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Rings and ideals parameterized by binary n-ic forms

Melanie Matchett Wood

Abstract

The association of algebraic objects to forms has had many important applications in number
theory. Gauss, over two centuries ago, studied composition of binary quadratic forms, which
we now understand via Dedekind’s association of ideal classes of quadratic rings to integral
binary quadratic forms. Delone and Faddeev, in 1940, showed that cubic rings are parameterized
by equivalence classes of integral binary cubic forms. Birch, Merriman, Nakagawa, del Corso,
Dvornicich, and Simon have all studied rings associated to binary forms of degree n for any n, but
it has not previously been known which rings, and with what additional structure, are associated
to binary forms. In this paper, we show exactly what algebraic structures are parameterized by
binary n-ic forms, for all n. The algebraic data associated to an integral binary n-ic form includes
a ring isomorphic to Zn as a Z-module, an ideal class for that ring, and a condition on the ring
and ideal class that comes naturally from geometry. In fact, we prove these parameterizations
when any base scheme replaces the integers, and show that the correspondences between forms
and the algebraic data are functorial in the base scheme. We give geometric constructions of the
rings and ideals from the forms that parameterize them and a simple construction of the form
from an appropriate ring and ideal.

1. Introduction

When one looks for a parameterizing space for degree n number fields, binary n-ic forms are a
natural guess. It turns out that for n = 3 this guess is correct. We have that GL2(Q) classes of
binary cubic forms with rational coefficients are in bijection with isomorphism classes of cubic
Q-algebras, and irreducible forms correspond to cubic number fields. Moreover, an analogous
result allows the parameterization of orders in those number fields; GL2(Z) classes of integral
binary cubic forms are in bijection with isomorphism classes of cubic rings (see [2, 4, 8, 9]).
For other n, the space of binary n-ic forms parameterizes algebraic data that are more subtle
than this. It has long been known that binary quadratic forms parameterize ideal classes in
quadratic rings (originally in [5], see [12, 17, 19] for modern treatments). In this paper, we
construct the algebraic data associated to a binary n-ic form, and determine what algebraic
structures are in fact parameterized by binary n-ic forms for all n.

Every binary n-ic form with integral coefficients does have an associated ring. The rings that
come from binary n-ic forms are interesting for many reasons in their own right, in particular
because we have several other tools to understand these rings. Del Corso, Dvornicich, and
Simon have viewed the rings associated to binary n-ic forms as a generalization of monogenic
rings and have described how a prime splits in a ring associated to a binary n-ic form in terms
of the factorization of the form modulo the prime [6]. They have also given a condition on the
form equivalent to the p-maximality of the associated ring. Simon [16] uses the ring associated
to a binary form to find a class group obstruction to equations of the form Cyd = f(x, z) having
integral solutions (where f is the binary form). Work of the author finds an explicit moduli
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space for ideal classes in the rings associated to binary n-ic forms [20]. Thus, we can work
explicitly with these rings, prime splitting in them, and their ideal classes.

However, in addition to the ring that is canonically associated to a binary form, there is
more associated data, including ideal classes of the ring. Some of these ideal classes have been
constructed for irreducible primitive forms in [6, 15, 16]. In Section 2, we give the following
four different ways to construct the associated ring and ideal classes from a binary form:
(1) explicitly as a subring of a Q-algebra; (2) by giving the multiplication and action tables;
(3) via a simple geometric construction that works when f �≡ 0; and (4) via a more complicated
geometric construction that works in all cases. The geometric constructions answer a question
posed by Lenstra at the Lorentz Center Rings of Low Rank Workshop in 2006 about giving a
basis-free description of the ring associated to a binary form. In the case n = 3, the geometric
construction of (4) was originally given in a letter of Deligne [7]. We see that, for n �= 2, the
ring associated to a form is Gorenstein if and only if the form is primitive. Also, the ideal
classes associated to the form are invertible if and only if the form is primitive. The geometric
construction of a ring and ideal classes from a binary form is so simple that we give it here.

A binary n-ic form f with integer coefficients describes a subscheme of P1
Z
, which we call Sf .

Let O(k) denote the usual sheaf on P1
Z

and let OSf
(k) denote its pullback to Sf . Also, for a

sheaf F , let Γ(F) be the global sections of F . When f �≡ 0, the ring associated to the binary
n-ic form f is simply the ring of global functions of Sf . The global sections Γ(OSf

(k)) have an
Γ(OSf

)-module structure, and for a binary form f �≡ 0 and −1 � k � n − 1, the global sections
Γ(OSf

(k)) give a module of the ring associated to f , which is realizable as an ideal class. When
n = 2, taking k = 1 we obtain the ideal classically associated to the binary quadratic form.
(This construction gives an ideal even when f is reducible or non-primitive. See [19] for a
complete description of the n = 2 case.) When n = 3, we expect to obtain canonical modules
for the ring since we know that binary cubic forms parameterize exactly cubic rings. When
n = 3, by taking k = 1 we obtain the inverse different of the ring associated to the binary cubic
form, and in general taking k = n − 2 gives the inverse different (see Theorem 2.2). Thus from
a binary form, we naturally construct a ring and several ideal classes. As we are interested
in understanding exactly what data are parameterized by binary forms, the natural questions
remaining are: are there more data naturally associated to the form; is some of the data we
have already constructed redundant, in other words could it be constructed from other pieces
of the data; and what rings and ideal classes actual arise from this construction?

First, we shall see that there is more important structure to the ring and ideal classes that
we have constructed. Given a form f , let R be the associated ring, and I be the ideal from
k = n − 3. From the exact sequences on P1

Z

0 −→ O(−n)
f−→ O −→ O/f(O(−n)) −→ 0

and

0 −→ O(−3)
f−→ O(n − 3) −→ O(n − 3)/f(O(−3)) −→ 0,

we obtain the exact sequences

0 −→ Z −→ R −→ H1(P1
Z
,O(−n)) −→ 0

and

0 −→ H0(P1
Z
,O(n − 3)) −→ I −→ H1(P1

Z
,O(−3)) −→ 0.

We have a map R ⊗ I → I from the action of the ring on the ideal, and thus a map φ :
R/Z ⊗ H0(P1

Z
,O(n − 3)) → H1(P1

Z
,O(−3)). It is easy to see, with the identification of R/Z

with H1(P1
Z
,O(−n)), that φ is the same as the natural map

H1(P1
Z
,O(−n)) ⊗ H0(P1

Z
,O(n − 3)) −→ H1(P1

Z
,O(−3)).
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Note that if we write V = Z2, then we have H1(P1
Z
,O(−n)) = Symn−2 V ∗, and H0(P1

Z
,

O(n − 3)) = Symn−3 V , and H1(P1
Z
,O(−3)) = V ∗.

In Section 4, we prove that the above algebraic data are precisely the data parameterized
by binary n-ic forms.

Theorem 1.1. Given a ring R and an R-module I, we have that R and I are associated
to a binary n-ic form if and only if we can write R/Z = Symn−2 V ∗ and an exact sequence
0 → Symn−3 V → I → V ∗ → 0 such that the map Symn−2 V ∗ ⊗ Symn−3 V → V ∗ given by the
action of R on I is the same as the natural map between those Z-modules. It is equivalent
to require that R have a Z-module basis ζ0 = 1, ζ1, . . . , ζn−1 and I have a Z-module basis
α1, α2, β1, . . . , βn−2 such that

the αi coefficient of ζjβk is

{
1 if i + j + k = n + 1 ,

0 otherwise.

The equivalence can be computed by working out the natural map Symn−2 V ∗ ⊗
Symn−3 V → V ∗ in terms of an explicit basis. It is easy to see that when n = 3, this condition
requires that I is isomorphic to R as an R-module. So we see here that only one of the ideal
classes constructed is really new data, since the binary form, and thus all its associated ideal
classes, can be recovered from R, I, and the exact sequence above.

All of the work in the paper can be done with an arbitrary base scheme (or ring) replacing Z

in the above, and we now state a precise theorem capturing the above claims over an arbitrary
base. Let S be a scheme, and OS be its sheaf of regular functions. A binary n-ic form over S is
a locally free rank 2 OS-module V , and a global section f ∈ Symn V . An l-twisted binary n-ic
form over S is a locally free rank 2 OS-module V , and a global section f ∈ Symn V ⊗ (∧2V )⊗l.
A binary n-pair is an OS-algebra R, an R-module I, an exact sequence 0 → Symn−3 Q∗ → I →
Q → 0 such that Q is a locally free rank 2 OS-module, and an isomorphism R/OS

∼= Symn−2 Q
that identifies the map R/OS ⊗ Symn−3 Q∗ → Q induced from the action of R on I with the
natural map Symn−2 Q ⊗ Symn−3 Q∗ → Q. In Section 3, we give a geometric construction of
rings and modules from (twisted) binary n-ic forms over a scheme S, motivated by the geometric
description given above over Z. Our main theorem is the following, proved in Section 4.

Theorem 1.2. For n � 3, we have a bijection between (−1)-twisted binary n-ic forms over
S and binary n-pairs over S, and the bijection commutes with base change in S. In other words,
we have an isomorphism of the moduli stack of (−1)-twisted binary n-ic forms and the moduli
stack of binary n-pairs.

Analogs of Theorem 1.2 can be proved for l-twisted binary forms for all l. We have already
given the idea of a geometric construction for one direction of the bijection in Theorem 1.2
(see Section 3 for the details), and we now give a simple construction of the other direction of
the bijection. We can write the construction of a (−1)-twisted binary n-ic form from a binary
n-pair as the evaluation

x 	−→ x ∧ φ(xn−2)x

of the above degree n map Q → ∧2Q, where φ is the isomorphism Symn−2 Q ∼= R/OS and we
lift x to the ideal I to act on it by R and then take the quotient to Q. It is not clear, a priori
that this map is even well defined, but that will follow from the definition of a binary n-pair
(Lemma 4.4).
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2. Constructing a ring and modules from a binary n-ic form over Z

2.1. Concrete construction

In this section, we explicitly realize the ring and ideals associated to a binary n-ic form inside
a Q-algebra. Given a binary n-ic form,

f0x
n + f1x

n−1y + . . . + fnyn with fi ∈ Z,

such that f0 �= 0, we can form a ring Rf as a subring of Qf := Q[θ]/(f0θ
n + f1θ

n−1 + . . . + fn)
with the Z-module basis

ζ0 = 1, (2.1)
ζ1 = f0θ,

ζ2 = f0θ
2 + f1θ,

...

ζk = f0θ
k + . . . + fk−1θ,

...

ζn−1 = f0θ
n−1 + . . . + fn−2θ.

Since f0 �= 0, we have that Rf is a free rank n Z-module, that is, a rank n ring in the terminology
of Bhargava [2]. Birch and Merriman [3] studied this Z-submodule of Qf , and Nakagawa [13,
Proposition 1.1] proved that this Z-submodule is a ring (though Nakagawa worked only with
irreducible f , his proof makes sense for all f). Nakagawa writes down the multiplication table
of Rf explicitly as follows:

ζiζj = −
∑

max(i+j−n,1)�k�i

fi+j−kζk +
∑

j<k�min(i+j,n)

fi+j−kζk for 1 � i, j � n − 1, (2.2)

where ζn := −fn. If f0 = 0, we could still use the above multiplication table to define a rank n
ring (see Section 2.2). We have the discriminant equality DiscRf = Disc f (see, for example,
[14, Proposition 4]), which is a point of interest in Rf in previous works (for example, [13, 14]).

Remark 1. Throughout this paper, it will be useful to also make the above construction
with Z replaced by Z[f0, . . . , fn], where the fi are formal variables, and with f = f0x

n + . . . +
fnyn, which we call the universal form. If K is the fraction field of Z[f0, . . . , fn], we can
then work in K[θ]/(f0θ

n + f1θ
n−1 + . . . + fn) instead of Q[θ]/(f0θ

n + f1θ
n−1 + . . . + fn). The

multiplication table in Equation (2.2) still holds, as Nakagawa’s proof can also be interpreted
in this context.

When f0 �= 0, we can also form a fractional ideal If = (1, θ) of Rf (lying in Qf ). There is a
natural GL2(Z) action on binary forms, and the ring Rf and the ideal class of If are invariant
under this action. The invariance will follow from our geometric construction of this ideal in
Section 2.3. (See also [13, Proposition 1.2] for a direct proof of the invariance of Rf , and [14,
Théorème 3.4] which, in the case when f is irreducible and primitive, considers a sequence
of ideals Jj , all in the ideal class of If , and proves that this ideal class is SL2 invariant.)
The powers of If give a sequence of ideals I0

f , I1
f , . . . , In−1

f , . . . whose classes are each GL2(Z)
invariant. We can write down the following explicit Z-module bases for Ik

f for 0 � k � n − 1:

Ik
f = 〈1, θ, . . . , θk, ζk+1, . . . , ζn−1〉Z, (2.3)
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where 〈s1, . . . , sn〉R denotes the R-module generated by s1, . . . , sn. Equivalently to Equa-
tion (2.3), we have, for 0 � k � n − 1,

Ik
f = 〈1, θ, . . . , θk, f0θ

k+1, f0θ
k+2 + f1θ

k+1, . . . , f0θ
n−1 + f1θ

n−2 + . . . + fn−k−2θ
k+1〉Z. (2.4)

To be clear, we give the boundary cases explicitly:

In−2
f = 〈1, θ, . . . , θn−2, f0θ

n−1〉Z,

In−1
f = 〈1, θ, . . . , θn−1〉Z.

Proposition A.1 in the Appendix (Section A) shows that the Z-modules given above are equal
to the ideals we claim. Clearly, the given Z-modules are subsets of the respective ideals and
contain the ideal generators, and so it only remains to check that the given Z-modules are
actually ideals.

If we look at the Z bases of I2
f , I1

f , and I0
f given in Equation (2.4), they naturally lead to

considering another Z-module (given by Equation (2.4) when k = −1)

I#
f = 〈f0, f0θ + f1, . . . , f0θ

n−1 + f1θ
n−2 + . . . + fn−1〉Z. (2.5)

It turns out that I#
f is an ideal of Rf , which is shown in Proposition A.3 in the Appendix

(Section A). This ideal is studied in the case of f irreducible and primitive as b in [14, 16] and
as B in [6].

Remark 2. Similarly, we can form the fractional ideals Ik
f and I#

f over the base ring
Z[f0, . . . , fn] and with f = f0x

n + . . . + fnyn, working in K[θ]/(f0θ
n + f1θ

n−1 + . . . + fn). The
ideals have Z[f0, . . . , fn]-module bases as given in Equations (2.3)–(2.5), and these Z[f0, . . . , fn]-
modules are R ideals by the same proofs as in the Z case.

Given the sequence I2
f , I1

f , I0
f that led us to define I#

f , one might expect that I#
f is the

same as I−1
f . However, it turns out that If is not always invertible. We do have the following

proposition (proved in Proposition A.4 of the Appendix (Section A)). A form f is primitive if
its coefficients generate the unit ideal in Z.

Proposition 2.1. For f �≡ 0 the ideal class of If is invertible if and only if the form f is

primitive. Also, the ideal class of I#
f is invertible if and only if the form f is primitive. In the

case where f is primitive, I−1
f = I#

f .

When f is primitive, Simon [15, Proposition 3.2] proved that the ideal classes of what we
call If and I#

f are inverses. Of course, for any k > 0, we have Ik
f is invertible if and only if If

is. Some of the ideal classes Ik
f are particularly interesting. For example, we have the following

result, which we prove in Corollary 3.7.

Theorem 2.2. The class of In−2
f is the class of the inverse different of Rf . In other words,

as Rf modules, In−2
f

∼= HomZ(Rf , Z).

Simon [16, Proposition 14] independently discovered that when f is primitive and irreducible,
(I#

f )2−n is in the ideal class of the inverse different of Rf . In this paper, we find that while
(I#

f )2−n is not naturally constructed as a module, In−2
f can be naturally constructed and is

always the inverse different, even when f is reducible, primitive, or the zero form! When f ≡ 0,
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we construct In−2
f as a module and the above theorem holds, but the module is not realizable

as a fractional ideal of Rf .

Corollary 2.3. For n �= 2 and f �≡ 0, the ring Rf is Gorenstein if and only if the form f
is primitive.

Proof. It is known that, for rank n rings, the condition of Gorenstein is equivalent to the
inverse different being invertible. For the ring Rf , the inverse different is in the same ideal class
as In−2

f and thus this follows from Proposition 2.1.

Remark 3. When we have a binary form with f0 = ±1, then Rf = Z[θ]/f(θ). Such rings,
generated by one element, are called monogenic. We see that all monogenic rings are Rf for
some binary form f . Also, in this case Ik

f
∼= I#

f
∼= Rf as Rf -modules.

2.2. Explicit multiplication and action tables

If a form f = f0x
n + f1x

n−1y + . . . + fnyn has f0 = 0, but f �≡ 0, then we can act by GL2(Z)
to take f to a form f ′ with f ′

0 �= 0. We can then define the ring Rf and the Rf ideal classes
If and I#

f using f ′. Since the ring and ideal classes are GL2(Z) invariants, it does not matter
which f ′ we use. In this section, we give a more systematic way to define the rings Rf and
ideal classes If that works even when f ≡ 0.

Given a base ring B, if we form a rank n B-module R = Br1 ⊕ . . . ⊕ Brn, we can specify a
B-bilinear product on R by letting

rirj =
n∑

k=1

ci,j,krk for ci,j,k ∈ B,

and e =
∑n

k=1 ekrk for some ek ∈ B. If this product is commutative and associative, and e
is a multiplicative identity (which is a question of certain polynomial equalities with integer
coefficients being satisfied by the ci,j,k and ek), then we call the ci,j,k and ek a multiplication
table. A multiplication table gives a ring R with a specified B-module basis.

Similarly, we can form a free rank m B-module I = Bα1 ⊕ . . . ⊕ Bαm, where usually m is a
multiple of n. Then we can specify a B-bilinear product R × I → B by

riαj =
m∑

k=1

di,j,kαk for di,j,k ∈ B.

That this product gives an R-module action on I is a question of certain polynomial equalities
with integer coefficients being satisfied by the di,j,k, ci,j,k, and ek, and in the case where they
are satisfied we call the di,j,k an action table. An action table gives an R-module I with a
specified B-module basis.

If we want to work directly with forms with f0 = 0 (for example, to deal with the form
f ≡ 0 or to study the form f = x2y + xy2 when we replace Z with Z/2Z), we see that we
can define a ring Rf from the multiplication table given in Equation (2.2). The conditions of
commutativity and associativity on this multiplication table are polynomial identities in the
fi since the construction of R can also be made with the universal form.

Equations (2.3) and (2.5) display Z-module bases of If and I#
f , respectively. The action of

elements of Rf on these Z-module bases is given by an action table of polynomials in the fi

with Z coefficients. (We can see this, for example, because the proofs of Propositions A.1 and
A.3 work over the base ring Z[f0, . . . , fn].) These polynomials in the fi formally give an action
table because they give an action table over the base ring Z[f0, . . . , fn]. Thus, we can construct
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Rf -modules If and I#
f first as rank n Z-modules and then give them an Rf action by the

same polynomials in the fi that make the action tables for If and I#
f , respectively.

We can also form versions of the powers of If this way, which are Rf -modules that we call
If k for 1 � k � n − 1. We use the action table of Ik

f with the basis of Equation (2.3). The
action table has entries that are integer polynomials in the fi for the same reasons as above.
We only have defined the If k as Rf -modules and not as fractional ideals of Rf . Whenever
f �≡ 0, however, we have also given a realization of the If k as the ideal class Ik

f (or I#
f when

k = −1). Let If−1 := I#
f and If := If 1. We do not put the k in the exponent because even

when f is non-zero but non-primitive, it is not clear that the module If k is a power of the
module If . When f is primitive, since If is invertible, its ideal class powers are the same as
its module powers.

2.3. Simple geometric construction

For many reasons, we desire a canonical, basis-free description of the ring Rf and Rf -modules
If k. We would like to deal more uniformly with the case where f0 = 0 and see easily the GL2(Z)
invariance of our constructions. A binary n-ic form f describes a subscheme of P1

Z
that we call

Sf . Let O(k) denote the usual sheaf on P1
Z

and let OSf
(k) denote its pullback to Sf . Also, for

a sheaf F , let Γ(U,F) be sections of F on U and let Γ(F) be the global sections of F .

Theorem 2.4. For a binary form f �≡ 0, the ring Γ(OSf
) of global functions of Sf is

isomorphic to Rf . The global sections Γ(OSf
(k)) have an Γ(OSf

)-module structure, and since
Rf

∼= Γ(OSf
), this gives Γ(OSf

(k)) an Rf -module structure. For 1 � k � n − 1, the global
sections Γ(OSf

(k)) are isomorphic to Ik
f as an Rf -module. The global sections Γ(OSf

(−1)) are

isomorphic to I#
f as an Rf -module.

Proof. We can act by GL2(Z) so that f0 �= 0 and fn �= 0. Then, if we write P1
Z

= Proj Z[x, y],
we can cover P1

Z
with the open subsets Uy and Ux where y and x are invertible, respectively.

Lemma 2.5. If fn �= 0, then the restriction map

Γ(Uy,OSf
(k)) → Γ(Uy ∩ Ux,OSf

(k))

is injective.

Proof. If
∑

i�−k aix
k+iy−i 	→ 0, with ai ∈ Z, then

∑
i�−k aix

k+iy−i =
∑

j djx
jyk−n−jf ,

where dj ∈ Z. Since
∑

i�−k aix
k+iy−i has no terms of negative degree in x and fn �= 0, we

conclude that dj = 0 for j < 0. Thus,
∑

i�−k aix
k+iy−i is 0 in Γ(Uy,OSf

(k)).

Similarly, since f0 �= 0, we have that Γ(Ux,OSf
(k)) → Γ(Uy ∩ Ux,OSf

(k)) is an injection.
So we wish to determine the elements of Γ(Uy ∩ Ux,OSf

(k)) that are in the images of both
Γ(Ux,OSf

(k)) and Γ(Uy,OSf
(k)). First, note that xk, xk−1y, . . . , yk are in the images of both

restriction maps. In Γ(Uy ∩ Ux,OSf
(k)), for 1 � m � n − k − 1, we have

f0x
k+my−m + . . . + fk+m−1xyk−1 = −fk+myk − . . . − fnxk+m−nyn−m,

and thus zm := f0x
k+my−m + . . . + fk+m−1xyk−1 is in the images of both Γ(Ux,OSf

(k)) and
Γ(Uy,OSf

(k)).
Now let p be in both images so that p =

∑
i�−k aix

k+iy−i =
∑

i�−k bix
−iyk+i with ai, bi ∈ Z.

If a =
∑

i�−k aix
k+iy−i ∈ Γ(Uy,OSf

(k)) and b =
∑

i�0 bix
−iyk+i ∈ Γ(Ux,OSf

(k)), then we
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have a formal equality a − b =
∑

i cix
iyk−i−nf (in Z[x, x−1, y, y−1]), where ci ∈ Z. We can

assume without loss of generality that ci = 0 for i � 0 because any cix
iyk−i−nf , with i non-

negative, we could just subtract from the representation a to obtain another such representation
of p in Γ(Uy,OSf

(k)). Similarly, we can assume that ci = 0 for i � k − n. From the equality
a − b =

∑−1
i=−n+k+1 xiyk−i−nf , we can conclude that a is a linear combination of

xk, xk−1y, . . . , yk plus all the terms
∑−1

i=−n+k+1 xiyk−i−nf of positive degree in x, and b

is that same linear combination minus all the terms of
∑−1

i=−n+k+1 xiyk−i−nf of positive
degree in x. The terms of positive degree in x of xiyk−i−nf sum to zn+i−k. Thus, a ∈
〈xk, xk−1y, . . . , yk, z1, . . . , zn−1−k〉Z.

For k � 0, when we map 〈xk, xk−1y, . . . , yk, z1, . . . , zn−1−k〉Z to Qf via x 	→ θ and y 	→ 1,
the image is the free rank n Z-module 〈1, θ, . . . , θk, ζk+1, . . . , ζn−1〉Z. Thus, the map is an
isomorphism of 〈xk, xk−1y, . . . , yk, z1, . . . , zn−1−k〉Z, the global sections of OSf

(k), onto Ik
f .

Clearly, the Γ(OSf
)-module structure on Γ(OSf

(k)) is the same as Rf -module structure on
Ik
f (including the k = 0 case, which gives the ring isomorphism Rf

∼= Γ(OSf
)). When k = −1,

when we map 〈z1, . . . , zn〉Z to Qf via x 	→ θ and y 	→ 1, the image is the free rank n Z-module
I#
f . Similarly we conclude the theorem for I#

f .

Note that although OSf
(k) is always an invertible OSf

-module, when Sf is not affine, the
global sections Γ(OSf

(k)) are not necessarily an invertible Γ(OSf
)-module. In fact, we know,

for non-zero f and 1 � k � n − 1, that Γ(OSf
(k)) is an invertible Γ(OSf

)-module exactly when
f is primitive.

Theorem 2.6. Let f be a binary form with non-zero discriminant. The scheme Sf is affine
if and only if f is primitive.

Proof. From Theorem 2.4 we see that if Sf is affine, then, since Γ(OSf
(1)) ∼= If and OSf

(1)
is invertible, we must have that If is an invertible Rf -module. Thus by Proposition 2.1, if Sf

is affine, then f is primitive. We see that Sf has a vertical fiber over (p) when p | f . Moreover,
when p | f , we see from the multiplication table (Equation (2.2)) that the fiber of a over (p) is
the non-reduced n-dimensional point Spec Z/(p)[x1, x2, . . . , xn−1]/(xixj)1�i,j�n−1, which does
not embed into P1

Z
.

Now suppose that f is primitive and has non-zero discriminant. We can change variables
so that f0 �= 0 and fn �= 0. From the standard open affine cover of P1

Z
, we have that Sf is

covered by affine opens Uy = Spec Z[x/y]/(f/yn) and Ux = Spec Z[y/x]/(f/xn). Since Rf is
a finitely generated Z-module inside Qf (which is a product of number fields), we know that
the class group of Rf is finite. So, let m be such that (I#

f )m is principal. (Note that, by
Proposition A.4, we know that (I#

f ) is an invertible Rf -module.) Let J = θI#
f which is an

integral Rf -ideal. Let Jm = (b) and (I#
f )m = (a), with a, b ∈ Rf . As in the computation in the

proof of Proposition A.4, we see that I#
f + J = (1) and thus there exists α, β ∈ Rf such that

αa + βb = 1. We claim that (Sf )a = Uy as open subschemes of Sf , where (Sf )a denotes the
points of Sf at which a is non-zero.

In the ring Qf we have that aθm = bu, where u is a unit in Rf . In Γ(Uy ∩ Ux,OSf
) ∼= Qf

this translates to a(x/y)m = bu. Thus,

a

(
α +

β

u

(
x

y

)m)
= αa + β

a

u

(
x

y

)m

= αa + βb = 1

in Γ(Uy,OSf
) (which injects into Γ(Uy ∩ Ux,OSf

) ∼= Qf ). Therefore a is not zero at any point
of Uy, and so Uy ⊂ (Sf )a. Suppose that we have a point p �∈ Uy so that y/x is 0 at p. Since in
Γ(Uy ∩ Ux,OSf

) we have a = bu(y/x)m, this is also true in Γ(Ux,OSf
) ∼= Z[y/x]/(f/xn) (which
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injects into Γ(Uy ∩ Ux,OSf
)). Since we have p ∈ Ux, then a is also 0 at p and so p �∈ (Sf )a and

we conclude (Sf )a ⊂ Uy. We have shown (Sf )a = Uy and by switching x and y we see similarly
that (Sf )b = Ux. Since (a, b) is the unit ideal in Γ(Sf ,OSf

) ∼= Rf , and (Sf )a and (Sf )b are
each affine, we have that Sf is affine [11, Exercise 2.17(b)].

We could similarly argue over a localization of Z, and thus localizing away from the Z primes
that divide f , the scheme Sf is the same as Spec Rf . Over the primes of Z that divide f , Sf

has vertical fibers isomorphic to P1
Z/pZ

, but Spec Rf has a non-reduced n-dimensional point.

2.4. Geometric construction by hypercohomology

The description of Rf as the global functions of the subscheme given by f is very satisfying
as a coordinate-free, canonical, and simple description of Rf , but still does not take care of
the form f ≡ 0. It may seem at first that f ≡ 0 is a pesky, uninteresting case, but we shall
eventually want to reduce a form so that its coefficients are in Z/pZ, in which case many of
our non-zero forms will go to 0. In general, we may want to base change, and the formation of
the ring Γ(OSf

) does not commute with base change. For example, a non-zero binary n-ic, all
of whose coefficients are divisible by p, will give a rank n ring Γ(OSf

), but the reduction f̄ of
f to Z/pZ would give Sf̄ = P1

Z/pZ
and thus a ring of global functions that is rank 1 over Z/pZ.

We can, however, make the following construction, which was given for n = 3 by Deligne in
a letter [7] to Gan, Gross, and Savin. On P1

Z
a binary n-ic form f gives O(−n)

f→ O, whose
image is the ideal sheaf of Sf . We can consider O(−n)

f→ O as a complex in degrees −1 and
0, and then take the hypercohomology of this complex:

R = H0Rπ∗ (O(−n)
f−→ O). (2.6)

(Here we are taking the zeroth right hyper-derived functor of the pushforward by π : P1
Z
→

Spec Z on this complex. Alternatively, we push forward the complex in the derived category
and then take H0. We take hypercohomology since we are applying the functor to a complex of
sheaves and not just a single sheaf.) There is a product on the complex O(−n)

f→ O given as
O ⊗O → O by multiplication, O ⊗O(−n) → O(−n) by the O-module action, and O(−n) ⊗
O(−n) → 0. This product is clearly commutative and associative, and induces a product on
R. The map of complexes

O⏐⏐�
O(−n) −−−−→ O

induces Z → R. (Of course, H0Rπ∗(O) is just π∗(O) ∼= Z.) It is easy to see that 1 ∈ H0Rπ∗(O)
acts as the multiplicative identity.

When f �≡ 0, the map O(−n)
f→ O is injective, and thus the complex O(−n)

f→ O is
quasi-isomorphic to O/f(O(−n)) ∼= OSf

(as a chain complex in the zeroth degree). The quasi-
isomorphism also respects the product structure on the complexes. Thus when f �≡ 0, we
have R ∼= π∗(OSf

), and since Spec Z is affine, we can consider π∗(OSf
) simply as a Z-module

isomorphic to Γ(OSf
) ∼= Rf . When f ≡ 0 we have

R = H0Rπ∗(O) ⊕ H1Rπ∗(O(−n)) ∼= Z ⊕ Zn−1

as a Z-module and with multiplication given by (1, 0) acting as the multiplicative identity and
(0, x)(0, y) = 0 for all x, y ∈ Zn−1. This agrees with the definition of R0 given in Section 2.2,
which used the coefficients of f to give a multiplication table for Rf . So we see that this
definition of R is a natural extension to all f of the construction Γ(OSf

) for non-zero f ,
especially since R gives a rank n ring even when f ≡ 0.
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Theorem 2.7. For all binary n-ic forms f, we have

Rf
∼= H0Rπ∗ (O(−n)

f−→ O)

as rings. (Note that Rf is defined in Section 2.2.)

Proof. The proof of Theorem 2.4 shows that Rf
∼= H0Rπ∗ (O(−n)

f→ O) for the uni-
versal form f = f0x

n + f1x
n−1y + . . . + fnyn with coefficients in Z[f0, . . . , fn]. Since both

the construction of Rf from the multiplication table in Section 2.2 and the formation of
H0Rπ∗ (O(−n)

f→ O) commute with base change (as we shall see in Theorem 3.2), and every
form f is a base change of the universal form, the theorem follows.

We have a similar description of the Rf ideal classes (or modules) If k. We can define
Rf -modules for all k ∈ Z:

H0Rπ∗ (O(−n + k)
f−→ O(k)).

(Here, O(k) is in degree 0 in the above complex.) The Rf -module structure on

H0Rπ∗ (O(−n + k)
f−→ O(k))

is given by the following action of the complex O(−n)
f→ O on the complex O(−n + k)

f→
O(k) :

O ⊗O(k) −→ O(k) O ⊗O(−n + k) −→ O(−n + k)
O(−n) ⊗O(k) −→ O(−n + k) O(−n) ⊗O(−n + k) −→ 0,

where all maps are the natural ones.

Theorem 2.8. For all binary n-ic forms f and −1 � k � n − 1, we have

If k
∼= H0Rπ∗ (O(−n + k)

f−→ O(k))

as Rf -modules.

Proof. The proof is the same as that of Theorem 2.7.

We have the following nice corollary of Theorems 2.7 and 2.8.

Corollary 2.9. The ring Rf and the Rf -module If are GL2(Z) invariants of binary n-ic
forms f .

3. Constructing rings and modules from a binary form over an arbitrary base

So far, we have mainly considered binary forms with coefficients in Z. We now develop our
theory over an arbitrary base scheme S. When S = Spec B, we sometimes say we are working
over a base ring B and we replace OS-modules with their corresponding B-modules.

Notation. For an OS-module M , we write M∗ to denote the OS dual HomOS
(M,OS). If

F is a sheaf, we use s ∈ F to denote that s is a global section of F . We use Symn M to denote
the usual quotient of M⊗n, and Symn M to denote the submodule of symmetric elements of
M⊗n. We have (Symn M)∗ ∼= Symn M∗ for locally free OS-modules M .
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A binary n-ic form over S is a pair (f, V ), where V is a locally free OS-module of rank 2 and
f ∈ Symn V . An isomorphism of binary n-ic forms (f, V ) and (f, V ′) is given by an OS-module
isomorphism V ∼= V ′ which takes f to f ′. We call f a binary form when n is clear from context
or not relevant. If V is the free OS-module OSx ⊕OSy, then we call f a free binary form.

Given a binary form f ∈ Symn V over a base scheme S, the form f determines a subscheme
Sf of P(V ) (where we define P(V ) = Proj Sym∗ V ). Let π : P(V ) → S. Let O(k) denote the
usual sheaf on P(V ) and OSf

(k) denote the pullback of O(k) to Sf . Then we can define the
OS-algebra

Rf := H0Rπ∗ (O(−n)
f−→ O), (3.1)

where O(−n)
f→ O is a complex in degrees −1 and 0. (In Section 2.4 this point of view is

worked out in detail over S = Spec Z.) The product of Rf is given by the natural product of
the complex O(−n)

f→ O with itself, and the OS-algebra structure is induced from the map of
O as a complex in degree 0 to the complex O(−n)

f→ O.
When O(−n)

f→ O is injective, we have

Rf = π∗(OSf
),

as in Section 2.4. Similarly, we can define an Rf -module

If k := H0Rπ∗ (O(−n + k)
f−→ O(k)) (3.2)

for all k ∈ Z. Let If
# := If−1 and If := If 1. Clearly Rf and If k are invariant under the

GL(V ) action on forms in Symn V . Again, when O(−n + k)
f→ O(k) is injective, we have

If k = π∗(OSf
(k))

for all k ∈ Z.

Example 3.1. If B = Z ⊕ Z and (fi) = Z ⊕ {0}, then in P1
Z⊕Z

over the first Spec Z the form
f cuts out SpecRp(f), where p(f) is the projection of f onto the first factor of (Z ⊕ Z)[x, y].

Over the second copy of Spec Z, the form f is 0 and cuts out all of P1
Z
. Here O(−n)

f→ O is
not injective because f is a 0 divisor. Thus, the ring Rf := H0Rπ∗(O(−n)

f→ O) is not just
the global functions of Sf , but also has a contribution from ker(O(−n)

f→ O).

Unlike pushing forward OSf
(k) to S, the constructions of Rf and If k for −1 � k � n − 1

commute with base change.

Theorem 3.2. Let f ∈ Symn V be a binary form over a base scheme S. The construction
of Rf and If k for −1 � k � n − 1 commutes with base change. More precisely, let φ : T → S
be a map of schemes. Let φ∗f ∈ Symn φ∗V be the pullback of f . Then the natural map from
cohomology

Rf ⊗OT −→ Rφ∗f

is an isomorphism of OT -algebras. Also, for −1 � k � n − 1, the natural map from cohomology

If ⊗OT −→ Iφ∗f

is an isomorphism of Rφ∗f -modules (where the Rφ∗f -module structure on If ⊗OT comes from
the (Rf ⊗OT )-module structure).
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Proof. The key to this proof is to compute all cohomology of the pushforward of the complex
C(k) : O(−n + k)

f→ O(k). This can be done using the long exact sequence of cohomology
from the short exact sequence of complexes given in Equation (3.6) in the next section. In
particular, C(k) does not have any cohomology in degrees other than 0. Since k � n − 1,
we have that H0Rπ∗(O(−n + k)) = 0 and thus H−1Rπ∗(C(k)) = 0. Since k � −1, we have
that H1Rπ∗(O(k)) = 0 and thus H1Rπ∗(C(k)) = 0. Moreover, in Section 3.1, we see that
H0Rπ∗(C(k)) is locally free. Thus, since all HiRπ∗(C(k)) are flat, by [10, Corollaire 6.9.9],
we have that cohomology and base change commute.

In the case where f is a free form, we could have defined Rf as a free rank n OS-module using
the multiplication table given by Equation (2.2) and If k for −1 � k � n − 1 as a free rank n
OS-module using the action tables for the Equations (2.3) and (2.5) bases. (See Section 2.2
for more details.) Both the constructions from hypercohomology described above and from
the multiplication and action tables commute with base change. Thus, by verification on the
universal form (the proof of Theorem 2.4 works over Z[f0, . . . , fn]) we see, as in Theorem 2.7,
that, for free binary forms and −1 � k � n − 1, these two definitions of Rf and If k agree.

For any l we can also formulate this theory for l-twisted binary forms f ∈ Symn V ⊗
(∧2V )⊗l, where

Rf := H0Rπ∗ (O(−n) ⊗ (π∗ ∧2 V )⊗−l f−→ O), (3.3)

and
If k := H0Rπ∗ (O(−n + k) ⊗ (π∗ ∧2 V )⊗−l f−→ O(k)) (3.4)

or
If

′
k := H0Rπ∗ (O(−n + k) ⊗ (π∗ ∧2 V )

f−→ O(k) ⊗ (π∗ ∧2 V )⊗l+1). (3.5)

By the projection formula, If
′
k = If k ⊗ (∧2V )⊗l+1. By an argument analogous to that of

Theorem 3.2, we find that these constructions also commute with base change for −1 � k �
n − 1. Note that since Symn V ⊗ (∧2V )⊗l ∼= Symn V ∗ ⊗ (∧2V ∗)⊗−n−l (see Lemmas B.3 and
B.4 in the Appendix), the theory of l-twisted binary n-ic forms is equivalent to the theory of
(−n − l)-twisted binary n-ic forms.

3.1. Long exact sequence of cohomology

In this section, we use the long exact sequence of cohomology to find the OS-module structures
of the rings and modules we have constructed, and important relationships between these
OS-module structures. From the short exact sequence of complexes in degrees −1 and 0

O(k)⏐⏐�
O(−n + k)

f−−−−→ O(k)⏐⏐�
O(−n + k)

(3.6)

(where each complex is on a horizontal line), we have the long exact sequence of cohomology

H0Rπ∗O(−n + k) −→ H0Rπ∗O(k) −→ H0Rπ∗(O(−n + k)
f−→ O(k))

−→ H1Rπ∗O (−n + k) −→ H1Rπ∗O(k).

For k � n − 1, we have H0Rπ∗O(−n + k) = 0 and for k � −1, we have H1Rπ∗O(k) = 0. Also,
H0Rπ∗O(k) = Symk V and H1Rπ∗O(−n + k) = (Symn−k−2 V )∗ ⊗ (∧2V )∗. Thus for 1 � k �
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n − 1 and a binary form f ∈ Symn V , we have the exact sequence

0 −→ Symk V −→ If k −→ (Symn−k−2 V )∗ ⊗ (∧2V )∗ −→ 0. (3.7)

Thus, If k has a canonical rank k + 1 OS-module inside of it (coming from the global sections
xk, xk−1y, . . . , yk of O(k)), and a canonical rank n − k − 1 OS-module quotient.

So we see, for example, that as an OS-module

Rf/OS
∼= (Symn−2 V )∗ ⊗ (∧2V )∗.

Note that if we make the corresponding exact sequence for an l-twisted binary form f ∈
Symn V ⊗ (∧2V )⊗l, we have

0 −→ Symk V −→ If k −→ (Symn−k−2 V )∗ ⊗ (∧2V )⊗−l−1 −→ 0 (3.8)

or
0 −→ Symk V ⊗ (∧2V )⊗l+1 −→ If

′
k −→ (Symn−k−2 V )∗ −→ 0. (3.9)

In Section 2.1 we have given a multiplication table for an explicit basis of Rf and an (implicit)
action table for an explicit basis of If k. One naturally wonders how those bases relate to
the exact sequences that we have just found. Consider the universal form f over the base
ring B = Z[f0, . . . , fn]. We can use the concrete construction of Rf and If k in Section 2.1.
If K is the fraction field of B, then the concrete constructions of Rf and If k lie in Qf :=
K[θ]/(f0θ

n + f1θ
n−1 + . . . + fn) and are given by Equations (2.1) and (2.3).

Proposition 3.3. For the universal form f, where V is a free module on x and y, in the
exact sequence of Equation (3.8) or (3.9) (with ∧2V trivialized by the basis element x ∧ y) we
have that

xiyk−i ∈ Symk V is identified with θi ∈ If k for 0 � i � k

and

the dual basis to xn−k−i−1yi−1 ∈ Symn−k−2 V is identified with

ζk+i ∈ If k for 1 � i � n − k − 1.

Proof. For the universal form, the cohomological construction simplifies. We can replace
the complex O(−n + k) → O(k) on P1

B with the single sheaf O(k)/f(O(−n + k)). We can
then replace HiRπ∗ with Hi since the base is affine. The short exact sequence of complexes in
Equation (3.6) then simplifies to the short exact sequence of sheaves

0 −→ O(−n + k)
f−→ O(k) −→ O(k)/f(O(−n + k)) −→ 0,

which gives the same long exact sequence leading to Equation (3.7). The identification of If k
with global sections is at the end of proof of Theorem 2.4, and from that it is easy to see that
the map H0(P1

B ,O(k)) → H0(P1
B ,O(k)/f(O(−n + k))) = If k sends xiyk−i 	→ θi. To compute

the δ map If k → H1(P1
B ,O(−n + k)), we next use Cech cohomology for the usual affine cover

of P1 and the δ map is the snake lemma map between rows of the Cech complexes.
In the notation of Theorem 2.4, the element ζk+i is identified with the global section

zi. The global function zi pulls back to zi ∈ Γ(Ux,O(k)) × Γ(Uy,O(k)), which maps to
f/(xn−k−iyi) ∈ Γ(Ux ∩ Uy,O(k)). This pulls back to 1/(xn−k−iyi) ∈ Γ(Ux ∩ Uy,O(−n + k)),
which in the standard pairing of the cohomology of projective space (for example, in [11, III,
Theorem 5.1]) pairs with xn−k−i−1yi−1 ∈ H0(P1

B ,O(n − k − 2)) ∼= Symn−k−2 V .

Since the ring Rf acts on If k, it is natural to want to understand this action in terms of
the exact sequences of Equation (3.8). We have the following description, which can be proved
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purely formally by the cohomological constructions of everything involved. Alternatively, with
the concrete description of the basis elements in Proposition 3.3, one could prove the following
by computation.

Proposition 3.4. The map Rf/OS ⊗ Symk V → Symn−k−2 V ∗ ⊗ (∧2V )⊗−l−1 given by
the action of Rf on If k and the exact sequence of Equation (3.8) is identified with the
natural map (see Lemma B.2 in the Appendix)

Symn−2 V ∗ ⊗ (∧2V )⊗−l−1 ⊗ Symk V −→ Symn−k−2 V ∗ ⊗ (∧2V )⊗−l−1

under the identification R/OS
∼= Symn−2 V ∗ ⊗ (∧2V )⊗−l−1 of Equation (3.8). The map

Rf/OS ⊗ Symk V ⊗ (∧2V )⊗l+1 → Symn−k−2 V ∗ given by the action of Rf on If
′
k, and the

exact sequence of Equation (3.9) is identified with the natural map (see Lemma B.2 in the
Appendix)

Symn−2 V ∗ ⊗ (∧2V )⊗−l−1 ⊗ Symk V ⊗ (∧2V )⊗l+1 −→ Symn−k−2 V ∗

under the identification R/OS
∼= Symn−2 V ∗ ⊗ (∧2V )⊗−l−1 of Equation (3.8).

3.2. Dual modules

For −1 � k � n − 1 we have a map

If
′
k ⊗ If n−2−k −→ If

′
n−2 −→ OS . (3.10)

The first map is induced from the map from the product of the complexes used to define If
′
k

and If n−2−k to the complex used to define If
′
n−2. The second map comes from Equation (3.9).

Theorem 3.5. The pairing in Equation (3.10) gives an OS-module map

If
′
k −→ If

∗
n−2−k,

and this map is an Rf -module isomorphism.

Proof. We will show that this map is an Rf -module isomorphism by checking on the
universal form. Since all forms are locally a pullback from the universal form and these
constructions commute with base change, the theorem will follow for all forms.

We use the construction of Rf , If
′
k, and If n−2−k in Section 2.1. (Note that for the

universal form, we trivialize all ∧2V with the basis x ∧ y and so If
′
k = If k.) Since the

complex used to define If i is quasi-isomorphic to the sheaf O(i)/f(O(i − n)), we see that
the map If

′
k ⊗ If n−2−k → If

′
n−2 is just the multiplication of global sections of O(k)Sf

and
O(n − 2 − k)Sf

to obtain a global section of O(n − 2)Sf
. This can be realized by multiplication

of elements of the fractional ideals If k, If n−2−k, and If n−2 in Section 2.1.

Lemma 3.6. Consider the OS-module basis

1, θ, . . . , θk, ζk+1 + fk+1, . . . , ζn−1 + fn−1

for If
′
k. For If n−2−k consider the OS-module basis of Equation (2.4), but reverse the order to

obtain

f0θ
n−1 + f1θ

n−2 + . . . + fkθn−k−1, . . . , f0θ
n−k + f1θ

n−k−1, f0θ
n−k−1, θn−2−k, . . . , θ, 1.

These are dual basis with respect to the pairing from Equation (3.10).
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Proof. From Proposition 3.3, we know that the map φ : If
′
n−2 → OS in Equation (3.9)

sends ζn−1 	→ 1 and θi 	→ 0 for 0 � i � n − 2. The proof of this lemma then has four cases.
Case 1: We see that θiθj φ	→ 0 if 0 � i � k and 0 � j � n − 2 − k.
Case 2: We compute the image of (ζi + fi)(f0θ

j + . . . + fj+k+1−nθn−k−1) under φ for k + 1 �
i � n − 1 and n − k − 1 � j � n − 1. We have

(ζi + fi)(f0θ
j + . . . + fj+k+1−nθn−k−1)

= (ζiθ
n−i + fiθ

n−i)(f0θ
j+i−n + . . . + fj+k+1−nθi−k−1)

= (−fi+1θ
n−i−1 − . . . − fn)(f0θ

j+i−n + . . . + fj+k+1−nθi−k−1).

Since n − i − 1 + j + i − n = j − 1 � n − 2, we see that

(ζi + fi)(f0θ
j + . . . + fj+k+1−nθn−k−1)

φ	−→ 0.

Case 3: We compute the image of θi(f0θ
j + . . . + fj+k+1−nθn−k−1) under φ for 0 � i � k

and n − k − 1 � j � n − 1.
If i + j � n − 2, then this maps to 0.
If i + j = n − 1, then this maps to 1.
If i + j � n, then the product is

f0θ
j+i + . . . + fj+k+1−nθn−k−1+i = −fj+k+2−nθn−k−2+i − . . . − fnθi+j−n,

and since n − k − 2 + i � n − 2 it maps to 0.
Case 4: We compute the image of (ζi + fi)θj under φ for k + 1 � i � n − 1 and 0 � j �

n − 2 − k.
If i + j � n − 2, then this maps to 0.
If i + j = n − 1, then this maps to 1.
If i + j � n, then the product is (ζi + fi)θj = −fi+1θ

j−1 − . . . − fnθi+j−n, and since
j − 1 � n − 2 it maps to 0.

Finally, it is easy to see in the universal case that the pairing gives an Rf -module homo-
morphism If

′
k → If

∗
n−2−k, since the pairing factors through multiplication of the fractional

ideal elements.

Corollary 3.7. Let f be an l-twisted binary n-ic form over a base scheme S. Then we
have an isomorphism of Rf -modules

If
′
n−2

∼= HomOS
(Rf ,OS)

given by j 	→ (r 	→ φ(rj)), where φ : If
′
n−2 → OS is the map from Equation (3.9).

4. Main theorem for (−1)-twisted binary forms

In this section, we will see how a binary form is actually equivalent to a certain combination
of the data we have constructed from it. Let f be a (−1)-twisted binary form over a
base scheme S. Let R = Rf , let I = If n−3, and let I → Q be the canonical quotient of
If n−3 from Equation (3.8). So, Q ∼= V ∗. From Proposition 3.4, we know that the map
R/OS ⊗ Symn−3 Q∗ → Q given by the action of R on I and the exact sequence of Equation (3.8)
is identified with the natural map Symn−2 Q ⊗ Symn−3 Q∗ → Q under the identification
R/OS

∼= Symn−2 Q of Equation (3.8).

Definition. A binary n-pair is an OS-algebra R, an R-module I, an exact sequence
0 → Symn−3 Q∗ → I → Q → 0 such that Q is a locally free rank 2 OS-module, and an
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isomorphism R/OS
∼= Symn−2Q that identifies the map R/OS ⊗ Symn−3 Q∗ → Q induced

from the action of R on I with the natural map Symn−2 Q ⊗ Symn−3 Q∗ → Q.

Remark 4. When n = 3, we have that ker(I → Q) ∼= OS , and the map Q ⊗OS → Q given
by the ring action R/OS ⊗ ker(I → Q) → Q is just the natural one. We can tensor the exact
sequence 0 → OS → R → R/OS → 0 with ker(I → Q) to show that R ∼= I as R-modules. We
can conclude that a binary 3-pair is just equivalent to a cubic ring, that is, an OS-algebra R
that is a locally free rank 3 OS-module.

There are two equivalent formulations of the definition of a binary pair that can be useful.

Proposition 4.1. An OS-algebra R and R-module I are in a binary pair with Q a free
OS-module if and only if R has a OS-module basis ζ0 = 1, ζ1, . . . , ζn−1 and I has an OS-module
basis α1, α2, β1, . . . , βn−2 such that

the αi coefficient of ζjβk is

{
1 if i + j + k = n + 1,

0 otherwise.

Proof. If Q is free with basis x, y and dual basis ẋ and ẏ , then we can explicitly calculate
the natural map Symn−2 Q ⊗ Symn−3 Q∗ → Q. Let sym(w) of a word w be the sum of all
distinct permutations of w. We have that

sym(xiyn−2−i) ⊗ ẋj ẏn−3−j 	−→

⎧⎪⎨
⎪⎩

x if i = j + 1,
y if i = j,
0 otherwise.

We have ζj ∈ Symn−2 Q corresponding to sym(xn−j−1yj−1), α1 corresponding to y, α2

corresponding to x, and βk corresponding to ẋk−1ẏn−2−k, and we obtain the proposition.

Proposition 4.2. An OS-algebra R, an R-module I, a locally free rank 2 OS-module Q
that is a quotient of I, and an isomorphism of OS-modules φ : Symn−2 Q ∼= R/OS are in binary
pair if and only if

0 −→ Symn−1 Q −→ Q ⊗ Symn−2 Q −→ (ker(I −→ Q))∗ ⊗ ∧2Q −→ 0
q1q2 . . . qn−1 	−→ q1 ⊗ q2 . . . qn−1 	−→

q ⊗ q1 . . . qn−2 	−→ (k 	−→ q ∧ φ(q1 . . . qn−2) ◦ k)

is an exact sequence, where ◦ denotes the action of R on I followed by the quotient to Q.

Proposition 4.2 follows from the following lemma, proved in Lemma B.5 of the Appendix
(Section B).

Lemma 4.3. If Q is any locally free rank 2 OS-module, then we have the exact sequence

0 −→ Symn−1 Q −→ Q ⊗ Symn−2 Q −→ Symn−3 Q ⊗ ∧2Q −→ 0.
q1q2 . . . qn−1 	−→ q1 ⊗ q2 . . . qn−1 	−→ q2 . . . qn−2 ⊗ (qn−1 ∧ q1)

The following lemma is used to construct a (−1)-twisted binary form from a binary pair,
and is proved in Lemma B.6 of the Appendix (Section B).
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Lemma 4.4. Let R be an OS-algebra, I be an R-module, Q be a locally free rank 2
OS-module quotient of I, and φ be an isomorphism of OS-modules φ : Symn−2 Q ∼= R/OS . If

Symn−1 Q ⊗ ker(I −→ Q) −→ ∧2Q
q1 . . . qn−1 ⊗ k 	−→ q1 ∧ φ(q2 . . . qn−1) ◦ k

is the zero map, then

Symn Q −→ ∧2Q
q1 . . . qn 	−→ q1 ∧ φ(q2 . . . qn−1) ◦ q̃n

is well defined. Here the ◦ denotes the action of R on I followed by the quotient to Q and q̃
denotes a fixed splitting Q → I. In particular, the map Symn Q → ∧2Q does not depend on
the choice of this splitting.

By Proposition 4.2, we see that Symn−1 Q ⊗ ker(I → Q) → ∧2Q is always the zero map for
a binary pair, and thus we can use Lemma 4.4 to construct a (−1)-twisted binary form in
Symn Q∗ ⊗ ∧2Q from a binary pair. We can write the map of Lemma 4.4 as the evaluation

x 	−→ x ∧ φ(xn−2)x

of a degree n map Q → ∧2Q. Note that this coincides with the map x ∧ x2 as described in the
case of binary cubic forms in [1, Footnote 3].

Theorem 4.5. Let (V, f) be a (−1)-twisted binary form and (R, I) be its associated binary
pair. The (−1)-twisted binary form constructed from (R, I) is f ∈ Symn V ⊗ ∧2V .

Proof. First we note that the (−1)-twisted binary form constructed from (R, I) is a global
section of Symn V ⊗ ∧2V . Then we can check the theorem locally on S, so we can assume that
f is a free form. Since f is then a pullback from the universal form, we can just check the
theorem on the universal form f over B = Z[f0, . . . , fn]. Let x, y be the basis of Q ∼= V ∗ and
ẋ, ẏ be a corresponding dual basis.

The (−1)-twisted binary n-ic form associated to our binary n-pair is given by

Symn Q −→ ∧2Q
q1 . . . qn 	−→ q1 ∧ φ(q2 . . . qn−1) ◦ q̃n

.

Thus, for 1 � k � n, we have

sym(xkyn−k) 	−→ x ∧ φ(sym(xk−2yn−k))x + x ∧ φ(sym(xk−1yn−k−1))y

+ y ∧ φ(sym(xk−1yn−k−1))x + y ∧ φ(sym(xkyn−k−2))y
= (ẏ(ζn−k+1x) + ẏ(ζn−ky) − ẋ(ζn−kx) − ẋ(ζn−k−1y)) ⊗ (x ∧ y), (4.1)

where, by convention, sym(xayb) is zero if either a or b is negative and ζi = 0 if i < 1 or
i > n − 1. If K is the fraction field of B, then the concrete constructions of Rf and If n−3 from
Section 2.1 lie in Qf := K[θ]/(f0θ

n + f1θ
n−1 + . . . + fn) and are given by Equations (2.1) and

(2.3). From Proposition 3.3, we know that we can identify x with the image of ζn−2 and y with
the image of ζn−1 in the concrete construction of If n−3. We can further identify 1, θ, . . . , θn−3

with the kernel Symn−3 Q∗ of I → Q. Using the basis ζi of Rf and the basis from Equation (2.3)
for If n−3, we have that the ζn−1 and ζn−2 coordinates of elements in Rf and If n−3 do not
depend on whether they are being taken with respect to the Rf basis or If n−3 basis. We can
thus compute the expressions ẏ(ζn−k+1x), ẏ(ζn−ky), ẋ(ζn−kx), ẋ(ζn−k−1y) from Equation (2.2)
to prove the proposition.
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In fact, we have the following theorem, which shows that (−1)-twisted binary forms exactly
parameterize binary pairs.

Theorem 4.6. For n � 3 we have a bijection between (−1)-twisted binary n-ic forms over
S and binary n-pairs over S, and the bijection commutes with base change in S. In other
words, we have an isomorphism of the moduli stack of (−1)-twisted binary n-ic forms and the
moduli stack of binary n-pairs.

An isomorphism of two (−1)-twisted binary n-ic forms f ∈ Symn V ⊗ ∧2V ∗ and f ′ ∈
Symn V ′ ⊗ ∧2(V ′)∗ is an isomorphism V ∼= V ′ that preserves f . An isomorphism of two
binary n-pairs R, I, Q and R′, I ′, Q′ is given by the isomorphisms R ∼= R′ and I ∼= I ′, and
Q ∼= Q′ that respect the exact sequence for I (and I ′) and the maps R/OS

∼= Symn−2 Q and
R′/OS

∼= Symn−2 Q′.
See [19] for the full story for binary quadratic forms. In the n = 3 case, from Remark 4 we

know that a binary 3-pair is equivalent to a cubic ring, an OS-algebra R such that R is a
locally free rank 3 OS-module. Thus, we obtain the following corollary, given in [7] (see also
[21] for a detailed exposition of this case).

Corollary 4.7. We have a bijection between (−1)-twisted binary cubic forms over S and
cubic rings over S, and the bijection commutes with base change in S. In other words, we have
an isomorphism of the moduli stack of (−1)-twisted binary n-ic forms and the moduli stack of
cubic rings.

To prove Theorem 4.6, we rigidify the moduli stacks, and thus we need to define based
binary pairs.

4.1. Based binary pairs

A based binary pair is a binary pair R, I,Q and a choice of basis x, y of Q such that Q is
the free OS-module on x and y. This gives a natural basis of R/OS as a free rank (n − 1)
OS-module, and thus R is a free rank n OS-module. Let K = (Symn−3 Q)∗ = ker(I → Q), and
so we have a natural basis for K as a free rank n − 2 OS-module. Thus, I is a free rank n
OS-module. However, we do not yet have canonical bases for R and I as OS-modules. We pick
these using certain normalizations.

Let ζi = sym(xn−1−iyi−1) for 1 � i � n − 1 be the given basis of R/OS and let kj for 1 �
j � n − 2 be the given basis of K dual to the basis sym xj−1yn−2−j of Symn−3 Q. Let ẋ, ẏ ∈ Q∗

be a dual basis of x, y. (Recall that sym(w) for a word w is the sum of all distinct permutations
of w.) Thus, from Proposition 4.1,

the image of ζikj in Q is

⎧⎪⎨
⎪⎩

x if i + j = n − 1,
y if i + j = n,
0 otherwise.

(4.2)

Equation (4.2) allows us to choose normalized lifts of x and y to elements of I, which form a
basis along with the given basis of K, and normalized lifts of the ζi to R to form a basis along
with 1. We choose these lifts so that

ẏ(ζix) = 0 for 2 � i � n − 1 (4.3)

by changing the lift x by an appropriate multiple of kn−i. We then specify that

ẋ(ζix) = 0 for 1 � i � n − 1 (4.4)



226 MELANIE MATCHETT WOOD

by changing the lift of ζi by an appropriate multiple of 1. Finally, we specify that

ẏ(ζiy) = 0 for 2 � i � n − 1 (4.5)

by changing the lift of y by an appropriate multiple of kn−i. These specifications determine a
unique lift of x and y to I, and unique lifts of the ζi to R, which we shall refer to now simply
as x, y, and ζi. We now see that with these choices of normalized bases for R and I, we can
determine the action of R and I in terms of a small number of variables, and these variables
will in fact be the coefficients of the binary form associated to this binary pair.

There are only n + 1 coordinates that we have not determined in the maps ζi : I → Q.
Equation (4.2) gives ζi : K → Q. Our choice of normalization gives all but the following. Let
−ai+1 = ẋ(ζiy) for 1 � i � n − 1. Let a0 = ẏ(ζ1x) and a1 = ẏ(ζ1y). These ai specify the map
ζi : I → Q. We have carefully indexed and signed the ai so that we have the following.

Proposition 4.8. The (−1)-twisted binary form associated to the above based binary
pair is

Symn Q −→ ∧2Q
sym(xkyn−k) 	−→ an−kx ∧ y

.

Proof. We use the formula from Equation (4.1).

Moreover, we find that the coefficients of the associated (−1)-twisted binary form determine
the based binary pair.

Proposition 4.9. The maps ζi : R → I and ζi : R → R are determined by the maps
ζi : I → Q and the commutativity relations on the ζi. Each coordinate of the action and
multiplication maps is as a polynomial in the ai with integral coefficients.

Proof. We view each map ζi : R → I as an n by n matrix Zi. We write Zi(a, b) for the a, b
entry of Zi, which is the ka coordinate of ζikb, where by convention kn−1 = x and kn = y. We
let K be the set of all entries of these matrices that are determined by the entries in the last
two rows of the matrices as polynomials in the ai (that is, the maps ζi : I → Q), as well as all
polynomial combinations of the matrix entries which are so determined. We will show that the
systems of equations given by commutativity of the ζi determine all the matrix entries from
the last two rows. So, by definition we have Zi(n − 1, k), Zi(n, k) ∈ K for 1 � i � n − 1 and
1 � k � n.

We have two tools that we use to solve for more and more matrix entries.

Lemma 4.10. We have

Zi(n − 1 − 	, k) − Z�(n − 1 − i, k) ∈ K, for 1 � i � n − 1 and 1 � 	 � n − 1.

Proof. Consider the n − 1st rows (x coordinates) of ZiZ� and Z�Zi. Equating the jth entries
in both these rows gives the lemma, where by convention Zi(0, k) = 0.

Lemma 4.11. We have

Zi(n − 	, k) − Z�(n − i, k) ∈ K, for 1 � 	 � n − 1 and 1 � i � n − 1.
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Proof. Consider the nth rows (y coordinates) of ZiZ� and Z�Zi. Equating the jth entries
in both these rows gives the lemma.

We prove, by induction, that all the entries of Zi are in K for 1 � i � n − 1. We can use
i = 0 as the (trivial) base case. Assuming that all the entries of Zi are in K, we will now show
that the entries of Zi+1 are in K. Using Lemma 4.10, we see that that all matrix entries in the
n − 1 − ith row are in K. (If i = 0 this is from the definition of K.) Using Lemma 4.11, then
we conclude all the entries of Zi+1 are in K, which completes the induction.

This shows the proposition for the maps ζi : R → I. From Equation (4.2), we see that since
n � 3, each Zi has a 1 in a matrix entry for which all zj for j �= i have entry 0. Thus, the action
of R on I gives an injection of R into the space on n by n matrices. To find the ζk coordinate
of ζiζj , we just have to look at the matrix entry of ZiZj , where Zk has a 1 and all Z� for 	 �= k
have a zero. This shows the proposition for the maps ζi : R → I.

Now we prove Theorem 4.6.

Proof. The stack of binary n-pairs is the quotient of the stack of based binary n-pairs by
the GL2 action given by change of the basis for Q. Since a based binary n-pair is given by
a0, . . . , an ∈ OS , and we have one such binary pair for every choice of sections ai (given by
the corresponding binary form), the moduli space of based binary n-pairs is Z[a0, . . . , an], and
there is a universal based binary n-pair.

We have maps between the stack of (−1)-twisted binary n-ic forms and binary n-pairs in both
directions, which lift to the rigidified versions of these stacks, the stacks of corresponding based
objects. Theorem 4.5 shows that the map from forms to pairs and back to forms is the identity.
We will show that the other composition of these constructions is the identity by verifying
it on the rigidified stacks. If we start with the universal based binary n-pair, Proposition 4.8
shows that the associated form is the universal binary n-ic form. From the universal binary
n-ic form, we construct some based binary n-pair (R, I), and Proposition 4.9 shows that (R, I)
is determined from the binary form constructed from it — which is just the universal binary
form (since we know going from forms to pairs to forms is the identity). Since the universal
based binary n-pair and (R, I) both give the same form, by Proposition 4.9 they are the same.
Thus, we have proved there is an isomorphism of the moduli stack of (−1)-twisted binary n-ic
forms and the moduli stack of binary n-pairs.

We could have done all the work in this section with If 1, the dual of If
′
n−3, and considered

analogs of binary pairs where the conditions on the module would be OS-dual to the conditions
on I in a binary pair. It turns out that some of the constructions are more natural when working
with If

′
n−3 and binary pairs, so we have used that version in this exposition.

One can prove analogs of Theorem 4.6 for all l-twisted binary forms. We define a
k-twisted binary n-pair as an OS-algebra R, an R-module I, an exact sequence 0 →
Symn−3 Q∗ ⊗ (∧2Q)⊗−k → I → Q → 0 such that Q is a locally free rank 2 OS-module, and
an isomorphism R/OS

∼= Symn−2 Q ⊗ (∧2Q)⊗k that identifies the map R/OS ⊗ Symn−3 Q∗ ⊗
(∧2Q)⊗−k → Q induced from the action of R on I with the natural map Symn−2 Q ⊗
(∧2Q)⊗k ⊗ Symn−3 Q∗ ⊗ (∧2Q)⊗−k → Q. Given an l-twisted binary n-ic form, we have an
(l + 1)-twisted binary pair from Rf , If

′
n−3, and the exact sequence from Equation (3.9).

For example, in a k-twisted binary 3-pair we can see that I ∼= R ⊗ ∧2Q⊗−k, by the same
argument that we used to see that I was a principal R-module in a binary 3-pair. So, we see
that I is determined uniquely by R and Q. However, since we have that R/OS

∼= Q ⊗ (∧2Q)⊗k,
we see that not all cubic algebras will appear as k-twisted binary 3-pairs.
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5. Further questions

For simplicity, we ask further questions over the base Z. One naturally wonders which rank
n rings appear in a binary pair. In other words, which rank n rings have modules satisfying
the conditions of a binary pair? When n = 3, we saw that the answer is all cubic rings, and
each has a unique module and exact sequence that makes a binary pair. For n = 4, there is
another characterization of the answer. In [18] it is shown that the quartic rings associated
to binary quartic forms are exactly the quartic rings with monogenic cubic resolvents. The
cubic resolvent is a certain integral model of the classical cubic resolvent field. Are there such
connections with resolvents for higher n?

Simon [14] asks which maximal orders are constructed from binary n-ic forms. He defines
the index of a form to be the index of its ring in the maximal order. He begins a program
to compute all forms with a given index. For example, in the quartic case he uses elliptic
curves to compute the forms of index 1 and a certain I and J (GL2(Z) invariants of a binary
quartic form). Simon also shows that there are no index 1-forms with a root generating a cyclic
extension of prime degree at least 5. In general, it would be very interesting to understand
which maximal orders are associated to binary forms.

Appendix A. Verifications of Z basis of Ik
f

Proposition A.1. For f with f0 �= 0 and 1 � k � n − 1, the Rf module Ik
f is a free rank

n Z-module on the basis given in Equation 2.3.

Lemma A.2. We have

Rfθk ⊂ 〈Rf , θ, θ2, . . . , θk〉Z

for all k � 1.

Proof of Lemma A.2. We see that

ζiθ
k = f0θ

k+i + . . . + fi−1θ
k+1 if k + i � n − 1

and

ζiθ
k = θk+i−n(f0θ

n + . . . + fi−1θ
n−i+1) if k + i � n

= −θk+i−n(fiθ
n−i + . . . + fn)

= −(fiθ
k + . . . + fnθk+i−n).

Proof of Proposition A.1. So, as a Z-module Ik
f is generated by 1, θ, . . . , θk, ζk+1, . . . , ζn−1

for k � 1. If k � n − 1, then since f0 �= 0, we have that 1, θ, . . . , θk, ζk+1, . . . , ζn−1 generate a
free Z-module, and thus are a Z-module basis for Ik

f .

Proposition A.3. The Z-module I#
f defined by Equation (2.5) is an ideal.

Proof. Let J = θI#
f = 〈ζ1, ζ2, . . . , ζn−1,−fn〉Z. From the multiplication table given in

Equation (2.2), we see that 〈ζ1, . . . , ζn−1〉Z · 〈ζ1, . . . , ζn−1〉Z ⊂ J . Thus, RfJ ⊂ J and so J and
I#
f are ideals of Rf .
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Proposition A.4. Let f be a non-zero binary n-ic form. Then the fractional ideal If

is invertible if and only if the form f is primitive. Also, the fractional ideal I#
f is invertible

if and only if the form f is primitive. We always have that I#
f = (Rf : If ), where (A : B) =

{x ∈ Qf |xB ⊂ A}. In the case where f is primitive, I−1
f = I#

f .

Proof. First, we act by GL2(Z) so that we may assume f0 �= 0. Since I#
f ⊂ Rf and θI#

f =
〈ζ1, ζ2, . . . , ζn−1,−fn〉Z ⊂ Rf , we have IfI#

f ⊂ Rf . More specifically, we see that

IfI#
f = 〈f0, ζ1 + f1, . . . , ζn−1 + fn−1, ζ1, ζ2, . . . , ζn−1,−fn〉Z

= 〈f0, f1, . . . , fn, ζ1, ζ2, . . . , ζn−1〉Z,

which is equal to Rf if and only if the form f is primitive.
Let x ∈ (Rf : If ). Since 1 ∈ If , we have x ∈ Rf . Write x = x0 +

∑n−1
i=0 xi(ζi + fi), where

xi ∈ Z. Also θx ∈ Rf , and θx = x0θ +
∑n−1

i=0 xiζi+1. Thus f0 | x0, which implies x ∈ I#
f . We

conclude I#
f = (Rf : If ).

Suppose that If is invertible. Then its inverse is (Rf : If ) = I#
f , which implies IfI#

f = Rf

and the form f is primitive. Suppose that I#
f is invertible, then the norm of IfI#

f is the product
of the norms of If and I#

f , which is 1. Since IfI#
f ⊂ Rf , we have that IfI#

f = Rf and the form
f is primitive.

Appendix B. Maps between locally free OS-modules

Let S be a scheme. In this appendix, we give several basic facts about maps between locally
free OS-modules.

Lemma B.1. Let V be a locally free OS module. We have (Symn V )∗ ∼= Symn V ∗.

Lemma B.2. Let V be a locally free OS module. Inside of V ⊗a+b the submodule Syma+b V
is a submodule of Syma V ⊗ Symb V . Thus, we have a natural map

Syma+b V −→ Syma V ⊗ Symb V,

which is injective.

Lemma B.3. If L is a locally free rank 1 OS-module and V is a locally free rank n
OS-module, then Symk(V ⊗ L) ∼= Symk V ⊗ L⊗k.

Lemma B.4. If V is a locally free OS-module of rank 2, then V ⊗ ∧2V ∗ ∼= V ∗.

Lemma B.5. If Q is any locally free rank 2 OS-module, we have the exact sequence

0 −→ Symn−1 Q −→ Q ⊗ Symn−2 Q −→ Symn−3 Q ⊗ ∧2Q −→ 0.
q1q2 . . . qn−1 	−→ q1 ⊗ q2 . . . qn−1 	−→ q2 . . . qn−2 ⊗ (qn−1 ∧ q1)

Proof. We can check that this sequence is exact and thus on free Q generated by x and y.
For a word w in x and y, let sym(w) denote the sum of all distinct permutations of w. Then
a basis for Symn−1 Q is αk = sym(xkyn−1−k) for 0 � k � n − 1. A basis for Q ⊗ Symn−2 Q is
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given by

β0 = y ⊗ sym(yn−2),

βk = x ⊗ sym(xk−1yn−1−k) + y ⊗ sym(xkyn−2−k) for 1 � k � n − 2,

βn−1 = x ⊗ sym(xn−2),

γ� = x ⊗ sym(x�yn−2−�) for 0 � 	 � n − 3.

We see that in the sequence of the proposition, αi 	→ βi and the γ� map to a basis of
Symn−3 Q ⊗ ∧2Q.

Lemma B.6. Let R be an OS-algebra, I be an R-module, Q be a locally free rank 2
OS-module quotient of I, and φ be an isomorphism of OS-modules φ : Symn−2 Q ∼= R/OS . If

Symn−1 Q ⊗ ker(I → Q) −→ ∧2Q
q1 . . . qn−1 ⊗ k 	−→ q1 ∧ φ(q2 . . . qn−1) ◦ k

is the zero map, then

Symn Q −→ ∧2Q
q1 . . . qn 	−→ q1 ∧ φ(q2 . . . qn−1) ◦ q̃n

is well defined. Here the ◦ denotes the action of R on I followed by the quotient to Q and q̃
denotes a fixed splitting Q → I. In particular, the map Symn Q → ∧2Q does not depend on
the choice of this splitting.

Proof. Since Symn−1 Q ⊂ Q ⊗ Symn−2 Q as submodules of Q⊗n (see Lemma B.2), the
first map Symn−1 Q ⊗ ker(I → Q) → ∧2Q is well defined. For a given choice of splittings,
Symn−2 Q → R and Q → I, consider the following commutative diagram:

Symn Q

������������������

�� �����������������

Symn−2 Q ⊗ Sym2 Q

��

Q ⊗ Symn−2 Q ⊗ Q

��

Symn−1 Q ⊗ Q

��
R ⊗ Sym2 Q

�� ������������������
Symn−1 Q ⊗ I

��
Q ⊗ R ⊗ Q �� Q ⊗ R ⊗ I

��

Q ⊗ Symn−2 Q ⊗ I��

Q ⊗ Q

��
∧2Q

To investigate the effect of a different splitting Q → I on the map Symn Q → ∧2Q, we take
the route on the right-hand side of the diagram. The difference between the composite maps
from two different splittings will land in the submodule Symn−1 Q ⊗ ker(I → Q) of the Symn−1

Q ⊗ I term, and thus be zero in the final map by the hypothesis of the lemma.
To investigate the effect of a different splitting Symn−2 Q ∼= R/OS → R on the map

Symn Q → ∧2Q, we take the route on the left-hand side of the diagram. The difference
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between the maps from the different splittings will land in the submodule OS ⊗ Sym2 Q of the
R ⊗ Sym2 Q term, and it is easy to see that the difference will be zero in the composite map.
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