A polynomial invariant of pseudo-Anosov maps

Joan Birman (with Peter Brinkmann and Keiko Kawamuro)

May 23, 2010

Background:

Defintion: $S=$ orientable hyperbolic surface, closed or with finitely many punctures. Mapping class group of $S=\operatorname{Mod}(S)=\pi_{0}($ o.p.Diff $(S))$.

A conjugacy class in $\operatorname{Mod}(S)$ is

Background:

Defintion: $S=$ orientable hyperbolic surface, closed or with finitely many punctures. Mapping class group of $S=\operatorname{Mod}(S)=\pi_{0}($ o.p.Diff $(S))$.

A conjugacy class in $\operatorname{Mod}(S)$ is

- periodic if it has a representative $F \in \operatorname{Diff} S$ such that $[F]^{k}$ is the identity for some $k>0$,

Background:

Defintion: $S=$ orientable hyperbolic surface, closed or with finitely many punctures. Mapping class group of $S=\operatorname{Mod}(S)=\pi_{0}($ o.p.Diff $(S))$.

A conjugacy class in Mod (S) is

- periodic if it has a representative $F \in \operatorname{Diff} S$ such that $[F]^{k}$ is the identity for some $k>0$,
- reducible if it has a representative F such that there is a family of simple loops $\mathcal{C} \subset S$ with $F(\mathcal{C})=\mathcal{C}$ and each component of $S \backslash \mathcal{C}$ has negative Euler characteristic.

Background:

Defintion: $S=$ orientable hyperbolic surface, closed or with finitely many punctures. Mapping class group of $S=\operatorname{Mod}(S)=\pi_{0}($ o.p.Diff $(S))$.

A conjugacy class in Mod (S) is

- periodic if it has a representative $F \in \operatorname{Diff} S$ such that $[F]^{k}$ is the identity for some $k>0$,
- reducible if it has a representative F such that there is a family of simple loops $\mathcal{C} \subset S$ with $F(\mathcal{C})=\mathcal{C}$ and each component of $S \backslash \mathcal{C}$ has negative Euler characteristic.
- pseudo-Anosov if neither periodic nor reducible. Theorem of Riven: this is the generic case.

Background:

Defintion: $S=$ orientable hyperbolic surface, closed or with finitely many punctures. Mapping class group of $S=\operatorname{Mod}(S)=\pi_{0}($ o.p.Diff $(S))$.

A conjugacy class in Mod (S) is

- periodic if it has a representative $F \in \operatorname{Diff} S$ such that $[F]^{k}$ is the identity for some $k>0$,
- reducible if it has a representative F such that there is a family of simple loops $\mathcal{C} \subset S$ with $F(\mathcal{C})=\mathcal{C}$ and each component of $S \backslash \mathcal{C}$ has negative Euler characteristic.
- pseudo-Anosov if neither periodic nor reducible. Theorem of Riven: this is the generic case.

Theorem of Thurston (1970's): If [F] is pseudo-Anosov, there exists a representative $F: S \rightarrow S$ and a pair of transverse measured foliations $\mathcal{F}^{u}, \mathcal{F}^{s}$ and a real number λ, the dilatation of $[F]$, such that F multiplies the measure on $\mathcal{F}^{u}\left(\right.$ resp. $\left.\mathcal{F}^{s}\right)$ by λ (resp. $\frac{1}{\lambda}$).

Assume $[F]$ pseudo-Anosov. Two interesting known invariants of $[F]$:
(1) λ, an algebraic integer, or its minimum polynomial $m_{\lambda}(x)$.
(2) If the mapping torus of F is complement of a knot K in a homology sphere, the Alexander polynomial $\operatorname{Alex}_{K}(x)$, is the characteristic polynomial of the action of the monodromy F on H_{1} (fiber).
\qquad

Assume $[F]$ pseudo-Anosov. Two interesting known invariants of $[F]$:
(1) λ, an algebraic integer, or its minimum polynomial $m_{\lambda}(x)$.
(2) If the mapping torus of F is complement of a knot K in a homology sphere, the Alexander polynomial $A l e x_{K}(x)$, is the characteristic polynomial of the action of the monodromy F on $H_{1}($ fiber $)$.

Our main new result: A new polynomial $p(x)$ invariant of $[F]$, when $[F]$ is pseudo-Anosov.

- Our $p(x)$ is in general not irreducible, but if it is, it coincides with $m_{\lambda}(x)$.
- In general, $p(x)$ has a unique largest real root, and that root is λ.
- If K a knot as above, our $p(x)$ is in general not $\operatorname{Alex}_{K}(x)$, but for a special class of maps $[F]$ we have $p(x)=\operatorname{Alex} x_{K}(x)$.

Assume $[F]$ pseudo-Anosov. Two interesting known invariants of $[F]$:
(1) λ, an algebraic integer, or its minimum polynomial $m_{\lambda}(x)$.
(2) If the mapping torus of F is complement of a knot K in a homology sphere, the Alexander polynomial $A l e x_{K}(x)$, is the characteristic polynomial of the action of the monodromy F on $H_{1}($ fiber $)$.

Our main new result: A new polynomial $p(x)$ invariant of $[F]$, when $[F]$ is pseudo-Anosov.

- Our $p(x)$ is in general not irreducible, but if it is, it coincides with $m_{\lambda}(x)$.
- In general, $p(x)$ has a unique largest real root, and that root is λ.
- If K a knot as above, our $p(x)$ is in general not Alex ${ }_{K}(x)$, but for a special class of maps $[F]$ we have $p(x)=\operatorname{Alex}_{K}(x)$.

In the course of the proof, we learned other new things. So I want to sketch how we approached the problem.

Train tracks

Thurston introduced measured train tracks, as a way of recording properties of the measured foliations $\mathcal{F}^{u}, \mathcal{F}^{s}$ associated to a pseudo-Anosov mapping class $[F]$ on the surface S.

Measures on branches. Switch conditions satisfied at every switch.

Train tracks

Thurston introduced measured train tracks, as a way of recording properties of the measured foliations $\mathcal{F}^{u}, \mathcal{F}^{s}$ associated to a pseudo-Anosov mapping class $[F]$ on the surface S.

A train track τ is a branched 1-manifold embedded in the surface S.
\qquad
\qquad

Train tracks

Thurston introduced measured train tracks, as a way of recording properties of the measured foliations $\mathcal{F}^{u}, \mathcal{F}^{s}$ associated to a pseudo-Anosov mapping class $[F]$ on the surface S.

A train track τ is a branched 1-manifold embedded in the surface S.
Made up of smooth edges (called branches), disjointly embedded in S, and vertices (called switches).
\square
\square

Train tracks

Thurston introduced measured train tracks, as a way of recording properties of the measured foliations $\mathcal{F}^{u}, \mathcal{F}^{s}$ associated to a pseudo-Anosov mapping class $[F]$ on the surface S.

A train track τ is a branched 1-manifold embedded in the surface S.
Made up of smooth edges (called branches), disjointly embedded in S, and vertices (called switches).

Given a pseudo-Anosov mapping class [F], there exists a train track $\tau \subset S$ that fills the surface, i.e., the complement of τ consists of possibly punctured discs, and τ is left invariant by $[F]$. Moreover, there exists a transverse (resp. tangential) measure on τ that encodes the structure of the stable (resp. unstable) foliation of $[F]$.

Train tracks

Thurston introduced measured train tracks, as a way of recording properties of the measured foliations $\mathcal{F}^{u}, \mathcal{F}^{s}$ associated to a pseudo-Anosov mapping class $[F]$ on the surface S.

A train track τ is a branched 1-manifold embedded in the surface S.
Made up of smooth edges (called branches), disjointly embedded in S, and vertices (called switches).

Given a pseudo-Anosov mapping class [F], there exists a train track $\tau \subset S$ that fills the surface, i.e., the complement of τ consists of possibly punctured discs, and τ is left invariant by $[F]$. Moreover, there exists a transverse (resp. tangential) measure on τ that encodes the structure of the stable (resp. unstable) foliation of $[F]$.

Measures on branches. Switch conditions satisfied at every switch.

Bestvina and Handel's proof of Thurston's theorem

1995: Bestvina and Handel gave an algorithmic proof of Thurston's theorem.

Proof shows: if $[F]$ is pseudo-Anosov, one may construct a graph G homotopic to S and an induced map $f: G \rightarrow G$ that's a homotopy-equivalence. (f (vertex) of $G \rightarrow$ vertex of G, and f (edge) $=$ sequence of edges, an immersion on interior of each edge.

Bestvina and Handel's proof of Thurston's theorem

1995: Bestvina and Handel gave an algorithmic proof of Thurston's theorem.

Proof shows: if $[F]$ is pseudo-Anosov, one may construct a graph G homotopic to S and an induced map $f: G \rightarrow G$ that's a homotopy-equivalence. (f (vertex) of $G \rightarrow$ vertex of G, and f (edge) $=$ sequence of edges, an immersion on interior of each edge.

Proof is algorithmic. Construct candidates for G and for $f: G \rightarrow G$.

Bestvina and Handel's proof of Thurston's theorem

1995: Bestvina and Handel gave an algorithmic proof of Thurston's theorem.

Proof shows: if $[F]$ is pseudo-Anosov, one may construct a graph G homotopic to S and an induced map $f: G \rightarrow G$ that's a homotopy-equivalence. (f (vertex) of $G \rightarrow$ vertex of G, and f (edge) $=$ sequence of edges, an immersion on interior of each edge.

Proof is algorithmic. Construct candidates for G and for $f: G \rightarrow G$.
Arrive at one which can be used to construct a measured train track τ and recover the measured foliations $\mathcal{F}^{u}, \mathcal{F}^{s}$. Candidates which cannot be so-used are discarded along the way.

Bestvina and Handel's proof of Thurston's theorem

1995: Bestvina and Handel gave an algorithmic proof of Thurston's theorem.

Proof shows: if $[F]$ is pseudo-Anosov, one may construct a graph G homotopic to S and an induced map $f: G \rightarrow G$ that's a homotopy-equivalence. (f (vertex) of $G \rightarrow$ vertex of G, and f (edge) $=$ sequence of edges, an immersion on interior of each edge.

Proof is algorithmic. Construct candidates for G and for $f: G \rightarrow G$.
Arrive at one which can be used to construct a measured train track τ and recover the measured foliations $\mathcal{F}^{u}, \mathcal{F}^{s}$. Candidates which cannot be so-used are discarded along the way.

Assuming that the algorithm has ended with a proof that $[F]$ is pseudo-Anosov, will have in hand the graph G and a map $f: G \rightarrow G$, and (implicitly) a special measured train track constructed from it.

Calculating λ, in the Bestvina-Handel setting

The graph G is embedded in the surface S. If S has one or more punctures, then G is homotopy equivalent to S; in fact, each component of the complement of G is a 2 -cell, possibly with one puncture.

Calculating λ, in the Bestvina-Handel setting

The graph G is embedded in the surface S. If S has one or more punctures, then G is homotopy equivalent to S; in fact, each component of the complement of G is a 2 -cell, possibly with one puncture.

Let e_{1}, \ldots, e_{m} be the unoriented edges of G. Then $f\left(e_{j}\right)$ is an edge path in G for each j. The transition matrix of f is the $m \times m$ matrix $T=\left(t_{i, j}\right)$, where $t_{i, j}$ is the number of times $f\left(e_{j}\right)$ crosses e_{i}, counted without orientation, so that all entries of T are non-negative integers. [F] pseudo-Anosov $\Longrightarrow T$ irreducible.

Calculating λ, in the Bestvina-Handel setting

The graph G is embedded in the surface S. If S has one or more punctures, then G is homotopy equivalent to S; in fact, each component of the complement of G is a 2 -cell, possibly with one puncture.

Let e_{1}, \ldots, e_{m} be the unoriented edges of G. Then $f\left(e_{j}\right)$ is an edge path in G for each j. The transition matrix of f is the $m \times m$ matrix $T=\left(t_{i, j}\right)$, where $t_{i, j}$ is the number of times $f\left(e_{j}\right)$ crosses e_{i}, counted without orientation, so that all entries of T are non-negative integers. [F] pseudo-Anosov $\Longrightarrow T$ irreducible.

It's a Perron-Frobenius matrix. T has a largest real eigenvalue λ. That's the dilatation λ of $[F]$. The eigenvalue λ has algebraic multiplicity one, and the corresponding eigenspace is spanned by a positive vector. Left (resp. right) eigenvectors of T are determined by the transversal (resp. tangential) measures on τ.

Calculating λ, in the Bestvina-Handel setting

The graph G is embedded in the surface S. If S has one or more punctures, then G is homotopy equivalent to S; in fact, each component of the complement of G is a 2 -cell, possibly with one puncture.

Let e_{1}, \ldots, e_{m} be the unoriented edges of G. Then $f\left(e_{j}\right)$ is an edge path in G for each j. The transition matrix of f is the $m \times m$ matrix $T=\left(t_{i, j}\right)$, where $t_{i, j}$ is the number of times $f\left(e_{j}\right)$ crosses e_{i}, counted without orientation, so that all entries of T are non-negative integers. [F] pseudo-Anosov $\Longrightarrow T$ irreducible.

It's a Perron-Frobenius matrix. T has a largest real eigenvalue λ. That's the dilatation λ of $[F]$. The eigenvalue λ has algebraic multiplicity one, and the corresponding eigenspace is spanned by a positive vector. Left (resp. right) eigenvectors of T are determined by the transversal (resp. tangential) measures on τ.
(Eigenvectors also determine the measures on τ.
Nice. [BH] proof is algorithmic.)

Study structure of $\operatorname{det}(T-x I)=\chi(T)$

Measures on τ are determined by T. [BH] prove can use $f: G \rightarrow G$ to construct τ, and from it the foliations.

Using $[\mathrm{BH}]$ version of τ, there is a natural projection $\pi: \tau \rightarrow G$, defined hy collansing the infinitesimal edoes to ascociated vertices. So ascume

Study structure of $\operatorname{det}(T-x I)=\chi(T)$

Measures on τ are determined by T. [BH] prove can use $f: G \rightarrow G$ to construct τ, and from it the foliations.

Interplay between τ and G. The map $f: G \rightarrow G$ can be used to construct τ. But also τ, with its measures, determines G. Recall the $[\mathrm{BH}]$ version of τ, and the measures on τ. Real edges and infinitesimal edges. 4 types of vertices.

Study structure of $\operatorname{det}(T-x I)=\chi(T)$

Measures on τ are determined by T. [BH] prove can use $f: G \rightarrow G$ to construct τ, and from it the foliations.

Interplay between τ and G. The map $f: G \rightarrow G$ can be used to construct τ. But also τ, with its measures, determines G. Recall the $[\mathrm{BH}]$ version of τ, and the measures on τ. Real edges and infinitesimal edges. 4 types of vertices.

partial vertex

evanescent vertex

Using [BH] version of τ, there is a natural projection $\pi: \tau \rightarrow G$, defined by collapsing the infinitesimal edges to associated vertices. So assume $[\mathrm{BH}]$ algorithm has determined that $[F]$ is PA , and has produced a train track τ, with associated collapsing map to $\pi: \tau \rightarrow G$.

To study $\chi(T)$, introduce vector spaces $V(\tau)$ of weighted train tracks and $W(\tau)$ of ones whose weights satisfy branch conditions. Also $V(G)$ of 'widths' of edges of G. Then π induces $\pi_{*}: V(\tau) \rightarrow V(G)$, space of 'measures' on the associated graph G. Let $f_{*}: V(G) \rightarrow V(G)$ denote the linear map induced by f. Let $W(G, f)=\pi_{*}(W(\tau))$.

It's subspace of $V(G)$ whose elements admit an extension to a transverse measure on τ. (Need it because 'switch conditions' natural for train tracks, but not for graphs.)

Since f_{\star} is represented by T, there is a corresponding product

To study $\chi(T)$, introduce vector spaces $V(\tau)$ of weighted train tracks and $W(\tau)$ of ones whose weights satisfy branch conditions. Also $V(G)$ of 'widths' of edges of G. Then π induces $\pi_{*}: V(\tau) \rightarrow V(G)$, space of 'measures' on the associated graph G. Let $f_{*}: V(G) \rightarrow V(G)$ denote the linear map induced by f. Let $W(G, f)=\pi_{*}(W(\tau))$.

It's subspace of $V(G)$ whose elements admit an extension to a transverse measure on τ. (Need it because 'switch conditions' natural for train tracks, but not for graphs.)

Using this result, we then prove that $W(G, f)$ is the kernel of a homomorphism δ, and also that the resulting decomposition $V(G) \cong W(G, f) \oplus \operatorname{im}(\delta)$ is invariant under the action of f_{*}.

Since f_{\star} is represented by T, there is a corresponding product decomposition

$$
\chi(T)=\chi\left(f_{\star}\right)=\chi\left(\left.f_{*}\right|_{W(G, f)}\right) \chi\left(\left.f_{*}\right|_{\operatorname{im}(\delta)}\right)
$$

A skew-symmetric form on the graph G

[F] define a skew-symmetric form on the space of transversal measures on a train track τ. We extend their form to a skew-symmetric form on our space $W(G, f)$. We prove that this skew-symmetric form is invariant under the action of f_{*}.

\square
\square

A skew-symmetric form on the graph G

[F] define a skew-symmetric form on the space of transversal measures on a train track τ. We extend their form to a skew-symmetric form on our space $W(G, f)$. We prove that this skew-symmetric form is invariant under the action of f_{*}.

Interesting aspect of our work: [PH] imply that the skew-symmetric form on τ non-degenerate, but we found examples where had to be degenerate. We give a complete description of space Z of degeneracies.

Once again, the decomposition $W(G, f) \cong(W(G, f) / Z) \oplus Z$ turns to be invariant under f_{*}. So we have

$$
\chi(T)=\chi\left(f_{\star}\right)=\left(\chi\left(\left.f_{*}\right|_{W(G, f) / z}\right)\left(\chi\left(f_{*} \mid z\right)\right)\left(\chi\left(\left.f_{*}\right|_{\operatorname{im}(\delta)}\right)\right)\right.
$$

Main Results

(1) The polynomial $\chi(T)=\chi\left(f_{*}\right)$ factorizes as a product of three not necessarily irreducible factors $\left.\chi\left(f_{*} \mid W(G, f) / Z\right)\right), \chi\left(f_{*} \mid z\right)$ and $\chi\left(\left.f_{*}\right|_{\operatorname{im}(\delta)}\right)$.
not, in general coincide with the minimum polynomial. Jeffrey Carlson helped us to see the final step in the proof, in (2). The polynomial $\chi\left(f_{*} \mid z\right)$ is an invariant of $[F]$. It encodes information about how f permutes the punctures of S. It is palindromic or anti-palindromic, and all of its roots are roots of unity.

Main Results

(1) The polynomial $\chi(T)=\chi\left(f_{*}\right)$ factorizes as a product of three not necessarily irreducible factors $\chi\left(f_{*} \mid W(G, f) / Z\right), \chi\left(f_{*} \mid z\right)$ and $\chi\left(\left.f_{*}\right|_{i m(\delta)}\right)$.
(2) The polynomial $\chi\left(\left.f_{*}\right|_{W(G, f) / Z)}\right)$ is an invariant of $[F]$. It is palindromic. It contains the dilatation λ as its largest real root. While it always contains the minimum polynomial of λ as a factor, it does not, in general coincide with the minimum polynomial.

Jeffrey Carlson helped us to see the final step in the proof, in (2).

The polynomial $\chi\left(f_{*} \mid z\right)$ is an invariant of $[F]$ anti-palindromic, and all of its roots are roots of unity.

Main Results

(1) The polynomial $\chi(T)=\chi\left(f_{*}\right)$ factorizes as a product of three not necessarily irreducible factors $\left.\chi\left(f_{*} \mid W(G, f) / Z\right)\right), \chi\left(f_{*} \mid z\right)$ and $\chi\left(\left.f_{*}\right|_{\operatorname{im}(\delta)}\right)$.
(2) The polynomial $\chi\left(\left.f_{*}\right|_{W(G, f) / Z)}\right)$ is an invariant of $[F]$. It is palindromic. It contains the dilatation λ as its largest real root. While it always contains the minimum polynomial of λ as a factor, it does not, in general coincide with the minimum polynomial.

Jeffrey Carlson helped us to see the final step in the proof, in (2).
(3) The polynomial $\chi\left(f_{*} \mid z\right)$ is an invariant of $[F]$. It encodes information about how f permutes the punctures of S. It is palindromic or anti-palindromic, and all of its roots are roots of unity.
(4) The polynomial $\left.\chi\left(\left.f_{*}\right|_{\operatorname{im}(\delta)}\right)\right)$ records the way that f_{*} permutes the vertices of τ. Palendromic or anti-palendromic times a power of x, and all of its roots are zero or roots of unity. Not an invariant of $[F]$.

Remark: Thurston had established a result that sounds the same as (5) above. In fact the two results are different. He introduced the orientation cover \tilde{S} of S and proved that the dilatation of $[F]$ is an eigenvalue of the
(4) The polynomial $\chi\left(\left.f_{*}\right|_{\operatorname{im}(\delta)}\right)$ records the way that f_{*} permutes the vertices of τ. Palendromic or anti-palendromic times a power of x, and all of its roots are zero or roots of unity. Not an invariant of $[F]$.
(5) $\chi\left(f_{*}\right)=\chi\left(\left.f_{*}\right|_{W(G, f) / Z)}\right) \chi\left(\left.f_{*}\right|_{Z}\right) \chi\left(\left.f_{*}\right|_{\mathrm{im} \delta}\right)$ is a palindromic or antipalindromic polynomial, possibly up to multiplication by a power of x.
(4) The polynomial $\left.\chi\left(\left.f_{*}\right|_{\operatorname{im}(\delta)}\right)\right)$ records the way that f_{*} permutes the vertices of τ. Palendromic or anti-palendromic times a power of x, and all of its roots are zero or roots of unity. Not an invariant of $[F]$.
(5) $\chi\left(f_{*}\right)=\chi\left(\left.f_{*}\right|_{W(G, f) / Z)}\right) \chi\left(\left.f_{*}\right|_{Z}\right) \chi\left(\left.f_{*}\right|_{\mathrm{im} \delta}\right)$ is a palindromic or antipalindromic polynomial, possibly up to multiplication by a power of x.

Remark: Thurston had established a result that sounds the same as (5) above. In fact the two results are different. He introduced the orientation cover \tilde{S} of S and proved that the dilatation of $[F]$ is an eigenvalue of the covering map, i.e., the dilatation is a root of a symplectic polynomial that has degree $2 \tilde{g}$, where \tilde{g} is the genus of \tilde{S}. We note that our polynomial $\chi\left(\left.f_{*}\right|_{W(G, f) / Z)}\right)$ has a degree $\neq 2 \tilde{g}$ in general, and also that the symmetries of the three factors whose product is $\chi\left(f_{*}\right)$ arise for three distinct reasons.

