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Background:

Defintion: S= orientable hyperbolic surface, closed or with finitely many
punctures. Mapping class group of S = Mod (S) = π0(o.p.Diff(S)).

A conjugacy class in Mod (S) is

periodic if it has a representative F ∈ DiffS such that [F ]k is the
identity for some k > 0,

reducible if it has a representative F such that there is a family of
simple loops C ⊂ S with F (C) = C and each component of S \ C has
negative Euler characteristic.

pseudo-Anosov if neither periodic nor reducible. Theorem of Riven:
this is the generic case.

Theorem of Thurston (1970’s): If [F ] is pseudo-Anosov, there exists a
representative F : S → S and a pair of transverse measured foliations
Fu,F s and a real number λ, the dilatation of [F ], such that F multiplies
the measure on Fu (resp. F s) by λ (resp. 1

λ).
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Assume [F ] pseudo-Anosov. Two interesting known invariants of [F ]:

(1) λ, an algebraic integer, or its minimum polynomial mλ(x).

(2) If the mapping torus of F is complement of a knot K in a
homology sphere, the Alexander polynomial AlexK (x), is the characteristic
polynomial of the action of the monodromy F on H1(fiber).

Our main new result: A new polynomial p(x) invariant of [F ], when [F ] is
pseudo-Anosov.

Our p(x) is in general not irreducible, but if it is, it coincides with
mλ(x).

In general, p(x) has a unique largest real root, and that root is λ.

If K a knot as above, our p(x) is in general not AlexK (x), but for a
special class of maps [F ] we have p(x) = AlexK (x).

In the course of the proof, we learned other new things. So I want to
sketch how we approached the problem.

Joan Birman (with Peter Brinkmann and Keiko Kawamuro) ()A polynomial invariant of pseudo-Anosov maps May 23, 2010 3 / 11



Assume [F ] pseudo-Anosov. Two interesting known invariants of [F ]:

(1) λ, an algebraic integer, or its minimum polynomial mλ(x).

(2) If the mapping torus of F is complement of a knot K in a
homology sphere, the Alexander polynomial AlexK (x), is the characteristic
polynomial of the action of the monodromy F on H1(fiber).

Our main new result: A new polynomial p(x) invariant of [F ], when [F ] is
pseudo-Anosov.

Our p(x) is in general not irreducible, but if it is, it coincides with
mλ(x).

In general, p(x) has a unique largest real root, and that root is λ.

If K a knot as above, our p(x) is in general not AlexK (x), but for a
special class of maps [F ] we have p(x) = AlexK (x).

In the course of the proof, we learned other new things. So I want to
sketch how we approached the problem.

Joan Birman (with Peter Brinkmann and Keiko Kawamuro) ()A polynomial invariant of pseudo-Anosov maps May 23, 2010 3 / 11



Assume [F ] pseudo-Anosov. Two interesting known invariants of [F ]:

(1) λ, an algebraic integer, or its minimum polynomial mλ(x).

(2) If the mapping torus of F is complement of a knot K in a
homology sphere, the Alexander polynomial AlexK (x), is the characteristic
polynomial of the action of the monodromy F on H1(fiber).

Our main new result: A new polynomial p(x) invariant of [F ], when [F ] is
pseudo-Anosov.

Our p(x) is in general not irreducible, but if it is, it coincides with
mλ(x).

In general, p(x) has a unique largest real root, and that root is λ.

If K a knot as above, our p(x) is in general not AlexK (x), but for a
special class of maps [F ] we have p(x) = AlexK (x).

In the course of the proof, we learned other new things. So I want to
sketch how we approached the problem.

Joan Birman (with Peter Brinkmann and Keiko Kawamuro) ()A polynomial invariant of pseudo-Anosov maps May 23, 2010 3 / 11



Train tracks

Thurston introduced measured train tracks, as a way of recording
properties of the measured foliations Fu,F s associated to a
pseudo-Anosov mapping class [F ] on the surface S .

A train track τ is a branched 1-manifold embedded in the surface S .

Made up of smooth edges (called branches), disjointly embedded in S , and
vertices (called switches).

Given a pseudo-Anosov mapping class [F ], there exists a train track τ ⊂ S
that fills the surface, i.e., the complement of τ consists of possibly
punctured discs, and τ is left invariant by [F ]. Moreover, there exists a
transverse (resp. tangential) measure on τ that encodes the structure of
the stable (resp. unstable) foliation of [F ].

Measures on branches. Switch conditions satisfied at every switch.
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Bestvina and Handel’s proof of Thurston’s theorem

1995: Bestvina and Handel gave an algorithmic proof of Thurston’s
theorem.

Proof shows: if [F ] is pseudo-Anosov, one may construct a graph G
homotopic to S and an induced map f : G → G that’s a
homotopy-equivalence. (f (vertex) of G → vertex of G , and f (edge) =
sequence of edges, an immersion on interior of each edge.

Proof is algorithmic. Construct candidates for G and for f : G → G .

Arrive at one which can be used to construct a measured train track τ and
recover the measured foliations Fu,F s . Candidates which cannot be
so-used are discarded along the way.

Assuming that the algorithm has ended with a proof that [F ] is
pseudo-Anosov, will have in hand the graph G and a map f : G → G , and
(implicitly) a special measured train track constructed from it.
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Calculating λ, in the Bestvina-Handel setting

The graph G is embedded in the surface S . If S has one or more
punctures, then G is homotopy equivalent to S ; in fact, each component
of the complement of G is a 2-cell, possibly with one puncture.

Let e1, . . . , em be the unoriented edges of G . Then f (ej) is an edge path
in G for each j . The transition matrix of f is the m×m matrix T = (ti ,j),
where ti ,j is the number of times f (ej) crosses ei , counted without
orientation, so that all entries of T are non-negative integers. [F ]
pseudo-Anosov =⇒ T irreducible.

It’s a Perron-Frobenius matrix. T has a largest real eigenvalue λ. That’s
the dilatation λ of [F ]. The eigenvalue λ has algebraic multiplicity one,
and the corresponding eigenspace is spanned by a positive vector. Left
(resp. right) eigenvectors of T are determined by the transversal (resp.
tangential) measures on τ .

(Eigenvectors also determine the measures on τ .
Nice. [BH] proof is algorithmic.)
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Study structure of det(T − xI ) = χ(T )

Measures on τ are determined by T . [BH] prove can use f : G → G to
construct τ , and from it the foliations.

Interplay between τ and G . The map f : G → G can be used to construct
τ . But also τ , with its measures, determines G . Recall the [BH] version of
τ , and the measures on τ . Real edges and infinitesimal edges. 4 types of
vertices.

w0 w1

w2

w0

w1

w2

w3

w0

w1

w2

w3

x0

x1x2

x0

x1x2

x0

x1x2

x3

w0

odd vertex even vertex partial vertex evanescent vertex

Using [BH] version of τ , there is a natural projection π : τ → G , defined
by collapsing the infinitesimal edges to associated vertices. So assume
[BH] algorithm has determined that [F ] is PA, and has produced a train
track τ , with associated collapsing map to π : τ → G .
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To study χ(T ), introduce vector spaces V (τ) of weighted train tracks and
W (τ) of ones whose weights satisfy branch conditions. Also V (G ) of
‘widths’ of edges of G . Then π induces π∗ : V (τ)→ V (G ), space of
‘measures’ on the associated graph G . Let f∗ : V (G )→ V (G ) denote the
linear map induced by f . Let W (G , f ) = π∗(W (τ)).

It’s subspace of V (G ) whose elements admit an extension to a transverse
measure on τ . (Need it because ‘switch conditions’ natural for train
tracks, but not for graphs.)

Using this result, we then prove that W (G , f ) is the kernel of a
homomorphism δ , and also that the resulting decomposition
V (G ) ∼= W (G , f )⊕ im(δ) is invariant under the action of f∗.

Since f? is represented by T , there is a corresponding product
decomposition

χ(T ) = χ(f?) = χ(f∗|W (G ,f ))χ(f∗|im(δ))
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A skew-symmetric form on the graph G

[F] define a skew-symmetric form on the space of transversal measures on
a train track τ . We extend their form to a skew-symmetric form on our
space W (G , f ). We prove that this skew-symmetric form is invariant
under the action of f∗.

Interesting aspect of our work: [PH] imply that the skew-symmetric form
on τ non-degenerate, but we found examples where had to be degenerate.
We give a complete description of space Z of degeneracies.

Once again, the decomposition W (G , f ) ∼= (W (G , f )/Z )⊕ Z turns to be
invariant under f∗. So we have

χ(T ) = χ(f?) = (χ(f∗|W (G ,f )/Z )(χ(f∗|Z ))(χ(f∗|im(δ)))
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Main Results

(1) The polynomial χ(T ) = χ(f∗) factorizes as a product of three not
necessarily irreducible factors χ(f∗|W (G ,f )/Z)), χ(f∗|Z ) and χ(f∗|im(δ)).

(2) The polynomial χ(f∗|W (G ,f )/Z)) is an invariant of [F ]. It is
palindromic. It contains the dilatation λ as its largest real root. While
it always contains the minimum polynomial of λ as a factor, it does
not, in general coincide with the minimum polynomial.

Jeffrey Carlson helped us to see the final step in the proof, in (2).

(3) The polynomial χ(f∗|Z ) is an invariant of [F ]. It encodes information
about how f permutes the punctures of S. It is palindromic or
anti-palindromic, and all of its roots are roots of unity.
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(4) The polynomial χ(f∗|im(δ)) records the way that f∗ permutes the
vertices of τ . Palendromic or anti-palendromic times a power of x,
and all of its roots are zero or roots of unity. Not an invariant of [F ].

(5) χ(f∗) = χ(f∗|W (G ,f )/Z))χ(f∗|Z )χ(f∗|imδ) is a palindromic or
antipalindromic polynomial, possibly up to multiplication by a power
of x.

Remark: Thurston had established a result that sounds the same as (5)
above. In fact the two results are different. He introduced the orientation
cover S̃ of S and proved that the dilatation of [F ] is an eigenvalue of the
covering map, i.e., the dilatation is a root of a symplectic polynomial that
has degree 2g̃ , where g̃ is the genus of S̃ . We note that our polynomial
χ(f∗|W (G ,f )/Z)) has a degree 6= 2g̃ in general, and also that the symmetries
of the three factors whose product is χ(f∗) arise for three distinct reasons.
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