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We give a bijection between binary quartic forms and quartic rings with a monogenic

cubic resolvent ring, relating the rings associated to binary quartic forms with Bhar-

gava’s cubic resolvent rings. This gives a parametrization of quartic rings with mono-

genic cubic resolvents. We also give a geometric interpretation of this parametrization.

1 Introduction

Algebraic objects associated to binary forms have long been studied. Dedekind origi-

nally associated a quadratic ring and ideal class to every binary quadratic form [8]. In

fact, binary quadratic forms exactly parametrize ideal classes of quadratic rings (see [7,

Section 5.2, 16], or [24] for a treatment that includes all binary quadratic forms, even

the zero form!). In 1940, Delone and Faddeev [12] associated cubic rings to binary cubic

forms and found that binary cubic forms exactly parametrize cubic rings (see also [14]

for a treatment of all binary cubic forms).

In fact, one can associate an n-ic ring (a ring isomorphic to Zn as a Z module) to

a binary n-ic form for any n. (When n= 2, 3, 4, we also call an n-ic ring quadratic, cubic,

quartic, respectively.) Early work on the rings associated to binary forms was done by

Birch and Merriman [4] and Nakagawa [17]. Del Corso et al. [9] determine the splitting of

the prime p in such a ring in terms of the factorization of the binary n-ic form modulo

pk. Simon [20] associates an ideal class of the associated ring to a binary n-ic form, and
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in [21] he applies this ideal class to study integer solutions to equations of the form

C yd= F (x, z), where F is a binary form. In [23], it is determined exactly what algebraic

structures are parametrized by binary n-ic forms, for all n. This structure is a rank n

ring and an ideal class for that ring, such that the action of the ring on the ideal class

satisfies a certain exact sequence (which comes naturally from geometry). When n= 2,

the exact sequence condition is vacuous, and when n= 3 the condition forces the ideal

class to be the unit ideal. In this note, we give a different point of view (from [23]) on the

algebraic data parametrized by binary quartic forms. We prove the following, which is

the main result of this paper.

Theorem 1.1. There is a natural, discriminant preserving bijection between the set of

GL2(Z)-equivalence classes of binary quartic forms and the set of isomorphism classes

of pairs (Q, C ) where Q is a quartic ring and C is a monogenic cubic resolvent of Q

(where isomorphisms are required to preserve the generator of C modulo Z). �

In particular, in this paper we construct the bijection of Theorem 1.1 explicitly.

For example, the construction of the quartic ring is given in Equation (2). The GL2(Z)

action on binary quartic forms is given by
(

a b
c d

) ◦ f(x, y)= f(ax+ cy, bx+ dy). A mono-

genic ring is one that is generated by one element as a Z-algebra. The above simple

criteria for when a quartic ring is associated to a binary quartic form is an applica-

tion of the notion of the cubic resolvent of a quartic ring, which was introduced by

Bhargava [1] in his parametrization of quartic rings with their cubic resolvents by pairs

of ternary quadratic forms. Theorem 1.1 is used by Bhargava and Shankar [3] in their

determination of the average number of 2-torsion elements in the class groups in mono-

genic maximal cubic orders. Surprisingly, these averages are different than for general

maximal cubic orders!

We recall Bhargava’s parametrization of quartic rings and their cubic resol-

vents here. If we write ternary quadratic forms as matrices, we can give the GL3(Z)

action on pairs of ternary quadratic forms as (A, B) �→ (gAgt, gBgt) for g∈ GL3(Z). The

action of g= ( a b
c d

) ∈GL2(Z) on a pair (A, B) of ternary quadratic forms takes (A, B) to

(aA+ bB, cA+ dB).

Theorem 1.2 ([1, Theorem 1]). There is a natural, discriminant preserving bijection

between the set of GL3(Z)× GL2(Z)-equivalence classes of pairs of ternary quadratic

forms and isomorphism classes (Q, C ) where Q is a quartic ring and C is a cubic resol-

vent of Q. �
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Cubic resolvents are integral models of the classical notion of the cubic resolvent

field of a quartic field, and they have the same discriminant as their quartic ring. A cubic

resolvent C of a quartic ring Q comes with a quadratic map from Q to C (suppressed

from the notation (Q, C )), that is, a function q : Q→ C such that for a∈Z, we have q(ax)=
a2q(x), and also such that q(x+ y)− q(x)− q(y) is a bilinear form in x and y. When Q is

a quartic order in a field Q(α) whose Galois closure has Galois group S4 or A4, then

Q(αα′ + α′α′′) is the classical cubic resolvent field of Q(α), where α′, α′′, and α′′′ denote

the conjugates of α. In this case, a cubic resolvent ring of Q can be defined to be an

order C in the cubic resolvent field with the same discriminant as Q such that for all

x∈ Q, we have xx′ + x′′x′′′ ∈ C . The quadratic map from Q to C is x→ xx′ + x′′x′′′. For

other quartic rings Q, the definition is a little more subtle (in particular, there is no

classical cubic resolvent field) and is given in the Appendix. Every quartic ring has a

cubic resolvent ring and quartic maximal orders have a unique cubic resolvent ring

[1, Corollary 4]. An isomorphism (Q, C ) to (Q′, C ′) of pairs each consisting of a quartic

ring and a cubic resolvent of that quartic ring is given by ring isomorphisms Q∼= Q′

and C ∼= C ′ that commute with the quadratic maps Q→ C and Q′ → C ′. Note that in

Theorem 1.1 the pairs (Q, C ) also come with a generator of C as a Z-algebra, and in

an isomorphism between (Q, C ) and (Q′, C ′), the induced map C/Z∼= C ′/Z must take the

chosen generator of C to the chosen generator of C ′.

Theorem 1.2 gives a parametrization of all quartic rings with their cubic resol-

vents. Most cubic rings are not generated by one element as a Z-algebra, but the special

cubic rings which are generated by one element are called monogenic. Our Theorem 1.1

gives a parametrization of quartic rings with monogenic cubic resolvents. Alternatively,

Theorem 1.1 can be viewed as answering the question “In the association of quartic

rings to binary quartic forms (as in [9, 17, 20, 23]), which quartic rings appear?”)

We prove Theorem 1.1 by mapping binary quartic forms to pairs of ternary

quadratic forms in a way that respects the constructions on the associated quartic

rings (as in [1, 9, 17, 20, 23] respectively). This map is given in Section 2. We then

see that the rings associated to binary quartic forms have monogenic cubic resol-

vents, and then that any quartic ring with a monogenic cubic resolvent is associated

to some binary quartic form. We then in Section 3 study how the GL2(Z)-action on

binary quartic forms changes the associated quartic ring, which allows us to prove

our main result (Theorem 1.1) in Section 5, after recording some preliminaries about

monogenized cubic rings in Section 4. In Section 6, we explain the results of this paper

from a geometric point of view, and discuss analogs in which the integers are replaced

by an arbitrary scheme. In Section 7, we see how the GL2(Z) invariants of a binary
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quartic form are related to the monogenized cubic resolvent ring of the associated

quartic ring.

2 Constructions

In this section, we give the constructions of rings from forms mentioned in Section 1,

as well as the relationship between binary quartic forms and pairs of ternary quadratic

forms that will be the basis of the proof of Theorem 1.1. A based n-ic ring is an n-ic ring

R, along with a choice of ζ1, . . . , ζn−1 ∈ R/Z such that 1, ζ1, . . . , ζn−1 is a Z-module basis of

R (which clearly does not depend on the lift of ζi to R). If R is an n-ic ring, then for r ∈ R,

multiplication by r is a linear transformation on the Z-module R, and we write Tr(r) for

the trace of that linear transformation. The discriminant of a n-ic ring with Z-module

basis ζi is the determinant of the matrix with i, j entry Tr(ζiζ j) (which is easily seen not

to depend on the choice of basis).

2.1 Construction of a ring from a binary form

Given a binary n-ic form, f = f0xn+ f1xn−1y+ · · · + fnyn with fi ∈Z, such that f0 	= 0,

we can form a based n-ic ring Rf as a subring of Q(β)/( f0β
n+ f1β

n−1 + · · · + fn) with

Z-module basis

ζ0 = 1,

ζ1 = f0β,

ζ2 = f0β
2 + f1β,

...

ζk= f0β
k + · · · + fk−1β,

...

ζn−1 = f0β
n−1 + · · · + fn−2β,

(1)

as first considered by Birch and Merriman [4]. It is shown that Rf is a ring in [17,

Proposition 1.1]. We have the discriminant equality Disc Rf =Disc f (see, for example,

[19, Proposition 4]). In Section 6, we will recall a less explicit, but more natural geomet-

ric construction of Rf that was developed in [23]. In this paper we use this construction

when n= 3, 4.

Given a binary quartic form, f = f0x4 + f1x3y+ f2x2y2 + f3xy3 + f4y4 with fi ∈Z

and f0 	= 0, we can work out the multiplication table of Rf explicitly as follows,
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letting ζ ′3 = ζ3 + f3:

ζ 2
1 =− f1ζ1 + f0ζ2,

ζ1ζ2 =− f2ζ1 + f0ζ
′
3 − f0 f3,

ζ1ζ
′
3 =− f0 f4,

ζ2ζ2 =− f3ζ1 − f2ζ2 + f1ζ
′
3 − f1 f3 − f0 f4,

ζ2ζ
′
3 =− f4ζ1 − f1 f4,

(ζ ′3)
2 =− f4ζ2 + f3ζ

′
3 − f2

3 − f2 f4.

(2)

Even if f0 = 0, we can use the above multiplication table to construct a based quar-

tic ring Rf from a binary quartic form f . For example, when f = 0, we see that Rf =
Z[ζ1, ζ2, ζ

′
3]/(ζ1, ζ2, ζ

′
3)

2.

Given a binary cubic form, f = ax3 + bx2y+ cxy2 + dy3 with a, b, c, d∈Z, we let

ω=−ζ1 and θ =−ζ2 − c and have the multiplication table for Rf as follows:

ωθ =−ad,

ω2 =−ac+ bω − aθ,

θ2 =−bd+ dω − cθ.

(3)

Given a based cubic ring C with a Z-module basis ω, θ for C/Z, there is a unique choice

of lifts of ω and θ to C such that ωθ ∈Z. Thus a based cubic ring is the same as a cubic

ring with choice of Z-module basis 1, ω, θ such that ωθ ∈Z. The construction of Rf from

f is equivariant under a GL2(Z) action that we specify here. Let g= ( a b
c d

)
be an element

of GL2(Z) and f = F (x, y) be a binary cubic form. Then g ◦ f = 1
ad−bc F (ax+ cy, bx+ dy).

If ω, θ is a basis of C/Z, then after action by g, the new basis of C/Z is ω′, θ ′, where[
ω′
θ ′
]= g

[
ω
θ

]
. We can now recall the parametrization of cubic rings by binary cubic forms,

discovered first by Delone and Faddeev [12] and given more recently and in language

closer to ours by Gan et al. [14, Proposition 4.2].

Theorem 2.1 (c.f. [14]). The above construction gives a bijection between based cubic

rings and binary cubic forms. The bijection between based cubic rings and binary cubic

forms is equivariant for the above GL2(Z) actions, giving a bijection between cubic rings

and GL2(Z)-classes of binary cubic forms. �
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2.2 Construction of a quartic ring and cubic resolvent from a pair of ternary quadratic forms

We can represent a pair of ternary quadratic forms by a pair of matrices (A, B) such that

A=

⎛
⎜⎜⎜⎜⎜⎝

a11
a12

2

a13

2
a12

2
a22

a23

2
a13

2

a23

2
a33

⎞
⎟⎟⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎜⎜⎜⎝

b11
b12

2

b13

2
b12

2
b22

b23

2
b13

2

b23

2
b33

⎞
⎟⎟⎟⎟⎟⎟⎠

with aij, bij ∈Z. Bhargava [1, Section 3.2] constructed a based quartic ring Q from (A, B),

by giving the multiplication table explicitly in terms of the ai and bi. See also Section 6

for a geometric description of this quartic ring that was developed in [22]. We define

the determinant of the pair (A, B) to be the binary cubic form 4 Det(Ax− By). The based

cubic resolvent associated to a pair (A, B) is given by this determinant binary cubic form

via Theorem 2.1.

We have a GL3(Z) action on pairs of ternary quadratic forms given by (A, B) �→
(gAgt, gBgt) for g∈ GL3(Z). The action of g= ( a b

c d

) ∈ GL2(Z) on a pair (A, B) of ternary

quadratic forms takes (A, B) to (aA+ bB, cA+ dB). In Bhargava’s construction of a quar-

tic ring Q and cubic resolvent from a pair of ternary quadratic forms, the GL2(Z)×
GL3(Z) action on the pair of ternary quadratic forms corresponds to changing the basis

of Q and its cubic resolvent, and thus giving the map in Theorem 1.2 (see [1]).

2.3 Construction of a pair of ternary quadratic forms from a binary quartic form

The new construction of this paper is the map

Ψ : {binary quartic forms} −→ {pairs of ternary quadratic forms}.

which sends f = f0x4 + f1x3y+ f2x2y2 + f3xy3 + f4y4 to (A0, B f ), where

A0 =

⎛
⎜⎜⎜⎜⎝

0
−1

2
0

−1

2
0 0

0 0 1

⎞
⎟⎟⎟⎟⎠ and B f =

⎛
⎜⎜⎜⎜⎜⎜⎝

f4 0
f3

2

0 f0
f1

2
f3

2

f1

2
f2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

See Section 6.2 for a geometric explanation of why these particular forms arise. One

then naturally puts an equivalence on pairs of ternary quadratic forms such that
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(A, B)∼ (A, B + nA) for n∈Z, and we can also consider

Ψ̄ : {binary quartic forms} −→ {pairs of ternary quadratic forms/∼},

which sends f to (A0, B f + ZA0). Note that Ψ̄ is injective and its image is all classes of

pairs (A0, B).

We have seen above that the binary quartic form f gives a based quartic ring

Rf over Z, and a pair of ternary quadratic forms gives a based quartic ring Q and a

based cubic resolvent C for that quartic ring. The map Ψ may look straightforward, or

even arbitrary, but it has been carefully constructed so that Ψ (and also Ψ̄ ) respects the

above constructions of based quartic rings and so as to satisfy Theorem 3.1, which says

that the map is GL2(Z) equivariant.

Lemma 2.2. If a based quartic ring Q is associated to the pair Ψ ( f)= (A0, B f ) or any

element of the class Ψ̄ ( f)= (A0, B f + ZA0), then Rf = Q. �

Proof. We have a basis ζ1, ζ2, ζ3 of the quartic ring associated to a binary quartic

form as given in Section 2.1. We let ζ ′3 = ζ3 + f3. We let α1 = ζ ′3 and α2 = ζ1 and α3 = ζ2.

We then see from Equation (2) that the αi satisfy the multiplication table given in

[1, Equations (21) and (23)] for the pair (A0, B f ). �

Note that when we have based rings, it makes sense to talk about equality and

not just isomorphism. All of the elements in the class (A0, B f + ZA0) give the same

based quartic ring and the same cubic resolvent, but with different bases for the cubic

resolvent.

Since 4 det(A0)=−1, any element of Ψ̄ ( f) has a based cubic ring given by a cubic

form with coefficient −1 of x3. In particular, the cubic resolvent ring C associated to

Ψ ( f) has Z-module basis 1, ω, θ with ω2 =−c+ bω + θ with b, c∈Z, and thus 1, ω, ω2 is

a Z-module basis of C . A monogenized cubic ring is a cubic ring C and an element

ω ∈ C/Z such that C =Z[ω]. An isomorphism of monogenized cubic rings must preserve

the chosen element of C/Z. A monogenized based cubic ring is a based cubic ring C with

basis 1, ω, θ , such that 1, ω, ω2 is a Z-module basis for the ring of the same orientation

as 1, ω, θ (in other words, such that θ ∈ω2 + ωZ+ Z), or equivalently a based cubic ring

C that corresponds to a binary cubic form with x3 coefficient −1.

Proposition 2.3. Any element of Ψ̄ ( f) corresponds to a quartic ring with a monogenized

based cubic resolvent. �
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Corollary 2.4. Any ring Rf from a binary quartic form has a monogenic cubic

resolvent. �

We will see that the converse is also true.

Theorem 2.5. If a quartic ring Q has a monogenic resolvent C , then there exist bases

of Q and C such that the based pair (Q, C ) corresponds to (A0, B) in the parametrization

of quartic rings and cubic resolvents. �

Proof. Recall that g∈ SL3(Z) acts on A by sending it to gAgt. There is only one SL3(Z)

class of ternary quadratic forms with determinant − 1
4 . This is a classical fact from the

theory of ternary quadratic forms, see, for example [13, Chapter 5, Theorem 6.3]. Then

we can conclude that all such forms are in the SL3(Z) class of A0. If we have a pair (A, B)

corresponding to a quartic ring Q with a monogenic cubic resolvent C , we can choose

a monogenized basis of C so that we can assume Det(A)=− 1
4 . Then we can act by an

element g∈ SL3(Z) so that we obtain A= A0. �

Corollary 2.6. All quartic rings with monogenic resolvents are the ring Rf constructed

from some binary quartic form f . �

In Section 3, we see how the GL2(Z) action on binary quartic forms interacts with

the construction Ψ .

3 GL Action on Forms

There is a natural (left) GL2(Z) action on binary quartic forms. Let g= ( a b
c d

)
be an element

of GL2(Z) and f = F (x, y) be a binary quartic form. Then g ◦ f = F (ax+ cy, bx+ dy). Note

that this action has a kernel of ±1. Recall that the GL3(Z) action on pairs of ternary

quadratic forms is given by (A, B) �→ (gAgt, gBgt) for g∈ GL3(Z).

Theorem 3.1. The map

ρ : GL2(Z)−→ SL3(Z),

(
a b

c d

)
�−→ 1

ad− bc

⎛
⎜⎜⎝

d2 c2 dc

b2 a2 ab

2bd 2ac ad+ bc

⎞
⎟⎟⎠

is a homomorphism, and gives a GL2(Z) action on pairs of ternary quadratic forms for

which Ψ̄ is equivariant, that is, for g∈GL2(Z) we have Ψ̄ (g ◦ f)= gΨ̄ ( f). We have im(ρ)⊂
Stab(A0). �
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Proof. It is easy to compute that ρ is a homomorphism, and it can also can be real-

ized as the representation of GL2(Z) on binary quadratic forms (up to a twist by the

determinant). We can check the equivariance of Ψ̄ by computation (which simplifies on

generators
(

0 1
1 0

)
,
(

1 0
0 −1

)
, and

(
1 1
0 1

)
of GL2(Z)). Let

Y=

⎛
⎜⎜⎝

d2 c2 dc

b2 a2 ab

2bd 2ac ad+ bc

⎞
⎟⎟⎠ ,

and Y′ = 1
ad−bcY. We can compute formally that Y′A0(Y′)t = A0. We can also compute for-

mally that Y gives the correct action on B + A0Z exactly; if Ψ ( f)= (A0, B) and Ψ (g ◦ f)=
(A0, B ′), then Y(B + A0Z)Yt = B ′ + A0Z. Since ad− bc=±1, we have that Y(B + A0Z)Yt =
Y′(B + A0Z)(Y′)t. �

The following Lemma is crucial to our main theorem, and is proved in [6, Chap-

ter 13, Lemma 5.2].

Lemma 3.2. We have im(ρ)= Stab(A0). �

4 Monogenized Cubic Rings

Note that given a monogenized cubic ring, C , ω, there is a unique choice of θ in C/(Z⊕
ωZ) that lifts to a monogenized basis of C because of the orientation requirement. We

define N to be the subgroup
(

1 0
∗ 1

)
of GL2(Z). The action of N on binary cubic forms fixes

their x3 coefficient. Moreover, N acts on the basis of C/Z of a based cubic ring C and

fixes the first basis element. We also have that N acts on pairs of ternary quadratic

forms, and fixes the first form in the pair.

Proposition 4.1. We have that N classes of binary cubic forms with x3 coefficient −1

are in bijection with isomorphism classes of monogenized cubic rings. �

Proof. We have that binary cubic forms with x3 coefficient −1 are in bijection with

based cubic rings in which 1, ω, ω2 is a basis of the same orientation as the given basis

1, ω, θ . When we pass to N classes of forms, the correspondence is to cubic rings with a

choice of ω ∈ C/Z and θ ∈ C/(Z⊕ ωZ) such that 1, ω, ω2 is a basis of the same orientation

as 1, ω, θ . However, given ω, the only such choice of θ ∈ C/(Z⊕ ωZ) is θ =ω2. �
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5 Main Theorem

In this section, we prove the main theorem of this paper.

Theorem 5.1. There is a bijection between the set of GL2(Z)-equivalence classes of

binary quartic forms and the set of isomorphism classes of pairs (Q, C ) where Q is a

quartic ring and C is a monogenized cubic resolvent of Q. �

An isomorphism of a pair (Q, C ) where C is monogenized, is just an isomorphism

of the underlying pair of quartic ring and cubic resolvent such that the isomorphism

between cubic rings preserves the chosen generator modulo Z.

Proof. So far, we have established a bijection

{binary quartic forms}←→ {N classes of pairs (A0, B) of ternary quadratic forms},

where A0 is the fixed form defined in Section 1, and B is any ternary quadratic form.

From the parametrization of quartic rings [1], we know that N classes of pairs (A0, B) of

ternary quadratic forms are in bijection with (Q, C ), where Q is a based quartic ring, C

is an N class of based cubic resolvent rings, and the resolvent map is given by (A0, B).

Since 4 Det(A0)=−1, the N class of bases of C exactly corresponds to a monogenization

of C . Thus, we have a bijection

{binary quartic forms}←→

⎧⎪⎪⎨
⎪⎪⎩

(Q, C ), where Q is a based quartic ring,

C is a monogenized cubic resolvent ring,

and the resolvent map is given by (A0, B)

⎫⎪⎪⎬
⎪⎪⎭ .

We know that in this map the GL2(Z) action on binary quartic forms just corresponds to

a SL3(Z) change of basis of Q, and thus gives the same isomorphism class of (Q, C ). Thus,

the map from GL2(Z) classes of binary quartic forms to isomorphism classes of (Q, C ) is

well defined. We know that the map is surjective by Theorem 2.5. To show it is injective,

suppose we have two pairs (Q, C ) and (Q′, C ′) of quartic rings with monogenized cubic

resolvents. We can choose bases for the quartic rings so that the resolvent maps are

given by (A0, B + A0Z) and (A0, B ′ + A0Z). If we have an isomorphism of the pairs (Q, C )

and (Q′, C ′), it must come from an element (g, h) ∈GL2(Z)× GL3(Z) with det(g)det(h)= 1.

Since g fixes ω and the orientation of the cubic ring (as both cubic forms have x3 coeffi-

cient −1), it must be an element of N. Then det(h)= 1, and we see that the isomorphism

comes from an element of SL3(Z) that fixes A0. By Lemma 3.2, such an element is in the
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image of the ρ of Theorem 3.1, and thus (A0, B + A0Z) and (A0, B ′ + A0Z) come from the

same GL2(Z) class of binary quartic forms. �

A quartic ring might have multiple cubic resolvents, only some of which are

monogenic. In our bijection, the quartic ring appears once for each monogenized resol-

vent. If it has a cubic resolvent monogenic in two different ways, then it will appear for

each of those monogenizations of the cubic ring. Also, note that the binary quartic form

−x3y+ bx2y2 + cxy3 + dy4 maps to (A0, B) with determinant −x3 + bx2y+ cxy2 + dy3.

Thus, every monogenized cubic ring appears as a resolvent of some quartic ring.

6 Geometric Interpretation

We now give a geometric interpretation of Theorem 1.1, which was proved in the last

section. This geometric interpretation relies on the geometric constructions of a ring

from a binary form and from a pair of ternary quadratic forms from [22, 23], respectively.

6.1 Geometric constructions

Given a binary n-ic form f , we have a map

OP
1
Z

(−n)
f−→OP

1
Z

of sheaves on P1
Z
. The image of this map defines an ideal sheaf of P1

Z
, corresponding to

a subscheme of P1
Z

that we we call Sf , the scheme cut out by the form f . The scheme

Sf is the scheme of roots of the form f in P1
Z
. We then have a ring H0(Sf ,OSf ) of global

functions of the scheme Sf . This construction of a ring from a binary form was given

in the case n= 3 by Deligne in [10] and treated completely for all n in [23]. When f

has at least one non-zero coefficient, we have Rf = H0(Sf ,OSf ), which is proved in [23,

Theorem 2.4]. (See Section 6.3 or [23, Section 2.4] for a geometric construction that works

even when f = 0.) In other words, the algebraic construction given in Section 2 and this

geometric construction of a ring from a binary form agree.

Next we recall the geometric construction, given in [22], of a ring from a pair of

ternary quadratic forms. Given a pair (A, B) of ternary quadratic forms, we have a map

OP
2
Z

(−2)⊕2

[
A
B

]
−→OP

2
Z

of sheaves on P2
Z
. The image of this map defines an ideal sheaf of P2

Z
, corresponding

to a subscheme of P2
Z

that we call S(A,B), the scheme cut out by the pair (A, B). The
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scheme Sf is the scheme of common roots of the quadratic forms A and B. We have a

ring H0(S(A,B),OS(A,B)
) of global functions on S(A,B). When A and B have no common non-

unit factors in the ring Z[x, y, z], then this ring agrees with Bhargava’s [1] construction

of a quartic ring from (A, B). This agreement in proved in [22, Theorem 5.1], which also

gives a geometric construction of a ring from all pairs (A, B); see also the letter [11]

from Deligne to Bhargava, which gives a geometric approach to constructing quartic

rings from pairs of ternary quadratic forms that is different from the approach in [22].

When A and B generate a two-dimensional subspace of ternary quadratic forms

over Q and every Z/p (call this nice), then it makes sense to talk about the P1
Z

(pencil) of

conics through A and B (see [18, I.6.2:Example 1, II.6.4:Example 1] for an introduction

to the idea of a pencil of conics). Recall that the cubic resolvent ring associated to (A, B)

is the cubic ring associated to the binary cubic form 4 Det(Ax− By). A conic given by a

symmetric matrix A is singular in a fiber if and only if 4 Det(A) is 0 in that fiber. To form

the matrix A from the conic, we must use 1
2 , but then D = 4 Det(A) is a polynomial with

integer coefficients in the coefficients of the form defining the conic. Even in character-

istic 2, the polynomial D gives the exact condition for singularity. This is the form that

cuts out the singular locus of the pencil of conics through A and B (originally described

in Deligne’s letter [11] to Bhargava). So when 4 Det(Ax− By) ∈Z[x, y] is not 0, the cubic

resolvent ring will be given by the regular functions on the subscheme of singular conics

in the P1
Z

of conics through A and B.

6.2 Geometric relationship between forms

We have a map P1
Z
→ P2

Z
given by anticanonical embedding of the projective line, or [u:

v] �→ [v2 : u2 : uv]. Note that A0 gives a quadratic form on P2
Z
, and the scheme cut out by

this form is the rational normal curve specified above. If we have a pair (A0, B) (with B

not a multiple of A0), then the conic given by A0 in the pencil is not singular in any fiber.

Thus, the associated cubic resolvent ring is given by the ring of regular functions of a

closed subscheme of P1
Z
\ {A0} ∼=A1

Z
, and thus is monogenic.

We can see from the parametrization of cubic rings (Theorem 4) that whenever a

cubic ring is monogenic, in its realization as the global functions of a subscheme of P1
Z
,

that subscheme actually sits inside an A1
Z
⊂ P1

Z
. Thus, if the cubic resolvent ring associ-

ated to a nice (as above) pair (A, B) is monogenic, then that means that the subscheme

of singular conics in the P1
Z

of conics through A and B is disjoint from some particular

conic defined over Z, and we can change basis of the pencil so that it is disjoint from A.

This means that A is non-singular. From the fact that there is only one SL3(Z) class of
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ternary quadratic forms with determinant − 1
4 , we know that up to GL3(Z) change of

basis on P2
Z
, the only such conic is the one cut out by ±A0. So we see that pairs (A0, B)

correspond to pairs of quartic rings and cubic resolvents such that the resolvents are

monogenic.

Moreover, if we have a pair (A0, B), we can pull B back to a form on the P1
Z

cut out

by A0 to obtain a binary quartic form (and we obtain the same binary quartic form with

any element of B + A0Z). We can easily compute that every binary quartic form arises

this way. In particular, if B = b11x2 + b12xy+ b13xz+ b22y2 + b23yz+ b33z2, we see it pulls

back to the form b11v
4 + b12u2v2 + b13uv3 + b22u4 + b23u3v + b33u2v2 (exactly inverse to the

map Ψ defined in the introduction). The elements of GL3(Z) that fix the P1
Z

cut out by

A0 setwise restrict to elements of GL2(Z) acting on that P1
Z
. This allows us to see the

correspondence of the GL2(Z) action on P1
Z

and an action on P2
Z

which fixes the rational

normal curve.

If we have a primitive binary quartic form f , then the scheme Sf cut out by the

form is Spec of the associated ring [23, Theorem 2.9]. The ideal class of Rf associated to

the form f (as constructed in [23]) is the line bundle O(1) pulled back from P1
Z

to Sf and

gives a map of Sf into P1
Z
. The scheme Sf is also a subscheme of P2

Z
cut out by (A0, B f ). We

can see the relationship here between the ideal and the monogenic cubic resolvent. The

ideal gives a map of Sf to P1
Z
, and then by composing with the rational normal curve map

into P2
Z

we see from the above story that the cubic resolvent is monogenic. Conversely,

a monogenic cubic resolvent gives a smooth conic on which our degree four subscheme

lies (as in the above story), and pulling back O(1) from this conic (which is isomorphic

to P1
Z
) gives the ideal associated to the binary quartic form.

6.3 Analogs over an arbitrary base

In the construction of a quartic ring from a binary quartic form with Z coefficients,

one can replace Z with an arbitrary scheme S. An binary quartic form over S is a triple

(V, L , f), in which V and L are vector bundles on S of ranks 2 and 1, respectively, and

f ∈ H0(S, Sym4U ⊗ L). A double ternary quadratic form over S (analogous to a pair of

ternary quadratic forms) is a quadruple (W,U, p, φ), in which W and U are vector bun-

dles on S of ranks 3 and 2, respectively, p∈ H0(S, Sym2W⊗U ), and an isomorphism

(called an orientation) ∧3W⊗∧2U
∼→OS.

From either a binary quartic form or double ternary quadratic forms over S one

can construct a quartic OS-algebra (an OS-algebra which is a locally free rank 4 OS-

module), or equivalently, a degree 4 cover of S. If we let π denote the map P(V)→ S
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(or, respectively, P(W)→ S) and K the Koszul complex of f (respectively p), then the

quartic algebra Rf (respectively Rp) is given by H0 Rπ∗K, with the algebra structure

being inherited from the multiplication on the Koszul complex. More details on these

constructions are given in [23, Section 3, 22, Section 4].

Given a binary quartic form f over S which is a non-zero-divisor (everywhere

locally on S), then f determines a proper subscheme Sf of P(V), of generic relative

dimension 0 over each irreducible component of S, and the associated quartic algebra

Rf is π∗OSf (see [23, Section 3]). Moreover, if for every s ∈ S, we have that f is not iden-

tically zero in the fiber over s, then Sf→ S has relative dimension 0 and is the degree

4 cover associated to f . This is because Sf→ S is quasi-finite and projective, and thus

finite and affine by [15, Book 4, Chapter 18, Section 12].

The most geometric analogs of the work in this paper concern Gorenstein quar-

tic algebras, and now we will see which binary quartic forms give Gorenstein quartic

algebras.

Proposition 6.1. Given a binary quartic form f over S, the following are equivalent:

1. for every s ∈ S, we have that f is not identically zero in the fiber over s;
2. Spec Rf→ S is Gorenstein. �

Proof. If for every s ∈ S, we have that f is not identically zero in the fiber over s, then

Spec Rf = Sf , which is a complete intersection and thus Gorenstein. Conversely, suppose

Spec Rf→ S is Gorenstein but that f is zero in the fiber over s. Then, we have a simple

computation that Rf ⊗OS k(s)= k(s)[x, y, z]/(x, y, z)2 (cf. Equation (2)), which is not Goren-

stein, a contradiction. �

The next proposition shows that for Gorenstein quartic covers, coming from a

binary quartic form is equivalent to being a closed subscheme of a P1-bundle.

Proposition 6.2. Given a quartic algebra R over a scheme S, we have that the following

are equivalent:

1. there exists a binary quartic form f such that R∼= Rf and Spec R→ S is

Gorenstein;

2. Spec R→ S factors through a P1 bundle X→ S such that Spec R→ X is a

closed immersion. �
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Proof. For an OS-vector bundle W, let W∗ denote the dual Hom(W,OS). The fact that

(1) implies (2) is clear from the above. If we have Spec R⊂ P(V) (as S schemes), where

V is a vector bundle of rank 2 on S, then locally on S, we have that Spec Rf is cut out

by a degree 4 equation, determined up to a unit on S. Thus, we have a line bundle L

on S and L ⊂ π∗O(4)P(V) is the line bundle of sections vanishing on Spec Rf . This gives a

map L→ Sym4V , or equivalently, a section of H0(Sym4V ⊗ L∗), which is a binary quartic

form f . Then from the above we see that R is the quartic algebra associated to f , and

that Spec R→ S is Gorenstein, showing that (2) implies (1). �

One can also define cubic resolvents of quartic algebras over S analogously to

Definition A.3 (see [22, Section 1.1]). For convenience, by way of the work of Wood [22]

that establishes a correspondence between double ternary quartic forms and quartic

algebras with cubic resolvents analogous to Theorem 1.2, we work as follows. A double

ternary quadratic form has a determinant binary cubic form Det(p) (see [22, Section 3]),

which locally agrees with the above construction 4 Det(Ax− By). If a double ternary

quadratic form p has an associated quartic algebra Rp, we call the cubic algebra asso-

ciated to Det(p) (via the same construction as a quartic algebra from a binary quartic

form) a cubic resolvent of Rp.

Now we will see that a quartic algebra from a binary quartic form has a cubic

resolvent that is a closed subscheme of (the total space of a) line bundle. This is the

analog over S of monogenicity over Z.

Proposition 6.3. If R is a quartic algebra over S satisfying the conditions of Proposi-

tion 6.2, then R has a Gorenstein cubic resolvent C such that Spec C is a closed sub-S-

scheme of the total space of a line bundle over S. �

Proof. Assuming (2) of Proposition 6.2, we have Spec R⊂ P(V), and an associated binary

quartic form f ∈ H0(Sym4V ⊗ L∗). The idea of this proof is that we will produce a dou-

ble ternary quadratic form that has associated quartic algebra R. In this way, we will

produce a cubic resolvent of R, and see that it has the desired property. To produce a

double ternary quadratic form that has associated quartic algebra R, we will embed R

into a P2-bundle over S and then use the pencil of conics vanishing on R as our double

ternary quadratic form. One technical difficulty is that we must produce an orientation

for our double ternary quadratic form. We handle this by first constructing the most

natural candidate for a double ternary quadratic form, measuring the line bundle that



Quartic Rings Associated to Binary Quartic Forms 1315

obstructs it from having an orientation, and then twisting things appropriately by that

line bundle.

The section f naturally gives a map g : L→ Sym4V . Let M⊂ Sym2 Sym2V be the

pre-image of im(g) in the natural map Sym2 Sym2V→ Sym4V . It is easy to see, by work-

ing locally, that M is a rank 2 vector bundle over S. Moreover, the forms in M are

the forms of Sym2 Sym2V that vanish on Spec R in the composite map Spec R⊂ P(V)⊂
P(Sym2V). So M gives a pencil on conics in P(Sym2V) that cut out Spec R as a closed sub-

scheme. However, M may not allow the orientation ismorphism required to be a double

ternary quadratic form. We have a line bundle P :=∧3(Sym2V)⊗∧2M∗, that measures

the failure of M to allow this orientation isomorphism.

We now twist by P to construct a double ternary quadratic form from the pencil

of conics determined by M. We have a map h : L ⊗ P 2→ Sym4V ⊗ P 2 induced from the

map g above. Let N ⊂ Sym2((Sym2V)⊗ P ) be the pre-image of im(h) in the natural map

Sym2((Sym2V)⊗ P )→ Sym4V ⊗ P 2. We have N ∼=M ⊗ P 2.

The map N ⊂ Sym2((Sym2V)⊗ P ) gives a section p∈ H0(S, Sym2((Sym2V)⊗ P )⊗
N∗) and thus a double ternary quadratic form ((Sym2V)⊗ P , N∗, p, φ), where φ is

the natural map ∧3((Sym2V)⊗ P )⊗∧2N∗ ∼=∧3(Sym2V)⊗ P⊗3 ⊗∧2M∗ ⊗ P⊗−4 ∼=OS. Note

that φ exists because our twist by P was exactly the twist necessary to give the

isomorphism φ.

We have P(V)⊂ P(Sym2V)∼= P(Sym2V ⊗ P ), cut out by the kernel of the map

Sym2((Sym2V)⊗ P )→ Sym4V ⊗ P 2. By the same argument as in Section 6.1, the cubic

resolvent C associated to p is the cubic algebra associated to the binary cubic form c

cutting out the singular conics in the pencil of conics through Spec R⊂ P(Sym2V ⊗ P ).

Since P(V) is a smooth conic in this pencil, we see that c is non-zero in each fiber over S,

and thus the cubic resolvent is Gorenstein and Spec C is cut out by c in the pencil of con-

ics through Spec R (by the same argument as in Proposition 6.1). Moreover, since P(V) is

a smooth conic, we see that Spec C is a closed subscheme not only in the P1 bundle of

conics, but in the line bundle constructed by removing P(V) from the pencil. �

We have a partial converse to Proposition 6.3.

Proposition 6.4. If R is a Gorenstein quartic algebra over an integral scheme S, and R

has a Gorenstein cubic resolvent C such that Spec C is a closed sub-S-scheme of the total

space of a line bundle over S, then Spec R→ S factors through a (smooth) conic bundle

X→ S such that Spec R→ X is a closed immersion. �
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Proof. Let (W,U, p, φ) be a double ternary quadratic form giving R and C . Since R is

Gorenstein, we can deduce that p cuts out Spec R in P(W) (by a computation showing

all forms over an algebraically closed field not cutting out a relative dimension 0 S-

scheme give non-Gorenstein algebras). Since C → S is Gorenstein, C (as an S-scheme) has

a unique (up to isomorphism) closed immersion in a P1 bundle over S by [5, Theorem 1.3].

Since Spec C is a closed sub-S-scheme of the total space of a line bundle over S, com-

pleting that line bundle to a P1-bundle gives such a closed immersion.

Also, Spec C is the singular locus in the pencil of conics through Spec R, which

gives a closed immersion of Spec C into a P1-bundle (the pencil of conics). Thus, in this

closed immersion Spec C must sit inside a line bundle in the P1 bundle. The difference

between the line bundle and the P1-bundle gives a section of S into the P1-bundle (the

pencil of conics). This section corresponds to a conic bundle over S through Spec R, but

since it has no intersection with Spec C , it is a smooth conic bundle. �

Over a general scheme S, a conic bundle is not necessary a P1-bundle, and thus

Proposition 6.4 does not give a full converse to Proposition 6.3. Over Z, of course, there is

a unique (smooth) conic bundle, which is a P1-bundle and we have a full converse. Also,

the explicit argument given for Theorem 1.1 works for all quartic algebras, whereas the

geometric arguments given above are restricted to Gorenstein quartic algebras. (When

one tries to extend to the non-Gorestein locus by the hypercohomology construction of

the quartic algebras, one recovers essentially the explicit argument given in the first

part of this paper.) The recent results on class groups of monogenic cubic rings [3] are

not restricted by any Gorenstein condition, and thus over Z it is convenient to have the

complete statement of Theorem 1.1.

7 GL2(Z) Invariants of Binary Quartic Forms and Cubic Resolvent Rings

We have a canonical map Ψ ′ which sends f = f0x4 + f1x3y+ f2x2y2 + f3xy3 + f4y4 to

⎛
⎜⎜⎜⎜⎜⎜⎝

A0,

⎛
⎜⎜⎜⎜⎜⎜⎝

f4
f2

6

f3

2
f2

6
f0

f1

2
f3

2

f1

2

2 f2

3

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which is equivariant with respect to the GL2(Z) action on the binary quartic forms and

the GL2(Z) action on pairs of ternary quadratic forms given in Theorem 3.1. Our previous
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map Ψ was equivariant only as a map to N classes of pairs of ternary quadratic forms.

However, Ψ was defined over Z, and Ψ ′ requires the use of 1
3 .

The determinant binary cubic of any element in the image of Ψ ′ has x3y coeffi-

cient 0. If 3 | f2, then Ψ ′( f) has integral coefficients and its determinant is the unique

binary cubic form to give a basis 1, ω, θ such that ωθ ∈Z and ω2 − θ ∈Z, where ω is the

generator of the resolvent cubic associated to the form f . If 3 � f2, then there is no basis

1, ω, θ of the monogenized resolvent cubic C , ω such that ωθ ∈Z and ω2 − θ ∈Z.

We define N1/3 to be the group of matrices of the form
(

1 0
n 1

)
, where n∈ 1

3Z.

Proposition 7.1. The map from N classes of monogenic binary cubic forms to N1/3

classes of binary cubic forms is injective. �

Proof. Consider the action of
(

1
k/3 1

)
(where k∈Z) on the form −x3 + bx2y+ cxy2 + dy3.

The new coefficient of y3 is d− ck
3 + bk2

9 − k2

27 , which is only an integer if k is divisible

by 3. �

The determinant of Ψ ′( f) is

−x3 + I

3
xy2 − J

27
y3,

where I and J are generators for the SL2(Z) invariants of binary quartic forms, given by

I

3
= 4 f0 f4 − f1 f3 + 1

3
f2
2 and

−J

27
= −8

3
f0 f2 f4 + 2

27
f3
2 + f0 f2

3 + f4 f2
1 −

1

3
f1 f2 f3.

Given a binary quartic form, we have an associated quartic ring and a monogenized

cubic resolvent C with generator ω. We can thus give the monogenized cubic resolvent

canonically by saying it corresponds to the N class of binary cubic forms over Z in the

N1/3 class of −x3 + I
3 xy2 − J

27 y3.

Let r be a root of −x3 + I
3 x− J

27 . Then there is only one Z coset of algebraic inte-

gers in r + 1
3Z, and it is ω + Z. So, we have found a description for ω in terms of the GL2(Z)

invariants of the binary quartic form. (Note that even if −x3 + I
3 x− J

27 is reducible, we

can still make sense of r as an element of Q(r)/(−r3 + I
3r − J

27 ) and there is only one Z

coset in r + 1
3Z whose elements generate algebras that are finitely generated Z-modules.)
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Appendix: Cubic Resolvents

Let Q be a quartic ring. The following definition is an important step in constructing the

cubic resolvent of a general quartic ring, and was first given in [1, Definition 6], though

see [2] for a more thorough treatment.

Definition A.1. The S4-closure of Q, denoted Q̄, is the ring Q⊗4/JQ, where JQ is the

Z-saturation of the ideal IQ generated by all the elements of the form

x⊗ 1⊗ 1⊗ 1+ 1⊗ x⊗ 1⊗ 1+ 1⊗ 1⊗ x⊗ 1+ 1⊗ 1⊗ 1⊗ x

for x∈ Q (that is, JQ = {r ∈ Q⊗4|nr ∈ IQ for some n∈Z}). �

The idea is that 1⊗ x⊗ 1⊗ 1, 1⊗ 1⊗ x⊗ 1, 1⊗ 1⊗ 1⊗ x act as formal conju-

gates of x⊗ 1⊗ 1⊗ 1. We then consider the cubic invariant ring of Q, that is

Rinv(Q) :=Z[{x⊗ x⊗ 1⊗ 1+ 1⊗ 1⊗ x⊗ x|x∈ Q}]⊂ Q̄.

Now we can give the definition of a cubic resolvent ring as given in [1,

Definition 8].

Definition A.2. If Q is a quartic ring with non-zero discriminant, a cubic resolvent

ring C of Q is any cubic ring with Rinv(Q) as a subring such that disc(C )= disc(Q). Then

x �→ x⊗ x⊗ 1⊗ 1+ 1⊗ 1⊗ x⊗ x gives a quadratic map from Q to C . �

We also give the following alternative definition [1, Definition 20] which works

for all quartic rings, and is easier to use in practice in some cases.

Definition A.3. Given a quartic ring Q, a cubic resolvent C of Q is

• a cubic ring C ;
• a quadratic map φ : Q/Z→ C/Z; and

• an isomorphism δ :∧4 Q∼=∧3C (or equivalently δ̄ :∧3 Q/Z∼=∧2C/Z)

such that

1. for all x, y∈ Q, we have δ(1 ∧ x∧ y∧ xy)= 1 ∧ φ(x) ∧ φ(y);
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2. the binary cubic form in Sym3(C/Z)∗ ⊗ ∧2(C/Z) corresponding to C is

Det(φ). �
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