A polynomial invariant of pseudo-Anosov maps

Joan Birman (with Peter Brinkmann and Keiko Kawamuro)

May 23, 2010
Background:

Definition: $S =$ **orientable hyperbolic surface**, closed or with finitely many punctures. Mapping class group of $S = \text{Mod} (S) = \pi_0(o.p.\text{Diff}(S))$.

A conjugacy class in $\text{Mod} (S)$ is

- **periodic** if it has a representative $F \in \text{Diff} S$ such that $[F]^k$ is the identity for some $k > 0$,
- **reducible** if it has a representative F such that there is a family of simple loops $\mathcal{C} \subset S$ with $F(\mathcal{C}) = \mathcal{C}$ and each component of $S \setminus \mathcal{C}$ has negative Euler characteristic.
- **pseudo-Anosov** if neither periodic nor reducible. Theorem of Riven: this is the generic case.

Theorem of Thurston (1970’s): If $[F]$ is pseudo-Anosov, there exists a representative $F : S \to S$ and a pair of transverse measured foliations $\mathcal{F}^u, \mathcal{F}^s$ and a real number λ, the dilatation of $[F]$, such that F multiplies the measure on \mathcal{F}^u (resp. \mathcal{F}^s) by λ (resp. $\frac{1}{\lambda}$).
Background:

Definition: $S =$ orientable hyperbolic surface, closed or with finitely many punctures. Mapping class group of $S = \text{Mod}(S) = \pi_0(o.p.\text{Diff}(S))$.

A conjugacy class in $\text{Mod}(S)$ is

- **periodic** if it has a representative $F \in \text{Diff}S$ such that $[F]^k$ is the identity for some $k > 0$,
- **reducible** if it has a representative F such that there is a family of simple loops $\mathcal{C} \subset S$ with $F(\mathcal{C}) = \mathcal{C}$ and each component of $S \setminus \mathcal{C}$ has negative Euler characteristic.
- **pseudo-Anosov** if neither periodic nor reducible. Theorem of Riven: this is the generic case.

Theorem of Thurston (1970's): If $[F]$ is pseudo-Anosov, there exists a representative $F : S \to S$ and a pair of transverse measured foliations $\mathcal{F}^u, \mathcal{F}^s$ and a real number λ, the dilatation of $[F]$, such that F multiplies the measure on \mathcal{F}^u (resp. \mathcal{F}^s) by λ (resp. $\frac{1}{\lambda}$).
Background:

Definition: $S =$ orientable hyperbolic surface, closed or with finitely many punctures. Mapping class group of $S =$ Mod $(S) = \pi_0(o.p.\text{Diff}(S))$.

A conjugacy class in Mod (S) is

- **periodic** if it has a representative $F \in \text{Diff}S$ such that $[F]^k$ is the identity for some $k > 0$,
- **reducible** if it has a representative F such that there is a family of simple loops $\mathcal{C} \subset S$ with $F(\mathcal{C}) = \mathcal{C}$ and each component of $S \setminus \mathcal{C}$ has negative Euler characteristic.
- **pseudo-Anosov** if neither periodic nor reducible. Theorem of Riven: this is the generic case.

Theorem of Thurston (1970's): If $[F]$ is pseudo-Anosov, there exists a representative $F : S \to S$ and a pair of transverse measured foliations $\mathcal{F}^u, \mathcal{F}^s$ and a real number λ, the dilatation of $[F]$, such that F multiplies the measure on \mathcal{F}^u (resp. \mathcal{F}^s) by λ (resp. $\frac{1}{\lambda}$).
Background:

Definition: \(S = \) orientable hyperbolic surface, closed or with finitely many punctures. Mapping class group of \(S = \text{Mod} (S) = \pi_0(\text{o.p.}\text{Diff}(S)) \).

A conjugacy class in \(\text{Mod} (S) \) is

- **periodic** if it has a representative \(F \in \text{Diff} S \) such that \([F]^k\) is the identity for some \(k > 0 \),
- **reducible** if it has a representative \(F \) such that there is a family of simple loops \(\mathcal{C} \subset S \) with \(F(\mathcal{C}) = \mathcal{C} \) and each component of \(S \setminus \mathcal{C} \) has negative Euler characteristic.
- **pseudo-Anosov** if neither periodic nor reducible. Theorem of Riven: this is the generic case.

Theorem of Thurston (1970's): If \([F]\) is pseudo-Anosov, there exists a representative \(F : S \to S \) and a pair of transverse measured foliations \(\mathcal{F}^u, \mathcal{F}^s \) and a real number \(\lambda \), the dilatation of \([F]\), such that \(F \) multiplies the measure on \(\mathcal{F}^u \) (resp. \(\mathcal{F}^s \)) by \(\lambda \) (resp. \(\frac{1}{\lambda} \)).
Background:

Definition: $S = \text{orientable hyperbolic surface}$, closed or with finitely many punctures. Mapping class group of $S = \text{Mod} (S) = \pi_0 (\text{o.p.}\text{Diff} (S))$.

A conjugacy class in $\text{Mod} (S)$ is

- **periodic** if it has a representative $F \in \text{Diff} S$ such that $[F]^k$ is the identity for some $k > 0$,
- **reducible** if it has a representative F such that there is a family of simple loops $\mathcal{C} \subset S$ with $F(\mathcal{C}) = \mathcal{C}$ and each component of $S \setminus \mathcal{C}$ has negative Euler characteristic.
- **pseudo-Anosov** if neither periodic nor reducible. Theorem of Riven: this is the generic case.

Theorem of Thurston (1970’s): If $[F]$ is pseudo-Anosov, there exists a representative $F : S \to S$ and a pair of transverse measured foliations $\mathcal{F}^u, \mathcal{F}^s$ and a real number λ, the dilatation of $[F]$, such that F multiplies the measure on \mathcal{F}^u (resp. \mathcal{F}^s) by λ (resp. $\frac{1}{\lambda}$).
Assume \([F]\) pseudo-Anosov. Two interesting known invariants of \([F]\):

\begin{itemize}
 \item (1) \(\lambda\), an algebraic integer, or its \textit{minimum polynomial} \(m_{\lambda}(x)\).
 \item (2) If the mapping torus of \(F\) is complement of a knot \(K\) in a homology sphere, the Alexander polynomial \(\text{Alex}_K(x)\), is the characteristic polynomial of the action of the monodromy \(F\) on \(H_1(\text{fiber})\).
\end{itemize}

Our main new result: A new polynomial \(p(x)\) invariant of \([F]\), when \([F]\) is pseudo-Anosov.

\begin{itemize}
 \item Our \(p(x)\) is in general not irreducible, but if it is, it coincides with \(m_{\lambda}(x)\).
 \item In general, \(p(x)\) has a unique largest real root, and that root is \(\lambda\).
 \item If \(K\) a knot as above, our \(p(x)\) is in general not \(\text{Alex}_K(x)\), but for a special class of maps \([F]\) we have \(p(x) = \text{Alex}_K(x)\).
\end{itemize}

In the course of the proof, we learned other new things. So I want to sketch how we approached the problem.
Assume \([F]\) pseudo-Anosov. Two interesting known invariants of \([F]\):

1. \(\lambda\), an algebraic integer, or its minimum polynomial \(m_\lambda(x)\).
2. If the mapping torus of \(F\) is complement of a knot \(K\) in a homology sphere, the Alexander polynomial \(\text{Alex}_K(x)\), is the characteristic polynomial of the action of the monodromy \(F\) on \(H_1(\text{fiber})\).

Our main new result: A new polynomial \(p(x)\) invariant of \([F]\), when \([F]\) is pseudo-Anosov.

- Our \(p(x)\) is in general not irreducible, but if it is, it coincides with \(m_\lambda(x)\).
- In general, \(p(x)\) has a unique largest real root, and that root is \(\lambda\).
- If \(K\) a knot as above, our \(p(x)\) is in general not \(\text{Alex}_K(x)\), but for a special class of maps \([F]\) we have \(p(x) = \text{Alex}_K(x)\).

In the course of the proof, we learned other new things. So I want to sketch how we approached the problem.
Assume \([F]\) pseudo-Anosov. Two interesting known invariants of \([F]\):

1. \(\lambda\), an algebraic integer, or its minimum polynomial \(m_\lambda(x)\).
2. If the mapping torus of \(F\) is complement of a knot \(K\) in a homology sphere, the Alexander polynomial \(Alex_K(x)\), is the characteristic polynomial of the action of the monodromy \(F\) on \(H_1(\text{fiber})\).

Our main new result: A new polynomial \(p(x)\) invariant of \([F]\), when \([F]\) is pseudo-Anosov.

- Our \(p(x)\) is in general not irreducible, but if it is, it coincides with \(m_\lambda(x)\).
- In general, \(p(x)\) has a unique largest real root, and that root is \(\lambda\).
- If \(K\) a knot as above, our \(p(x)\) is in general not \(Alex_K(x)\), but for a special class of maps \([F]\) we have \(p(x) = Alex_K(x)\).

In the course of the proof, we learned other new things. So I want to sketch how we approached the problem.
Train tracks

Thurston introduced measured train tracks, as a way of recording properties of the measured foliations $\mathcal{F}^u, \mathcal{F}^s$ associated to a pseudo-Anosov mapping class $[F]$ on the surface S.

A train track τ is a branched 1-manifold embedded in the surface S.

Made up of smooth edges (called branches), disjointly embedded in S, and vertices (called switches).

Given a pseudo-Anosov mapping class $[F]$, there exists a train track $\tau \subset S$ that fills the surface, i.e., the complement of τ consists of possibly punctured discs, and τ is left invariant by $[F]$. Moreover, there exists a transverse (resp. tangential) measure on τ that encodes the structure of the stable (resp. unstable) foliation of $[F]$.

Measures on branches. Switch conditions satisfied at every switch.
Train tracks

Thurston introduced measured train tracks, as a way of recording properties of the measured foliations $\mathcal{F}^{u}, \mathcal{F}^{s}$ associated to a pseudo-Anosov mapping class $[F]$ on the surface S.

A train track τ is a branched 1-manifold embedded in the surface S.

Made up of smooth edges (called branches), disjointly embedded in S, and vertices (called switches).

Given a pseudo-Anosov mapping class $[F]$, there exists a train track $\tau \subset S$ that fills the surface, i.e., the complement of τ consists of possibly punctured discs, and τ is left invariant by $[F]$. Moreover, there exists a transverse (resp. tangential) measure on τ that encodes the structure of the stable (resp. unstable) foliation of $[F]$.

Measures on branches. Switch conditions satisfied at every switch.
Train tracks

Thurston introduced measured train tracks, as a way of recording properties of the measured foliations $\mathcal{F}^u, \mathcal{F}^s$ associated to a pseudo-Anosov mapping class $[F]$ on the surface S.

A train track τ is a branched 1-manifold embedded in the surface S.

Made up of smooth edges (called branches), disjointly embedded in S, and vertices (called switches).

Given a pseudo-Anosov mapping class $[F]$, there exists a train track $\tau \subset S$ that fills the surface, i.e., the complement of τ consists of possibly punctured discs, and τ is left invariant by $[F]$. Moreover, there exists a transverse (resp. tangential) measure on τ that encodes the structure of the stable (resp. unstable) foliation of $[F]$.

Measures on branches. Switch conditions satisfied at every switch.
Train tracks

Thurston introduced measured train tracks, as a way of recording properties of the measured foliations $\mathcal{F}^u, \mathcal{F}^s$ associated to a pseudo-Anosov mapping class $[F]$ on the surface S.

A train track τ is a branched 1-manifold embedded in the surface S.

Made up of smooth edges (called branches), disjointly embedded in S, and vertices (called switches).

Given a pseudo-Anosov mapping class $[F]$, there exists a train track $\tau \subset S$ that fills the surface, i.e., the complement of τ consists of possibly punctured discs, and τ is left invariant by $[F]$. Moreover, there exists a transverse (resp. tangential) measure on τ that encodes the structure of the stable (resp. unstable) foliation of $[F]$.

Measures on branches. Switch conditions satisfied at every switch.
Train tracks

Thurston introduced measured train tracks, as a way of recording properties of the measured foliations $\mathcal{F}^u, \mathcal{F}^s$ associated to a pseudo-Anosov mapping class $[F]$ on the surface S.

A train track τ is a branched 1-manifold embedded in the surface S.

Made up of smooth edges (called branches), disjointly embedded in S, and vertices (called switches).

Given a pseudo-Anosov mapping class $[F]$, there exists a train track $\tau \subset S$ that fills the surface, i.e., the complement of τ consists of possibly punctured discs, and τ is left invariant by $[F]$. Moreover, there exists a transverse (resp. tangential) measure on τ that encodes the structure of the stable (resp. unstable) foliation of $[F]$.

Measures on branches. Switch conditions satisfied at every switch.
Bestvina and Handel’s proof of Thurston’s theorem

1995: Bestvina and Handel gave an algorithmic proof of Thurston’s theorem.

Proof shows: if \([F]\) is pseudo-Anosov, one may construct a graph \(G\) homotopic to \(S\) and an induced map \(f : G \rightarrow G\) that’s a homotopy-equivalence. \((f(\text{vertex})\ of\ G \rightarrow \text{vertex of}\ G,\ and\ f(\text{edge}) = \text{sequence of edges},\ an\ immersion\ on\ interior\ of\ each\ edge.\)

Proof is algorithmic. Construct candidates for \(G\) and for \(f : G \rightarrow G\).

Arrive at one which can be used to construct a measured train track \(\tau\) and recover the measured foliations \(\mathcal{F}^u, \mathcal{F}^s\). Candidates which cannot be so-used are discarded along the way.

Assuming that the algorithm has ended with a proof that \([F]\) is pseudo-Anosov, will have in hand the graph \(G\) and a map \(f : G \rightarrow G\), and (implicitly) a special measured train track constructed from it.
Bestvina and Handel’s proof of Thurston’s theorem

1995: Bestvina and Handel gave an algorithmic proof of Thurston’s theorem.

Proof shows: if $[F]$ is pseudo-Anosov, one may construct a graph G homotopic to S and an induced map $f: G \to G$ that’s a homotopy-equivalence. $(f(\text{vertex})$ of $G \to \text{vertex of } G$, and $f(\text{edge}) =$ sequence of edges, an immersion on interior of each edge.

Proof is algorithmic. Construct candidates for G and for $f: G \to G$.

Arrive at one which can be used to construct a measured train track τ and recover the measured foliations $\mathcal{F}^u, \mathcal{F}^s$. Candidates which cannot be so-used are discarded along the way.

Assuming that the algorithm has ended with a proof that $[F]$ is pseudo-Anosov, will have in hand the graph G and a map $f: G \to G$, and (implicitly) a special measured train track constructed from it.
Bestvina and Handel’s proof of Thurston’s theorem

1995: Bestvina and Handel gave an algorithmic proof of Thurston’s theorem.

Proof shows: if $[F]$ is pseudo-Anosov, one may construct a graph G homotopic to S and an induced map $f : G \to G$ that’s a homotopy-equivalence. $(f(\text{vertex}) \text{ of } G \to \text{vertex of } G, \text{ and } f(\text{edge}) = \text{sequence of edges, an immersion on interior of each edge.})$

Proof is algorithmic. Construct candidates for G and for $f : G \to G$.

Arrive at one which can be used to construct a measured train track τ and recover the measured foliations $\mathcal{F}^u, \mathcal{F}^s$. Candidates which cannot be so-used are discarded along the way.

Assuming that the algorithm has ended with a proof that $[F]$ is pseudo-Anosov, will have in hand the graph G and a map $f : G \to G$, and (implicitly) a special measured train track constructed from it.
Bestvina and Handel’s proof of Thurston’s theorem

1995: Bestvina and Handel gave an algorithmic proof of Thurston’s theorem.

Proof shows: if $[F]$ is pseudo-Anosov, one may construct a graph G homotopic to S and an induced map $f : G \rightarrow G$ that’s a homotopy-equivalence. (f(vertex) of G \rightarrow vertex of G, and f(edge) = sequence of edges, an immersion on interior of each edge.

Proof is algorithmic. Construct candidates for G and for $f : G \rightarrow G$.

Arrive at one which can be used to construct a measured train track τ and recover the measured foliations $\mathcal{F}^u, \mathcal{F}^s$. Candidates which cannot be so-used are discarded along the way.

Assuming that the algorithm has ended with a proof that $[F]$ is pseudo-Anosov, will have in hand the graph G and a map $f : G \rightarrow G$, and (implicitly) a special measured train track constructed from it.
Calculating λ, in the Bestvina-Handel setting

The graph G is embedded in the surface S. If S has one or more punctures, then G is homotopy equivalent to S; in fact, each component of the complement of G is a 2-cell, possibly with one puncture.

Let e_1, \ldots, e_m be the unoriented edges of G. Then $f(e_j)$ is an edge path in G for each j. The transition matrix of f is the $m \times m$ matrix $T = (t_{i,j})$, where $t_{i,j}$ is the number of times $f(e_j)$ crosses e_i, counted without orientation, so that all entries of T are non-negative integers.

Pseudo-Anosov \Longrightarrow T irreducible.

It’s a Perron-Frobenius matrix. T has a largest real eigenvalue λ. That’s the dilatation λ of $[F]$. The eigenvalue λ has algebraic multiplicity one, and the corresponding eigenspace is spanned by a positive vector. Left (resp. right) eigenvectors of T are determined by the transversal (resp. tangential) measures on τ.

(Eigenvectors also determine the measures on τ. Nice. [BH] proof is algorithmic.)
Calculating λ, in the Bestvina-Handel setting

The graph G is embedded in the surface S. If S has one or more punctures, then G is homotopy equivalent to S; in fact, each component of the complement of G is a 2-cell, possibly with one puncture.

Let e_1, \ldots, e_m be the unoriented edges of G. Then $f(e_j)$ is an edge path in G for each j. The *transition matrix* of f is the $m \times m$ matrix $T = (t_{i,j})$, where $t_{i,j}$ is the number of times $f(e_j)$ crosses e_i, counted without orientation, so that all entries of T are non-negative integers. \([F]\) pseudo-Anosov \implies T irreducible.

It’s a Perron-Frobenius matrix. T has a largest real eigenvalue λ. That’s the dilatation λ of \([F]\). The eigenvalue λ has algebraic multiplicity one, and the corresponding eigenspace is spanned by a positive vector. Left (resp. right) eigenvectors of T are determined by the transversal (resp. tangential) measures on τ.

(Eigenvectors also determine the measures on τ.

Nice. \([BH]\) proof is algorithmic.)
Calculating \(\lambda \), in the Bestvina-Handel setting

The graph \(G \) is embedded in the surface \(S \). If \(S \) has one or more punctures, then \(G \) is homotopy equivalent to \(S \); in fact, each component of the complement of \(G \) is a 2-cell, possibly with one puncture.

Let \(e_1, \ldots, e_m \) be the unoriented edges of \(G \). Then \(f(e_j) \) is an edge path in \(G \) for each \(j \). The transition matrix of \(f \) is the \(m \times m \) matrix \(T = (t_{i,j}) \), where \(t_{i,j} \) is the number of times \(f(e_j) \) crosses \(e_i \), counted without orientation, so that all entries of \(T \) are non-negative integers. \([F] \) pseudo-Anosov \(\implies \) \(T \) irreducible.

It’s a Perron-Frobenius matrix. \(T \) has a largest real eigenvalue \(\lambda \). That’s the dilatation \(\lambda \) of \([F]\). The eigenvalue \(\lambda \) has algebraic multiplicity one, and the corresponding eigenspace is spanned by a positive vector. Left (resp. right) eigenvectors of \(T \) are determined by the transversal (resp. tangential) measures on \(\tau \).

(Eigenvectors also determine the measures on \(\tau \).
Nice. \([BH]\) proof is algorithmic.)
Calculating λ, in the Bestvina-Handel setting

The graph G is embedded in the surface S. If S has one or more punctures, then G is homotopy equivalent to S; in fact, each component of the complement of G is a 2-cell, possibly with one puncture.

Let e_1, \ldots, e_m be the unoriented edges of G. Then $f(e_j)$ is an edge path in G for each j. The transition matrix of f is the $m \times m$ matrix $T = (t_{i,j})$, where $t_{i,j}$ is the number of times $f(e_j)$ crosses e_i, counted without orientation, so that all entries of T are non-negative integers. $[F]$ pseudo-Anosov \iff T irreducible.

It’s a Perron-Frobenius matrix. T has a largest real eigenvalue λ. That’s the dilatation λ of $[F]$. The eigenvalue λ has algebraic multiplicity one, and the corresponding eigenspace is spanned by a positive vector. Left (resp. right) eigenvectors of T are determined by the transversal (resp. tangential) measures on τ.

(Eigenvectors also determine the measures on τ. Nice. [BH] proof is algorithmic.)
Study structure of $\det(T - xl) = \chi(T)$

Measures on τ are determined by T. [BH] prove can use $f : G \to G$ to construct τ, and from it the foliations.

Interplay between τ and G. The map $f : G \to G$ can be used to construct τ. But also τ, with its measures, determines G. Recall the [BH] version of τ, and the measures on τ. Real edges and infinitesimal edges. 4 types of vertices.

Using [BH] version of τ, there is a natural projection $\pi : \tau \to G$, defined by collapsing the infinitesimal edges to associated vertices. So assume [BH] algorithm has determined that $[F]$ is PA, and has produced a train track τ, with associated collapsing map to $\pi : \tau \to G$.

Odd vertex

Even vertex

Partial vertex

Evanescent vertex
Study structure of \(\det(T - xI) = \chi(T) \)

Measures on \(\tau \) are determined by \(T \). [BH] prove can use \(f : G \to G \) to construct \(\tau \), and from it the foliations.

Interplay between \(\tau \) and \(G \). The map \(f : G \to G \) can be used to construct \(\tau \). But also \(\tau \), with its measures, determines \(G \). Recall the [BH] version of \(\tau \), and the measures on \(\tau \). Real edges and infinitesimal edges. 4 types of vertices.

Using [BH] version of \(\tau \), there is a natural projection \(\pi : \tau \to G \), defined by collapsing the infinitesimal edges to associated vertices. So assume [BH] algorithm has determined that \([F]\) is PA, and has produced a train track \(\tau \), with associated collapsing map to \(\pi : \tau \to G \).
Study structure of $\det(T - xI) = \chi(T)$

Measures on τ are determined by T. [BH] prove can use $f : G \to G$ to construct τ, and from it the foliations.

Interplay between τ and G. The map $f : G \to G$ can be used to construct τ. But also τ, with its measures, determines G. Recall the [BH] version of τ, and the measures on τ. Real edges and infinitesimal edges. 4 types of vertices.

Using [BH] version of τ, there is a natural projection $\pi : \tau \to G$, defined by collapsing the infinitesimal edges to associated vertices. So assume [BH] algorithm has determined that $[F]$ is PA, and has produced a train track τ, with associated collapsing map to $\pi : \tau \to G$.
To study $\chi(T)$, introduce vector spaces $V(\tau)$ of weighted train tracks and $W(\tau)$ of ones whose weights satisfy branch conditions. Also $V(G)$ of ‘widths’ of edges of G. Then π induces $\pi_\ast : V(\tau) \to V(G)$, space of ‘measures’ on the associated graph G. Let $f_\ast : V(G) \to V(G)$ denote the linear map induced by f. Let $W(G, f) = \pi_\ast(W(\tau)).$

It’s subspace of $V(G)$ whose elements admit an extension to a transverse measure on τ. (Need it because ‘switch conditions’ natural for train tracks, but not for graphs.)

Using this result, we then prove that $W(G, f)$ is the kernel of a homomorphism δ, and also that the resulting decomposition $V(G) \cong W(G, f) \oplus \operatorname{im}(\delta)$ is invariant under the action of f_\ast.

Since f_\ast is represented by T, there is a corresponding product decomposition

$$\chi(T) = \chi(f_\ast) = \chi(f_\ast|_{W(G, f)})\chi(f_\ast|_{\operatorname{im}(\delta)})$$
To study $\chi(T)$, introduce vector spaces $V(\tau)$ of weighted train tracks and $W(\tau)$ of ones whose weights satisfy branch conditions. Also $V(G)$ of ‘widths’ of edges of G. Then π induces $\pi_* : V(\tau) \to V(G)$, space of ‘measures’ on the associated graph G. Let $f_* : V(G) \to V(G)$ denote the linear map induced by f. Let $W(G, f) = \pi_*(W(\tau))$.

It’s subspace of $V(G)$ whose elements admit an extension to a transverse measure on τ. (Need it because ‘switch conditions’ natural for train tracks, but not for graphs.)

Using this result, we then prove that $W(G, f)$ is the kernel of a homomorphism δ, and also that the resulting decomposition $V(G) \cong W(G, f) \oplus \text{im}(\delta)$ is invariant under the action of f_*.

Since f_* is represented by T, there is a corresponding product decomposition

$$\chi(T) = \chi(f_*) = \chi(f_*|_{W(G,f)}) \chi(f_*|\text{im}(\delta))$$
A skew-symmetric form on the graph G

[F] define a skew-symmetric form on the space of transversal measures on a train track τ. We extend their form to a skew-symmetric form on our space $W(G, f)$. We prove that this skew-symmetric form is invariant under the action of f_*.

Interesting aspect of our work: [PH] imply that the skew-symmetric form on τ non-degenerate, but we found examples where had to be degenerate. We give a complete description of space Z of degeneracies.

Once again, the decomposition $W(G, f) \cong (W(G, f)/Z) \oplus Z$ turns to be invariant under f_*. So we have

$$\chi(T) = \chi(f_*) = (\chi(f_*|_{W(G,f)/Z})\chi(f_*|Z))\chi(f_*|\text{im}(\delta))$$
A skew-symmetric form on the graph G

[F] define a skew-symmetric form on the space of transversal measures on a train track τ. We extend their form to a skew-symmetric form on our space $W(G, f)$. We prove that this skew-symmetric form is invariant under the action of f_*.

Interesting aspect of our work: [PH] imply that the skew-symmetric form on τ non-degenerate, but we found examples where had to be degenerate. We give a complete description of space Z of degeneracies.

Once again, the decomposition $W(G, f) \cong (W(G, f)/Z) \oplus Z$ turns to be invariant under f_*. So we have

$$\chi(T) = \chi(f_*) = (\chi(f_*|W(G,f)/Z))(\chi(f_*|Z))(\chi(f_*|\text{im}(\delta)))$$
Main Results

(1) *The polynomial* $\chi(T) = \chi(f_*)$ *factorizes as a product of three not necessarily irreducible factors* $\chi(f_*|_{W(G,f)/Z})$, $\chi(f_*|Z)$ *and* $\chi(f_*|\text{im}(\delta))$.

(2) The polynomial $\chi(f_*|_{W(G,f)/Z})$ *is an invariant of* $[F]$. It is palindromic. It contains the dilatation λ as its largest real root. While it always contains the minimum polynomial of λ as a factor, it does not, in general coincide with the minimum polynomial.

Jeffrey Carlson helped us to see the final step in the proof, in (2).

(3) The polynomial $\chi(f_*|Z)$ *is an invariant of* $[F]$. It encodes information about how f permutes the punctures of S. It is palindromic or anti-palindromic, and all of its roots are roots of unity.
Main Results

(1) The polynomial $\chi(T) = \chi(f_*)$ factorizes as a product of three not necessarily irreducible factors $\chi(f_*|_{W(G,f)/\mathbb{Z}})$, $\chi(f_*|\mathbb{Z})$ and $\chi(f_*|\text{im}(\delta))$.

(2) The polynomial $\chi(f_*|_{W(G,f)/\mathbb{Z}})$ is an invariant of $[F]$. It is palindromic. It contains the dilatation λ as its largest real root. While it always contains the minimum polynomial of λ as a factor, it does not, in general coincide with the minimum polynomial.

Jeffrey Carlson helped us to see the final step in the proof, in (2).

(3) The polynomial $\chi(f_*|\mathbb{Z})$ is an invariant of $[F]$. It encodes information about how f permutes the punctures of S. It is palindromic or anti-palindromic, and all of its roots are roots of unity.
Main Results

(1) The polynomial $\chi(T) = \chi(f_*)$ factorizes as a product of three not necessarily irreducible factors $\chi(f_*|W(G,f)/Z)$, $\chi(f_*|Z)$ and $\chi(f_*|\text{im}(\delta))$.

(2) The polynomial $\chi(f_*|W(G,f)/Z)$ is an invariant of $[F]$. It is palindromic. It contains the dilatation λ as its largest real root. While it always contains the minimum polynomial of λ as a factor, it does not, in general coincide with the minimum polynomial. Jeffrey Carlson helped us to see the final step in the proof, in (2).

(3) The polynomial $\chi(f_*|Z)$ is an invariant of $[F]$. It encodes information about how f permutes the punctures of S. It is palindromic or anti-palindromic, and all of its roots are roots of unity.
The polynomial $\chi(f_*|\text{im}(\delta))$ records the way that f_* permutes the vertices of τ. Palendromic or anti-palendromic times a power of x, and all of its roots are zero or roots of unity. Not an invariant of $[F]$.

$\chi(f_*) = \chi(f_*|W(G,f)/Z)\chi(f_*|Z)\chi(f_*|\text{im}\delta)$ is a palindromic or antipalindromic polynomial, possibly up to multiplication by a power of x.

Remark: Thurston had established a result that sounds the same as (5) above. In fact the two results are different. He introduced the orientation cover \tilde{S} of S and proved that the dilatation of $[F]$ is an eigenvalue of the covering map, i.e., the dilatation is a root of a symplectic polynomial that has degree $2\tilde{g}$, where \tilde{g} is the genus of \tilde{S}. We note that our polynomial $\chi(f_*|W(G,f)/Z)$ has a degree $\neq 2\tilde{g}$ in general, and also that the symmetries of the three factors whose product is $\chi(f_*)$ arise for three distinct reasons.
The polynomial $\chi(f_\ast|\text{im}(\delta))$ records the way that f_\ast permutes the vertices of τ. Palendromic or anti-palendromic times a power of x, and all of its roots are zero or roots of unity. Not an invariant of $[F]$.

\begin{equation}
\chi(f_\ast) = \chi(f_\ast|\mathcal{W}(G,f)/\mathbb{Z})\chi(f_\ast|\mathbb{Z})\chi(f_\ast|\text{im}\delta)
\end{equation}
is a palindromic or antipalindromic polynomial, possibly up to multiplication by a power of x.

Remark: Thurston had established a result that sounds the same as (5) above. In fact the two results are different. He introduced the orientation cover \tilde{S} of S and proved that the dilatation of $[F]$ is an eigenvalue of the covering map, i.e., the dilatation is a root of a symplectic polynomial that has degree $2\tilde{g}$, where \tilde{g} is the genus of \tilde{S}. We note that our polynomial $\chi(f_\ast|\mathcal{W}(G,f)/\mathbb{Z})$ has a degree $\neq 2\tilde{g}$ in general, and also that the symmetries of the three factors whose product is $\chi(f_\ast)$ arise for three distinct reasons.
(4) The polynomial $\chi(f_*|_{\text{im}(\delta)})$ records the way that f_* permutes the vertices of τ. Palendromic or anti-palendromic times a power of x, and all of its roots are zero or roots of unity. Not an invariant of $[F]$.

(5) $\chi(f_*) = \chi(f_*|_{W(G,f)/Z})\chi(f_*|Z)\chi(f_*|_{\text{im}\delta})$ is a palindromic or antipalindromic polynomial, possibly up to multiplication by a power of x.

Remark: Thurston had established a result that sounds the same as (5) above. In fact the two results are different. He introduced the orientation cover \tilde{S} of S and proved that the dilatation of $[F]$ is an eigenvalue of the covering map, i.e., the dilatation is a root of a symplectic polynomial that has degree $2\tilde{g}$, where \tilde{g} is the genus of \tilde{S}. We note that our polynomial $\chi(f_*|_{W(G,f)/Z})$ has a degree $\neq 2\tilde{g}$ in general, and also that the symmetries of the three factors whose product is $\chi(f_*)$ arise for three distinct reasons.