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01. INTRODUCTION 

THIS PAPER is the first in a series which will study the following problem. We 
investigate a system of ordinary differential equations which determines a flow on the 
3-sphere S3 (or R3 or ultimately on other 3-manifolds), and which has one or perhaps 
many periodic orbits. We ask: can these orbits be knotted? .What types of knots can 
occur? What are the implications? 

Knotted periodic orbits in dynamical systems do not appear to have been sys- 
tematically studied, although there is one very well known example. Let (x,, x2, x3, x4) 
be rectangular coordinates in R4 and let S3 C R4 be the subset of points satisfying 
Ej=, c? = 1. Let (p, 4) be a pair of coprime integers, and consider the system of 
ordinary differential equations: 

8, = px2 $3 = qz, 

2* = -px, 84 = -4x3. (1.1) 

The flow determined by this system is given explicitly by the equations 

xl(t) = x1 cos pt +x2 sin pf 

x,(r) = -x, sin pt +x2 cos pl 

x3(t)= x3 cos qt +x4 sin qC 

x4(f) = -x3 sin qt X x4 cos qt, (1.2) 

which defines a l-parameter family of transformations cp,: S3+S3, t E [0,2al. The 
non-wandering set is all of S3, since every trace curve closes to a periodic orbit. With 
two exceptions, these orbits are torus knots of type (p, q) (or (p, 4)) any two of which 
link non-trivially. If p = q = 1 the flow described by eqns (1.2) determines, of course, 
the well known Hopf fibration of S3, given by 7r: S3+ S3/ - , where r(x) - ?r(x’) if x 
and x’ lie on the same trace curve. 

In this paper we study the periodic orbits which arise in the flow on S3 determined 
by Lorenz’s equations, a system of ordinary differential equations which were 
introduced by Lorenz in 1963[20]. The problem which Lorenz was attempting to deal 
with was this: in all known examples of differential equations the solutions appeared 
to fall into two categories-those which ultimately settled down to some sort of 
steady state behavior, and those which are periodic in time. On the other hand, in 
nature phenomena such as “cyclones and anticyclones, which continually arrange 
themselves into new patterns”[20] exhibit much more complicated behavior which 
has been described in various places as being random, chaotic or “‘turbulent”. Lorenz 
opposed this viewpoint, adopting instead the point of view that what was needed was 
a study of more complicated systems. His paper[20] is entitled “Deterministic 
non-periodic flow”. 
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Starting with the Navier-Stokes equation, which governs the motion of a viscous, 
incompressible fluid, Lorenz introduced a truncation which enabled him to reduce the 
Navier-Stokes equation to a system of ordinary differential equations in 3 space 
variables x, y, z as a function of time: 

i=-10x+10y 

Q=rx-y-xz 

f = -8132 + xy (1.3) 

where r is a real parameter, the Rayleigh number, which will be taken to be about 24. 
In this paper we investigate the closed orbits in the solutions to eqns (1.3). We show 
that knots and links do occur, and indeed they are a most interesting class. An 
example is given in Fig. 1.1. It has 3 components, representing 3 distinct knot types. 

Recall that a link L is a collection of pairwise disjoint oriented simple closed 
curves embedded in (oriented) S3. The link type of L is its equivalence class under the 
relation L = L’ if there is an orientation preserving homeomorphism h: (S3, L)+ 

(S3, L’). A knot is a link consisting of a single component. The trivial knot type is the 
knot type of the unit circle S’ C S* C S3. The genus of L is the smallest integer g such 
that L is the boundary of an embedded orientable surface M C S3 where M has genus 
g. The surface M is a (minimal) Seifert surface for L. A link is fibered if S3 - L is a 
smooth fiber bundle over S’ with fiber a Seifert surface for L. A link is amphicheiral 

if there is an orientation reversing homeomorphism h: (S3, L)-(S3, L) possibly revers- 
ing the orientation of L. 

Let T be a solid torus of revolution in R3, obtained by revolving a disc Dz about 
the z-axis. An oriented link L C f is said to be represented as a closed n-string braid 

with braid axis the z-axis if L meets each disc Dz X {a}, BE [O, 2771 transversely in 

Fig. 1.1. 
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precisely n points for some n. If L further has a regular projection onto the plane 
z = 0 such that all crossings are as in Fig. 1.2 then L is said to be a positive braid. 

Algebraic? knots (and links) are a subclass of the class of fibered knots and links 
which arise in the following way: 

Let f(zl, zZ) be a non-constant polynomial in 2 complex variables and let V be the 
zero-set of f, regarded as a subset of R4. The set V describes a surface in R4. Choose 
any z” = (~9, z$ E V, and let S’, be the 3-sphere boundary of a 4-ball of small radius E 
centered at z”. Then L = V fl S’, is a l-manifold which represents the trivial knot type 
in S’, if z” is a regular point, but a non-trivial link in S’, if the Jacobian vanishes at z” 
(see 1211). The class of all links which arise in this way are algebraic links. We note 

that every algebraic link is fibered, also every algebraic link is an iterated torus link 
(see §6), however, there are fibered links which are not iterated torus links and 
iterated torus links which are not fibered, also there are iterated knots and links which 
are not algebraic [9]. 

A link splits if there is an embedded 2-sphere S* C S3 which is disjoint from L and 
separates the components of L into sub-links. Otherwise it is unsplittable. 

We will call the totality of closed orbits in the solution to Lorenz’s equations4 the 
master Lorenz link L*. Any finite subset of L* is a Lorenz link L. Any component of 
L is a Lorenz knot K. Here are some of the properties of Lorenz knots and links 
which will be established in this paper. 

(1) There are infinitely many inequivalent Lorenz knots. These include Lorenz 
knots of arbitrarily high genus, although for fixed genus g only finitely many distinct 
knot types occur. 

(2) Every Lorenz knot and link is fibered. In particular, each finite subset of L* is 
a fibered link. 

(3) Every algebraic knot is a Lorenz knot, and some algebraic links are Lorenz 
links. In particular, all torus knots occur but some torus links do not. 

(4) There are Lorenz knots which are not iterated torus knots; there are iterated 
torus knots which are Lorenz but not algebraic. 

(5) Every Lorenz link is a closed positive braid, however there are closed positive 
braids which are not Lorenz. 

(6) Every non-trivial Lorenz link of 2 2 components is unsplittable, also the 
algebraic and geometric linking numbers are positive and equal. 

(7) Non-trivial Lorenz knots and links are non-amphicheiral. 
(8) Non-trivial Lorenz links have positive signature. 
Note. Both (7) and (8) are trivial consequences of a new theorem of Lee Rudolph 

[Rul. 
In addition to the above, we give an algorithm for computing a presentation for 

Fig. 1.2. 

Whe reader is warned that “algebraic knot” is used in the classical sense and is unrelated to Conwvy’s 
rational tangles. 

SAs will be explained later. we are making certain assumptions here about the Lorenz system which have 
not been proved with complete rigor. A more accurate description of L* would be that it is the collection of 
periodic orbits defined by the Lorenz “knot holder”. H, however at this point in our discussion it is premature to 
introduce H. 
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rr,(S’- L), and for computing an Alexander matrix and a Seifert matrix for any 

Lorenz link L. However, we were unable to characterize in a definitive way the 
groups or the Alexander polynomials or the Seifert forms which arise, leaving many 
unanswered questions. . 

As noted earlier, this paper is the first in a series. The second, “Knotted periodic 

orbits in dynamical systems--II: knot horders for fibered knots”, will study knotted 
orbits which arise as the trace curves in the fibration of a fibered knot in S3, when the 
gluing map is pseudo-Anosov. It will be seen that “twisted” Lorenz links (see Fig. 
11.1) appear in every such flow. 

52. BRANCHED 2-MANIFOLDS AND THE LORENZ ATTRACTOR 

In this section we review briefly the work of Williams[36,37], which provided us 
with the basic tools needed for this paper. The reader who is interested in further 
details on the matters described here is referred to[36,37], and thence to earlier 
references given there. Background material may be found in[4,30]. 

For a system of ordinary differential equations such as (1,3), as t changes the 
points of R3 move simultaneously along trajectories, defining a flow pt: R3 --f R3 for 
each t E R. We are interested in studying the closed orbits for this flow. Since (1.3) 
cannot be integrated in closed form, and since numerical integration is a very poor 
method for detecting closed orbits because the presence of small errors leads to 
incorrect conclusions, an indirect approach is necessary. The approach which Wil- 
liams used is to find structures in R3 relative to the flow (p, which allow the periodic 
orbits to be collapsed onto a 2-dimensional subset of R3, a “branched 2-manifold”, 
where they may be described via the Poincare map associated to an induced 
semi-flow, &, t 2 0. 

One proceeds from the eqns (1.3) to certain appropriate geometric properties and 
next to deduce from these geometric properties what the periodic orbits are. 

Remark. This first step has not really been carried out but after Guckenheimer [ 151 
we have a pretty good idea [16,37] what the appropriate geometric properties 
are, at least. It remains a central problem to deduce these properties from (1.3) (or to 
show they fail). Meanwhile, these properties do describe a differential equation, so at 
the very least we are not working in a vacuum. One is also encouraged that many of 
the periodic orbits so deduced have indeed been found by computer to occur for (1.3). 
In particular Curry[S] has found many of these including x’yx’yxyxy (see Corollary 
2.4.2) and six distinct knot types! 

Thus “geometry” is described in terms of “branched manifolds,” “hyperbolic 
structures, ” “symbolic dynamics, ” “strong stable manifolds,” etc. and in as much as 

these are fairly specific to dynamical systems theory, we next present a symmary of 
these ideas. Suppose we are given a manifold M (for our purposes this can be S3 or 
R3) and a C’ flow cpl(r z 1) on M. This is equivalent to a vector field or (autonomous) 
ordinary differential equation by existence, uniqueness and smooth dependence upon 
initial conditions-valid whenever M is complete, which is assumed. 

2.1 Definitions. A point x of M is called chain-recurrent for v, provided that 
corresponding to any E, T > 0 there exist points x = x0,x,, . . . , x, = x and real 
numbers t,, t,, . . . , t,_, all greater than T such that the distance d(cp,,(x;), Xi+!) < E for 
all 0 < i 5 n - I. The set of all such points, called the chain-recurrent set ,iR, is a 
compact set inveriant under the flow. This is, roughly speaking, what the computer 
sees when it thinks it has found a periodic orbit. 
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A compact invariant set K for a flow pr is said to have a hyperbolic structure 
provided that the tangent bundle of M restricted to K is the Whitney sum of three 
bundles E” @ E” @ EC each invariant under Dp, for all t and also 

(a) The vector field tangent to 4p, spans EC. 
(b) There are C, A > 0, such that 

II&+(u)(l~ C e-*‘[lul, for t z 0 and u E E” 

~~D~,(u)~~ 2 C eA’Jju(J for t 2 0 and u E E”. 

What this says, intuitively, is that the flow exponentially expands some directions, 
contracts others and leaves the flow direction roughly constant. A good example is the 
geodesic flow on a surface of negative curvature. Simpler examples (Fig. 2.1): Let 
there be a periodic orbit A through x0 and let y be a small disk transverse to A at x,. 
Then the first return map f: y+y is defined if y is small enough. Then df at x0 is an 
automorphism of E,, the tangent bundle to y at x. Then A has a hyperbolic structure iff 
dfxo has no eigenvalue of absolute value 1. [In this case, the eigenspaces E:, E: C E, 
corresponding to eigenvalues which are outside (respectively inside) the unit circle 
will be the fibers of E” and E” at x, if we happened to choose y just right.] 

It is shown in[13] that the condition that a flow have hyperbolic chain-recurrent set 
is equivalent to Axiom A of Smale [30] and the no-cycle property. Results of Smale 
[Sm] then show that the chain-recurrent set 6% is the union of a finite number of 
disjoint, compact, invariant pieces called basic sets, each of which contains a dense 
orbit. 

The bundles E” and E’ are the infinitesimal versions of unstable and stable 
manifolds, which we define next. 

If X is a subset of a hyperbolic set of a flow we define the stable and unstable 
manifolds W’(X) and W”(X) as follows 

W’(X) = { Yld(cp,y, q,(X)) + 0 as t --, 4 

W”(X) = bJd(4w a(X)) + 0 as t + - m}. 

If X is a point x then W’(X) is called the strong stable manifold of x, denoted 
W”“(w). If X is the orbit containing x then W”(X) is called the weak stable manifold 
of x. In both these cases W’(X) is in fact a manifold[l7]. 

We next define suspension and subshift of finite type (see [2,27]). 
Let C, be the space of all doubly infinite sequences 

g=... rLlnonln2.. . , ni= l,*.*, tt.* 

Fig. 2.1 
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under the product topology. The shift map s: C, +C, is defined by s(n); = ni-1, i E z. 
Given an n x n matrix A of O’s and l’s, let z(A) denote the subset of x:, consisting of 

all sequences n such that for each i, the (ni, n;,,) term of the matrix A is 1. Then the 
shift map s leaves X,(A) invariant. Then S: C, +C,, is the full n shift (Bernoulli n-shift) 
and s: C(A) is the subshift of finite type, corresponding to A. Given a map f: X --* X by the 
suspension off is meant 

(a) the mapping torus of f = 7’, = X x E/Z where a generator of Z is (x, s)+ 

(fx, s + 1). 
(b) The flow ‘p, induced on T, by the trivial flow $,(x, S) = (x, s + t). 
It follows from a theorem of Rufus Bowen that any l-dimensional basic set of a 

flow is a suspension of a subshift of finite type, herein called a Bowen-Parry flow. 

2.2 The knot-holder H. In Fig. 2.2 we have indicated the version of the (geometric) 
Lorenz flow we will use throughout this paper. To begin to understand this picture, at 
least near the origin, note that the Lorenz eqns (1.3) have 0 = (0, 0,O) as 
a rest point, and have the matrix 

-10 10 0 

24 -1 0 
0 0 - 813 I 

as linear part. The eigen direction and corresponding eigenvalues are (roughly) 

and 

(O,O, l), - 8/3; 

(1,2.06,0), 10.6; 

(1, -1.16,0), -21.6. 

Then the stable manifold at (0, 0,O) is spanned by (0, 0, 1) and (1, -1.16,O). However, 
it seems to be the case that there is a whole “field” of stable directions corresponding 
to (1, -1.16,O) near (0, 0,O). This is what was hypothesized in [36], and from this 
assumption, one deduces (or presumably could deduce) a strong stable foliation 
roughly parallel to (1, -1.16,O) near the origint. Then one collapses out this foliation 

8 
Fig. 2.2. 

tAt this writing Sinai and Vul[33] seem to have proved something like this. 
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and is left with equations like 

i = -813 2 

ti = 10.6 w (2.1) 

(holding approximately, near 0) where w corresponds to the vector (1,2.06,0). Then 
one has a hyperbolic point at 0 with vertical stable direction, and unstable direction w 
which forms the boundary of H near 6. The (positive) orbit through m, q,(m), t 2 0 
approaches 6 as a limit as t + 00. For x E Z - {m}, where Z is the branch line in Fig. 
2.2, there is a first return (or Poincare) image, f(x). The orbit from x to f(x) goes 
around the left hole and in front for x < m, around the right hole in back for x > m. 
As 8/3 < 10 it follows that f’+m as we approach m. Thus it is realistic to assume that 
f’ > 1 always as we do. Finally, we point out that there appears to be a region (r - 15) 
where the Lorenz equations have a suspension of the full two shift as chain recurrent 
set. This can be treated by a semi-flow that differs little from cp,. Instead of the 
singular point, one allows orbits at the bottom center to over flow and “wander” to 
sinks. The first return map would look like that of Fig. 2.3. One sees fairly easily that 
this alteration does not change the topological nature of the periodic orbits. 

The reader familiar with earlier papers [ 16,20,37] will note a slight change in the 
branched manifold of Figure 2.2. The two holes are bounded by “trivial” periodic 
orbits, so that the first return map f (Fig. 2.4) will be a map from Z - m onto Z which 
covers Z two complete times with f’ > A > 1. This seems to occur on the boundary 
between the “pre-turbulent” and “turbulent” regions (see [18]) of the equations. The 
point is that H, p, has all the periodic orbits that occur in any Lorenz attractor. This 
makes for a simpler description though we pay the price of having two orbits we don’t 
really want, namely two unknotted orbits, one encircling each “hole”. The two trivial 
orbits constitute exceptions to most of our results below-and we indicate this by such 
phrases “except for the trivial orbits. . .“, etc. 

2.3 Why Brunches? For the reader not familiar with earlier use of branch 
manifolds, we indicate how they arise, schematically, in Figure 2.5. One has a closed 
neighborhood N, a flow ppt with p,(N) C N, t > 0, and a foliation by “strong stable 
manifolds” W’ through each point x E N; these satisfy cp,( W:) = W”(cp,(x)). Then we 
form a quotient space q: N + B by x’ - x” iff x’ and x” lie in a connected component 
of some W’(x) n N. 

The example given in Fig. 2.5 is too rudimentary to have periodic orbits. But when 
periodic orbits do occur this process of collapsing the strong stable manifolds does 
not change their nature. 

Proposition 2.3.1. The collapsing map q is 1 - to - 1 on the union of all the 
periodic orbits. 

Remark. In 91, when we stated our main results, we noted that there are infinitely 

Fig. 2.3. Fig. 2.4. 
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Fig. 2.5. 

many distinct Lorenz knots. One of the remarkable consequences of the proposition 
just stated is that all of these knots exist simultaneously as a dense embedded subset 
of the Lorenz knot-holder. Concrete examples of sets of distinct Lorenz knots which 
“fit together” on the knot holder H are extremely interesting (e.g., see fig. 1.1). 

Proof of Proposition 2.3.1. Let x be a periodic point and recall W”(x) = 

{y(d(cp,y, cp,x) +O as t > 0). Then W”“(x) does not intersect any other periodic orbit, as 
each 2 periodic orbits are a positive distance apart. Nor could W”(x) intersect the 
orbit through x again, as such a point is “out of phase” with x. Finally, this collapsing 
of the neighborhood can be carried out in R3 in the case of the (geometric) Lorenz 
attractor by, say, a deformation H,, 0 I s I 1. Here H,-, is the identity, and EI, is a 
homeomorphism for s < 1. It follows that the union of any finite set of periodic orbits 
under +,, is isotopic to their image under 4 = HI. 11 

2.4 Symbolic dynamics of the semi-flow. We next outline some of the I‘symbolic 
dynamics” of the semi-flow & and its first return map f. Though this material is well 
known[l6,36], we include it for completeness. Let a E I and define the finite or 
infinite sequence 

[ x if a is to the left of m 

/co(a) = 0 if a = m 
y if a is to the right of m ; and 

(W 

ki(a) is defined iff f’(a) is defined and 

x if f’(a)< m, 

&i(a) = 0 if f’(a) = m, and (2.3) 
y if f’(a)> m. 

Then sequences k are lexicographically ordered by setting x < 0 < y. In [37] we were 
concerned with actual Lorenz attractors and hence the k(a) were subject to restric- 
tions; here, however, we are using the limiting case, where all sequences occur. 
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PROPOSITION 2.4.1. The map a -+ &(a) is a l-to-l order preserving correspondence 
between the points of the branch set and the lexicographical ordering of the set of all 
sequences kO, k,, . . . such that 

(a) each k; = x, y, or 0 

(b) the sequence terminates with ki iff ki = 0. 

COROLLARY 2.4. The periodic orbits of cp, correspond l-to-l with the cyclic per- 
mutation classes of finite aperiodic words w in the free monoid generated by x and y. 

Notation. We let A(w) be the periodic orbit corresponding to w. We will some- 

times refer to the cyclic permutation class of a word w as a cyclic word. 

Proof of Proposition 2.4.1. Let A be a periodic orbit under rp, and let a be the 

left-most point of A on the branch line. Thus, for some n, f”(a) = a, and we choose n 
to be the (minimum) period of a. Then k(a) is a periodic sequence 

b(a), k,(a), . . . , k-da), kl(a), . . . . 

Let w = ko(a), k,(a), . . . , k,_,(a). Were w periodic, say w = ur where n = rq, then the 

orbits of a and f4(a) would lie together on the same side of the midpoint m for n 
iterations of f--and hence for all iterations of f. This is impossible as the derivative 

f’ > h > 1. It follows that the first time, say j, where the orbit of a and that of f’(a), 
i=l . . 3 n - 1, are on a different side of m, we have f’a < m <f”‘(a). In other 

words, w(a) < WV’(a)), i = 1,. . . , n-1.1) 

We indicate why a I+ w(a) is onto. For this purpose we assume f has the form 

f(x) = 12,2”1, “,; ;. 

Set I, = left half of the branch set, Iy the right half, ZXX the left half of I,, IXy the right 

half etc. Note that f-‘11, is a well defined contraction of 1, onto itself and thus has a 

unique fixed point (the left end-point of I). Similarly f-*lIx, is a well defined 

contraction of IXy into itself and hence has a fixed point, say a. Then f*(a) = a, so that 

k(a) = x, y, x, y, . . . , and w(a) = xy. Similarly, we define 1, for w = wo, . . . , 

W,-I and see that f-“JIM, is a well defined contraction, that its 

unique fixed point, a, satisfies k(a) = wo, wI,. . . , wn-,, wo. w,, . . . , so that w(a) = w. 
By following a periodic orbit around one finds its “word” w, which is (essentially) 

an element of r,(H). This process is reversible and we next give an algorithm. (The 

reader may prefer to read the examples instead of the general description.) 

ALGORITHM 2.4.3. Given a finite set of distinct aperiodic cyclic words w,, . . . , )c’“, i.e. 

such that no w; is a cyclic permutation of Wj for j# i, the corresponding link can be 
drawn on H as follows. Let Ei be the infinite periodic word wiwiwi. . . and let s be the 
operation of removing the first letter from a word. Let s’ = s and define si inductively 
by si = s(sj-‘). Then the set 9 = [{s’(C$): j = 0, 1,. ~ “}, i = 1,2,. . . , n. ] has m (distinct) 
words in it, where m is the sum of the lengths of the words wlr . . . , w,. This uses 
aperiodicity and the fact that no wj is a cyclic permutation of wh if j. Alphabetize 
them and note that the points k-‘(s’( Ei)) occur on I in just this order, where k is the 
l-to-l map of 2.4.1. Thus, up to topological equivalence, we can use any points 
P(s’(@,)) which occur in this order. Then one can trace out the orbits corresponding to 
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wi by starting at P(Gi), connecting it to P(s’(Gi)), proceeding to the right or left on H 
depending upon whether G+ begins with x, or y. Continue by connecting P(s’(w~). to 
P(s’@i), in the same manner, etc. 

Example (See Fig. 2.6). w, = xy, wZ = WY’. Then G,, = xyxy. . . . . , W? = xyyxyy. . . . 
The set .% is [(xyxy. . . . . , yxyx. . . .}, {xyyxyy. . , yyxyyx. . . . .vx.v.vxy. . . }I. Alphabetizing. 
according to the rule x < y, we obtain loxyxy.. . , 2oxyy.ry.v.. , 3++s~xy.r.. . 

4c* yxyyxy.. . ,50 yyxyyx.. . . Thus the cyclic permutation associated to it’, is (I. 3). while 
that for w? is (2,5,4). 

A harder example is given in Fig. 1.1. There are 3 words w, = (x$)x, w? = 
x(yx)3, w3 = xy(xy3)*. 

§3. NOTATIONS AND TERMINOLOGY 

We restate Corollary 2.4.2. and Algorithm 2.4.3 as: 

PROPOSITION 3.1. (a) The periodic orbits of ‘p, are in l-to-l correspondence with the 
cyclic permutation classes of positive aperiodic words in x and y, referred to from now 
on as Lorenz words. 

(b) The set of all Lorenz links is in l-to-l correspondence with the collection of all 
finite sets w,, . . . , wk, where each Wj is as in (a), and no wi is a cyclic permutation of 

any w,, s ‘j, s,j=l,..., k. 

Algorithm 2.4.3 allows one to construct the Lorenz link associated to a collection 
of Lorenz words. It well be convenient to have alternative descriptions. Accordingly, 
we will introduce in this section the concepts of Lorenz braids, Lorenz permutations, 
string index, braid index, crossing number, trip number, rank, genus and braid word. 

Let L be a Lorenz link. Then L is a subset of the knot holder H pictured in Fig. 
2.2. Cut H open along lines uu and U’U’ in Fig. 2.2. Denote the cut-open holder by 
T(H). Then 7(L) C-T(H) may be unfolded to an open braid p(L) = /3 on n strings for 
some integer n. Clearly the braid /3 determines L and conversely. We call it the 
Lorenz braid associated to L. An example is given in Fig. 3.1. 

To describe the braid, note that the strings have a natural ordering, from left to 
right. Number them 1,. . . , n on the bottom and on the top. These strings fall into 2 

groups of parallel strands, a left group of p strands and a right group of 4 strands, 
p + q = n, where the strands in the left group always pass over those in the right 
group, but strands in the same group never cross one-another. Clearly the braid is 
uniquely determined by a pair of integers (p, q) and a permutation r* which is 
induced by the first return map f. Even more, p, q and the permutation V* are 

Fig. 2.6. 
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Fig. 3.1. 

uniquely defined by the array ri, 7~2,. . . , rp, where mi = r*(i), since the remaining 4 
. . . < rp = n. We call any such finite sequence rl,. . . , T,, which arises from a Lorenz 
braid, a Lorenz permutation, and often identify it with the permutation 7r* which it 
determines. The symbol r will sometimes be used for the sequence rl,. . . , TV In the 
example of Fig. 3.1 we have r = (6,9, IO). The example in Fig. 1.1 had the Lorenz 
permutation 7~ = (5,7, 11, 12, 13, 14, 15, 18,21,22). 

PROPOSITION 3.2. A sequence T,,... , rp is a Lorenz permutation if and only if: 

(a) 1<7r,< . . . <7rp; and (b) if the resulting permutation ST* splits as a product of 
k z 2 disjoint cycles, then no two cycles are parallel, i.e. no two cyclic factors ~1, 17 of 
T& satisfy (i) length of p = length of 7 = r; (ii) pi = ni + j, i = 1, . . . , r for some j. 

Proof. The condition 1 < 7rl assures that no “trivial orbits” (see 92.2) occur. Assume 
1<7r,<... < n,, = n and that the resulting permutation 7r* satisfies (6). We may 
think of n* as a l-to-l map on the finite set 11.. . . , n}. In fact 7r* is essentially flIo 
where f: I + I is the Poincare map and I,, is a union of periodic orbits of f. We must 
show that rTT* defines a set wi, . . . , w, of Lorenz words which determine a Lorenz 
link. 

We consider 2 cases. 

Case 1. 7~* is a cyclic permutation. Then the orbit of 1 under the powers of r.+ 
contains all of the symbols 1,2,. . . , m,, = n, also n is the smallest integer such that 
r;(l) = 1. Define integers a,, b,, . . . , a,, b,, where aI + b, +. . . + a, + b, = n by the 
inequalities: 

71*(l) < 7rZ(l) <. . . < r;‘(l) > Ir$+‘(l) > . . . > ?Tz+b’ 

<T z+b,+l(l) < . . . < ?Tz+bt+“z(l) > . . . > &~+~~+-.+‘r+~t 
(1). 

Let w = w(r) = xnlyblxL12.. . xLlrybf and let A(w) be the unique periodic orbit of p, 
associated to w(r). To recover r from w(r), let z to the left-most point of A(w) on I. 
Then z is a point of period n under f, and we have 

f(z) -=z f2(Z) < o . . =c f”‘(Z) > f”“‘(Z) > . . . (**) 

reproducing the previous inequalities exactly. Hence r = (v,, . . . , rp) is a Lorenz 
permutation. 

General case. We associate to ~~ its cyclic factors and to each of these the 
corresponding periodic orbit via case 1. Thus to complete the proof that v is a Lorenz 
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permutation it well suffice to show that distinct cyclic factors of x* yield distinct 
periodic orbits. 

To this end, let IL, n be two cyclic factor of rr*, let A(p), A(n) be the periodic 

orbits attached to them by case 1, and assume on the contrary that these are the same, 
1,e. A(p) = A(n). Then, p and n are the same length, say r; let (Y be the least integer 
in the orbit of CL, p the least integer in the orbit of n. We assume LY < p as the other 
case is similar. 

Claim. q(p) - p.(a) > /3 - a. For n and p are just restrictions of rr* and in the 
range (Y to /3, q* is increasing. That is to say r,(l) < r,(2) < . . . < r*(p) > T& + 1) 
and 

?T*(p + 1) < 7r*(p + 2) < . . . < ?r*(n). 

Now under the assumption that A(p) = A(n), it follows that n(p) and P.((Y) are either 

both I p or both 2 p + 1. Thus n’(p) - p*(cr) 1 n(p) - P(U). This property continues, 
as the orbits A(n) are the same. Hence 

P-(Y=77r(P)-pr(a)> . . . >7)(p)-p(a)~p-a 

so that equality holds in every case. Let i = p - (Y. Then 

p = (a, /-da), f . . 9 pr-‘(aN 

and 

Then ~1 and n are parallel cycles, contradicting part (6). Thus n is a Lorenz 
permutation which proves the if part of 3.2. 

The only if part is essentially trivial, because any Lorenz link corresponds to a set 

{w,, * *. , wp} of words satisfying condition (b) of Proposition 3.1. Furthermore, the Wi 
correspond to cyclic factors of the permutation rTT*. As no wi is a cyclic permutation 
of any wS, it follows that no two cyclic factors of r* are parallel. This completes the 
proof of Proposition 3.2.)) 

Let /3 be a Lorenz braid and let 7r = (7r,, . . . , rp) be the associated Lorenz 
permutation. Let L be the Lorenz link defined by /3 or r. Let w,, . . . , w, be the 

Lorenz words which define L, where wi = ~‘ily~il~-Pi~. . . ybili, 1 I i 5 r. The following 
terminology will be used in the paper: 

(1) The string index is the number n of strings in p. It is the sum n, + n2 + . . . + n, 

of the letter lengths ni = ai, + bil + ai + b, of Wi, 1 5 i 5 r; it is also the last entry 
n = v,, in the Lorenz permutation 72. 

Note that the symbol n used here has exactly the same meaning as it did in 02, 
since the string index is precisely the number of points in the intersection of a Lorenz 
link L with the branch set I. 

(2) The braid index of a knot is the minimum string index among all closed braid 
representatives of that knot. It is a knot invariant. 

(3) The crossing number c is the number of double points in the projected image 
of the Lorenz braid /3. If /3 is written as a product of elementary braids ai, in which 
the ith strand crosses over the the i + 1st strand once, from left to right, with no other 
double points, then p = a,,~,,? . . . u,+ (1 5 pj 5 n - 1) and c is the letter length of p. 
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The integer c may also be computed from r by the formula 

Cc (?Ti-ii)* e 
i=l 

(3.1) 

(We omit a proof because this formula is obvious if one draws a picture.) A somewhat 
more complicated formula for computing c directly from w,, . . . , w, is given in 08. 

(4) The trip number t is the sum C:==, ti, where ti is the number of syllables in Wi, a 
syllable being a maximal subword of wi of the form x’~y’~. It may be computed from 
7r by the formula 

t = cardinality {q E TJrj > p} 

(To see this, note that ti is the number of x-symbols in 
y-symbols). 

(4) The rank r of L is the rank of the group H,(M), 
surface of minimal genus spanned by L. 

(3.2) 

Wi which are followed by 

where M is an orientable 

(5) The genus g of L is the genus of M, where as above M is an orientable surface 
of minimal genus spanned by L. 

(6) The braid word associated to a braid p on n strings is a representation of p by 
a word in the generators (T], . . , a,_] of the braid group B,, where q is an elementary 
braid in which the ith string crosses over the i + 1st. 

84. LORENZ LINKS ARE UNSPLITTABLE AND WELL-TANGLED. 

THEOREM 4.1. Let K,, K, be any two Lorenz links, neither of which is a trivial 
orbit. Then the algebraic and geometric linking numbers are positive and equal. Thus in 
particular Lorenz links are unsplittable. 

Proof of 4.1. Each Lorenz knot is naturally oriented by the sense of the semi-flow 
on the knot holder H. Thus if K, crosses over Kz at all in the projected image it 
crosses from left to right and Ik(& K,) is the number of such crossings. Hence it is 
only necessary to show that K, crosses Kz. This becomes obvious as soon as one 
draws a few pictures. (For example, see Fig. 2.6, where the linking number of the two 
orbits is 1.) 

Remark. Lorenz links are “well-tangled”, i.e. any two components of any finite 
sublink of L* have positive linking number. We can think of L* as a vast rats nest of 
knots. It will turn out that “almost all” of them have non-trivial knot types. 

05. POSITIVE BRAIDS AND THE FIBRATION THEOREM 

Cutting open the knot-holder of Fig. 2.2 along the lines uv and u’v’ one sees 
immediately that every Lorenz link has a representation as a closed positive braid. We 
will sharpen this result to: 

THEOREM 5.1. If K is a Lorenr link of trip number t then K may be represented by a 
positive braid on t strands. The goal of this section will be to study the consequences 
of Theorem 5.1. 

The class of all links which admit representations as positive braids was first 
studied by Burau[5], later generalized by Murasugi[24] and still later rediscovered and 
reinterpreted by Stallings[32]. They are of particular interest in our work because 
(Theorem 5.2) closed positive braids are fibered links, and the genus can be computed 
from the braid representation by an easy combinatorial formula. In particular (Corol- 
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lary 5.3) Lorenz links are fibered, and the genus of a Lorenz knot is bounded below by 
(t)(t - I)/2 where f is the trip number. Moreover, a Lorenz knot is unknotted if and 
only if it has trip number 1. Related results hold for Lorenz links, with rank r 
replacing genus g. Later, in Section 8, we will develop further consequences: a zeta 
function for the flow which records information about the knot types of the periodic 
orbits, instead of just the number of periodic orbits of each period. Finally, Corol- 
laries 5.4 and 5.5 are other interesting consequences of the positive braid represen- 
tation: Lorenz knots have positive signature and are non-amphicheiral. 

We conjecture that the trip number t is actually the braid index for a Lorenz link, 
i.e. that a Lorenz link cannot be represented by a braid on fewer than t strings. A 
partial result which is a step toward a proof is given in Theorem 5.7. Such a result 
would be extremely interesting, because it would imply that trip number is a knot 
invariant. 

Proof of Theorem 5.1. In Fig. 5.1 we show how the knot holder of Fig. 2.2 can be 

Fig. 5.1. 
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cut open and stretched out. The last version can be described as an annulus with a full 
twist with two truncated cones attached along lines of tangency. The top cone is in 
front of the annulus and slants down to the right; the bottom cone is in back of the 
annulus and slants to the left. The number of strands on the annulus is the number of 
arcs of K passing from the left side of the branch line to the right side (equal to the 
number passing from the right side to the left), i.e. the trip number t. That K is a braid 
in this presentation is just the fact that the vector field can be chosen on either cone to 
have a downward component everywhere except at the top, where it is horizontal. 
(The tops of the two cones are the two “trivial” Lorenz knots. See 92.) That this braid 
is positive (Fig. 1.2) is checked at the various double points which occur in the 
projection shown in the last picture of Fig. 5.1. These double points occur on the two 
cones and on the twisted band that joins them. On the twisted band all crossings are 
clearly positive. On the top cone there are three types of crossings where, say, a 
crosses in front of p: type 1: a on the front of the cone, 0 on the back of the cone; 
type 2: a on the front of the cone, p on the back-most strip; type 3: (Y on the back of 

the cone, p on the back-most strip. Types 1 and 2 are positive. Type 3 is negative, 
however each crossing of type 3 is preceded immediately by a positive crossing of 
type 1, so the net crossing is 0 (after a small deformation). The bottom cone is similar. 

Recall that a link L C S3 is said to be fibered if there is a locally trivial fibration 71: 
(S’ - L) + S’ with fiber an orientabIe surface M, a&f = L. Let L be any oriented link 
in S3, and let M be a spanning surface of minimum genus for L. Let q: M +(S3 - M) 
be the map which pushes M off itself along the outward drawn normal, inducing a 
homomorphism n *: rlM + m1(S3- M). The fact that M has minimal genus implies 
(via the loop theorem [PI) that n* is one-to-one. It is a consequence of the fibration 
theorem of Stallings [St I] that L is fibered if and only if n* is onto. 

THEOREM 5.2. Let L be an indecomposable Iink of multiplicity p. Suppose that L 
has a regular projection which exhibits it as a positive n-string braid, and that in this 
projection there are c crossings. Then L is fibered, and its genus g is given by the 
formula 

2g=c-n+2-p (5.1) 

r=2g+p-l=c-n+l. (5.2) 

In particular, each finite sublink of the master Lorenz link L* is a fibered fink. 

Remark. The fact that positive braids define fibered links was stated more-or-less 
without proof in [32], and while the proof follows from observations in that paper it 
did not seem totally obvious to US. A proof is also implicit in the work of 
Murasugi[24], who established that n* is surjective. This implies, by[31], which was 
evidently not well-known at the time that[24] was published, that L is fibered. (We 
say this because[24] does not mention this consequence of the surjectivity of n*.) In 
view of all of these, we give a complete proof here. 

Proof of Theorem 5.2. The positive braid representation of L yields in a natural 
way a Seifert surface M, for L consisting of n discs joined by c half-twisted bands, 
one for each braid crossing (see Fig. 5.2) with, say ki strips joining the ith disc to the 
(i + 1)st disc for each i = 1,. . , , n - 1. We prove that n* is an isomorphism by 
induction on n. If n = 1, then TiMI = r,(S3 - M,) = {I}. Note that if we delete the nth 
disc by cutting open the bands joining the (n - 1)st and nth discs we will get a new 
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Fig. 5.2. 

positive braid which is the boundary of a modified surface M,,-, and a new push-off 
map 7; by restriction of the old. Since there are k,_, bands joining the (n - 1)st and 
nth discs, we have: 

r,(S3 - M,) = ?r,(S3 - M,_,)*Fk,_, (5.3) 

where Fk._, is the free group of rank k,_,. It is visibly clear (see Fig. 5.3) that 

Induction on n implies that q* is an isomorphism. 
Now, T,M, = T,M is constructed from n discs (one for each braid string) which 

are joined in pairs by c bands (one for each elementary braid). An Euler characteristic 
computation gives eqns (5.1) and (5.2). 11 

COROLLARY 5.3. A Lorenz knot is unknotted if and only if it has trip number 1. A 2-trip 
Lorenz knot is a torus knot of type (2,2m -t l), m 2 1. For trip number t the genus is 
bounded below by: 

2g 2 (t - l)(t). (5.5) 

Moreover, this bound is sharp. 

Proof of Corollary 5.3. The fact that each l-trip Lorenz knot is unknotted is an 

Fig. 5.3. 
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immediate consequence of Theorem 5.1. The converse will follow from the genus 
inequality (5.5). 2-trip knots may be represented as closed 2-braids, hence they are 
torus knots of type (2,2m + 1). By the inequality (5.5), m must be 11. 

To establish (5.5) let K be a Lorenz knot of trip number t, and consider the 
representation of K as a positive braid which is given by Theorem 5.1. From the 
picture in Figure 5.1, we see that the braid includes a full twist on t strings. This twist 
contributes (t)(t - 1) crossings, as one can easily check. Since the full twist induces 
the identity permutation on the braid strings, while the actual permutation is neces- 
sarily a t - cycle (because K is a knot) there must be at least t - 1 additional crossings 
since a f -cycle cannot be written as a product of fewer than t - 1 transpositions of 
adjacent symbols. Thus c 2 t(t - 1) + t - 1, so 

2g = c - t + 1 2 t(t - 1). 

Equality in (5.5) is achieved for the t trip Lorenz knot which is defined by the 
word w = x(xy)‘. The knot which is so-represented is the torus knot of type (t, t + l), 
as will be shown in Section 6 below. Thus the bound in (5.5) is sharp. (1 

Remark. For a Lorenz link, the crossing number (by the above argument) is at 
least (t)(t - 1). 

COROLLARY 5.4. Lorenz knots have positive signature. 

Proof of Corollary 5.4. Lee Rudolph [29] has proved that non-trivial closed positive 
braids have positive signature. 

COROLLARY 5.5. Lorenr knots are non-amphicheiral. 

Proof of Corollary 5.5. This is an immediate consequence of Corollary 5.5, 
because amphicheiral knots have zero signature. 

We next develop a braid formula for Lorenz links. Thus let L be a Lorenz link and 
t its trip number. By Theorem 5.1 we may assume that the corresponding link is a 
braid on t strands. 

PROPOSITION 5.6. The braid word of a Lorenz link as a braid on t strands, t the trip 
number, has the form 

The exponents can be computed as 

(b) n; = curd {j/a*(j) - j = i + 1 and a*(j) < r:(j)} 

(c) mi = curd {j/j - r*(j) = i + 1 and r*(j) > r:(j)}. 

Proof of 5.6. We think of L as the union of finitely many periodic orbits of cp,. As 
such it is separated into 4 groups of arcs by the branch line; respectively, those 
joining the right side of the branch line to the right side (RR), those joining the right to 
the left, RL,. . . LR,. . . LL. 

From Fig. 5.1 we see that the group LR can be considered to contribute a full twist 
to our braid, and RL to contribute nothing. We turn to LL: the first arc of LL 
connects point 1 to (say) i + 1, i zz 0. Then upon straightening this arc (see Fig. 5.4) the 
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(g&i!/ 
Fig. 5.4. 

resulting braid moves are 

since now the second arc of LL becomes the first strand. (In the trivial case i = 0, 
straightening only removes a trivial loop.) But note that the second arc must go 
further than the first, corresponding to the fact that the Poincare map is order 
preserving. That is, it connects point 2 to j + 1, where j 2 i + 1. Hence it corresponds 
to atoz.. . ai, j 2 i. The same sort of inequality is forced on each succeeding arc by 
the fact that the Poincart map is order preserving. Thus the arcs of LL contribute a 
term exactly like the second in the product (5.6a), where of course some of the ni’S 
can be zero. 

The proof that the arcs of group RR contribute the third term is quite similar. One 
need only note that the arcs of RR are naturally ordered from right to left, to see the 
difference. This proves (a). 

To prove (b), note that the first arc of LL connects 1 to V*(I) and in general, each 
such arc connects some j to r*(j) and that in turn r*(j) is connected to r:(j) by 
either an arc of LL or one of LR. In particular, r*(j) < a:(j). Thus this particular arc 
contributes (~1 . . . ai where rj+r - rj = i + 1, as required. This proves (b). The proof of 
(c) is similar. 

COROLLARY 5.7. With notation as above for a Lorenz knot, we have the formula 

2g = (t - 1)2+ Z r*(j) - j - 1 + Cj - 77(j) - 1 

where thefirst summation is over all jsuch that j < r*(j) < r*‘(j) and the second overall j 
such that j > n*(j) > r*2(j). 

Formulas (b) and (c) in Proposition 5.6 suffer from being far removed from the 
words in x and y which form the natural ingredients here. To rectify this we give a 
formula for r*(j) - j in terms of words: continue the notation of 5.6 and recall the 
Algorithm 2.4.3. The link L is the union of n periodic orbits corresponding to the 
words wI, . . . , w,. The points (1,. . . , m} correspond l-to-l with the truncations 
{syiCili = 1,. . . , n} under the lexicographic ordering. Here ti means the infinite word 
www. . . . Let us suppose j is a point in question, say j corresponds to sAWfi = x’yw’. 
Note we must have (Y 2 2 in order to have n*(j) < r*‘(j). Then 

PROPOSITION 5.8. If j corresponds to x”yw, a 2 2 then r*(j) - j - 1 = {(the number of 
exponents of the x’s which are at least a) + (curd B)} where B = {(r, 6)(sy*, = yw’ and 
S Y+I ,ijs = Xa-lywff < s’+’ E’p. 

Proof of Proposition 5.8. For a*(j) - j - 1 is the number of the points {I, . . . , m} 
which are between j and r*(j). Thus we want to compute the number of truncations 
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sYDa between skWs and sk-’ -B w as these last correspond to j and r*(j). Assume 

syCa = x”yw’; then exactly one of the two truncations syBs and s y+’ riis is between skBp 
and sk”C,+ This accounts for the first summand in the formula 5.8. Similarly, if 
(7, S) E B, then skiits < s?*~ < sk-‘CD. These cover the only possible cases for 
truncations to lie between these 2 and hence completes the proof of this formula, (1 

Example. The linking number of the orbits corresponding to xayb and xCyd, is at 
least 2, for a, c 2 2. To see this, note that this is a link on 2 strands and formula (a) of 
Prop. 5.6 applies. Then A’ = a: contributes 1 to the linking number. Now use 5.8 
(ignoring card B) to see that there is another contribution via the fact that some ni > 0. 

We close this section with the statement of a partial result toward the conjecture 
that trip number is in fact the braid index of a Lorenz knot, i.e. the smallest integer m 
such that K may be represented by an m-braid. To explain what we can prove, we 
note that by a theorem due to Markov (see [l]) if y E B, and y’ E B,, are two braid 
representations of a knot K, then there is a finite sequence of pairs: 

(x f) = (Y27 tl) -,(Yz, f2)+ . . . -+(rsv &I = (Y’9 0 

such that each yi E B+ represents K and such that for each adjacent pair (n, ti)+ 
(n+l, ti+,) one of the following holds: 

(i) ti+r = ti and 3/i+, is conjugate to yi in B,; 

or 

+1 
(ii) ti+l = ti+ 1 and ~iyi+l =yi~t_ 

I 

or 

+1 
(iii) ti+l = ti - 1 and ‘yi = yi+,~ T 

I+1 

If (ii) occurs, we say that yj is reducible to yi+l. 

THEOREM 5.9. If K is a Lorenz knot of trip number t and if y E B, is the positive 
braid representative produced by the method of Theorem 5.1, then y is not conjugate to 
a reducible braid. 

Remark. This does not necessarily imply that t is the braid index because it is 
conceivable that by a sequence of operations of types @-(iii) one might achieve a 
reduction which cannot be achieved by a single conjugation and reduction. However, 
this is highly unlikely because of the fact that K is fibered and y is positive. 

We omit the proof of Theorem 5.9 because it requires the explanation of tech- 
niques not noted elsewhere in this paper, and it is only a partial result. 

96. LORENZ LINKS, ALGEBRAIC LINKS AND ITERATED TORUS LINKS 

In this section we discuss the relationship between Lorenz knots and links, 
algebraic knots and links and iterated torus knots and links. Algebraic knots and links 
were defined in §l. They will be characterized below as a proper subclass of iterated 
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torus knots and links. If L is an iterated torus link with Alexander polynomial A(f), 
then the roots of A(t) are roots of unity, however there are links with this property 
which are not algebraic. The principle results of this section are: 

THEOREM 6.1. Every torus knot is a Lorenz knot. 

THEOREM 6.2. Let K be a Lorenz knot with crossing number c. Let (a, b’) be 
arbitrary coprime positive integers. Then the type (a, b’+ ac)-cable on K is a Lorenz 
knot. 

THEOREM 6.3. Every algebraic knot is 
Lorenz links. 

THEOREM 6.4. There are algebraic links 
links. 

a Lorenz knot. Some algebraic links are 

(in fact torus links) which are not Lorenz 

THEOREM 6.5. There are Lorenz knots which are iterated torus knots but which are 
not algebraic. Also, there are Lorenz knots which have Alexander polynomials with 
roots which are not roots of unity. Such a knot cannot be an iterated torus knot, and in 
particular it cannot be algebraic. 

Our discussion begins with a review of definitions and the adoption of conventions 
with regard to the “type” of an iterated torus knot or link. Caution: different authors 
have used all possible permutations of all possible conventions and there does not 
seem to be any preferred convention. We follow conventions in Ref. [9]. 

Let V, be a standard solid torus in R3 with core K0 and let 1, C JV, be a preferred 
longitude for vI, i.e. 1, bounds a disc in the complement of V,. A simple closed curve 
K, C aV, is a torus knot of type (a, b) if K, winds a times longitudinally and b times 
meridionally about V,, so that the linking number of K, with K0 is b. Let 
K2 be a knot in R3 and let V, be a solid torus neighborhood of K2. Let 
I2 C aV2 be a preferred longitude for Kz. Let h: V, +VZ be a homeomorphism which 

takes 1, onto 12. Then Kz(a, b) = h(K,) is a type (a, b) cable about K2. Note that if Kz 
is oriented, there is a natural induced orientation on Kz(a, b). 

For each integer i = 1, . . . , r let (ai, bi) be coprime integers and let K, be a torus 

knot of type (ai, b,). An iterated torus knot K of type ((a,, b,), . . . , (a, b,)) is defined 
inductively by Kj = Kj-l(aj, bj). 

For iterated torus knots, it will be convenient to introduce the adjusted type 
(a, b;), 1 5 j 5 r, where the b; are defined iteratively by 

b; = b,, b;= bj_ajUj_,bj_,,2< j< r. (6.1) 

It is well-known that an iterated torus knot is an algebraic knot if and only if the 
adjusted type numbers q, b; satisfy: 

aj>O,b)>Ofor each j= 1,2 ,..., r. 

Let L be a link with component Li and let (a, b) be an arbitrary pair of coprime 
integers. The link L U L;(a, b) is a toral iteration of type (a, b) on L, C L. The new 
component Li(a. b) will lie on the boundary of that component of a solid torus 
neighborhood of L which contains Li in its interior. This process may be repeated to 
give consecutive toral iterations on L,, with the second solid torus neighborhood of L 
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lying inside the first, also a third inside the second, and so forth. The most general 
iterated torus link is obtained by the following procedure: 

(1) Starting with the unknot, perform toral iterations with arbitrary coprime (a, 6) 
at each stage, using any link component previously constructed. 

(2) Delete an arbitrary subset of the components. 
(3) Reverse the orientation of any subset of the remaining components. 
Let L = U i-l Lj be an iterated torus link. Then each component J+ is an iterated 

torus knot of type ((ali, brj), (azj, bzj), . . . , (a,#,i)), where the type numbers are 
determined by the ordered set of toral iterations which led to the construction of Lb 
In this scheme it may happen that two of the components, say Lj and L,, are obtained 
by steps which coincide up to, say, the kth toral iteration, in which case we will have 

Uij = Uis, bij = his, 1 I i 5 k. 

In view of this remark we may associate to each Lj an unambiguous adjusted type symbol 

((u;j, b,j), (u2jr bzj), * * * 9 (arti b$)) where as before the integers b;j are defined 
iteratively by: 

b;j = b,j, b{j = bij - uijui_l,ibi-l,j, 2 I i I rj, 1 5 j 5 t. 

Following [9] we have: 

(i) Every algebraic link is an iterated torus link. 
(ii) Let L = U :=,Lj be an iterated torus link, where the jth component Lj has 

adjusted type symbol ((orj, bij), (u2j, b;j), . . . , (urj, b’,.$). Then L is algebraic if and only 
if: 

(a) the components Lj are coherently oriented. 
(b) o,>O,bij>Oforeach 15i<r;,l<jlt. 
(c) Suppose two consecutive toral iterations of type (oij, b:J, (ui,j+lr b;j+l) respec- 

tively are on a single component of the link at some intermediate stage in the 
construction. Assume that these have been labeled so t,hat the iteration of type 
(ui.j+l, bi.j+l) occured first, and the iteration of type (a, b,j) occurred second (on a 
concentric torus of smaller radius). Then for any such pair: 

ai,jl b I,j 2 ui,j+ I/b i,j+ I * 

Having established conventions, we are now ready to prove Theorems 6.1-6.6, 
stated earlier. Theorem 6.1 asserts that torus knots are Lorenz. 

Proof of Theorem 6.1. Let (p, q) be arbitrary coprime integers. We claim that the 
permutation v.+ on p + q symbols which is defined by 

57*(i) = i + q, 1 5 i 5 p ; 

r*(i) = i - p, p+lSirp+q. 

defines a Lorenz knot having the knot type of a torus knot of type (p, 4). First note 
that nTT* is a cycle. For, suppose that 7r?r* is a product of k disjoint cycles (k 2 1). Then 
any one of these cycles contains, say, p’ (respectively 4’) distinct symbols with 
indices between 1 and p (respectively p + 1 and p + q), and rTT* acts by increasing 
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(respectively decreasing) these indices by q (respectively p). In a cycle the sum of all 
successive differences is necessarily 0, hence q’p = p’q. Since p and q are coprime, 
this means that p/p’ and q/q’. Since p’ 5 p, q’ % q we then have p’ = p, q’ = q, hence 
7rTT* is a cycle. 

To see that n* defines a type p, q torus knot, examine Fig. 6.1. The first picture 
shows the defining braid. The second shows the closed braid, embedded on a torus 
minus a disk, wrapping p times longitudinally and q times medidionally. /I 

Remark. The defining word may be recovered from r* by the method used in the 
proof of Proposition 3.2. For example w = x’yxy gives a type (2,3) torus knot and 
w = x’yx’yxy gives a knot of type (3,5). A general rule is: to obtain a torus knot of 
type (p, q), use the Lorenz word w which contains x p times and y q times, spaced 
out as “evenly” as possible. Thus, the trip number will be the smaller of p, q. 

We now show that the class of Lorenz knots is closed under a rather special kind 

of cabling. (Theorem 6.2). This generalizes Theorem 6.1 because the torus knot of 
type (p, q) where q > p, can be obtained by choosing a = p, b’ = q - p and cabling on 
the unknot, defined by the Lorenz word w = xy. 

Proof of Theorem 6.2. Let K be an arbitrary Lorenz knot, with defining Lorenz 
braid p of string index n and crossing number c. Let a,, b; and a?, bi be arbitrary 

p= 5, g .3 

Fig. 6.1. 
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pairs of coprime positive integers. We will define two new Lorenz braids p^ and p, on 
a,n + b{ and a2n + b; strings respectively, and will show that; 

(1) b U p U p^ is a Lorenz braid, 

(2) the associated link I? U K U z is Lore% 
(3) K is a type (a,, b; + a,c)-cable on K. R is a type (a2, b; + a+)-cable on K. 
This is somewhat stronger than the result needed to establish Theorem 6.2, but it 

will be useful later. 
It will be helpful to think of p as colored red. We will augment the braid p by 

adding strings colored green for p^ and blue for p. To obtain p U p^, augment the red 
braid /3 as follows: 

Step 1. To the right of each red strand of /3 put down a = al parallel green 
strands. Do this in such a way that each time the ith red strand of /3 crosses over the 
jth, the parallel green strands of $ associated to the ith red strand cross over the 
parallel green strands of p^ associated to the jth red strand. (See Fig. 6.2.) 

Step 2. At the extreme right of the braid obtained by Step 1 above, add b’ = b; 
green strands, all parallel, in such a way that this new group of b’ strands crosses 
under the right-most group of a green strands once, at the bottom of the braid, but 
does not cross over or under any other green or red strands (see Fig. 6.3). 

Thus, if TT = (7~,, . . . , wp) is the Lorenz permutation which defines p then the Lorenz 

permutation si defining 6 will have pa entries, given by 

(uT,-u+l,ulr,-u+2 ,...) uTr,,u7r2-u+l, 

ua2 - a + 2, . . . , lln2,. . . ) ulTp_,, UTp +b’-u+l, mp+b’-a-t2,..., q,+b’). 

We now show that + satisfies the condition of proposition 3.2. Condition (a) is 
clearly satisfied: to show that (b) is satisfied it will be adequate to show that 7i defines 
a knot rather than a link, i.e. that G is a cycle. 

x 
Typical crcsssing for/j 

\ 

1 
Extreme right and hotton 

of /3 

- 

Associated portion ofA()$ 

Fig. 6.2. 

& b' 

Associated portion of B :;ii 

Fig. 6.3 
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Focus on the local picture near the right-most two groups of green strands 
(containing a + b’ strands). 

First, we examine the right-most group of a + b’ strands of 6. If the right-most 6’ 
strands are identified top and bottom, as in Fig. 6.4, a “curl” is introduced into the 
braid. The curl causes a permutation in the a strands, and the permutation must be an 
a-cycle because a and 6’ are coprime. 

Now, the permutation 7r* associated to the original braid p was an n-cycle 
because K is a knot. From this it follows that the n groups of a parallel strands are 
permuted by 7j* in the same way as were the n strands of p by r. Hence the orbit of 
any individual group of a parallel green strand (e.g. the left-most group) under 7j* is 
any other such group. The only place where permutations are introduced within such 
a group is at the extreme right, and from earlier observations an u-cycle is introduced. 
Putting these together, we can see that 7j* is a cycle, i.e. the orbit of any one symbol 
under 7j* is the entire set of na + b’ symbols. Hence & is a knot. 

We next show that & can be embedded on the boundary of a solid torus 
neighborhood X of a knot which has the type of K, winding a times longitudinally and 
b’+ ac times meridionally about the core, where c is the crossing number of K. 
Figure 6.5 shows T = (dX -disc) near the curls of Fig. 6.4 in the case a = 2, b’ = 5. 
The remainder of L embeds in an obvious way as a set of parallel strands on two 
ribbons. Note that dT bounds a disc in S3- & even when K is knotted. The 
longitudinal winding number of k with respect to X is clearly a and the meridional 
winding number is b’+ ac. 

Now the entire procedure may be repeated, adding a third braid p to the left of the 
original braid /3. To do this, observe that the knot holder H in Fig. 2.2 is invariant 
under a rotation of 180” about the z axis. We construct fi by rotating EZ, doing the 

a=2, b’=5 

I+$. b.4. 

Fig. 6.5. 
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earlier construction with new coprime integers a2, bi, and then rotating back. The 
braid /? contains a2 parallel blue strands to the left of each red strand, and an 
additional group of bi parallel strands to the left of all strands already in place, which 
cross over the left-most group of az blue strands once but do not cross any red or 
green strands. As before, the associated closed braid R will be a knot. It will be a type 
(a?, b$ + u?c) cable on K. This completes the proof of Theorem 6.2. 1) 

To prove that algebraic knots are Lorenz, we next show that the restriction on the 
cabling coefficients in Theorem 6.2 are in fact precisely those which occur in algebraic 
knots: 

Proof of Theorem 6.3. Let N, be algebraic, of type ((a,, b,), . . . (a, b,)) and 
adjusted type ((a,, b;), . . . , (a, b;)). If r = 1 then N, is a torus knot, hence by Theorem 
6.1 it is Lorenz. Its crossing number is a,b; = a,b,. Assume, inductively, that N,_, is 
Lorenz, with crossing number a,_,b,_,. Since N, is algebraic, bt> 0. By Theorem 6.2 
the (a, b:+ u~,_,b,_,) = (a,., b,) cable on N,_, is Lorenz, with crossing number a,br 
Hence N, is Lorenz. 

To see that some algebraic links are Lorenz links note that in the proof of 
Theorem 6.2 we not only showed that for each Lorenz knot K the type (a, b’+ ac)- 
cable on K was Lorenz, but even more that there is a Lorenz link having 3 
components R U K U k where I? and R are type (a,, bl + a,c) and type (a*, b; + azc) 
cables on K. Choose 61 = b; = 1 and.ul = a2 = 1. Then K and & may be constructed on 
concentric tori with K as core. If K was algebraic, then R and g are also algebraic. Now 
use Theorem 6.3 to cable further on any of k, K, k In this way we obtain a family of 
rather special algebraic links which are Lorenz. 11 

Proof of Theorem 6.4. We will show that if n 2 4 the torus link of type (n, n) is not 
a Lorenz link. 

Note that the n components in such a link are all unknotted and that any two link 
one-another with linking number 1. Our task will be to show that there is no Lorenz 

link with these properties if n 2 4. 
For assume the contrary. Recall that the trip number is the number of syllables in 

a Lorenz word. Then the four (or more) orbits correspond to words of the form x”lybi 
as these are the only unknotted orbits other than the trivial ones, since by Corollary 
5.3 each componant has trip number 1, but the trivial ones link nothing. Then either 
(1) ai ~2 for two i’s or (2) bi 2 2 for two i’s; by symmetry in x and y we need only 
test case 1. But in this case the corresponding orbits have linking number 2 2 by the 
example after the proof of Proposition 5.8. n 

Example. The only triples corresponding to the (3.3) torus link are of the form x’y, 
xy and xy’, with a, b 2 2. 

Proof of Theorem 6.5. Let K, be the Lorenz knot which is defined by the Lorenz 
permutation 7r = (4,6,7,8,9, lo), or alternatively by the Lorenz word w = x*yx*yxyxy. 
It has genus 7 and it may be identified as a type (2.3,2.11) interated torus knot. The 
adjusted type symbol bi defined by eqn (6.1) does not satisfy the inequality of eqn 
(6.2), hence K, is not algebraic. 

To establish the second assertion of Theorem 6.5 let K: be the Lorenz knot which 
is defined by the Lorenz permutation (6,9, 10) or by the Lorenz word w = xyxy3xy3. 
Its Alexander polynomial is p(t) = 1 - t + t’ - t” + t’ - t6 + t’ - t9 + t”, Then p(O) = 1, 

~(-1) = -1; hence p(t) has a root between t = 0 and f = -1. Such a root cannot be a root 
of unity. 
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Remark 1. The knot KZ which is defined by rr = (6,9, 10) has a Lorenz projection 
defined by the Lorenz braid in Fig. 3.1. (Compare Fig. 1.1) A different projection is 
given in Figure 6.6. It belongs to a well-known family of so-called “pretzel” knots. This 
one has type (-3, -7, +2). Other pretzel knots which are Lorenz are of type 
(-3, -2n - 1,2) determined by 7~ = (2n, 2n + 3,2n + 4) or w = xyxy”xy”. 

Remark 2. John Morgan has asked whether hyperbolic knots occur in the flow 
associated to eqns (l-3)? It is known (see [3]) that a pretzel knot of type (a, b, c) is 
hyperbolic provided l/a + l/b + llcf l/m for some integer m. The pretzel knots of 
type (-3, -2n - 1,2) then include many examples of hyperbolic knots which are 
Lorenz knots. 

07. LORENZ LINKS C POSITIVE BRAIDS 

We have already observed (and made use of) the fact that every Lorenz link may 
be represented as a closed positive braid. This fact enabled us, for example, to prove 
that all Lorenz links are fibered and to derive a formula for the genus (Theorem 5.2). 
A natural question to ask then, is whether every knot defined by a closed positive 
braid is a Lorenz knot? We answer this in the negative by establishing: 

PROPOSITION 7.1. The granny knot is a closed positive braid, but is not a Lorenz 

knot. 

Proof of Proposition 7.1. Figure 7.1 shows the granny knot, represented by the 
closed positive 3-braid /3 = ~:a:. Its genus is 2, by a well-known formula or by 
theorem 6.2, with c = 6, n = 3. 

However, a Lorenz knot of genus 2 must have trip number 2 by the formula 
2g 5 t(t - 1). By Corollary 5.3 such knots are torus knots of type (2,2m + 1). As the 
genus of such a knot is m, we have m = 2 which proves that a Lorenz knot of genus 2 
can only be a type (2,5) torus knot, distinct from the granny. 

§8. ZETA-FUNCTIONS 

In an earlier paper [36,37] a type of non-abelian zeta-function was introduced, and 
it was used to distinguish (topologically) different Lorenz attractors. These occur if 
the coefficients in eqn (1,3) are changed. Since we are concerned with the boundary 

Fig. 6.6. Fig. 7. I 
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line case here, this function is very simple: 

cc tr;; 
7)(x, Y) = x ( >’ 

i=l i 

=x+y+ 
x2 + xy + yx + y* + 

2 
. . . . 

If one abelianizes one gets 

5(x, Y) = exp V(XY) = 
1 

l-x-y 

and 

1 
l(C t) = 1 _ 3’ 

This last is familiar as the zeta function of the full 2-shift. We want to include more 
knot-theoretic information in such “zeta-type” functions. We would really like to 
formulate a result which would tell us as much about what knots occur (say for 
Bowen-Parry flows which lie in S-see below) as the 

THEOREM (Bowen-Lanford [2], Parry[27]: The zeta-function of the subshift of 
finite type determined by a O-l matrix A is [det(l- tA)]-‘. That is to say, for such a 
subshift s the only sequences (N,, N2, N3,. . . ), Ni = card(fix s'), which OCCW, are 
those of the form (tr A, TrA*, tr A3,. . . ) for some square integral matrix A. 

We introduced the term Bowen-Parry flow in 02 to mean a suspension of a 
sub-shift of finite type. Much is known about these flows, and Rufus Bowen and Bill 
Parry are responsible for a large part of this. There is also the pretty result of 
Franks [ 1 I] which relates the Alexander polynomial of a periodic attracting orbit to 
other dynamical information about flows on S3. 

Knot Problem. Classify the families K of knots which occur as the set of all 
periodic orbits of a Bowen-Parry flow in S3. 

We note that the set of all Bowen-Parry flows in S3 is countable, so that there 
certainly are restrictions on such families (reminiscent of the fact that there are only 
countably many rational zeta-functions.) The first step toward codifying such in- 
formation is to find formulas for such things as Nig (say), where 

NiR = f of periodic orbits of word-length i and genus g. 

Along these lines we have two contributions. First, if we count the trip number t 

instead of genus g, we have a good theory (Theorem 5.2). This is related to computing 
Ni,q as 2g 2 t(t - 1); furthermore, we conjecture (05, just before the proof of 5.1) that 
the trip number t is a knot invariant. Secondly, we have an exact formula (see Prop 
5.6) for computing the knot or link as a braid on t-strands. This yields in particular a 
formula for the genus. We proceed to formulate the trip number-period “zeta” 
functions. 

Let N,.; = card {A/A is a periodic orbit of word-length n and trip number i}. Then 



74 JOAN S.BIRMAN and R.F.WILLIAMS 

for the (full) Lorenz flow the following formulas are proved below: 

(*) 

and more generally 

(**) 2 W”,,SI = tr cs; ( ) n 
where W,,, E Z[x, y] is the “sum” of all words w in the free monoid in x and y such 
that the corresponding orbit A = A(w) has trip number i. 

There are several conventions: frst, though x and y don’t commute, s commutes 
with both of them. Secondly, for n composite, we include in W,., all (“periodic”) 
words of the form wn where cu(degree w) = n. 

Thus 

r/(x, y. s)= g,;tr x y . ( ) 
n 

xs Y 

In particular, the fifth term of this series includes (l/5) times the following 
x5, x2yxZs, x3yZs, x2yxys2, xyxyxs2, etc. Here s measures the number of syllables 
(counted/cyclically) or equivalently, the trip number of the corresponding Lorenz orbit. 

THEOREM 8.1. The period-trip number q function for the (full) Lorenz system is 
given by 

“; or abelianizing, 

g(-% Y, S) = eXP qf,(x, y, S) = l/det L-x; 1--);) = l/[l-x-y+xy(l-s)]. 

l(t, s) = 636 t, s) = l/[ 1 - 2t + t2( 1 - s)]. 

l-(t) = at, 1) = A. 

Proof. The only things new here are the formulas (*) and (**) and the latter in turn 
implies the former. But (**) is conceptually just like many symbolic dynamics 
formulas: there are 2 “windows” or partitions, one labeled x, the other y. The matrix 
(with composition on the left) says that we can go from either window to the other, 
and record the window we have just left. In addition, one s is included for each 
passage from x to y. Then a monomial x”lY”‘l.. . x”~~~~s~,x”~~“‘~.. . x”~Y”‘~x~s~, or 

ym’xnz. . . x”iymixnlybs’ which shows up in tr XY” 
( > xs Y 

will have to have i = t, as a factor 

of s is added only upon transition from x to y. One can check this in each of the three 
possible types of monomials above. Note that counted cyclically, each of these has 
exactly f syllables, i.e. t subwords of the form x”iymi, since i = t. n 

Remarks 1. This trip-number counter s can just as easily be built into the n 
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functions of [36,37]; a typical finite matrix would be 
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Remark 2. We conjecture this result holds for any Bowen-Parry flow. More 
precisely, let (pr be such a flow on S3 and let S’ be any chosen braid axis. For A a 
periodic orbit of cp~ we attach two numbers, n(A) = the linking number of A with the 
braid axis and b(A) = the braid index of A. Let N,,,h = card {AIn = n, b(A) = b}, 
where appropriate conventions for retracing orbits are followed. Then 

CONJECTURE. 

is a rational function of s and t. 

We expect similar results for 7(x, y, s) and ~~(x, y, s). 

59. KNOT GROUPS AND ALEXANDER INVARIANTS. 

In this section we will give an algorithm for calculating a presentation for 
w,(S? - L) when L is a Lorenz link. We also give an algorithm for computing an 
Alexander matrix for L when L is a knot (a slight modification giving a similar result 
for links). The Alexander polynomial and also the generator for the Alexander ideals 
can be calculated without difficulty from this matrix. A second method is given in §lO. 

Both of these algorithms start with a defining permutation and proceed mechanic- 

ally to enable the rapid calculation of individual examples, although the more general 
question of characterizing the groups or the polynomials seems very difficult and 
beyond the scope of this paper. Indeed, since Lorenz knots are a generalization of 
algebraic knots, it seems fairly clear that this is a highly non-trivial problem. 

Remark. The formulas which define Lorenz knots as closed t-braids may be useful 
here. 

Let L be a Lorenz link, and suppose that L is represented by a Lorenz braid with 
n strings, p of which are overcrossing strings and q of which are undercrossing 
strings. Let ?T = (7~,, . . . , 7~~) by the defining Lorenz permutation and let r* be the 
associated permutation of the symbols (1,2,. . . , n). Then rg has the form: 

i*7ri(l=l,...,p); p+j+Sj(j=l,...,q). 

Here n = 7~~ = p + q. Let S = ((a,, . . _ , 8,). 

THEOREM 9.1. For each integer j (j = 1,. . . , q) let pi denote the smallest integer 
among the set of integers {r,, . . . , vp} which is larger than & Such an integer always 
existsbecauser,,=p+q>S,forallj=l,..., q. Let G = vrl(S3 - L). Then G admits 
the presentation : 

generators: x,, x2, . . . , x~+~ 
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defining relations: 
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xi=xr,,i=l,...,p 

Xp*j =(XiiX,!, . . . X;;j$ (Xlr,,...Xp_,Xn,) 

j= 1,. . . 3 9. 

In this presentation, any one relation is a consequence of the others. 

Example. T = (4,5,7,8,9). Here p=5, q=4, n=9. Then S=(l,2,3,6), so that 
p, = 44, IL2 = 4, cL3 = 4, e4 = 7. The group G has the presentation 

generators: xl , . . . , x9 

defining relations: 

x1=x4 
-I -I 

,‘,j= x;'xg'x, x5 x~'x,x4x5x,x~x9 

X? = x5 
x,= ~~'~,'~;'~;'~;'~~~4~5~,~~~9 

x3 = x7 
-I -I -I -I -I 

x4=x8 
xs= x9 X8 x7 x5 x4 X3X4X5X7X~X9 

x5 = x9 x9= x9'xg'x;'x6x7x*x9. 

Proof of Theorem 9.1. It will be assumed that the reader is familiar with methods 
for finding presentations of knot groups. A good reference is [lo or 281. The 

generators xl,. . . , x,,, in the presentation of Theorem 9.1 are represented by loops 
which encircle and seperate the braid strings, in order, at the top of the braid. The first 
p of these generators may be slid along the overpasses to the bottom of the braid 
without interference. After identifications are completed we then obtain the relations 
xl=x,Ji=l,..., p), which simply say that we named too many generators. 

The remaining relations arise at the crossing encountered as one attempts to slide 
along an underpass. At each crossing-point there is a relation which corresponds to 
conjugarion by the generator associated to the overpass. The generator x,+~ (j = 
1 , . . ..q) at the top becomes (x,) x,+~(x;:) after passing the first crossing, 

(xrD_IX7p)Xp+j (x;ixp!,) after passing the second crossing and so forth down to the 
bottom of the braid, the last conjugation being by x,,. In this way we obtain, at the 
very bottom, the relation 

xsi = (xJ+. . . %r_,X”J xp+j(x;;x;;_, :. . x;;,, 

because after identifying the top and bottom of the braid strings the loop representing 
xsi may be slid around the loop from the top to the bottom of the braid, whence it is 
seen to be equal to the loop obtained by the repeated conjugation. 11 

THEOREM 9.2. Let r = (T,, . . ., r) be a Lorenz permutation which defines a Lorenz 
knot K. Construct the following rP x np matrix B(t) over the group ring ZT (of 

Laurant polynomials ouer the integers z): 
(1) For each i = 1,. . . , p enter t”i-’ in the ith row, nith column. 

(2) Foreachi=l,..., p enter 0 in the ith row, jth column for each j > riv 

(3) Foreachi=l,..., p complete the rith column by filling in zeros in every empty 
space. 
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(4) For each i=l,..., p complete the ith row by inserting the entries (I - t), 
(t? _ f3), . . . , tv-1 _ fvi, in order, starting at the left, and spacing out to avoid any 

zeros already present from steps l-3. 

(5) Foreach i=p+l,..., TV enter a unit vector in the ith row, with the unit entry 

in row p + j in the &th column. 

Let B(t) be the matrix so-obtained. 

The Alexander polynomial of K is the determinant of any (rP - 1) x (rp - 1) minor 
of the matrix B(t) - I constructed above. 

Examples. We give two examples. 
Example 1. Let rr = (3,4,5). (The Lorenz knot is the trefoil.) Then S = (-1,2). The 

matrix B(t) - I is the 5 x 5 matrix: 

-t t - t2 t2 0 0 

1-t t-t2-1 0 

1 0 0 -1 0 

0 1 0 0 -1 

The Alexander polynomial is the determinant of any 4 x 4 minor, e.g. delete the third 
row and second column to obtain 

-t t2 0 0 

l-t 0 t2 0 

AK(t) = 1 O-10 = 
0 0 0 -1 

-t t* 0 

1-t 0 t2 = t2(1 - t + t2) 

1 o-1 

Example 2. This example illustrates all of the essential features of the algorithm. 
We take n = (4,6,9, 11). Then 6 = (1,2,3,5,7,8, 10). The matrix B(t) - I is 

-t I - 1: ,2_ ,? 1’ 0 0 0 0 0 0 0 

1-t t-c-1 tz- t’ 0 t’ - t4 I4 0 0 0 0 0 
- 

1-l t--f: t:_r’-, 0 t’- Id 0 1’ - t( tq - t6 I” 0 0 

1-t , - 1: (2 _ tJ -1 t’ - t4 0 td- f( t( - I6 0 p - t: t7 

I 0 0 0 -1 0 0 0 0 0 0 

0 I 0 0 0 -1 0 0 0 0 0 

0 0 1 0 0 0 -I 0 0 0 0 

0 0 0 0 I 0 0 -I 0 0 0 

0 0 0 0 0 0 I 0 -I 0 0 

0 0 0 0 0 0 0 I 0 -I 0 

0 0 0 0 0 0 0 0 0 I -1 
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Proof of Theorem 9.2. The matrix B(t) - I which we have calculated is the matrix 
Il(ari/axj)VII, where the Xi’s and ri’s are generators and relations in the presentation of G 
given in Theorem 9.2, and (ar,lJxj)’ is the “free derivative” (see [lo]) of ri with respect 
to Xi, evaluated at the abelianizer of the knot group G. 11 

$10. SEIFRRT SURFACES, SEIFERT MATRICES, AND SIGNATURES OF LORENZ KNOTS 

Recall that if K is a knot in S3, a Seifert surface for K is an orientable surface 
M C S3 with 3M = K. Let &f X [l, l] be a bicollar for &f in S3 - K. Let x E H,(u) be 
represented by a l-cycle in && and let x+ denote the l-cycle which is carried by x x {1} 
in the bicollar. Let f: H,(fi> x H,(A%) + 2 be defined by f(x, y) = 1 k(x’, y). Let e,, . . . , 
e?g be a basis for H,(d) as a Z-module. Then the 2g x 2g integer matrix V = i/f (q, ei)ll 

is a Seifert matrix for K. The signature c+(K) of K is the signature of (V + V”). It is a 
well-known knot invariant, in particular, any knot which is null-cobordant has 
signature 0. 

The purpose of this section is to give a procedure which allows the calculation of a 
Seifert matrix for any Lorenz knot. 

Using this construction, Rudolph[29] has proved the interesting result that closed 
positive braids have positive signature. As a consequence, 

THEOREM 10.1[29]. Non-trivial Lorenz links have positive signature. In particular, 
this implies that Lorenz links are non-amphicheiral, i.e. there is no orientation- 
reversing homeomorphism of S3 which preserves any Lorenz link setwise. 

Let K be a Lorenz knot, and let y be the positive braid in the t-string braid group, 
where t = trip number, which represents K (see 95 and Proposition 5.6). We construct 
a Seifert surface for K. 

Consider a collection of n discs which are arranged in a stack as in Fig. 10.1 and 
joined by half-twisted bands as in Fig. 5.1 or equivalently by hooks as in Fig. 10.1, 
where a hook joining the ith and (i + 1)st disc is associated to the appearance of the 
braid generator Vi in y, also distinct hooks appear in distinct horizontal layers and are 
ordered from top to bottom to correspond to the ordering of the ui’s in y. The 
collection of discs with connecting hooks is clearly a Seifert surface for K. We denote 
it by the symbol M. 

Now choose a base point pi, 1 5 i 5 n, at the top of each disc as in Fig. 10.1. Then a 
l-dimensional spine for M has vertices p,, . . . , pn and oriented arcs (Y,, . . . , a, which 
join adjacent pits. If = ~~,a~~ . . . up,, then the oriented arc aj associated to aV, joins the 
point pPi to p*,+, after passing over the hook associated to utii once. There is a unique 
way to do this, constructing the aj once. There is a unique way to do this, constructing 
the aj’s in order, so that distinct aj’s intersect only in the vertices (see Fig. 10.1). 

From the construction for M, one sees immediately that a basis for H,(u) is the 
set of those differences ai - ai for which j > i, Fj = pi and if i < k < j then /.Lif pk. 

Label the basis elements e,, . . . , eZR in any order. Each ej is a difference au - (Y, as 
noted above. Define 

ai . aj = 1 if i = j or i > j and pi = pj 

=-lifi>jandpi=gj+l 

= 0 otherwise. (10.1) 

(10.2) f(ei, ei) = (all - ay,). (a, - aI). 
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10000000 =1 = Ol - u3 
-110 0 0 0 0 0 r l-l 0 0 0 0 

e2 
= 

a3 
- 

10100000 05 0 l-l 0 0 0 

-1 l-l 1 0 0 0 0 =3 = "5 - u7 

d**.d4= 

10101000 

V= 

001000 

e4 * u2 - e4 -1 1 0 +1 -1 0 

-1 1 -1 l-l 10 0 0 -1 1 0 1 -1 

10101010 e5 
= 
w4 

- 
cY6 0 O-10 c 1 

-1 1 -1 1 -1 1 -1 1 eg = *6 - es i 
L J 

Fig. 10.1. 

Then a Seifert matrix for K is seen to be: 

V = Ilf(ei, ej)lI* 

The signature of K (see Definition 4, p. 217 of[28]) is: 

(10.3) 

6(K) = Signature of (V + V”). (10.4) 

Remark. In §9 we gave an algorithm for the computation of the Alexander 
polynomial AK(x) of a Lorenz knot K. We now observe that K can also be computed 
from the matrix V of formula (10.3) above, since (see Theorem 3, p. 207 of [28]): 

AK(x) = det (V” - xv). (10.5) 
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The matrix of formula 10.5 above is smaller than that obtained from Theorem 9.2, but 
the latter is sparser. 

An example of the calculation is given in Fig. 10.1. 

811. QUESTION, CONJECTURES, SPECULATIONS. 

The following proposition will be proved in our next paper: 

PROPOSITION. Given a flow 4t on a 3-manifold M having a hyperbolic structure on 
the chain recurrent set, there is a branched 2-manifold H with semi-flow c#+, t > 0, on H 
embedded in M such that the periodic orbits of I$~ correspond (with a few specified 
exceptions) l-to-l with those of I& On any finite subset of the periodic orbits the 
correspondence can be taken to be via isotopy. 

Anyone familiar with the techniques of [12, or 381 will see how this is proved. 
Meanwhile, we will call H, 4, a knot holder for M, 4,. The next figure is a knot holder for 
the most obvious suspension of the Smale horseshoe[39]. 

We introduced the term Bowen-Parry flow earlier to mean a suspension of a 
subshift of finite type which has a dense orbit. 

CONJECTURE 11.1. Let M, $I* satisfy the condition of the proposition just stated. 
Then 

(1) with finitely many exceptional (“trivial”) orbits deleted, the remaining periodic 
orbits are unsplittable. 

(2) C#J~ has infinitely many distinct knot types as periodic orbits. 
A bit more vaguely, we conjecture that every ergodic flow in S’ has knotted 

periodic orbits. 

Question 11.2. The Lorenz equations, as noted in section 1, have been associated 

to the phenomenon of turbulence, an apparent chaotic movement of a viscous 
incompressible fluid. What, if anything, is the physical significance of the knotting of 
the periodic orbits? 

Question 11.3. We may define infinitely many simple variations on the Lorenz 
attractor: (a) replace positive crossings with negative. (b) Add some number of full 
twists in either band. Do these modified attractors occur in other, closely related 
equations? What must be done to the flow pattern to change the vector field in this 
way? The knot holder for a suspension of the Smale horseshoe noted earlier is a 
related phenomenon. 

Fig. Il.1 
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Problem 11.4. Characterize the groups of Lorenz links: characterize the poly- 
nomials of Lorenz knots. (These are probably very difficult problems.) 

Problem 11.5. Is there some natural meaning to the fibrations associated to Lorenz 
links? This is a very difficult question, because the knot-holder H, which was crucial 
to our analysis, is a tool for the study of the periodic orbits rather than an actual 
geometric subset of R3 which is associated to the flow pattern. It would seem as if 
there is a “fibration” of (S3 -23) which is obtained as a limit of the infinitely many 
fibrations of S3 - L, where L ranges ever the finite sublinks of L*, however we have 
been unable to pursue this idea in view of the difficulties noted above. 

CONJECTURE 11.6. The trip number t of a Lorenz knot is equal to its braid index. (see 
Theorem 5.6 and the remarks which follow it). 

CONJECTURE 11.7. Lorenz knots are prime. 
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