
more difficult, is to find an explicit algorithm.

We can define the exchange move in terms of its effect on words in the
generators of the braid group. See Figure 2 again. Let 1,..., n denote the
standard elementary braids which generate the (n + 1)-strand braid group, and
let —i denote the inverse of i. If n, = n3 = 1, an exchange move is applicable
if (and only if), up to conjugacy, the cyclic braid factorizes as (Z)(n)(X)(-n),
where Z and X do not involve the elementary braids +n. After the exchange
the braid will factorize as (Z)(—n)(X)(n). The general case, where the weights
are not 1, is easily worked out from this.

An example is in order. Using the notation just given, Morton’s example
from [Mo,2] is the cyclic braid M = -3 — 32 — 32111 — 21 — 2. Replace
M by its conjugate M’ = 321M — 1 — 2 — 3 which is isotopic to the 4-braid
-2 —-21-23222 - 12— 3. See Figure 4. We invite the reader to verify that
M’ represents the unknot. By the argument given in Morton’s paper, there is
no way to modify M’ in the complement of the axis A to produce a trivial
loop. Now, the cyclic braid M’ factorizes as (Z)(3)(X)(-3), where Z and X
depend only on the elementary braids +1, +2. This braid admits an exchange
move which changes it to (Z)(—3)(X)(3). A slightly different factorization
of the cyclic braid word (Z)(—3)(X)(3) exhibits it as (C)(1)(D)(—1), where
C and D depend only on +2, +3. Such a braid also admits an exchange,
since by interchanging the origin and the point at infinity we switch the braid
generators 1 and 3, while leaving 2 fixed. The four crossings in M’ which
are to be switched are indicated in Figure 4, the first pair enclosed in dotted
circles and the second pair in dotted boxes. After this second exchange move
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we obtain M” = (C)(-1)(D)(1) = -2 -2 -1-2 - 3222123, also depicted in
Figure 4. It is easy to see that the portion of M” which is drawn in thickly
can be modified by an isotopy in the complement of the axis to a trivial loop.
It is known (see [Bi] or [Be] or [Mo,1]) that all closed 3-braid representatives
of U, are standard. This 4-braid example is the generic example which creates
complications in closed braid representatives of the unlink.

Our Theorem 1 is a special case of “Markov’s theorem without stabilization”,
and using it we can say something about the stabilization process. Let K be an
arbitrary link, and let ng be the braid index of K, i.e. the smallest integer n
such that K can be represented by an n-braid. (For the unlink, it is 1.) Choose

‘n>ng. A chain C(K, n, ny) is a sequence of closed braid representatives of
K , where the first member of the sequence is an n-braid and the last member
is an ng-braid and adjacent members are related by Markov’s moves (Mi) and
(Mii). Let n’ > n be the maximum braid index occurring in the braids in
C(K, n, ng). Define the stabilization index s(K, n) to be the smallest value
of the difference (n’' — n), for all chains C(K, n, no).

Corollary 2. The stabilization index s(U,, n) of the r-component unlink is one,
for every n.

Caution. We do not give a bound on how many times it may be necessary
to stabilize during a chain, and suspect that no such bound exists. We can
construct examples of braid representatives of the unlink which seem to require
arbitrarily many stabilizations (but each time only increasing the braid index
by 1, conjugating, and then decreasing it by 1) before they can be reduced to
the standard 1-braid representative.



590 J. S. BIRMAN AND W. W. MENASCO

Here is the plan of this paper. In §2 we standardize the geometry and set
up our basic machinery. We will start with an arbitrary n-braid representative
K of an r-component link, with braid axis A. We choose a family D of r
disjoint embedded surfaces in 3-space with boundary K. Experts will recognize
the family D to be essentially a “Markov surface”, as defined in [Be]. We begin
to study the foliation of D which is induced by the fibration H of the open solid
torus S3— A by meridian discs. The leaves in this foliation are the components
of DNH,, as ¢ ranges over the interval [0, 27]. After standardizing D and
H we will be able to define a complexity function for the pair (D, H).

In §3 we prepare for the proof of Theorem 1 by showing that the foliation
of D determines a foliated cell decomposition which we call a “tiling”. The
vertices of our tilings are the points where the axis A pierces D, the edges are
particular nonsingular leaves in the foliation, and the faces each contain one
singularity. We define the notions of the type, sign, and valence of a vertex
in the tiling. These concepts record information about the edges and the tiles
which meet at that vertex. We show that combinatorial data in the tiling can be
used to detect when our braid K = 9D has a trivial loop or admits an exchange.

In §4 we study the combinatorics of the tiling in greater detail. We prove
several combinatorial lemmas which will be used to detect when we are in the
situations of Lemmas 4, 5, and 6. The ideas which are developed in §2-4 are
used in §5 to prove Theorem 1 and Corollary 2.

This study is part of a larger one in which the authors have been studying
the closed braid representatives of links. Other papers in the series are [B-M,I;
B-M,II; B-M,III; B-M,IV; B-M,VI]. This paper is self-contained, except that the
proof of Lemma 6 is referred to the same result in [B-M,IV].

2. BASIC MACHINERY

We begin with an arbitrary n-braid representative K of the r-component
unlink U,, r > 1, in oriented S>. The braid axis is A. We orient A so that
K is oriented positively about A, using the right-hand rule. Most of the time
we will think of A as the z-axis in R3.

Since A is unkotted, its complement S3 — A is an open solid torus, which
can be fibered by meridian discs. It will be convenient to replace S> by R? and
to think of the fibration as being by half-planes {H;; ¢ € [0, 27]} of constant
polar angle ¢ through the z-axis. Note that K intersects each half-plane H,
exactly n times, transversally, and always from the negative to the positive side
of H;, because K is a closed n-braid with axis A.

Our link K is the boundary of a family of ¢ < r disjointly embedded discs
D= {Dy,...,D;} in $3. The disks D are assumed to be oriented so that the
positive normal bundle to each component of D has the orientation induced
by that on K = 0D . By standard general position arguments we may assume:

(i) The intersections of A with D are finite in number and transverse.

(ii) There is a solid torus neighborhood N(A) of A in S? — K such that
each component of D N N(A) is a disc. The foliation in each component of
DN N(A) is the standard radial foliation.

(iii) All but finitely many of the fibers H, of H meet D transversally, and
those which do not (the singular fibers) are each tangent to D at exactly one
point in the interior of both D and H;.
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(iv) The tangencies in (iii) are local maxima or minima or saddle points.
The complexity c¢(D, H) of the pair (D, H) is defined to be:

¢(D,H)=(|AnD]|, [H-DJ),

where |A ND| is the number of points in AND and |[H-D| is the number
of tangencies between fibers of H and our surface D. We assign the standard
lexicographic ordering to this complexity function. The pairs (D, H), (D', H)
will be said to be equivalent if there is an isotopy of (DN H,, DN dH,) to
(D'nH,, D'NdH,), for all ¢ € [0, 27]. By our definition of equivalence, every
representative of an equivalence class has the same complexity. Thus ¢(D, H)
is well defined on equivalence classes.

By our assumptions (i)-(iv) above each component of DN H;, where H, is
nonsingular, is an arc or a simple closed curve.

Lemma 1 [Bel. Assume that (D, H) satisfies (i)-(iv) and has simple closed
curves. Then there exists (D', H), with 8D’ = 0D, such that (D', H) also sat-
isfies (i)-(iv) and has no simple closed curves. Moreover, c(D', H) < ¢(D, H).

Proof of Lemma 1. The proof is essentially given on pp. 106-107 of [Be]. Since
it is basic to our work, does not take long to explain, and appears to be unfa-
miliar to most of our readers we repeat Bennequin’s argument here.

Suppose there is a scc a(t) in DNH; for some nonsingular H;. Since each
component of D is pierced by the braid axis and since the foliation is radial
near the axis, all of D cannot be foliated by simple closed curves. Therefore if
we follow «(t) as it evolves in the fibration, we must arrive in one direction at
an «(f) which contains a singular point py of the foliation. The point pg is
either a center or a saddle point, but if it is a center we can reverse the direction
of the flow and find a saddle. So, we may assume it is a saddle. By property (iii)
the singular point py is the only singularity on the fiber Hy , so the singularity is
necessarily a homoclinic point (Figure 5). There are two possibilities, illustrated
in Figure 5, but if the second occurs then the first occurs for some other choice
of a(t), so we may assume we are in the situation of case 1. Thus «(f) bounds
adisc A in Hy and another disc A’ in D. Their union AUA’ is a 2-sphere .S
in $3, and the algebraic intersection number of K with S is necessarily zero.

Since K does not intersect the interior of D, it also does not intersect A'.
From this it follows that A also cannot be punctured by K. For, the algebraic
and geometric intersection numbers of K with A coincide, because A is a
subdisc of Hy and K is a closed braid with axis 9H, . Therefore the geometric
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FIGURE 6

intersection number of A with K is equal to the algebraic intersection number
of K with S, i.e. 0, and from this it follows that K does not pierce A.

If the interior of A has empty intersection with D, we surger D along A
and discard the closed component. If the interior of A meets D, we find an
innermost subdisc § of A whose boundary is a component of D N Hy and
surger D along J. Ultimately, we will arrive at a new disc D’ which has the
property that the induced foliation has no simple closed curves, and ¢(D’, H) <
c(D,H). O

Lemma 2. An arc in H; N D, where H; is nonsingular, cannot have both of its
endpoints on K. '

Proof of Lemma 2. Let a € H,ND be an arc which has both of its endpoints on
K, and let N(a) be a neighborhood of o on D. See Figure 6. Then KNN(a)
has two components, ¥ and k', which have opposite orientations as subarcs in
the boundary of the oriented surface N(a). However, K is a closed n-braid,
hence it meets each H, in #n coherently oriented transverse intersections. Since
a lies in both D and H;, and since N(a) intersects H, transversally, this is
impossible. 0O

In view of Lemma 1 we may replace condition (iv) by the stronger condition.

(v) Each component of H, N D, where H, is nonsingular, is an arc. Each
tangency of a singular fiber with D is a saddle-point tangency.

The arcs in H;ND, where H; is nonsingular, are of two types. The first type
has both endpoints on A = dH, (call it an a-arc). The second type has one of
its endpoints on A = 0H, and the other on K = 9D (call it a b-arc). A b-arc,
b;, in a disc fiber H; is said to be essential if, when H, is split along b;, both
components contain points of H, N K. For example, the arc b; the two top
sketches in in Figure 7 is essential, while b, and b3 are not. Note that the link
itself is the only possible obstruction to the removal of a b-arc, therefore any
time we have an essential b-arc we know that K must loop around the axis as
in the bottom sketch in Figure 7, in between the two pierce-points.

Lemma 3. Given any pair (D, H), there exists a pair (D', H) with ¢(D’, H) <
c(D, H) such that (D', H) has only essential b-arcs.

Proof of Lemma 3. If D has an inessential b-arc, that arc will cobound with a
segment of the axis A a disc A in some H,. See Figure 7. We can then push
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D in along a neighborhood of A in §3 to remove two points of intersection
of D with the axis A. This process may introduce simple closed curves into
the foliation of D, however if so they can be removed with the aid of Lemma
1. The complexity will be reduced even if simple closed curves are introduced
because the removal of inessential b-arcs reduces [AND|. O

A pair (D, H) is said to be a good pair if D satisfies properties (i)-(iii) and
(v), and if all b-arcs are essential. By what we have just shown we may assume
we have a good pair.

3. TILINGS

We will show in this section that the foliation of D determines a type of
foliated cell decomposition of D which we call a tiling. In Lemma 4 we show
that the tiling enables us to recognize when our closed braid K has a trivial
loop. In Lemmas 5 and 6 we show that the tiling can be used to recognize when
K admits an exchange.

We begin our work by investigating the singularities in the foliation of D.
Since (D, H) is a good pair the components of D N H;, for each nonsingular
H;,, will be a union of a-arcs and essential b-arcs. Since we have two types of
arcs, a-arcs and b-arcs, there are at most three types of singularities:
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FiGURE 8. Singularities in the foliation

type aa: an a-arc surgered with an a-arc,
type ab. an a-arc surgered with a b-arc,
type bb. a b-arc surgered with a b-arc.

We assume that the singular points of the foliation occur at the interiors of
the arcs which are involved. The left column in Figure 8 shows a sequence of
leaves in D before and after a type aa singularity, where since D is an oriented
surface we can assume we are looking at its positive side D*. Figure 9 shows
the induced foliation on D* . The arrows indicate the direction of increasing ¢.
Notice that the foliation on D forms a foliated 2-cell whose vertices are the two
pierce-points, whose edges are four (nonsingular) a-arcs with two p-endpoints,
and whose interior contains a single type aa singularity. We will call such a
2-cell an aa-tile. Its edges can be any convenient choice of nonsingular a-arcs.

The middle column in Figure 8 shows a sequence of leaves in D* just before
and after a type ab singularity. Figure 9 shows the induced foliation on D™ .
Again, notice that the foliation on D* forms a tile whose sides are two a-arcs
and two b-arcs with three p-endpoints, and whose interior contains a type ab
singularity. We thus have an ab-tile.

Finally, the right column in Figure 8 shows a sequence of leaves of D* before
and after a type bb singularity, and Figure 9 shows the induced foliation on D* .
The bb-tile formed by the foliation on D* has four b-arcs as its sides with four
p-endpoints, and its interior contains a type bb singularity.
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FiGure 10. Foliated regions in the complement of the
singular arcs

A component D; of D will be said to be trivially tiled if K; = dD; is a
1-braid, so that D; is pierced once by the axis A and has the standard radial
foliation, which has no singularities. A tiling of a component of D; of D is
either the trivial tiling, or else it is a subdivision of D; into a union of tiles of
type aa, ab, and bb. Here is a way to see that tilings exist. Let U be the union of
all of the singular leaves in the foliation of D. Then each component of D—U
is a union of regions Ry, ..., R,, each of which is foliated in one of the two
ways shown in Figure 10. We choose a leaf from the foliation of each region
R;, and declare it to be a tile edge. The union of all of the edges determines a
tiling of D. Note that this also shows that any two tilings necessarily agree up
to the choice of the particular edges in the regions Ry, ..., R,.

Our tiling gives a foliated cell decomposition of D . The vertices are the points
D1, ..., Dny2u Where A pierces D. (Remark: we will not need to record the
vertices or edges which are on dD.) The faces are foliated tiles of type aa,
ab, and bb. Each face contains exactly one singularity of the foliation. The
edges of the tiles are nonsingular leaves of the foliation. We regard two tilings
as being equivalent if they differ only in the choice of the tile edges. Clearly
equivalent tilings give equivalent cell decompositions, foliated in the same way.
The valence of a vertex is the number of tile edges which meet at that vertex.
The type symbol of a vertex is a cyclic sequence (xi, X3, ..., X,) where each
x; is either a or b and the cyclic sequence describes the types of the tile edges
which meet at that vertex.

The next lemma shows how combinatorial properties of the tiling can be used
to detect the presence of a trivial loop.

Lemma 4. Let D; be a component of D which admits a nontrivial tiling. Sup-
pose that tiling contains a vertex of valence 1. Then that vertex has type (a) and
the braid K has a trivial loop. Removing the trivial loop preserves link type and
reduces ¢(D, H).
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Proof of Lemma 4. By hypothesis the tiling of D; contains a vertex of valence
1. A vertex of valence 1 is either type (a) or type (b), so assume first that it is
type (b). Then there is a type bb (respectively ab) tile in the tiling of D; which
has two adjacent b-edges identified, and so has only 3 (resp. 2) distinct vertices
instead of 4 (resp. 3). Now our tile contains exactly one singular point. This
singularity occurs when two nonsingular leaves come together. This means that
just before the singularity there are two components of H, ND; emerging from
a single point of AN D;, which is impossible.

Now suppose that D; has a vertex of type (a). Since the only tile which has
a pair of adjacent a-edges meeting at a common vertex is an aa-tile, it follows
that the vertex in question must belong to an aa-tile. Call it X . We study how
X is embedded in S3. Assume that A and H are standard. From Figure 9
we know that the axis A pierces X from the same side at the two pierce-points
p; and p;. From Figure 9 we also see that the foliation of X has a unique
separating leaf through the singular point. Note that if the vertices p; and p;
are specified as particular points on A and if the singular point is specified
as being on a particular fiber and having a particular sign, then the rest of the
embedding of X in S* will be completely determined by the leaves of the
foliation, which are level sets for the embedding. The first picture in Figure 11
shows how this embedding must look when p; and p; both have valence > 1.
Our tile necessarily has an odd number of twists because the axis pierces the
same side of X at p; and p;. There is only one twist because any additional
twists would create additional tangencies with H. The singular point occurs at
the midpoint of the twist in the band. The second picture in Figure 11 shows
how things will be modified if the vertex p; has valence 1. Notice that in this
case the foliation will be standard in the entire subdisc which contains p; and
is cut off from D by the separating leaf, so there must be a trivial loop around
A near p;. O

We can associate a sign to each tile, in the following way. Each tile contains
exactly one singular point of the foliation. At the singular point the normals to
D and to the singular fiber coincide as unoriented lines, however their orienta-
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tions may either agree or disagree. We define the sign of the tile to be positive
if they agree, otherwise negative. The sign of a vertex in the tiling is the cyclic
array of signs of the tiles which meet at that vertex.

The next two lemmas will be very important in our work. They tell us how
to recognize from combinatorial properties of the tiling when our link admits a
complexity-reducing exchange move.

Lemma 5. Assume that the tiling of some component D; of D contains a vertex
of type (ab) and sign (+, —). Then K = D admits an exchange. Moreover,
after the exchange the complexity can be reduced by removing two of the points
where the axis A pierces D.

Proof of Lemma 5. Let py be the given vertex of type (ab) and sign (+, —).
Such a vertex occurs only when two type ab tiles are identified along correspond-
ing a and b edges, as depicted in the top picture in Figure 12.

The vertex po is joined to a second vertex p; by a type b tile edge, and
Do is joined to D by a type a tile edge. We know exactly how the foliation
looks in our two tiles from our earlier work, i.e. from Figure 9. We also know
that the foliation is standard in a neighborhood of p; (Figure 6). We may
then find an arc o (Figure 12) which begins and ends on K and is everywhere
transverse to the foliation, which cobounds with a subarc a of K a subdisc Z

FIGURE 12
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K

FiGURE 13. The disc X c S3

of D, where X contains the two singular points s and g. We can then push o
across X to o, crossing the axis twice as we do so, to obtain a new embedding
K=K—-a+a of K in S3.

Clearly K also represents U, because K’ is isotopic to K in S3 (but not
in $3—A). Since a was chosen to be everywhere transverse to the leaves of
the foliation, it follows that K’ will be everywhere transverse to the disc fibers
of H, therefore K’ is a closed braid. Note that the sense of rotation of the
flow about the pierce-point py in opposite to that about p; by the conventions
described in §2. From this it follows that the braid index of K’ is 7, because
the algebraic rotation number of the flow about the deleted pierce-points is zero,
so the algebraic rotation number of K’ about A is the same as that of K about
A, namely n. Since D’ intersects the axis A two times less than D, we have
reduced the complexity. So, it only remains to show that K’ and K are related
by an exchange move.

With that goal in mind we pass to a picture in 3-space. The bottom pic-
ture in Figure 12 shows X again. We have sketched in leaves of the foliation
around py and p;, and labeled them 1,2,...,8 according to their polar
angles 1, t2, ..., tg. This figure will be helpful as we proceed. Also, consult
Figure 13, as we begin to determine the embedding. The first step in embedding
T in 3-space is to choose points on A and declare them to be the pierce-points
po and p;. Let dy and J; be little disc neighborhoods of py and p; on X. By
our earlier hypotheses, d; and J; will be transverse to A and radially foliated.
The flow is in opposite directions about py and p; (see Figure 9) so when we
embed &, and J; in 3-space, they will be pierced from opposite sides by A.

The second step is to choose two half-planes through A and declare them
to be the fibers Hy; and H, which contain the singular points s and ¢, and
also to choose points on H; and H, and declare them to be s and ¢g. Now,
the singular leaves go out from s and ¢, in Hy, and H,, like the spokes on
a wheel, with an adjacent pair of singular leaves which begin at s terminating
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at po and p;, and similarly at ¢g. The leaves which go out from s and also
from ¢ will have their endpoints on o, p;, po, K respectively. However the
positive normal to D agrees with that to H at, say, s and disagrees at ¢,
because the sign of py is (+, —), so the cyclic order of the spokes as seen on
H; will be opposite to that seen on H, .

Having embedded the singular leaves S in X, we now observe that £—S is
transverse to every fiber. It is easy to extend the embedding to an embedding of
the rest of X because the leaves of the foliation are level sets for the embedding.
The result is the picture in Figure 13.

All b-arcs in the foliation are essential. This means that the link itself must
be an obstruction to their removal, and we have shown it to be so in Figure 13.
We can push all braiding away from A, into the box labeled X. Projection
parallel to A now clearly shows that when we push a across X to o', we are
doing an exchange move, as defined in §1. This completes the proof of Lemma
5. 0

Lemma 6 (Lemma 4 of [B-M,IV]). Assume that the tiling of a component D; of
D contains a vertex of type (bb). Then K admits an exchange. Moreover, after
the exchange the complexity can be reduced by removing two of the points where
the axis pierces D .

Proof of Lemma 6. See [B-M,IV]. The proof is very similar in flavor to the proof
we have just given of Lemma 5. ’

4. COMBINATORICS OF THE TILING

In this section we will study detailed properties of the tiling. The reader
should keep the statements of Lemmas 4, 5, and 6 firmly in mind in order to
understand the goals in this section, which are to prove that in certain situations
vertices of type (a), (bb), or (ab) with appropriate signs exist.

Lemma 7. Let D; be a component of D which is nontrivially tiled. Assume that
the tiling of D; contains no vertex of valence 1. Then the tiling of D; always
contains a vertex of type (ab) or (bb) or (bbb).

Proof of Lemma 7. Let V be the number of vertices, £ the number of edges,
and F the number of faces in the tiling of D;. (Recall that we do not count
vertices or edges which are on dD.) Let F; be the 2-sphere which is obtained
from D; by collapsing the boundary of D; to a point. Examining how our
three tile types are modified by the collapsing map, we see that the tiling of D;
induces a cellular decomposition of F;, with V' +1 zero-cells, E one-cells, and
F two-cells, so that V' + 1 — E + F = 2. Examining how our three tile types
were modified by the collapsing map, we see that every 2-cell in the tiling of F;
has four edges, also every 1-cell is adjacent to two 2-cells, so 2F = E. Thus V
and E are related by

(1) 2V -E=2.

To get a sharper result, let V' (a, ) denote the number of vertices in the
tiling of D; which have o a-arcs and B b-arcs in their type symbols. Let v
be the valence of a vertex. Then o+ f = v, so that V(a, v — ) denotes the
number of vertices in the tiling of D; which have valence v and « edges of
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type a. Recall that by hypothesis there are no vertices of valence 1 in the tiling
of D. Therefore we can express V as the following sum of the V(a, v —a)’s:

o0 v
2) V=33V, v-a.

v=2 a=0
Let E, and E, denote the number of edges in the tiling of type a and b
respectively, so that E = E, + E;,. Since each a-edge is incident at one vertex,
whereas each b-edge is incident at two vertices, we have related sums for E,
and Ey:

o0 v o0 v
() E=).Y aV(e,v-a); 2E=Y Y (v-0)V(x,v-a).

v=2 a=0 v=2 a=0
Rewriting equation (1) in the form 4V —2E, — 2E, = 4, we can then combine
it with equations (2) and (3) to obtain

o0 v
4) YN (4-a-v)V(a,v-0a)=4.

v=2 a=0
Note that when v > 4 the coefficient (4 — v — a) will be < 0. We can
thus rearrange equation (4) so that all terms on both sides of the equation are
nonnegative:

5) V(l,1)+2V(0,2)+ V(0, 3)

5 © v

=44+V(2,D+2V3, 0+ Y (v+a-4)V(a,v -a)
v=4 a=0

The left-hand side of equation (5) must be at least 4. Thus there will be a

vertex of type (ab) or (bb) or (bbb), according as V (1, 1), ¥ (0, 2) or V(0, 3)

is nonzero. O

Lemma 8. Let (D, H) be a good pair. Assume that the tiling of D has a vertex
Vo of type (b,b,b). Let P, Q, and R be the tiles which meet at Vy. Then there
exist a choice of tiles P and Q and a good pair (D', H) with the properties:
(i) ¢(D',H)=¢c(D, H).
(ii) The changes which occur in the passage from (D, H) to (D', H) do not
change the tiling away from PU Q.
(iii) In the tiling of D' by H the vertex Vy has type (bb).

Proof of Lemma 8. We begin our proof by exhibiting, in Figure 14, the graph of
the function f(x, y) = y3—3x2y, in a neighborhood of the origin (0, 0). The
point (0, 0) is a critical point for f(x, y) relative to the height function. That
critical point is degenerate, because the Hessian (fyy)? — fux fyy = 36(x2+?) is
zero at (0, 0). The graph is commonly known as a monkey saddle. Note that
there are three “hills” and three “valleys”. Level sets are shown in Figure 14.
The level sets at f(x, y) = 0 are the three lines y = 0 and y = +v/3. Now,
we can deform our function a little bit so that the critical point splits into a pair
of nondegenerate critical points. For example, let f;(x, y) = y3 - 3x%y — 3¢%y,
which has critical points at (0, +¢). Level sets for the graph of the deformed
function f; are shown in Figure 14. By letting ¢ — 0 we conclude that the
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FIGURE 14

orientation of the normal bundle to f;(x, y) must be the same at (0, &) and
at (0, —¢).

Observe that since the original function fo(x, y) is symmetric under a ro-
tation g of zm/3 about the origin, this deformation could also have been done
so that the “splitting” occurred along the lines 8 = +n/3 and +2n/3, instead
of along the line # = 0, where @ is the polar angle. Thus there are three ways
to do the deformation, defined by the functions f,, gf,g~!, and g2f,g~2.

We return to D, and to the tiles P, Q, and R which meet at V. Two of
these three tiles necessarily have the same sign, say P and Q. Let p and g be
their singular points. The first step is to deform D so that p and g are close
together on D.

Next notice that the foliation of D, together with our knowledge of the signs
of the singularities, determines how the portion of D which is near the singular
points is embedded in 3-space. For, choose foliated neighborhoods N(p) and
N(g) of the singular points. Each is embedded in 3-space as a surface with
a single saddle-point singularity. Now band these surfaces together. We may
choose the band to be a foliated neighborhood N of an arc a« on D which joins
p to g . There are essentially two ways to embed N in 3-space, according as
the signs of the singularities agree or disagree. See Figure 15. Next arrange that
p and ¢ are consecutive singularities in the fibration. These changes can be
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MS at sand s’
signs at s and s’ agree

nondegenerate saddles at s and s’
signs at s and s’ do not agree

FIGURE 15

done so that the tiling is unchanged away from P U Q. A further deformation
ensures that in some neighborhood of the deformed critical points the surface
is the graph of f;. (This is the place where we use the fact that the signs of
the singularities agree.) We can then let ¢ — 0, so that the embedding changes
to the graph of f;. From Figure 15 it is clear that the link K and other sheets
of D will not obstruct this deformation (if the signs disagree they might, as is
illustrated in the bottom picture in Figure 15). Finally we can introduce a new
deformation in the fibration to achieve the graph of gfig~!.

We now examine the effect of the passage from f; to gfig~! on the tiling
of D. First note that without loss of generality we may assume that our changes
were supported in a neighborhood in S? of PUQ. There are three possibilities
for the types of P and Q, i.e. both could be type bb, or P might be type bb
and Q type ab, or both could be type ab. In all three cases the tiles P and Q
have a common edge which has type b, and ¥; is at one of the endpoints of
this edge. We show “before” and “after” tilings for all three cases in Figure 16.
In every case Vp has been changed from a vertex of type (bbb) to one of type
(bb), as required. O



STUDYING LINKS VIA CLOSED BRAIDS. V: THE UNLINK 603

BEFORE AFTER
V0 V0

Types (bb) and (bb)

Types (bb) and (ab)

Types (ab) and (ab)

FIGURE 16

Lemma 9. Let (D, H) be a good pair. Suppose that the H-tiling of D has a
vertex of type (a,b) with sign (+, ). Then there exists a good pair (D', H),
with ¢(D', H) = ¢(D, H), such that the tiling of D' has a vertex of type (a).

Proof of Lemma 9. A vertex V; of type (ab) can only occur when the tiling of a
component D; of D has two type ab-tiles P and Q which are identified along
common a and b edges, so that the two tiles also have two vertices, ¥, and
V1, in common, as in Figure 17. By hypothesis, our tiles have the same sign, so
we are in exactly the situation of Lemma 8, with P and Q both type ab-tiles.
We construct (D', H') as in the proof of Lemma 8, to produce a new tiling, as
illustrated in the right picture in Figure 17, which is essentially identical with the
corresponding picture in Figure 16. (The only difference is that in the situation
of Figure 16 there could be other tiles glued to P and Q at the vertex V;, so
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P and Q

FIGURE 17

that the picture in Figure 16 is less restrictive than that in Figure 17.) After the
change we obtain an aa-tile, with a vertex V; of type (a). O

5. CLOSED BRAID REPRESENTATIVES OF THE UNLINK

Theorem 1 and Corollary 2 were stated in the introduction. In this section
we use the machinery of §2-5 to prove them. Theorem 1 is our version of
Markov’s Theorem without stabilization, for the unlink.

Proof of Theorem 1. We are given a closed n-braid representative K of the
r-component unlink, with braid axis A. We want to show that we can reduce it
to the standard r-braid representative by isotopy in the complement of the axis,
removal of trivial loops, and exchanges. By our work in §2, we may assume that
there is a good pair (D, H), where 6D = K, 6H = A. The complexity of this
pair is ¢(D, H). The proof will be by induction on ¢(D, H).

Our first assertion is that if ¢(D, H) = (r, 0), then K is the standard r-braid
representative U, of the r-component unlink. To see this, note that there are r
components in D, and each is pierced at least once by A, because K is a closed
braid with respect to A. By the definition of ¢(D, H) the axis A pierces the
disc family D in exactly r points. Thus each component D; is pierced once
by A. Since (D, H) is a good pair the foliation of D is the standard radial
foliation near each point of A ND. From this it follows that each component
of D is foliated without singularities by arcs with one endpoint on A and the
other on K. The foliation of D; will therefore be standard on all of D;. Thus
OD; is a standard 1-braid foreach i=1,...,r andso K=1U,.

In view of this, we assume from now on that ¢(D, H) > (r, 0). We must
show that, after isotopy in the complement of the axis, deletion of trivial loops,
and exchange moves we can reduce the complexity.

We examine the tiling of D which is determined by H. If there is a vertex of
type (a), then by Lemma 4 we know we can reduce complexity by eliminating a
trivial loop. We can therefore assume that there are no vertices of valence 1 in
the tiling of D. It then follows from Lemma 7 that any component D; which
is nontrivially tiled must have a vertex of type (ab) or (bb) or (bbb). By Lemma
8, we can do better: we can assume there is a vertex of type (ab) or (bb). If
there is a vertex of type (ab) and sign (++) or (——), then by Lemma 9 we can
change the fibration to produce a trivial loop, and again we are done. If there
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exists a vertex of type (ab) with sign (+, —), then by Lemma 5 we can reduce
the complexity by an exchange move, and again we are done. If there is a vertex
of type (bb) then by Lemma 5 an exchange move reduces the complexity. The
proof of Theorem 1 is complete. O

Corollary 2 asserts that the stabilization index of an arbitrary braid represen-
tative of the r-component unlink is 1.

Proof of Corollary 2. Let K be an arbitrary n-braid representative of the unlink
U,, and let U, be the standard r-braid representative. Consider any chain of
braids which takes K to U, and has the property that the chain contains braids
of index n’ > n. Then there is a braid K’ of braid index » in the chain, and
a subchain from K to K’ which contains a braid of index »’. By Theorem 1,
the subchain may be replaced by a sequence of braids, all in B, and related
to one another by exchanges and conjugations in B,, and since an exchange
on weighted strands can be replaced by a sequence of exchanges which involve
only strands with weight 1, we can assume that all the weights are 1. So, it
only remains to show that a single exchange in B, which involves strands of
weight 1 can be replaced by a chain in which the intermediate braids have braid
index at most n + 1. However, this was proved in 1938, by Weinberg, who
gave in [W] a very simple replacement sequence. Weinberg’s sequence shows
that an exchange can be realized by adding one trivial loop, conjugating, and
then deleting a trivial loop. 0O

Comments. The earliest version of Markov’s theorem was the announcement
[Ma], which described the theorem and sketched an outline of a proof. That ver-
sion was a little bit different from the version we have given here, as it included
the exchange move in addition to (Mi) and (Mii). A short time after Markov’s
announcement was published Weinberg [W] showed (using the replacement se-
quence we have just described) that the exchange move was a consequence of
(Mi) and (Mii). It was thus removed from subsequent versions of what has
come to be known as “Markov’s Theorem”.

The main result of this paper is a type of converse to Weinberg’s result,
vis: if K represents the unlink, then the addition and subsequent deletion of
trivial loops can be replaced by conjugation and exchanges. In a subsequent
manuscript we will prove a version of Markov’s theorem without stabilization
for an arbitrary link K. As will be seen, the exchange move is not enough
in the general case; one needs a generalization of it which we call a “braid-
preserving flype”. Corollary 2 will be seen to generalize as well, to show that
S(K,n)=2n.

ACKNOWLEDGMENTS

We thank M. Boileau, E. Flapan, B. Wajnryb, Y. Moriah, X. Q. Wu, S.
Schanuel, D. Schack, and X. S. Lin for helpful comments and discussions.

Special thanks go to Melissa Menasco and to Joseph Birman, for their support
and encouragement during many visits of Birman to the Menasco home and
Menasco to the Birman home. This work, which is part of a much larger study
still in progress, could not have been completed without their cooperation.



606 1. S. BIRMAN AND W. W. MENASCO
REFERENCES

[A] J. W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. U.S.A. 9
(1923), 93-95.

[Be] Daniel Bennequin, Entrelacements et equations de Pfaff, Asterisque 107-108 (1983), 87-
161.

[Bi] Joan S. Birman, Braids, links and mapping class groups, Ann. of Math. Stud., no. 82,
Princeton Univ. Press, Princeton, N.J., 1974.

[B-M,I] Joan S. Birman and William W. Menasco, Studying links via closed braids. 1. A finiteness
theorem, Pacific J. Math. (to appear).

[B-M,IT] —_, Studying links via closed braids. 1I: On a theorem of Bennequin, Topology Appl. (to
appear).

[B-M,III] —, Studying links via closed braids. 11I: Classifying links which are closed 3-braids,
preprint, 1989.

[B-M,IV] —, Studying links via closed braids. IV: Split and composite links, Invent. Math. 102
Fasc. 1 (1990), 115-139.

[B-M,VI] —_, Studying links via closed braids. VI: A non-finiteness theorem, Pacific J. Math. (to
appear).

[ V. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math.
126 (1987), 335-388.

[G] F. Garside, The braid groups and other groups, Quart. J. Math. Oxford 20 235-254.

[Ma] A. A. Markov, Uber die freie Aquivalenz der geschlossenen Zopfe, Rec. Soc. Math. Moscou
43 (1936), 73-78.

[Mo,1] Hugh R. Morton, Ar irreducible 4-string braid with unknotted closure, Math. Proc. Cam-
bridge Philos. Soc. 93 (1983), 259-261.

[Mo,2] —, Threading knot diagrams, Math. Proc. Cambridge Philos. Soc. 99 (1986), 247-260.

[R] L. Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv.
58 (1983), 1-37.

[W]  N. Weinberg, Sur [’equivalence libre des tresses fermees, Dokl. Akad. Sci. USSR 23 (1939),
no. 3.

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NEW YOrk 10027

DEPARTMENT OF MATHEMATICS, SUNY AT BUFFALO, BUFFALO, NEW YORK 14222



