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ABSTRACT

In the manuscript [2] the first author and Michael Hirsch presented a then-new algo-
rithm for recognizing the unknot. The first part of the algorithm required the systematic
enumeration of all discs which support a ‘braid foliation’ and are embeddable in 3-space.
The boundaries of these ‘foliated embeddable discs’ (FED’s) are the collection of all
closed braid representatives of the unknot, up to conjugacy, and the second part of the
algorithm produces a word in the generators of the braid group which represents the
boundary of the previously listed FED’s. The third part tests whether a given closed
braid is conjugate to the boundary of a FED on the list. In this paper we describe
implementations of the first and second parts of the algorithm. We also give some of the
data which we obtained. The data suggests that FED’s have unexplored and interesting
structure. Open questions are interspersed throughout the manuscript. The third part
of the algorithm was studied in [3] and [4], and implemented by S.J. Lee [20]. At this
writing his algorithm is polynomial for n < 4 and exponential for n > 5.

1. Introduction

1.1. Background

The subject of this paper is the question: given a knot K, can we decide whether
K is the unknot? The problem was solved affirmatively by W. Haken in a ground-
breaking paper published in 1961 [10]. However, showing that an algorithm exists
does not mean that there is necessarily an algorithm which will be useful in practice,
even for the simplest examples. Thus in 1993 (over 30 years after Haken did his
work) when Hoste, Thistlethwaite and Weeks tabulated the 1,701,936 prime knots
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with <16 crossings [14] they had all the tools of the trade available to them, but
used a ragbag of diagrammatic techniques to eliminate unwanted appearances of
the unknot. In that regard it should be noted that knot diagrams with at most
16 crossings do not even begin to exhibit the pathology which one knows exists
in the general case. For example, see [8] for some examples which show why the
diagrammatic approach was abandoned in the 1930’s. (On the other hand, see
[12] for a recent proof that an upper bound exists for the number of Reidemeister
moves which must be tested to be sure that a knot diagram with a given number
of crossings is not the unknot.)

Haken’s work begins by constructing a triangulation of the complement of K.
He then applies the theory of normal surfaces, due to Kneser [18], who showed
that any surface F' of minimal genus with boundary K can be assumed to be in a
special position in which it intersects each tetrahedron T} in the triangulation in an
especially nice way, namely as a set of parallel sheets, each sheet being a polygonal
disc whose boundary has 3 or 4 edges in the faces of 7;. The polygonal discs are
used to set up a system of linear equations. Solving the system allows one to decide
whether, in fact, the solution set includes a normal surface which is a disc.

A very different approach to the unknot recognition problem was discovered by
the first author and M. Hirsch, who developed in [2] the algorithm which is the
subject of investigation in this paper. The basic idea behind the B-H algorithm
rests in the braid foliation techniques of Birman and Menasco (see [6] and [1]).
Braid foliations allow one to generate, in a systematic manner, a list of all of the
foliated embedded discs whose boundaries are closed braid representatives of the
unknot. The list is ordered by a complexity function which depends on properties
of the foliated discs. One then compares a given example K with the examples on
the list in order to decide whether K is the unknot.

In this paper we will give a computer implementation of certain parts of the
algorithm in [2], namely the problems of enumerating the foliated embeddable discs
and finding the braid words which describe their boundaries. We note that for braid
index 2 the problem is trivial. For braid index 3 the unknot recognition problem
was solved in [21], where it was proved that there are precisely 3 conjugacy classes
of closed 3-braid representatives of the unknot. For n = 4 the question is much
harder, because of the example in [24] and the others which are presented here.
See [7] for a proof that there are infinitely many distinct conjugacy classes of 4-
braid representatives of the unknot. We were able to obtain non-trivial data for
braid index n = 4. The examples which we found have braid word descriptions
with <11 band generators, however there may well be shorter braid words for the
same examples. We also give a small amount of scattered data for higher braid
index. We note that for n = 4 polynomial-time algorithms exist for the solution
to the conjugacy problem and the shortest word problem [17], which could easily
be integrated with our work, however we did not make a systematic attempt to do
that.

The data which we obtained is given in Section 7 of this paper.
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We conjecture that a practical polynomial time algorithm exists which will solve
the unknot recognition problem in the special case of knots of braid index 4. The-
orem 4.3 of the review article [1] (which gives a new proof of the main result in [6])
would surely play an important role in any such solution, as would the polynomial-
time algorithms of [17]. The chief obstacle, as we see it, is to find an efficient way
to enumerate all the foliated embeddable discs with N negative vertices and 4 + N
positive vertices. We believe that when the structure of these foliated embeddable
discs is better understood, this problem will be solved.

1.2. A review of braid foliations

In this section we briefly review the main results of [2]. A good reference for a
survey on braid foliations is [1]. After completing our review of the results which
we need from [2] and [1] we explain in a precise way what we do in this paper.

The underlying plan is the following: the unknot is the unique knot which bounds
a disc embedded in R3. All discs embedded in R3 can be isotoped in such a way
that the boundary is a closed braid relative to the z-axis. All these embeddings can
be described by a finite set of combinatorial data, and they can be listed in order of
increasing complexity. To each disc we will show how to associate the braid whose
closure is the boundary of the disc. So if we want to know whether a given knot K
is the unknot, we first represent it as a closed braid £, using our preferred algorithm
(see [23, 28, 30]). Then compare this braid with our list of braids which are the
boundary of an embedded disc, looking for a braid - which is in the same conjugacy
class as the given braid 8. To check conjugacy, use for instance the algorithm in
[3] and [4], as implemented by S.J. Lee [20]. In [2] an upper bound is given for the
complexity of the disc to look for in the list, so the process is finite. The problem
of improving that upper bound will not be considered here.

To implement our algorithms we have used [GAP 99] The GAP Group, GAP —
Groups, Algorithms, and Programming, Version 4.1; Aachen, St Andrews, 1999.

Let us fix the z-axis A of R® as braid axis, and the standard fibration by half-
planes of the complement of A by half-planes

Hy = {(pcosf,psinb,z)|p >0,z € R}

Theorem 1 (cf Theorem 2.1 of [2]). A disc D embedded in the standard fibra-
tion of R®\ A, with boundary a closed braid 8, 8 € B, can always be put in general
position so that the induced singular foliation on D has the following properties:

1. All intersections of the disc D with the axis A are transversal. These intersec-
tions consist of P positive and N negative points, where the sign is positive if
the orientation of A agrees with that of D, otherwise negative. We call these
P + N intersection points ‘vertices’. The braid index isn = P — N.

2. The disc D intersects almost all half-planes Hy transversally, in what we call
regular leaves.
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3. The foliation in a neighborhood of 0D is transverse.
4. The foliation in a small circular neighborhood of each vertex is radial.

5. There are a finite number P + N — 1 of singular half-planes Hy, to which D
is tangent in one point, which is a non-degenerate saddle. A saddle together
with its four leaves (branches) is called a singular leaf.

6. The regular leaves can be of the following two types: type a: a simple arc
with one endpoint on 8D and the other on A; type b: a simple arc with both
endpoints on A.

7. The saddles are restricted to the following types:

aa-saddles: singularities between two a-arcs;
ab-saddles: singularities between an a-arc and a b-arc;

bb-saddles: singularities between two b-arcs.

Each saddle can be either positive or negative, according as the orientation of
the disc and the tangent half-plane at the saddle point agree or disagree.

8. The vertices are cyclically ordered along A, and the saddles are cyclically
ordered around A.

The code for a foliated disc: It is not explicitly explained in [2] how to represent
an embeddable disc on a computer: we will encode the description of an embedded
disc D in terms of its vertices and saddles as follows:

The vertex string V is the list of (P, N) vertices; each positive vertex will
be denoted by an integer number k € {1,2,...P}; each negative vertex will
be denoted by a pair of integer numbers k.j, where k is the number of the
immediately preceding positive vertex in V' (k might be 0) and j is the ordinal
number of the negative vertex in the subset of negative vertices between k and
k+1;

The ordered list of saddles, in which each saddle will be denoted by:
the list of vertices involved in the saddle: two positive for an aa-saddle, two
positive and one negative for an ab-saddle, two positive and two negative for
a bb-saddle; and the sign, £1.

For a fixed braid index m we can assign to a disc D its complexity (P, N),
that is the number of positive and negative vertices, with P — N = n, and list all
embeddable discs in order of increasing complexity. This is possible thanks to the
following theorems:
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Theorem 2 (cf Theorem 2.2 of [2]). The combinatorial data for an embeddable
disc D, i.e. the cyclically ordered list of vertices, with their signs, and the cyclically
ordered list of saddles with their signs, determine the embedding in R2, uniquely up
to foliation-preserving isotopy. They also determine the embedding of the boundary
of the disc as a closed braid.

To see an example of the singular foliation on an embeddable disc, look ahead to
Figure 6: We show there a disc D in which we have drawn all vertices and saddles,
with all singular leaves. The complement of the singular leaves in the disc is the
disjoint union of open discs, some of them bounded by: an arc of 8D, a positive
vertex and some singular leaves (there are 18 like this in Figure 6); the others
(maybe zero) bounded by one positive and one negative vertex, and some singular
leaves (there are 13 like this in Figure 6). Discs of the first type can be foliated
by regular leaves which are a-arcs, with endpoints on the positive vertex and 6D.
Discs of the second type can be foliated by regular leaves which are b-arcs, with
endpoints on the positive and the negative vertex.

The definition of an extended boundary word can be found in Section 2.

Theorem 3 (cf Theorem 3.4 of [2]). From the set of combinatorial data de-
scribing an embeddable disc D we extract a unique extended boundary word, which
represents a braid whose closure is the link consisting of the boundary of D and
the N unlinked small circles bounding small disc neighborhoods of the N negative
vertices of D.

In section 5 we will give an explicit implemented algorithm to get the boundary
braid from the extended boundary braid.

For a given set of combinatorial data as described before we have to test em-

beddability. For this purpose, let us give some necessary definitions:
Definition 1 (cf [2]). A b-arc is a regular leaf b(¢,j.h) which is a simple arc
connecting a positive vertex 7 to a negative vertex j.h. A generalized or gb-arc
is either a b-arc or the part of a singular leaf of an aa-saddle connecting the two
positive vertices and passing through the saddle point.

Since the foliation around each vertex is the standard radial foliation, we can
distinguish leaves around each vertex by means of their angle 6. If there exists at
some 6 a b-arc b(i,j.h), then there exists a maximal interval (6;,0z) in which all
regular leaves around 4 and j.h are b(i, j.h). In this case we say that the b-arc exists
in (6;,6;). Say that the gb-arc gb(s, j) exists in (6x—1,68) if there is an aa-saddle
(i,4) occuring at . For instance, looking at Figure 9 see b(3,0.1) in (614, 07) (leaves
go clockwise around a negative vertex) and gb(4,8) in (6s,6s).

Theorem 4 (Theorem 3.5 of [2]). A disc D, given in terms of combinatorial

data, is embeddable if and only if it satisfies the following three conditions:

1. The saddles about each positive (respectively negative) vertex are in counter-
clockwise (respectively clockwise) order;
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2. The vertices attached to a positive (respectively negative) saddle are in coun-
terclockwise (respectively clockwise) order;

3. The endpoints of a (g)b-arc in (6x—1,60x) never separate the endpoints of a
b-arc in the same interval.

In what follows the expression ‘a disc with (P, N) vertices’ will mean a disc (or
its combinatorial description) with P positive and /N negative vertices.

The fundamental tool for listing all embeddable discs in [2] is the insertion of
an ab-tile: given an embeddable disc D with (P, N) vertices, Birman and Hirsch
describe how to get from D a new disc D' with (P, N + 1) vertices and one more
saddle of type ab.

Theorem 5 (cf Theorem 4.1 of [2]). Each embeddable disc D with (P, N) ver-
tices can be constructed by starting from an embeddable disc Do with (P, 0) vertices,
adding N ab-tiles one at a time. At each stage the new negative vertex and the
new ab-saddle are inserted into the order of the older vertices and saddles, in such
a way that the new disc is embeddable.

Theorem 6 (Theorem 4.2 of [2]). All possible embeddable discs of fixed braid
index n may be enumerated in order of increasing (P, N), with P — N = n, by the
following (not necessarily efficient) procedure:

e enumerate all possible discs with (n,0) vertices, testing each for embeddabil-
ity; discard non embeddable ones;

e enumerate all discs with (n + 7,0) vertices, testing each for embeddability;
discard non embeddable ones; then add j ab-tiles in all possible ways, testing
each obtained disc for embeddability; discard non embeddable ones; get all
embeddable discs with (n + j, j) vertices.

We will call discs with zero negative vertices positive discs. Since we are
interested in conjugacy classes of braids, we have to notice that this list has dupli-
cates, because non isotopic embeddable discs may have the same boundary braid,
or different boundary braids in the same conjugacy class.

In what follows we will show:

e how our set of combinatorial data describes an (embeddable) disc;

e how to translate many properties of the combinatorial foliation in braid words
in the band generators;

e how to enumerate all positive embeddable discs;
e how to reduce a lot of the redundancy in the resulting list;
e how to insert ab-tiles and test embeddability with a computer program;

e how to find the boundary word of an embeddable disc;
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e how to fill the list via a different way: no more by insertion of ab-tiles and
embeddability test, but via enumeration of sequences of half-planes completely
describing embeddable discs.

The main reason for wanting to see the data produced by an algorithm is if it
suggests new structure which will then lead to a better algorithm. For this reason
we will intersperse “questions” throughout the manuscript, as they occur to us in
the context of our work. Some of them have immediate answers, but most relate to
open problems.

2. The disc, its code and the associated braid word

We will use the band presentation of the braid group which is given in [3]. The
generators are the (721) braids {(4,7),n > i > j > 1}, such that the ‘" strand crosses
over the j* strand, with all the other strands left unchanged under these two. The
relations are of two types:

(,5)(k, 1) = (k,1)(i,5), when (i = k)@ = 1)(j — k)G —1) >0,
(the condition means that the two pairs of indices are non interlocking), and

(1,5)(4, k) = (i, k) (i, 5) = (4, k) (i, k), whenn >i>j >k > 1.

We will denote the inverse of a generator (4, 7) by (¢,7).

Suppose we are given a list of combinatorial data for an embeddable disc. In
this section we explain how to draw the singular foliation of the disc, and how to
associate to D its extended boundary word. Let us consider the following example:

D= {[[4'17677]’ 1]> [[9’ 10]7 1]7 [[8'27 10, 11], 1]’ [[478'17 11]7 1]a [[4»8]7 1]’

[[0.1,3,7],-1],[[0.1,7,8],-1],[[0.2,2,4.1, 6], —1],[[0.2, 6, 7], —1], [[5, 6], 1],
[[1,5],1],[[0.2,2,4.1,7],1],[[0.1, 3,8],1], [[4,8.1,11], —1],[[8.2, 10, 11], —1]}.
Definition 2 (cf [2]). For an embeddable disc D with (P,N) vertices, its ex-
tended boundary word is the braid word in the band generators of Bp with

each letter given by the pair of positive vertices and the sign of the corresponding
saddle of D.

In our example,

EW (D) = (7,6)(10,9)(11,10)(11,4)(8,4)(7,3)(8,7)(6,2)-

7,69(6,5)(5,1)(7,2)(8,3)(11, 4)(11, 10).

Proposition 1. If a word W of a braid in Bp is the extended boundary word of
an embeddable disc with (P, N) vertices, then it has the following properties:
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Fig. 1. The first saddle.

O—H—GE——©

Fig. 2. The first two saddles.

1. The length of W (in band generators) is P + N — 1;

2. The induced permutation p(W) € Sp is a product of one (P — N)-cycle and
N 1-cycles.

Proof. To each saddle of the disc corresponds one letter of W, in the same order, to
each positive vertex corresponds one index, and to each negative vertex corresponds
one single unknotted strand of the closed braid, unlinked from the rest. The first
condition comes from the Euler characteristic of the foliated disc. O

In our example EW € Bji, so that P = 11; its length is 15, therefore N =5
and P — N = 6; the associated permutation is

/)(EW) = (17 9,6,8,10, 9)(2)(3) (4)(7)(11)

Now we can explain how to draw leaves of the foliation on the disc. Consider the
first index of the (P — N)-cycle, say ji: look for the first letter of EW (D) in which
that index occurs: say (j1,72)** (or (j2,51)*!). Draw the two positive vertices and
the singular leaves joining them, and label the vertices with their numbers and the
saddle with its sign and number (see Figure 1). Then look for the (cyclically) next
letter containing jo: if it is a different one, then draw it attached to the previous
one (see Figure 2), if it is the same letter, then procede to the next letter containing
j1- We have to run twice through each aa-saddle.

To respect embeddability, when a positive vertex has two or more saddles at-
tached, and we have to draw another one attached to it, we must put it in the right
(counterclockwise) cyclic order about the vertex (see Figure 3).

Procede as indicated above until you get back to j; and the (P — N)-cycle
is completed. These singular leaves divide the disk into an outer part, which is
connected to the boundary, and some inner parts, in which the negative vertices lie
along with possibly those positive vertices which at this stage have not yet been
drawn (see Figure 4). They are vertices occurring in the 1-cycles of the permutation.
For each of them, draw its cycle of saddles in a similar way (see Figure 5), then
attach it inside the appropriate inner region.

It remains to add the negative vertices. Look at the code of the disc, and put
each negative vertex in its place, joining it to the (already existing) saddles by the
other singular leaves (see Figure 6).
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Fig. 3. Respect order about each vertex.

J

2D

Fig. 4. The disc with all its ‘external’ saddles.

Fig. 5. The cycle of saddles about another positive vertex.



610 J. S. Birman et al.

Q65(10)
043(5)
Ri18144)
R1082.113)
09 102)

Os,(11)

O)

2D

Q

|.—
Yoo

®

[

w

- —~ ~ o~ ~ o)
— s = & e N < k8 S
— — ~ ~ — = — — ~
, ~ [ e} ~— <t ~ ~ o
v o — — 0 % —_ =4 =
— < S = Ql = = =
Q1 Q & o S ® o5, Q

=+ —

R | R [«% 1R —_

1R

Fig. 6. The foliated disc and the code for its boundary.

Remark: Notice that this process of drawing a disc can be performed almost
entirely from the extended boundary word. Only at the end do we need to know
the exact position of the negative vertices in the vertex string. But their number
N and their topological position inside the inner regions of the foliation are already
specified by EW. In some cases it is also possible to decide their position in the
vertex string simply by reading their relative order about the saddles to which they
are attached.

Question 1. It’s natural to ask whether every word which satisfies the conditions
of Proposition 1 actually can be realized by an embeddable foliated disc? The
answer is ‘no’. For example W = (3,2)(4,1)(3,1)(4, 3) satisfies the conditions of
Proposition 1 but the corresponding disc is not embeddable. To see this consult
Figure 7. For saddle 2 we must have 4 < v < 1, but for saddle 3 we require
1 < v < 3, which is impossible.

If EW = (6,5)(5,4)(4,2)(3,1)(5,3)(4,2), we can draw all the disc and see that
the negative vertex must be either 0.1 or 5.1. But neither of them is embeddable:
they both pass the first part of embeddability test, but not the b-arc test: in the
first case, in (4,5) we have gb(3, 5) interlocking with b(4,0.1); in the second case we
have for instance in (3,4) gb(3,5) interlocking with b(4,5.1).

Question 2. Are there other necessary conditions on the extended boundary word
EW? For example, we know that each pair of positive vertices may be involved in
at most two ab-saddles one opposite to the other, or just in one saddle. Therefore
each letter must appear at most once, also its inverse may appear, but if so exactly
once. A more efficient algorithm would clearly be possible if we knew a better set of
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Fig. 7. A non embeddable disc.

conditions that would allow us to rule out certain discs on the basis of the associated
boundary words.

3. Positive discs, good words and how to reduce redundancy

In a disc without negative vertices, condition (3) of Theorem 4 is vacuous, be-
cause there are no negative vertices, and so there are no b-arcs. This means that
the embeddability test is considerably simpler for positive words than for arbitrary
words, because the difficult part is the test for b-arcs.

Proposition 2. The word W associated to a positive disc with (n,0) vertices has
the following properties:

1. Its length in the band generators is n — 1;
2. The induced permutation p(W) is an n-cycle.

Moreover any word with these properties corresponds to the boundary word of an
embeddable positive disc. Also, this word encodes all information about the disc.
Proof. The first part is a corollary of Proposition 1. The second part is known,
because the braids in question are in fact the ‘Stallings braids’, which form a proper
subset of the braids whose closure is the unknot (see eg [22]). For the last sentence,
as we have seen in the preceding section, the extended word alone carries all in-
formation except the order of negative vertices in the vertex string. But a positive
disc has no negative vertices. O
Definition 3. We call any word satisfying the two conditions of the preceding
Proposition a good word.

As we anticipated in the remark at the end of the previous section, a good
word completely determines the embedding of its disc. Indeed, a description of this
embedding is computed by our GAP procedure GenerateDiscBoundary(n, W).

To follow the program of Theorem 6 we first need to list all the positive discs,
that correspond to all the positive good words. But since we are interested in
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conjugacy classes of braids, we can reduce a lot of redundancy at this stage by some
easy conjugations. The following definition concerns all embeddable discs (not only
the positive ones).
Definition 4. We say that two embeddable foliated discs are equivalent if they
only differ by a cyclic permutation of the names of the vertices or saddles.

It is clear that two equivalent discs are isotopic. That is, not only are their
boundary words equivalent as cyclic words, but in fact the entire singular foliation
is the same, up to a cyclic permutation of the ‘names’ of the vertices and saddles.

Proposition 3. The (extended) boundary words W, W' of two equivalent discs
D, D' only differ by some of the following easy conjugations:

1. conjugations by powers of §, where § = (n,n — 1)(n — 1,n —2)...(3,2)(2,1),
and 67 %(i,5)d = (i+ 1,5 + 1) (mod (n,n)) for all band generators (4, j) (see

[3]);
2. conjugations by initial or final subwords;

Proof. Conjugations of the first kind correspond to cycling the names of vertices
along the braid axis; conjugations of the second kind correspond to cycling the
names of saddles about the braid axis. O

We call them ‘easy conjugations’ because it is very easy and inexpensive to
perform them on a computer (see the Appendix).

So for a given n we will list all good words up to easy conjugations and inversions:
see Proposition 7. Our GAP function EnumeratePositiveGoodWords(P) enumer-
ates one representative for each orbit of the action of the group G = Sp X Sp_1
on the set of positive words of Bp with length P — 1, where Sp acts on the P
indices and Sp_; acts on the letters of the word, discarding those which have not
the required permutation property.

Once we have all positive good words up to easy conjugations, we can list all posi-
tive good words up to inversion by choosing 1,2, ... | £52] letters of each word to be-
come negative. This is done by another easy procedure, EnumerateGoodWords(P).
Remember that words with different exponent sum are surely non conjugate.

For instance, the result of EnumerateGoodWords(4) is a list of 32 good words
of exponent sum 3 or 1. We will get 32 other good words of exponent sum —3 and
—1 by inversion. Notice that among these 64 good words, some represent the same
braid, because it is possible to apply some relations: for instance (2, 1)@(4, 3) =
(2,1)(4,1)(3,1), and both words appear in the list; but notice that (2,1)(3,1)(4,3) #
(2,1)(4,1)(3,1), also both appearing in the list. So we cannot reduce the list also
by relations, both because relations are different on words with different signs, and
they are not easy to be performed by the computer.

S. J. Lee has reduced the 32 good words up to conjugation: there are 3 conjugacy
classes with exponent sum 3, with representatives (2,1)(3,1)(4,1), (2,1)(3,1)(4,2)
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Fig. 8. An ab-tile.
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Fig. 9. The foliated disc obtained by insertion of an ab-tile from the disc of Figure 6.

and (2,1)(4,2)(3,1). There are four conjugacy classes with exponent sum 1, with

representatives (2,1)(3,1)(4,1), (2,1)(4,1)(3,1), (2,1)(3,1)(4,2) and (2,1)(4,2)(3,1).
Question 3. Are easy conjugations and defining relations in the braid group the
only possible moves between conjugate positive EW’s of the same length? A better
understanding of this issue would lead to a more efficient method of listing the
positive words which we need to test. As will be seen, any redundancies which can
be eliminated at this stage of the algorithm will lead to major savings at subsequent
stages, enabling us to collect better data.

4. How to insert new ab-tiles in a given disc

The process of inserting an ab-tile in a given foliated disc D is explained well in
[2]. The idea is to take another small disc T' (see Figure 8), with a negative vertex
v and a saddle s inside it, and a distinguished arc «' on its boundary 0T, such that
the four branches of s end one in v, two in &’ and the fourth in 87\ &'. Then choose
an insertion arc « along the boundary 8D and attach T along a by identifying o
with o (see Figure 9), and continue branches of saddles of D ending in « inside T
till they arrive at v, and continue the two branches of s ending in ' inside D till
they arrive at two specified positive vertices of D. Get a new foliated disc D’ in
such a way that this is still embeddable.
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We know the conditions for embeddability from Theorem 4, so we can impose
conditions on the choice of the insertion arc «, on the position of v in the new vertex
string of D', and the position of s in the new saddle list of D', so that at least the
first two conditions of embeddability are satisfied.

We remark that there is another reduction of redundancy studied in [2], which is
the requirement that all b-arcs be essential: We say that a foliated disc is essential if
a negative vertex is never attached by a saddle to a positive vertex which is adjacent
to it in the vertex string. If it was inessential, we could reduce the foliation of the
disc by eliminating that negative vertex and the saddle attaching it to an adjacent
positive vertex, without altering the embeddability of the disc and the boundary
braid. So from now on we will discard all inessential discs. Since the test for
essentiality is very easy, this is a very inexpensive way to reduce redundancy in our
list. After we have tested the first two embeddability conditions and eliminated
inessential b-arcs we will run the third text for embeddability in Theorem 4.

In order to keep track of the information necessary for a possibly essential em-
beddable insertion, we have invented another combinatorial description of the
disc D, also suitable for our implementation. We will code our disc D by two sets:
the cyclically ordered set of boundary points of saddles, read counterclockwise along
0D, and the set of bb-saddles. The reader might like to compare what follows with
Figure 6. Each aa-saddle has two points on the boundary 0D, that we will call
points of type Q; each ab-saddle has one point on 9D that we will call points of
type R; and each bb-saddle lies entirely in the interior of D, with no point on dD.

With each boundary point we will associate: the sign of the attached saddle
(overline points corresponding to negative saddles); the ordered list of two or three
vertices to which the saddle is attached, and the ordinal number of the saddle.

The double index of Q;; (or @; ;) is such that the cyclic counterclockwise order
about the saddle of the boundary point and the two vertices is 7, @, j.

The triple index of R;, ; (or R;, ;) is such that the cyclic clockwise order of
this point and the three vertices around the saddle is R,%,v,j (in particular, the
central index is the negative vertex).

We call initial and final vertex of a boundary point respectively the first
and the last positive vertex, as they occur as indices of the point. In the sequence
read along the boundary, two consecutive points always have the final vertex of the
preceding point equal to the initial vertex of the following point.

Each bb-tile can be coded by: the sign of the saddle, the ordered sequence of the
four vertices around it, and its ordinal number.

These combinatorial data are clearly in bijective corréspondence with the set of
data given in Section 2, so they are sufficient to draw the foliated disc and to read
the extended boundary word (cf [2]).

For instance, the disc of Section 2 is described by (cf Figure 6)

0D = {Q1 5(11), Q5 6(10), R 4.1,7(1), R7,0.1,3(6), R3,0.1,8(13), Qs,4(5),
Ryg1,11(14), Ri1,8.2,10(15), Q10,9(2), Q9,10(2), R10,8.2,11(3), R11,8.1,4(4),
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2D

Fig. 10. How to find the possible level of the new saddle.

Qa8(5), Rs,01,7(7), R7,0.2,6(9), Q6,5(10), Q5,1 (11)};
bb-saddles = {[6,0.2,2,4.1](8), [7,0.2, 2, 4.1](12)}.

We code an insertion arc a by listing all the consecutive points of type Q and
R contained in a. The position of the new inserted negative vertex v can be found
as follows:

e for each point @Q;; or R;,; in o if j —¢ < 2(mod n), then the insertion is
inessential; otherwise we get 1 + 1 <v < j —1;

e for each point @” or Riy,j in a: if 1 — j < 2(mod n), then the insertion is
inessential; otherwise we get j +1 < v <17 — 1.

These conditions correspond to the cyclic order of vertices around saddles. This
means also that if a contains more than one point, we have to intersect conditions
coming from different points: if the intersection is empty, the insertion is not em-
beddable. We can list all possible intervals of insertion in order of increasing length
(that is the number of singular boundary points), giving for each of them the pos-
sible essential position of the new negative vertex. If some of the two preceding
conditions eliminate some arc a of length k, then all arcs with length greater than
k and containing « are inessential or not embeddable for the same reason. The
complete list is done by our GAP procedure GetlnsertionArcs(n,dD).

In our example (see Figure 6), an insertion arc is for instance o = {R7.01,3,
R30.1,8}, with 4 < v < 6 from the first point and 4 < v < 7 from the second, hence
it must be 4 < v < 6.

An insertion arc  has an initial and a final vertex (i(a), f(a)), respectively
the initial vertex of its first point, and the final vertex of its last point. In our
example they are (7,8).

To know at which level z the new saddle can be located, we need to look at
levels of points of a and to consider the cyclic order of all saddles around the new
vertex, and around the two positive vertices i(a), f(a) (see Figure 10).
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Suppose a = {Py(l1), P2(l2),... Pn(In)}, where each P; can be either of Q or
of R type, either positive or negative, and each [; indicates its level. Then we must
have I} < Iy < -+ < Iy < z (in cyclic order). Now we have to look for the point
on 8D immediately preceding P; and containing the index i(a): suppose y; is its
level: then we must have y; < z < ;. Also we have to look for the point on 8D
immediately following Py and containing the index f(a): suppose yn is its level:
then we must have [y < z < yn.

In our example: 6 < 13 < z, that means 13 < z < 6, is the first requirement;
Iy =1 and Iy = 5, therefore 1 < z < 6 and 13 < z < 5. Intersecting these cyclic
intervals we get 1 <z < 5.

The sign of the new saddle only depends on the relative position of i(a), v, f(a):

o if f(a) <wv < i(a) then s is positive;
o if {(a) < v < f(a) then s is negative;

therefore the possible range of v obtained before can be divided in two parts, giving
different signs for s. Our GAP procedure GetSaddles(n,P + N — 1,0D) gives all
these results.

In our example, f(a) =8 <4 < v < 6 < 7 =i(a) hence s is positive.

At this stage, before proceeding with the expensive b-arcs test, we can perform
an easy permutation test: when we do an insertion, it is easy to see how the cor-
responding extended word changes: a new saddle [£1, [i(a), v, f(a))], z] is inserted,
this corresponds to inserting a new letter (i(a), f(a))*" (or (f(a),i(a))*!) at the
same level of EW: we get a longer word, which still must satisfy conditions given
in Proposition 1 for an extended word. So we can try all possible combinations
of [£1,[i(a),v, f(a))],z] and check the corresponding permutation, to discard the
impossible ones.

For instance our possible insertions for the chosen arc « are [+1,[7, v, 8], z], with
z ranging between 1 and 5. So the new word might be one of the following:

EW(D,) = (7,6)(8,7)(10,9)(11,10)(11,4)(8,4)(7,3)(8,7)(6,2)

07,6)(6,5)(5,1)(7,2)(8,3)(11, 4)(11, 10);
EW (Ds) = (7,6)(10,9)(8,7)(11,10)(11, 4)(8,4)(7, 3)(8, 7) (6, 2)-

{(7,6)(6,5)(5,1)(7,2)(8,3)(11,4)(11,10);

EW (Ds) = (7,6)(10,9)(11,10)(8,7)(11,4)(8,4)(7, 3)(8,7)(6, 2)-
,6)(6,5)(5,1)(7,2)(8,3)(11,4)(11, 10);

EW(Dy) = ( ,6)(10,9)(11,10)(11,4)(8,7)(8,4)(_'7,~3W2_5-
(7,6)(6,5)(5,1)(7,2)(8,3)(11,4)(11, 10).
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For them we find the following permutations:
p(EW (Dy)) = (1,5,6,10,9)(2)(3)(4)(7)(8)(11)

(the same for all, since (8,7) commutes with second, third and fourth letters), which
satisfies all conditions required by Proposition 1.

Now we have to perform the test for b-arcs. For this we need both D and
the set of bb-saddles. Also, we first need to see how the code changes after an
insertion.

e if i < v < i+ 1 and in the same interval there are other existing negative
vertices, we have to decide (by the embeddability test) the exact order of
them in this interval, and rename old vertices in it if necessary;

e if y - 1<z <y, put z =y and for any saddle which was at level z > y put
it at level z + 1;

e substitute a by Rj("g;”(jﬂc(a);

e for each point Qf ; in a, its other corresponding Q5 ; becomes R, ;;
e cach point R, ; in o becomes a bb-saddle [e, [i, u, J, v]].

If for instance we make the insertion of [+1,[7,4.1,8],4] on the chosen «, the de-
scription of the new disc is (see Figure 9):

0D = {Q15(12),Q5,6(11), Re,4.2,7(1), R7.4.1,5(4), @s,4(6),

Rys1,11(15), Ri1,8.2,10(16), Q10,9(2), @9,10(2), R10,5.2,11(3), R11,8.1,4(5),
Q4,5(6), Rs,0.1,7(8), Rr,0.2,6(10), Q6,5(11), Q5,1 (12) };
bb-saddles = {[0.1,3,4.1,7](7), [6, 0.2, 2, 4.2)(9),
[7,0.2,2,4.1](13), 0.1, 3,4.1, 8](14)}.

How to read the b-arcs: if a negative vertex v (yet existing or newly inserted) is
attached to only two saddles (for the new vertex, this corresponds to an insertion
arc of length 1), they (see Figure 11) will surely be one positive (say at level y)
and one negative saddle (say at level y_), and they will be connected to the same
two positive vertices, say ¢ and j. If i < v < j, then in the interval (y4,y—) we have
the b-arc b(j,v) and in the interval (y_,y4) we have the b-arc b(i,v).

If a negative vertex v (yet existing or newly inserted) is attached to more than
two saddles (for the new vertex, this corresponds to an insertion arc of length
greater than or equal to 2), we have to list these saddles in cyclic order about v (in
our example, they are [7,4.1,8](4), [7,0.1,3,4.1](7), [3,0.1, 8,4.1](14)); between any
two consecutive of them, find the b-arc between v and the only other positive vertex
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Fig. 11. How to find the b-arcs about a negative vertex.

which is in common for the two saddles (in our example: in (4,7) have b(7,4.1); in
(7,14) have b(3,4.1); in (14,4) have b5(8,4.1)).

As explained in [2], we have to compose an array with: in the first column the
P + N — 1 intervals (k,k + 1) between two consecutive saddles; in the following N
columns, the b-arcs for each negative vertex in the corresponding intervals; in the
last column, the gb-arcs (they are as many as the aa-saddles). For instance, for our
new disc of Figure 9 we see the array of Figure 12.

Remark: When an aa-saddle occurs, no b-arc is changed; when an ab-saddle occurs,
only changes the b-arc connected to the negative vertex involved in the ab-saddle;
when a bb-saddle occurs, only change the two b-arcs connected to the negative
vertices involved in the bb-saddle.

It is necessary that along each row of the array the arcs which appear do
not interlock with each other. All these checks are performed by our GAP pro-
cedure Embeddable(n, P + N — 1,0D, bb-saddles). Finally, our GAP procedure
InsertVertices(n, P + N — 1,0D, bb-saddles, depth) recursively tries all possible in-
sertions of ab-tiles and returns all the resulting new embeddable essential tiled disc.

5. How to get the boundary word. Changes in foliation.

To get the boundary word BW we have to eliminate from EW the N strands
corresponding to the N unlinked circles about each negative vertex. In this way,
from each letter of EW we will get a new letter or subword of the boundary braid
BW, which is a braid of Bp_n.

To do so, let us introduce some useful braids (called descending cycles in [3]):
Definition 5. When p > ¢, call §, 4 the braid (p,p—1)(p —1,p—2)---(¢+ 1,q).
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(1,2)  b(3,0.1) 5(2,0.2) b(8,4.1) b(6,4.2) b(4,8.1) b(11,8.2) gb(9,10)
(2,3)  b(3,0.1) 5(2,0.2) b(8,4.1) b(6,4.2) b(4,8.1) b(11,8.2)
(3,4)  b(3,0.1) b(2,0.2) b(8,4.1) b(6,4.2) b(4,8.1) b(10,8.2)
(4,5)  b(3,0.1) b5(2,0.2) b(7,4.1) b(6,4.2) b(4,8.1) b(10,8.2)
(5,6)  b(3,0.1) b(2,0.2) b(7,4.1) b(6,4.2) b(11,8.1) b(10,8.2) gb(4,8)
(6,7)  5(3,0.1) b(2,0.2) b(7,4.1) b(6,4.2) b(11,8.1) b(10,8.2)
(7,8)  b(7,0.1) b(2,0.2) b(3,4.1) b(6,4.2) b(11,8.1) b(10,8.2)
(8,9) 5(8,0.1) b(2,0.2) b(3,4.1) b(6,4.2) b(11,8.1) b(10,8.2)

b(

b(

b(

b(

b(

(9,10)  b(8,0.1) b(6,0.2) b(3,4.1) b(2,4.2) b(11,8.1) b(10,8.2)

(10,11) 5(8,0.1) b(7,0.2) b(3,4.1) b(2,4.2) b(11,8.1) b(10,8.2) gb(5,6)

(11,12) 5(8,0.1) b(7,0.2) b(3,4.1) b(2,4.2) b(11,8.1) b(10,8.2) gb(1,5)
b(
b(
b(
b(
b(

(12,13) b(8,0.1) b(7,0.2) b(3,4.1) b(2,4.2) b(11,8.1) b(10,8.2)
(13,14) b(8,0.1) b(2,0.2) b(3,4.1) b(7,4.2) b(11,8.1) b(10,8.2)
(14,15) b(3,0.1) 5(2,0.2) b(8,4.1) b(7,4.2) b(11,8.1) 5(10,8.2)
(15,16) b(3,0.1) b(2,0.2) b(8,4.1) b(7,4.2) b(4,8.1) b(10,8.2)
(16,1) b(3,0.1) b(2,0.2) b(8,4.1) b(7,4.2) b(4,8.1) b(11,8.2)

Fig. 12. Table of b- and gb-arcs.

Notice that dp,—1 = (p,p — 1) = op—1. The associated permutation is p(dp,4) =
(q7q+17"'7p)'

The strands to be eliminated are numbered, at the beginning of EW | by the N
1-cycles of p(EW). At each letter of EW their numbers might change, as can be
seen for instance in Figure 13. The rule is: suppose Ly = {i1,142,...in } is the list
of levels of strands to be eliminated just before the kt* letter of EW, and this letter
is (h,7)¢ (see Figure 14):

1. if both h,j are not in Ly, and ', j' are the numbers of elements of Lj which
are less than h, j respectively; then get (h — h', 7 — j')%; Lg41 = Ly;

2.if j € Ly and h is not in Ly: if h > j + 1, then get dp—ps j—j; if A =7+ 1,
then get the empty word e; L1 = (Lg \ {7}) U {h};

3. if h€ Ly and j is not in Ly: if A > j + 1, then get 651, ., 5 if h=7 +1,
then get e; Lgt1 = (Le \ {R}) U {j};

4. if both h,j € Ly, then get e; Liy1 = L.
In our example we get
BW = e(6,5)eds 2(5,2)d4,2eee(5,4) (4, 1)6(55_’%56_’%6 =
= (6,5)06,2(5,2)04,2(5,4)(4,1)05 305 3.

Our GAP procedure BoundaryBraid(EW, P, N) computes the boundary braid
of a disc with extended word EW and (P, N) vertices.
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(7,6) (10,9 (1L10) (11,4) 64 (13 B 62 76 65 G (12 63 (11,4 (11,10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 13. The braid EW. The dashed strands must be removed to find the boundary braid.

h-h’
4\ S
J=r
Bnonjy
h=1-h’
N
N\
"
-1
S 1o jojr

Fig. 14. The braids ¢’s obtained from a generator by removing one strand.
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Ouih+1)  Qixlh)

AN 7/
N 7/
N 7/
v
, '~ NO!
Ve N
7/ N
N

Ori(h)  Quu(h+1)

Fig. 15. Two impossible aa-saddles.

2D

In what follows we explain how the defining relations and inversion in the braid
group, performed on the extended word, affect the topology of the foliated disc and
the corresponding boundary word.

Question 4. How do these changes in foliation affect the possibility of inserting
ab-tiles?
To describe what happens let us first notice some properties of the d; ;’s.

Proposition 4. 1. §; j6pk = Opx0s; if ¢ > 5> h > k;
2. 5i,j6h,k = 5h—1,k—15i,j ifi>h>k> 7

3. (i,j)éh,k = (Sh,k(i-l- Lij+1Difh>i>j >k
In what follows, when we say ‘letter’ we mean letters in band generators or §’s.

The easiest ‘relation’ we want to describe is free reduction (4, k)(z, k).

Proposition 5. Let EW be the extended word of an embeddable disc D with
(P,N) vertices. If EW is reducible (i.e. it has two consecutive letters, one of
which is the inverse of the other), then the reduced word EW' is the extended word
of another embeddable disc D' with (P — 1, N — 1) vertices. Moreover, the two
boundary braids BW, BW' define the same braid.

Proof. Suppose that wywn1 = (i, k)(é, k). Then, along D we see either the two
pairs of consecutive points Qs x(h)Qy ;(h+ 1) and Qx,:(h)Q; ,(h + 1), or one of the
pairs Ri,v,k(h)ﬁk,vyi(h + 1) or Ry,i(R)Riyk(h + 1). The first case is impossible
(see Figure 15), since the two saddles would cross each other. In the second case,
the positive vertex k (resp. ) is isolated from any other aa- or ab-saddle (see
Figure 16); there cannot be other saddles involving k, because the two points on the
boundary are consecutive, and no other bb-saddle can occur among the two vertices,
to respect embeddability (see Figure 17). So we can reduce EW by deleting the
two inverse letters, to get a braid word in Bp_; representing a disc D' (see Figure
16) which differs from D by not having the two corresponding saddles, the vertices
k (resp. i) and v. The eliminated positive vertex, because of its position in D, is
one of those in the one-cycles of the permutation. The new word EW' has length
(P—1)+ (N —1)—1 and one less one-cycle, so it still has a good permutation. We
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R, i (h)
[
i Ry, (h+1) -

Fig. 16. Elimination of two adjacent inverse saddles.

NO!

Fig. 17. An impossible bb-saddle.

have eliminated two ab-saddles from D, so we have eliminated some b-arcs, therefore
since D was embeddable, so is D’.

The two boundary braids live in the same braid group, since P— N =P —1 —
(N —1). Moreover the two consecutive inverse letters of EW go into two consecutive
inverse letters of BW (maybe €), so BW = BW' as braid elements. O

Remark: The inverse operation, ie the insertion in an extended word of a pair of
inverse letter, is not always admissible: first of all, one of the two indices of the
inserted letters must be new, or we have to add one to all indices after this. Even
so, the insertion might produce an inessential or non embeddable disc: for instance
given EW = (6,5)(5,4)(4,2)(3,1)(5, 3), if we insert the pair (7,2)(7,2) between the
second and the third letter, we get an inessential disc. If we insert in the same
position the pair (7,3)(7,3), we get an impossible disc.

Proposition 6. Let EW be the extended word of an embeddable disc D. If in
EW two consecutive letters commute, then the related word EW' is the extended
word of another embeddable disc D’ such that the two boundary braids BW, BW'
are the same braid.

Proof. Suppose that wpwmy1 = (i,7)¢(h, k)7, with e,7 € {£1}. Then the two
corresponding saddles cannot have any common vertex. For, if there is a common
vertex it is negative. But then it is impossible to foliate regularly the region about




Towards an Implementation of the B-H Algorithm 623

m+1

3

1
1
[
19
L

Fig. 18. Two impossible ab-saddles.

this negative vertex which is bounded by the two saddles, see Figure 18.
Therefore, exchanging the order of the two saddles does not affect the cyclic order
of saddles about vertices, nor of vertices about saddles. In the interval (m—1,m+2)
only these two saddles occur, so only their b- or gb-arcs change their occurrence:
but since they do not share any common vertex, and all the other arcs remain
unchanged, this commutation does not affect the b-arc test, so D’ is still embeddable.
Clearly the only change in BW is the commutation of the two corresponding
letters. This commutation leads to a different braid word representing the same
braid. O

Proposition 7. Let EW be the extended word of an essential embeddable disc D.
Then EW ! is the extended boundary word of an essential embeddable disc D,
which can be drawn as follows: look at D from its negative side, let all names of
the (P, N) vertices unchanged, change sign to all saddles, and change numbers of
saddles by the reversing permutation (1,P+ N —1)(2,P+ N —2)...

Proof. For this proof, we use results of section 6. D is essential and embeddable if
and only if it has an essential and embeddable Hy-sequence. Consider the sequence
read from it in the reverse order: so each ab- or bb-saddle changes its sign; assign
opposite sign also to each aa-saddle. The resulting sequence is clearly essential
and embeddable as the previous one, and it corresponds to the inverse extended
boundary word: it has inverse induced permutation, hence a good one again. If we
draw the disc starting from EW ~! we get saddles in the reverse order. O

An example is shown in Figure 26.

Proposition 8. Let EW be the extended word of an embeddable disc D. If in
EW we can perform a relation between two consecutive letters sharing an index,
then the related word EW’' is the extended word of another embeddable disc D’
such that the two boundary braids BW, BW' are the same braid.

Proof. The configurations on D, D’ of the possible relations are given in Figure 19.
If all three saddles are of aa-type, so that none of the points A, B, C is a negative
vertex, then the embeddability is unchanged: in fact, in the interval (m —1,m +2)
only these two aa-saddles occur, and the two corresponding gb-arcs change in such
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Fig. 19. Change in foliation: the possible signs of saddles are: I(+,+) < II{+,+) <> III(+,4);
[(+,_) A II(_)+); II(+)_) And III(_""); III("’a_) Ans I(*a+); IV(_,“) «r V("!_) «r
VI(—,=); IV(+,—) ¢ V(= +); V(+,-) VI(—,+); VI(+,—) ¢ IV(—=,+).
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Fig. 20. Relations that do not change the possibility of drawing b-arcs.

a way that the possibility of drawing b-arcs in their complement does not change
(see Figure 20).

If some of the points A, B, C are negative vertices, we also have to take account
of the change of b-arcs. In this case too, by examining all possible cases, we see that
the possibility of drawing the other b-arcs is not affected by the relation.

The change in the boundary word is a corresponding relation, possibly between
§’s or between some ¢ and some band generator, but always giving a related bound-
ary word representing the same braid element. O

Remark: Relations do not affect embeddability, but they might affect essentiality.
Moreover, it is true that they change the topology of the embeddable disc, so that,
for instance, they can affect the possibility of inserting an ab-tile. In fact, they
always change the possible insertion arcs. This leads to the following:

Question 5. We phrase this question as a conjecture: The list of good words to
be used to find new words by insertions of ab-tiles cannot be reduced by performing
relations of the braid group.

Here is an example:

Wi = (65)(54)(42)(31)(53); W2 = (65)(52)(54)(31)(53);

these two words represent the same braid, since they only differ by a relation. They
are both good words, therefore they represent embeddable positive discs. But when
we examine them, we find that in D; we can perform two embeddable essential
insertions:

1. along @, 4(3) with 6 < v < 1 and positive saddle at level 4 < z < 5;
2. along Q53(5) with 6 < v < 1 and negative saddle at level 2 <z < 3.

The extended and boundary words of the discs we get from these insertions are
respectively:
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1. E; = (65)(54)(42)(31)(42)(53) and By = (54)(43)(32)(31)(32)(42);

2. By = (65)(54)(53)(42)(31)(53) and By = (54)(43)(43)(42)(31)(43).
Notice that these two 5-braids are not conjugate, since they have different exponent
sum.

But if we look at W5, we find that only one essential embeddable insertion is
possible, namely {@25(2),Q54(3)},-with 6 < v < 1 and positive saddle at level
4 < x < 5, from which we get the extended and the boundary word

Es = (65)(52)(54)(31)(42)(53), Bs = (54)(43)(32)(31)(32)(42),

which is the same we got from the first insertion on Wj. In fact this insertion does
correpond to the other one, since the change in foliation given by the relation has
substituted the arc containing Q,, with the arc containing now Qq5, Qs4.

Remark: We might find the other 5-braid from a different good word, related to
Wi in some other way. Or if we list our discs using the method of Hg-sequences
(see section 6) instead of insertions of ab-tiles, we have not to be worried by these
changes in foliation.

Change in the code after a relation (for good words):

Suppose W is a good word and we perform a relation between two consecutive
letters wpwpy1- Then the code for W changes as follows:

Commutation of non interlocking pairs:

(i5)° (k)" < (k1)"(i)°

(here e,n € {£1}).
Change in the code: exchange levels h <— h + 1 of the four ¢ points.
Relation between two positive letters with three ordered indices n > i > j >
k>1:
(i§)(Gk) <= (Jk)(ik) «— (ik)(ij) «—

Change in the code: three arcs of the boundary change as follows:
Qij(M)Qjk(h + 1) ¢ Qix(h + 1) «— Quk(h) ¢—;
Qji(h) +— Qjr(R)Qri(h + 1) «— Qji(h + 1) «—;
Qrj(h+1) «— Qij(h) «— Qri(R)Qij(h + 1) +— .

Relation between two negative letters with three ordered indices n >4 > 7 >
k>1:

(&) (i5) +— (ik)(jk) «— (i5)(ik) «—
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Change in the code: three arcs of the boundary change as follows:
Qjr(h) «— Qip(h+1) «— Q;(h)Qu (h + 1) +—;

—ij(h)@ji(h +1) ¢ Qpi(h) = Qpi(h + 1) «—;
Qji(h+1) +— Qup(h+1) +— Q@ (M) Qe (h + 1) +— .

Relation between one positive and one negative letter with three cyclically or-
dered indices i > 7 > k:

(1) (ik) «— (i) (5F)
Change in the code: three arcs of the boundary change as follows:
Qik(h)Qpi(h + 1) +— @i(h);
Qrj(h) <= Qrj(h +1);
Qup(h+1) ¢ @ji(h)Qik(h’ +1).
The other relation between one positive and one negative letter with three cycli-

cally ordered indices i > 7 > k:

(7k)(ig) < (7)(ik)
Change in the code: three arcs of the boundary change as follows:
Qjr(h) «— Q;;(h)Qu(h + 1);
Qri(M)Q;5(h+ 1) = Qpi(h + 1);
@ij(h +1)+— @”(h)

A similar description could be done for any extended word.

Non conjugated good words giving the same disc after an insertion:

These words can be found from an essential embeddable disc with one negative
vertex, by stabilizing along one ab-tile (stabilizing is the opposite process than
inserting an ab-tile).

For instance, if the negative vertex is connected just to two ab-saddles ‘facing
each other’, of opposite sign and at different levels (eg saddles 4 and 14 in Figure
6), by stabilizing along one or the other we get words with different exponent sum,
hence non conjugate.

More precisely: if two words only differ for one letter (ki) which is positive and
at level s in the first word, but negative and at level ¢ in the second, then if we insert
an ab-tile with negative vertex at level 7, but: on Q;(s) with negative saddle at
level ¢ on the first disc, and on @, (s) with positive saddle at level s on the second,
we get the same disc.
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6. The Hy-sequence

As we have seen, the test for b-arcs in the embeddability test is very expensive.
But there is a different method for testing embeddability, used repeatedly in the
papers of the first author and Menasco, e.g. see the proof of Lemma 3 in [5]. Using
it, we can avoid the expensive part of the embeddability test.

Look at the situation from another point of view: not at the foliation on the
disc, but at the foliations on the half-planes Hy’s running about the braid axis A.
In fact, almost all Hy’s have P — N a-arcs and N b-arcs (all regular leaves for D),
except P+ N —1 of them, in each of which a saddle occurs. Among two consecutive
singular half-planes, all infinite regular ones are uniquely identified up to isotopy
by the N b-arcs. Also, the passage through one singular half-plane is such that:

e if an aa-saddle occurs, then no b-arc changes;
o if an ab-saddle occurs: then one b-arc changes its positive vertex;
o if a bb-saddle occurs: then two b-arcs exchange their positive vertices.

Moreover, the way in which these changes occur uniquely specifies the type, the
names and the sign of the ab- or bb-saddle. Only the aa-saddles remain unspecified
in names and sign. In Figure 21 we show all these changes and the corresponding
saddles.

Proposition 9. A half-plane Hy with specified vertex string V' with (P, N) vertices
is embeddable and essential if and only if the IV b-arcs do not intersect each other,
and each of them does not connect two consecutive vertices. ||

Given a vertex string, it is very easy to list all possible essential and embeddable
regular half-planes with these vertices.

Proposition 10 (cf [5]). There is a bijective correspondence between essential
embeddable foliated discs with (P, N) vertices and Hy-sequences of length P+ N —1
satisfying the following properties:

e Among two consecutive half-planes in the sequence the unique change is one
corresponding to a saddle;

e The permutation associated to the resulting cycle of saddles satisfies the prop-
erties of Proposition 1;

e No saddle occurs twice; the unique saddles involving the same pair of positive
vertices can be two ab-saddles of opposite sign;

e All vertices occur at least in one saddle. ||

So this is our algorithm:
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Fig. 21. The ab-saddles and bb-saddles seen on the halfplanes.
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1. For each (P, N), with P > N + 1, list all possible vertex strings, up to cyclic
order along the axis.

2. For each vertex string, list all possible embeddable essential regular half-
planes;

3. Given the complete set of half-planes found for a given vertex string, list all
the cyclic sequences of P + N — 1 half-planes that satisfy all conditions of
Proposition 10.

4. For each found cycle, choose all possible signs of aa-saddles: get all possible
embeddable essential discs with (P, N) vertices up to easy conjugations.

The first part of this algorithm has been implemented using the algorithm of
[27]: it corresponds to listing all necklaces of length | = P + N, with number of
colors k = 2 (positive and negative vertices), and density d = P (the number of
non-zero colors). We have implemented the algorithm as a GAP procedure, called
EnumerateNecklaces(l, k, d), which gives us all vertex strings V' with (P, N) vertices
up to cycling.

Then, the procedure EnumerateHalfPlanes(V) lists all embeddable essential reg-
ular half-planes in terms of their b-arcs.

To list all good Hy-sequences for a given vertex string V', we consider the directed
graph G with nodes all the regular essential embeddable half-planes with vertex
string V, and (directed) edges* the saddles occurring among them: notice that aa-
saddles are loops: edges going from one node to itself. This is made by our GAP
procedure MakeGraph(V).

Now, a good Hy-sequence corresponds to a cycle in G, of length P+ N — 1, such
that the above conditions are satisfied. Such a cycle never passes twice through
the same edge, because it would pass twice through the same saddle with the same
sign. This observation is the key to our enumeration algorithm for Hy-sequences,
which is invoked by the GAP function EnumerateCycles(G,n), which enumerates
the first n Hy-sequences on the graph G, or all of them if n = 0 (see the Appendix
for the details of the algorithm).

The whole process is performed in one step by ComputeCycles(P, N), which
computes all different cycles starting from a given number of positive and negative
vertices.

Question 6. We noticed that many vertex strings have no associated Hyp-sequence.
This may happen for various reasons: There may be too few half-planes and saddles,
or the resulting graph might be too disconnected, or have too few different saddles.
We suggest that this matter be investigated, with the goal of discarding some vertex
strings a priori, perhaps reducing considerably the running time of the algorithm.
For example, vertex strings in which positive and negative vertices alternate too
closely have very few or no essential half-planes associated to them. To give an

*We refrain from using the more standard term “arc” for obvious reasons.
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Fig. 23. A vertex of type (a).

example: There are 43 vertex strings with (8,4) vertices, but only 14 of them have
some cycle associated.

Remark: An end-tile on an embeddable foliated disc is a part of the disc which
contains a positive vertex which is only attached to one aa-saddle. For example, our
disc of Figure 6 has two end-tiles: saddle 11 and saddle 2. These saddles can easily
be eliminated by a Markov move, also reducing the braid index. This can be easily
seen on the extended word: if one index only occurs in one letter of EW, it is surely
corresponding to one end-tile; we can remove that letter and dropping all following
indices by 1, getting another word which is the extended word of a simpler essential
embeddable disc. Our ComputeCycles(P, N) tells us which of these Hy-sequences
are associated to discs without end-tiles.

How does the removal of an end-tile change the corresponding boundary word?
If it was EW € Bp,BW € B,,n = P — N, taking away the end-tile and the
corresponding strand, we get a new EW' € Bp_1,BW' € B,_;,n—1=P—-1-N.
The subword of BW corresponding to the letter of EW we have deleted does not
occur any more in BW'; the indices which have been dropped by 1 in EW' must
be dropped by 1 in BW' as well. For instance, in our example of Figure 13, if we
cancel from EW the second letter we get the new boundary word

BW' = 05,5(5,2)04,2(5,4) (4, 1)65—,%5;%'

How to draw the Hy-sequence: We have written a GAP procedure PSFilm(C, G),
which, given a cycle C for the graph G, outputs a PostScript file with the drawing
of the P + N — 1 half-planes, each with its vertices and b-arcs, the saddle occurring
between two consecutive of them (with no sign for the aa-saddles) and a bound-
ary word resulting from arbitrarily assigning signs to aa-saddles. For instance, the
Hy-sequence of our disc of Figure 9 can be seen in Figure 22.

There is also the possibility of exporting in GML (Graph Modelling Language) a
drawing of the tiled disc corresponding to a cycle C via the procedure DrawDisc(C, G).
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Fig. 24. A vertex of type (a,b) and sign (+,—).

The resulting file is readable by GML-aware software, such as Graphlet [9]. Usually
standard planar-graph layout algorithms are able to display such tiled discs cor-
rectly, but sometimes a bit of tweaking is required. We plan to implement in the
future a more sophisticated layout algorithm that uses the known cycling order of
the vertices.

7. Some interesting data

The main theorem in [6] is the basis for the algorithm in [2]. This theorem was
later re-proved as Theorem 4.3 of [1], which we now present. Before so-doing we
need several definitions.

To each tiled disc we can associate the graph of singular leaves, in which we
consider as vertices of the graph only the (P, N) intersection points with the axis.

The wvalence of a vertex in the graph is the number of singular leaves which
meet at that vertex. Each non-singular leaf which has an endpoint at the vertex
is necessarily type a or type b, with the type of that leaf changing only after the
passage through a singular leaf. We define the type of the vertex to be the cyclic
array of a’s and b’s which describes the non-singular leaf types as we travel around
the vertex in the order in which they are encountered in the fibration. The sign of a
vertex (as vertex of the graph) is the cyclic array of signs of the singular leaves as we
travel around the vertex, again ordered by the order in which they are encountered
in the fibration. The main theorem in [6], which is also Theorem 4.3 of [1], asserts:
Theorem 7. Let D be an embeddable disc which supports a braid foliation. Then
there is a sequence of embeddable foliated discs:

D =Dy Dy — ---Dg

such that Dy has a radial foliation, without singularities, and the graph of singular
leaves for D;1; is obtained from that for D; by one of the following:

1. The graph of singular leaves for D; contains a vertex v of valence 1 (see Figure
23). Delete v and the unique singular leaf which ends at v.
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Fig. 25. Two vertices of type (b,b) and sign (+,—).

2. The graph of singular leaves for D; contains a vertex of valence 2, type (a, b)
and sign (+,—) (see Figure 24). Do an ab-exchange move, as defined in
[1]. This move deletes two vertices of opposite sign and two singularities of
opposite sign from the foliation.

3. The graph of singular leaves for D; contains a vertex of valence 2, type (b, b)
and sign (+, —) (see Figure 25). Do a bb-exchange move as defined in [1]. This
move deletes two vertices of opposite sign and two singularities of opposite
sign from the foliation.

The theorem leads to a natural question: Is this set of moves “minimal”, or can we
eliminate one or more of them? The data collected in this paper helps to begin to
answer that question.

Question 7. Do there exist examples of embeddable foliated discs which have no
vertices of valence 1, i.e. which have no end-tiles? If not, then Theorem 7 could
obviously be simplified by eliminating moves 2 and 3.

At the time when Theorem 7 was proved, we knew, a classical theorem due to
Magnus and Pelluso [21] that there are no examples with n < 3. We also knew,
form Morton’s work in [24], that such examples ezist when the braid index is 4.
Discs whose boundaries have braid index 4 will have N > 0 negative vertices and
4 + N positive vertices, so we searched. There are no such examples of 4-braids
with (P,N) = (5,1),(6,2) or (7,3). We found 16 examples with (P,N) = (8,4),
and (to our great surprise) none with (P, N) = (9,5) or (10,6). The data suggest
that there is structure, not yet understood.

Question 8. Do there exist examples of embeddable foliated discs which have no
vertices of valence 1 and no vertices of valence 2, type (b,b), sign (4, —)?

We do not know the answer to this question. All of our 4-braid examples which
lack vertices of valence 1 have vertices of valence 2 and both type (a,b) and type
(b,b) with sign (+, —).

Question 9. Do there exist examples of embeddable foliated discs which have no
vertices of valence 1 and no vertices of valence 2, type (a,b), sign (+, —)? Our final
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example says “yes” (see Figure 28). To find it we had to go to (P,N) = (13,4).
This example tells us that we cannot eliminate move 3.

We do not know whether simpler examples of the same type exist. There are
hints of much more structure in the first set of examples, but we don’t have enough
data to say more at this time.

Question 10. Can move 3 be eliminated in the special case n = 4, i.e. (P,N) =
(N +4,N)? (Notice that the counterexample in Figure 28 has braid index 9).

The data There is only one vertex string for (P, N) = (5,1). Our GAP proce-
dure ComputeCycles(5,1) gives for this 64 cycles, none of which is without end-tiles.

There are four vertex strings for (P, N) = (6,2). Our GAP procedure Compute-
Cycles(6,2) gives for them 276 cycles, none of which is without end-tiles.

There are 12 vertex strings with (7, 3) vertices, but 4 of them have no associated
cycles. For the other 8 strings, our GAP procedure ComputeCycles(7,3) gives 828
cycles, none of which is without end-tiles.

The first interesting discs for B, are those with (8, 4) vertices: there are 43 vertex
strings, 29 of which have no associated cycles; for the other 14 vertex strings, our
GAP procedure ComputeCycles(8,4) gives 2944 cycles, 16 of which are with no end-
tiles: all these 16 have the same vertex string (which also has other 12 discs with
end-tiles). The 16 discs without end-tiles are the following 8 and their inverses:

1. Dy = {[3.1,5,8],[4,5.1,7],[3.1,6,8],[0.1,3,7],[0-2, 2, 3.1, 6], [1,4,5.1],
2,3.1,5],1,2,5.1,[2,3,5.1,[0.2,2,6],[0.1,3,5.1,7]},

2. Dy = {[31,5,8],[4,5.1,7],[3.1,6,8],[0.1,3,7],[0.2, 2, 3.1, 6], [1,4,5.1],
(2,3.1,5],11,3,5.1],[1,2],[0.2,2,6],[0.1,3,5.1, 7]},

3. Dy = {[3.1,5,8],[4,5.1,7],[3.1,6,8],[0.1,3,7],[0.2,2,3.1,6],[1,4,5.1],

[2,3.1,5],[2,3],[1,3,5.1],[0.2,2,6],[0.1,3,5.1, 7]},

4. Dy ={[3.1,5,8],[4,5.1,7],3.1,6,8],[0.1,3,7],[0.2,2,3.1,6], [1,4,5.1],
[4,5],(2,3.1,5],[1,3,5.1],[0.2,2,6],[0.1,3,5.1,7]},

5. Dy = {[3.1,5,8],[4,5.1,7],[3.1,7,8],[3.1,6,7],[0.1,3,7],[0-2,2, 3.1, 6],
(1,4,5.1],[2,3.1,5], 1, 3,5.1, [0.2,2,6],[0.1,3,5.1,7]},

6. Dg = {[3.1,5,8],[4,5.1,7],[3.1,6,8],[7,8],[0.1,3,7],[0.2, 2, 3.1, 6],

[1,4,5.1],[2,3.1,5,1,3,5.1],(0.2,2,6],[0.1,3,5.1,7]},
7. Dy = {[3.1,5,8],[4,5.1,7],[6,7),[3.1,6,8],[0.1,3,7],[0.2, 2, 3.1, 6],

[1,4,5.1],[2,3.1,5],[1, 3,5.1],[0.2,2,6],[0.1,3,5.1, 7]},

8. Ds = {[3.1,5,8],[4,5],[4,5.1,7],[3.1,6,8),[0.1,3,7],[0.2, 2, 3.1, 6],
(1,4,5.1],[2,3.1,5],[1,3,5.1],[0.2, 2,6],[0.1,3,5.1, 7]}

Their corresponding boundary words, depending on the sign assigned to the aa-
saddle, are the following:
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1. BW: = (4,3)(3,2)(4,3)(4,3)(3,2)(2,1)(3,2)(2,1)(3,2),
2. BW, = BWy, (EW, = rg(EWY)),
3. BW = (4,3)(3,2)(4,3)(4,3)(3,2)(2,1)(3,2)(2,1)(2,1)(2,1)(3,2),

4. BWy = BWh,(EW; = rs(EWL)),

5. BW3+ = BW(j, (EWQr = Tg(EW;_)),

6. BW, = (4,3)(3,2)(4,3)(4,3)(3,2)(2,1)(3,2),

7. BW} = (4,3)(3,2)(4,3)(4,3)(3,2)(2,1)(3,2)(3,2)(2,1)(2,1)(3,2),
8. BWs = (4,3)(3,2)(4,3)(3,2)(2,1)(3,2)(2,1)(2,1)(3,2)

9. BWg = (4,3)(3,2)(4, 3)(4,3)(4,3)(3,2)(2,1)(3,2)(2,1)(2,1)(?,5,

10. BW; = BWs, (EW = r5(EWs)),
11. BW; = BWy ,(EW; = rg(EW;)),

12. BW;_ = BWs, (EW7+ = Tg(EW5)),

13. BWy = (4,3)(3,2)(3,2)(4,3)(4,3)(3,2)(2,1)(3,2)(2,1)(2,1)(3,2),

14. BWg = (4,3)(3,2)(2,1)(3,2)(2,1)(2,1)(3,2).

The conjugacy classes have been computed by S. J. Lee: considering the 16 words
(the 8 which are different in this list, and their inverses), almost all of them are non
conjugate. There are only two pairs of conjugate braids: BW, ~ (BWg)~! and
their inverses.

The disc (D7 )71, that can be seen in Figure 26, is the disc corresponding to
Morton’s braid, as shown by G. Wright in [29].

All other discs have a similar structure, with two ‘squares’ of vertices joined
by an aa-saddle; only discs D1, Dy and their inverses have a different structure: a
pentagon joined directly to a square, as can be seen in Figure 27.

There are 9,288 cycles with (9, 5) vertices, but none of them is without end-tiles.
There are 37,952 cycles with (10, 6) vertices, but none of them is without end-tiles.

An interesting disc with (13,4) vertices, found by Birman and Menasco, is the
following (see Figure 28):

D =[[[0.1,4,5.1,8],-1],[[3,0.2,7,5.2], -1],[2, 6], [1, 6], [[3,0.2,7,5.2], 1],

([0.1,4,5.1,8],1],[5,13], [[0.1,4, 12], —1], [[3,0.2, 11], - 1], [5, 10}, [1, 9],
[2,10],[[3,0.2, 11], 1], [[0.1,4, 12], 1], [12, 13], [9, 11]].
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Fig. 26. The disc (D7 )~1.

Fig. 27. The disc D;.
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Fig. 28. An embeddable disc with no vertices of type (a) and no vertices of type (a,b) and sign
(+’ _)'
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P=13,N=4,n=9,P+ N — 1 = 16, number of saddles.

EW = (8,4)(7,3)(6,2)(6,1)(7,3)(8,4)(13,5)(12,4)(11, 3)(10, 5)(9, 1)

(10,2)(11, 3)(12,4)(13,12)(11, 9).
p(W) = (1,6,10,5,12,13,2, 11,9)(3)(4)(7)(8).

Deleting the four strands corresponding to the four 1-cycles of p(W), as can be seen
in Figure 29, get the 9-braid

BW = (4,2)(4,1)(9,3)ds,398,3(8,5)(7,1)(8,2)05 365 3(9,8)(7,5) =

= (4,2)(4,1)(9,3)(8,7)(7,6)(6,5)(5,4)(4, 3)(8,7)(7,6)(6, 5)(5,4) (4, 3)(8,5)
(7,1)(8,2)(4,3)(5,4)(6,5)(7,6)(8,7)(4,3)(5,4)(6,5)(7,6) (8, 7)(9,8)(7, 5).
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Appendix A. Commented List of Main GAP Procedures and Functions.

EnumeratePositiveGoodWords (p)

Enumerates the positive good words (braids) for p vertices up to conjugations by
¢ and by subwords. The number of such words is inherently exponential in p,
so even if the test for easy conjugations, that is, the test for equivalence modulo
permutation of indices and of letters is easy (quadratic in p), the overall complexity
of the procedure is not polynomial in p.

EnumerateGoodWords (p)

Enumerates the good words (braids) by suitably inserting signs in the words ob-
tained through EnumeratePositiveGoodWords(p). Each word is a list of pairs;
each pair is formed by the generator name (a pair of increasing indices) and a sign.

GenerateDiscBoundary(n, w)

Takes a good word w with n indices as input and gives back the boundary-point list
of the corresponding tiled disc. It also checks whether the word is really a good
one, and returns fail if this is not true.
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GetInsertionArcs(n, b)

Takes the braid index and the list of boundary points of an extended word and
gives back a list of insertion intervals as records with fields i, £, and I, where i is
the initial point of the insertion arc, f is the final point (they may coincide) and I
is the related list of intervals of possible positions for a new negative vertex.

A disc boundary point is described as a record with fields s and 1, where s
describes the saddle associated with the boundary point and 1 is its level; the
saddle is described by a pair whose first coordinate is the list of vertices involved in
the saddle (starting from a positive vertex, and with, if possible, alternating signs),
and the second one is the sign.

GetSaddles(n, s, b)

Takes the braid index n of an extended word, the number s of saddles of the disc
generating the extended word and the list b of boundary points (in the same format
of GetInsertionArcs(), and gives back a list of records with the following fields:
i and f are the initial and final positive vertices of the insertion arc; N is a list of
cyclic intervals, indicating the possible position of the new negative vertex; S is a
list of cyclic intervals, indicating the possible levels of the new saddle; the sign s
is the possible sign of the new saddle, I is a subinterval of N where the saddle can
exist with sign s, pi and pf are initial and final points (given by their order on the
boundary) of the insertion arc.

Embeddable(n, nsaddles, boundary, bbsaddles)

Takes the number n of positive vertices of a disc, the number nsaddles of saddles,
the list boundary of boundary points and the list bbsaddles of bb-saddles, and
outputs whether or not this tiled disc is embeddable. bbsaddles has the same
format as boundary, but the order is not relevant.

InsertVertices(n, nsaddles, boundary, bbsaddles, depth)

Takes the number n of positive vertices of a disc, the number nsaddles of saddles,
the list boundary of boundary points, list bbsaddles of bb-saddles, a limit depth on
the number of negative vertices to add (if equal to -1, it tries all possible insertions)
and returns a list of embeddable discs with additional negative vertices; each disc
is a record with fields b, containing the list of boundary points, and bb, containing
the list of bb-saddles.

EnumerateNecklaces(n, k, d)

Returns the set of necklaces of length n, k colours and density (number of nonzeros)
d using the Ruskey—Sawada algorithm [27].

Even if the number of necklaces is superpolynomial in their length, the Ruskey—
Sawada algorithm has constant amortized complexity, that is, the time required
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Fig. A.1. An embeddable essential halfplane.

to generate a single necklace is constant, which implies that the time necessary to
enumerate all necklaces is linear in their number.

EnumerateHalfPlanes (vertexString)

Generates all possible embeddable essential halfplanes on the given string of vertices,
which must be a vector of zeroes (negative vertices) and ones (positive vertices).
Returns a record with two fields, halfPlane, described below, and vertexString,
which copies the input field.

The field halfPlane is a list of vectors indexed by the vertices. The 4i-th compo-
nent of a vector is a record with fields v and c, where v is the vertex linked by an arc
to vertex 7 and c the index of the “outer” connected component v belongs to (the
vertices are numbered all from 1 to P + N; 0 means no connection with any ver-

tex). For instance [ rec( v := 3, ¢ := 0 ), rec( v :=0, c :=1), rec(v
=1, c:=0), rec(v :=9, c :=0), rec(v :=7, c:=2), rec(v
=0, c:=3), rec(v :=5, c :=2), rec(v:=0, c :=2), rec( v

=4, ¢ :=0),rec( v :=0,c :=0),rec( v :=0, ¢ := 0 ) ] describes
the half-plane of Figure A.1.

MakeGraph(halfPlaneRecord)

Builds the halfplane adjacency graph for the specified set of halfplanes. The result
is a record with fields halfPlane, vertexString, graph, N, A and saddle. graph
is an adjacency list: to each halfplane 7 we associate a list of records with fields v,
s and a where v is the index of the next halfplane, s is the associated saddle index
(in the list saddle) multiplied by its sign, and a is the index, in the v-th list, of the
symmetric edge.

The list saddle is a list of vectors of variable length (2, 3 or 4) indicating
which vertices are involved in a saddle. The vertices are given by their indices in
halfPlaneRecord.vertexString.

The fields N and A hold the number of nodes and arcs of the generated graph.

The graph is generated by applying a simple test to each pair of nodes (half-
planes); thus, the generation requires time quadratic in the number of halfplanes.
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MakeRandomGraph (halfPlaneRecord, isRandom)

Same as MakeGraph(), but isRandom is a boolean indicating whether we want to
scramble randomly the halfplane order. This is useful for single-cycle generation.

If isRandom is false the halfplanes are used in the order in which they appear in
halfPlaneRecord. Otherwise, they are permuted randomly. The GAP pseudoran-
domness seed values RN and R_X are accumulated into the two additional fields of
the resulting record with the same name.

EnumerateCycles(halfPlaneGraph, stopAt)

This function is the core of the enumeration process; it enumerates the Hy-sequences
related to the provided halfPlaneGraph; the sequences are expressed as lists of
records with fields v and s, where v is a node and s is the signed index of the saddle
that labels the edge towards the next node of the cycle (however, aa-saddles have
always positive sign).

The parameter stopAt specifies how many cycles to generate. If it is zero, all
cycles will be generated. Otherwise, only stopAt cycles will be generated. By
applying this function with stopAt=1 on randomly scrambled graphs, it is possible
to generate longer cycles than those allowed by exhaustive enumeration.

The algorithm used in this function is based on the notion of dual graph: given
a directed graph G with node set V' and directed-edge set A, the dual graph has as
node set A and directed-edge set B C A x A, where (a,a’) € B iff the target of a is
the source of a’. More precisely, if we call s: A — V and t : A — V the (obvious)
source and target functions of G, we can build the pullback

B — A
4 Is
A 5 v

Then, the dual graph has directed-edge set B, and the projections of the pull-
back are precisely its source and target functions. The crucial observation is that
elementary cycles in the dual graph (i.e., cycles that never pass twice through the
same node) are in bijection with cycles of the original graph that never pass twice
through the same edge. This allows one to use standard enumeration methods for
elementary cycles for enumerating Hy-sequences.

Nevertheless, sophisticated methods such as Johnson’s algorithm [16] turn out
to be inefficient in our case: this happens because the length of the cycles to be
generated is fixed, and is very small with respect to the size of the graph. After
several experiments, we focused on a two-phase visiting algorithm. In the first
phase, we use standard depth-first enumeration techniques to generate candidate
loop-free cycles of length shorter than or equal to P + N — 1; in the second phase,
we enrich each candidate with loops, and test the various conditions that must be
satisfied to obtain an Hy-sequence.
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In the first phase, a total ordering is established on the nodes of the dual graph.
At each round of the generation, a root node of the dual graph is chosen as first
node of the cycle to be generated; moreover, the generation process only considers
nodes larger than the root. This ensures that loop-free cycles are never generated
twice. Moreover, a precomputation of the distances from each node to the root
(using a standard breadth-first visit) allows to cut prematurely cycles that could
never “get back in time” because they have moved too far apart from the root.

In the second phase (which is invoked for each candidate loop-free cycle) we
exhaustively try to add loops so to obtain an Hy-sequence.

Note that the number of cycles to be generated is inherently superexponential;
it is also very difficult to estimate the amortized complexity of the enumeration
process. The division in two phases cuts a large part of the search space with respect
to a simple enumeration, but nonetheless exhaustive enumeration is possible only
for a very small number of vertices.

ComputeCycles(p, n)

This function generates all cycles for p positive and n negative vertices, using the
functions above. The result is provided in two fields named ¢ and e, which contains
all cycles, and all cycles that do not contain end tiles, respectively. A cycle here
is specified in a more user-friendly form, that is, as a sequence of saddles, each
saddle being of the form [v,w] for aa-saddles, and of the form [[v,w,z],s] or
[[u,v,w,z],s] for ab and bb-saddles (s is the sign of the saddle). Vertices are
named as in this paper.

PSFilm(c, halfPlaneGraph)

Outputs in the current directory a file named film.ps containing a PostScript
visualization of the sequence of halfplanes traversed by the Hy-sequences represented
by the cycle c. The visualization also contains one of the corresponding boundary
braid words (aa-saddles signs are arbitrary).

DrawDisc(c, halfPlaneGraph)

Outputs in the current directory a file named disc.gml containing the graph struc-
ture of the tiled disc associated to the cycle c. Note that the graph is not yet
embedded in the plane: a planar embedding layout algorithm must be applied.



