Basic Algebra |

Second Edition

NATHAN JACOBSON

YALE UNIVERSITY

o

W. H. FREEMAN AND COMPANY
New York



UNIVERSITY OF N.S.W.

15 0CT 1986
LIBRARY

Library of Congress Cataloging in Publication Data

Jacobson, Nathan, 1910—
Basic algebra.

Includes index.

1. Algebra. 1. Title.
QA154.2.J32 1985 512.9 84-25836
ISBN 0-7167-1480-9 (v. 1)

Copyright © 1985 by W. H. Freeman and Company

No part of this book may be reproduced

by any mechanical, photographic, or electronic process,
or in the form of a phonographic recording,

nor may it be stored in a retrieval system, transmitted,
or otherwise copied for public or private use,

without written permission from the publisher.

Printed in the United States of America

1234567890 MP 3210898765

To Florie



Contents

Preface xi
Preface to the First Edition xiii

INTRODUCTION: CONCEPTS FROM SET THEORY.
THE INTEGERS 1

0.1 The power set of a set 3

0.2 The Cartesian product set. Maps 4

* 03 Equivalence relations. Factoring a map through an
equivalence relation 10

0.4 The natural numbers 15

0.5 The number system Z of integers 19

0.6 Some basic arithmetic facts about Z 22

0.7 A word on cardinal numbers 24

MONOIDS AND GROUPS 26

1.1 Monoids of transformations and abstract monoids 28
1.2 Groups of transformations and abstract groups 31
1.3 Isomorphism. Cayley’s theorem 36



viii Contents Contents

14 Generalized associativity. Commutativity 39 4 GALOIS THEQORY OF EQUATIONS 210

1.5 Submonoids and subgroups generated by a subset. Cyclic groups 42

1.6 Cycle decomposition of permutations 438 4.1 Preliminary results, some old, some new 213

1.7 Orbits. Cosets of a subgroup 51 42 Construction with straight-edge and compass 216

1.8 Congruences. Quotient monoids and groups 54 4.3 Splitting field of a polynomial 224

1.9 Homomorphisms 58 : 44 Multiple roots 229

1.10  Subgroups of a homomorphic image. 4.5 The Galois group. The fundamental Galois pairing 234
Two basic isomorphism theorems 64 4.6 Some results on finite groups 244

1.11  Free objects. Generators and relations 67 4.7 Galois’ criterion for solvability by radicals 251

112 Groups acting on sets 71 4.8 The Galois group as permutation group of the roots 256

1.13  Sylow’s theorems 79 , 49 The general equation of the nth degree 262

410  Equations with rational coefficients and symmetric group as
Galois group 267
411 Constructible regular n-gons 271
412 Transcendence of e and n. The Lindemann-Weierstrass theorem 277
4.13  Finite fields 287
4.14  Special bases for finite dimensional extensions fields = 290
4.15  Traces and norms 296
416 Mod p reduction 301

2 RINGS 85

2.1 Definition and elementary properties 86
22 Types of rings 90

23 Matrix rings 92

24 Quaternions 98

2.5 Ideals, quotient rings 101

26 Ideals and quotient rings for Z 103 5 REAL POLYNOMIAL EQUATIONS AND INEQUALITIES 306
2.7 Homomorphisms of rings. Basic theorems 106

28 Anti-isomorphisms 111 _ ‘ ) 5.1 Ordered fields. Real closed fields 307

29 Field of fractions of a commutative domain 115 5.2 Starm’s theorem 311

210 Polynomial rings 119 o o 53  Formalized Euclidean algorithm and Sturm’s theorem 316

2.11  Some properties of polynomial rings and applications 127 5.4 Elimination procedures. Resultants 322

212 Polynomial functions 134 55  Decision method for an algebraic curve 327

2.13  Symmetric polynomials 138 5.6 Tarski’s theorem 335

2.14  Factorial monoids and rings 140
2.15  Principal ideal domains and Euclidean domains 147 -
216  Polynomial extensions of factorial domains 151 6 METRIC VECTOR SPACES AND THE CLASSICAL GROUPS 342

2.17  “Rngs” (rings without unit) 155

6.1 Linear functions and bilinear forms 343
6.2 Alternate forms 349
6.3 Quadratic forms and symmetric bilinear forms 354

3 MODULES OVER A PRINCIPAL IDEAL DOMAIN 157 6.4 Basic concepts of orthogonal geometry 361

3.1  Ring of endomorphisms of an abelian group 158 6.5  Witt's cancellation theorem 367
3.2 Left and right modules 163 6.6 The theorem of Cartan-Dieudonné 371

33  Fundamental concepts and results 166 6.7 Structure of the general linear group GL,(F) 375
34  Free modules and matrices 170 6.8  Structure of orthogonal groups 382

35 Direct sums of modules 175 6.9 Symplectic geometry. The symplecti'c group 391 .

3.6  Finitely generated modules over a p.i.d. Preliminary results 179 610 Orders of orthogonal and symplectic groups over a finite field 398
3.7  Equivalence of matrices with entries in a pid. 181 ' 6.11  Postscript on hermitian forms and unitary geometry 401

38 Structure theorem for finitely generated modules over a p.id. 187

39 Torsion modules, primary components, invariance theorem 189 7 ALGEBRAS OVER A FIELD 405

3.10  Applications to abelian groups and to linear transformations 194

311  The ring of endomorphisms of a finitely generated module 71 Definition and examples of associative algebras 406

over a pid. 204 7.2 Exterior algebras. Application to determinants 411



7.3

74
7.5
7.6
1.1

Contents

Regular matrix representations of associative algebras.
Norms and traces 422

Change of base field. Transitivity of trace and norm 426

Non-associative algebras. Lie and Jordan algebras 430

Hurwitz’ problem. Composition algebras 438

Frobenius’ and Wedderburn’s theorems on associative
division algebras 451

LATTICES AND BOOLEAN ALGEBRAS 455

8.1
82
83
84

85
8.6

Partially ordered sets and lattices | 456

Distributivity and modularity 461

The theorem of Jordan-Holder-Dedekind 466

The lattice of subspaces of a vector space.
Fundamental theorem of projective geometry 468

Boolean algebras 474

The Mébius function of a partially ordered set 480

Appendix 489

Index 493

Preface

Since the publication of Basic Algebra I in 1974, a number of teachers and stu-
dents of the text have communicated to the author corrections and suggestions
for improvements as well as additional exercises. Many of these have been in-
corporated in this new edition. Especially noteworthy were the suggestions
sent by Mr. Huah Chu of National Taiwan University, Professor Marvin J.
Greenberg of the University of California at Santa Cruz, Professor J. D. Reid of
Wesleyan University, Tsuneo Tamagawa of Yale University, and Professor F. D.
Veldkamp of the University of Utrecht. We are grateful to these people and
others who encouraged us to believe that we were on the right track in adopting
the point of view taken in Basic Algebra I.

Two important changes occur in the chapter on Galois theory, Chapter 4. The
first is a completely rewritten section on finite fields (section 4.13). The new ver-
sion spells out the principal results in the form of formal statements of theorems.
In the first edition these results were buried in the account, which was a tour de
force of brevity. In addition, we have incorporated in the text the proof of Gauss’
formula for the number N(n, q) of monic irreducible polynomials of degree n
in a finite field of g elements. In the first edition this formula appeared in an
exercise (Exercise 20, p. 145). This has now been altered to ask for N(2, gq) and



xii Preface

N(3, g) only. The second important change in Chapter 4 is the addition of sec-
tion 4.16, “Mod p Reduction,” which gives a proof due to John Tate of a theorem
of Dedekind’s on the existence of certain cycles in the Galois permutation group
of the roots of an irreducible monic polynomial f(x) with integer coefficients
that can be deduced from the factorization of f(x) modulo a prime p. A number of
interesting applications of this theorem are given in the exercises at the end of
the section.

In Chapter 5 we have given a new proof of the basic elimination theorem
(Theorem 5.6). The new proof is completely elementary, and is independent of
the formal methods developed in Chapter 5 for the proof of Tariski’s theorem
on elimination of quantifiers for real closed fields. Our purpose in giving the
new proof is that Theorem 5.6 serves as the main step in the proof of Hilbert’s
Nullstellensatz given on pp. 424—426 of Basic Algebra I1. The change has been
made for the convenience of readers who do not wish to familiarize themselves
with the formal methods developed in Chapter 5.

At the end of the book we have added an appendix entitled “Some Topics for
Independent Study,” which lists 10 such topics. There is a brief description of
each, together with some references to the literature. While some of these might
have been treated as integral parts of the text, we feel that students will benefit
more by pursuing them on their own.

The items listed account for approximately 10 pages of added text. The remain-
ing 15 or so pages added in this edition can be accounted for by local improve-
ments in the exposition and additional exercises.

The text of the second edition has been completely reset, which presented the
chore of proofreading a lengthy manuscript. This arduous task was assumed
largely by the following individuals: Huah Chu (mentioned above), Jone-Wen
Cohn of Shanghai Normal University, Florence D. Jacobson (“Florie,” to whom
the book is dedicated), and James D. Reid (also mentioned above). We are deeply
indebted to them for their help.

Nathan Jacobson
November 1, 1984

Hamden, Connecticut

Preface to the First Edition

It is more than twenty years since the author began the project of writing the
three volumes of Lectures in Abstract Algebra. The first and second of these
books appeared in 1951 and 1953 respectively, the third in 1964. In the period
which has intervened since this work was conceived—around 1950-—substantial
progress in algebra has occurred even at the level of these texts. This has taken
the form first of all of the introduction of some basic new ideas. Notable ex-
amples are the development of category theory, which provides a useful frame-
work for a large part of mathematics, homological algebra, and applications
of model theory to algebra. Perhaps even more striking than the advent of these
ideas has been the acceptance of the axiomatic conceptual method of abstract
algebra and its pervading influence throughout mathematics. It is now taken
for granted that the methodology of algebra is an essential tool in mathematics.
On the other hand, in recent research one can observe a return to the challenge
presented by fairly concrete problems, many of which require for their solution
tools of considerable technical complexity.

Another striking change that has taken place during the past twenty years—
especially since the Soviet Union startled the world by orbiting its “sputniks”™—
has been the upgrading of training in mathematics in elementary and secondary
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schools. (Although there has recently been some regression in this process, it
is to be hoped that this will turn out to be only a temporary aberration.) The

upgrading of school mathematics has had as a corollary a corresponding up-

grading of college mathematics. A notable instance of this is the early study
of linear algebra, with a view of providing the proper background for the study
of multivariable calculus as well as for applications to other fields. Moreover,
courses in linear algebra are quite often followed immediately by courses in
“abstract” algebra, and so the type of material which twenty years ago was
taught at the graduate level is now presented to students with comparatively
little experience in mathematics.

The present book, Basic Algebra I, and the forthcoming Basic Algebra 1T were
originally envisioned as new editions of our Lectures. However, as we began
to think about the task at hand, particularly that of taking into account the
changed curricula in our undergraduate and graduate schools, we decided to
organize the material in a manner quite different from that of our earlier books:
a separation into two levels of abstraction, the first—treated in this volume—to
encompass those parts of algebra which can be most readily appreciated by the
beginning student. Much of the material which we present here has a classical
flavor. It is hoped that this will foster an appreciation of the great contributions
of the past and especially of the mathematics of the nineteenth century. In our
treatment we have tried to make use of the most efficient modern tools. This has
necessitated the development of a substantial body of foundational material of
the sort that has become standard in text books on abstract algebra. However,
we have tried throughout to bring to the fore well-defined objectives which we
believe will prove appealing even to a student with little background in algebra.
On the other hand, the topics considered are probed to a depth that often
goes considerably beyond what is customary, and this will at times be quite
demanding of talent and concentration on the part of the student. In our second
volume we plan to follow a more traditional course in presenting material of a
more abstract and sophisticated nature. It is hoped that after the study of the
first volume a student will have achieved a level of maturity that will enable
him to take in stride the level of abstration of the second volume.

We shall now give a brief indication of the contents and organization of Basic
Algebra 1. The Introduction, on set theory and the number system of the in-
tegers, includes material that will be familiar to most readers: the algebra of
sets, definition of maps, and mathematical induction. Less familiar, and of para-
mount importance for subsequent developments, are the concepts of an equiv-
alence relation and quotient sets defined by such relations. We introduce also
commutative diagrams and the factorization of a map through an equivalence
relatio_p. The fundamental theorem of arithmetic is proved, and a proof of the
Recursion Theorem (or definition by induction) is included.

preface XV

Chapter 1 deals with monoids and groups. Our starting point is the concept
of a monoid of transformations and of a group of transformations. In this re-
spect we follow the historical development of the subject. The concept of homo-
morphism appears fairly late in our discussion, after the reader has had a chance
to absorb some of the simpler and more intuitive ideas. However, once the
concept of homomorphism has been introduced, its most important ramifica-
tions (the fundamental isomorphism theorems and the correspondence between
subgroups of a homomorphic image and subgroups containing the kernel) are
developed in considerable detail. The concept of a group acting on a set, which
now plays such an important role in geometry, is introduced and illustrated
with many examples. This leads to a method of enumeration for finite groups,
a special case of which is contained in the class equation. These results are ap-
plied to derive the Sylow theorems, which constitute the last topic of Chapter 1.

The first part of Chapter 2 repeats in the context of rings many of the ideas
that have been developed in the first chapter. Following this, various construc-
tions of new rings from given ones are considered: rings of matrices, fields of
fractions of commutative domains, polynomial rings. The last part of the chap-
ter is devoted to the elementary factorization theory of commutative monoids
with cancellation property and of commutative domains.

The main objective in Chapter 3 is the structure theory of finitely generated
modules over a principal ideal domain and its applications to abelian groups
and canonical forms of matrices. Of course, before this can be achieved it is
necessary to introduce the standard definitions and concepts on modules. The
analogy with the concept of a group acting on a set is stressed, as is the idea
that the concept of a module is a natural generalization of the familiar notion
of a vector space. The chapter concludes with theorems on the ring of endo-
morphisms of a finitely generated module over a principal ideal domain, which
generalize classical results of Frobenius on the ring of matrices commuting with
a given matrix.

Chapter 4 deals almost exclusively with the ramifications of two classical
problems: solvability of equations by radicals and constructions with straight-
edge and compass. The former is by far the more difficult of the two. The tool
which was forged by Galois for handling this, the correspondence between sub-
fields of the splitting field of a separable polynomial and subgroups of the group
of automorphisms, has attained central importance in algebra and number the-
ory. However, we believe that at this stage it is more effective to concentrate on
the problems which gave the original impetus to Galois’ theory and to treat
these in a thoroughgoing manner. The theory of finite groups which was ini-
tiated in Chapter 1 is amplified here by the inclusion of the results needed to
establish Galois’ criterion for solvability of an equation by radicals. We have
included also a proof of the transcendence of 7 since this is needed to prove the
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impossibility of “squaring the circle” by straight-edge and compass. (In fact,
since it requires very little additional effort, the more general theorem of
Lindemann and Weierstrass on algebraic independence of exponentials has
been proved.) At the end of the chapter we have undertaken to round out
the Galois theory by applying it to derive the main results on finite fields and
to prove the theorems on primitive elements and normal bases as well as the
fundamental theorems on norms and traces.

Chapter 5 continues the study of polynomial equations. We now operate in
a real closed field——an algebraic generalization of the field of real numbers. We
prove a generalization of the “fundamental theorem of algebra™: the algebraic
closure of R+/(—1) for R any real closed field. We then derive Sturm’s theorem,
which gives a constructive method of determining the number of roots in R of
a polynomial equation in one unknown with coefficients in R. The last part of
the chapter is devoted to the study of systems of polynomial equations and
inequations in several unknowns. We first treat the purely algebraic problem
of elimination of unknowns in such a system and then establish a far-reaching
generalization of Sturm’s theorem that is due to Tarski. Throughout this chap-
ter the emphasis is on constructive methods.

The first part of Chapter 6 covers the basic theory of quadratic forms and
alternate forms over an arbitrary field. This includes Sylvester’s theorem on
the inertial index and its generalization that derives from Witt’s cancellation
theorem. The important theorem of Cartan-Dieudonné on the generation of the
orthogonal group by symmetries is proved. The second part of the chapter is
concerned with the structure theory of the so-called classical groups: the full
linear group, the orthogonal group, and the sympletic group. In this analysis
we have employed a uniform method applicable to all three types of groups.
This method was originated by Iwasawa for the full linear group and was ex-
tended to orthogonal groups by Tamagawa. The results provide some impor-
tant classes of simple groups whose orders for finite fields are easy to compute.

Chapter 7 gives an introduction to the theory of algebras, both associative
and non-associative. An important topic in the associative theory we consider
is the exterior algebra of a vector space. This algebra plays an important role
in geometry, and is applied here to derive the main theorems on determinants.
We define also the regular representation, trace, and norm of an associative
algebra, and prove a general theorem on transitivity of these functions. For non-
associative algebras we give definitions and examples of the most important
classes of non-associative algebras. We follow this with a completely elementary
proof of the beautiful theorem on composition of quadratic forms which is due
to Hurwitz, and we conclude the chapter with proofs of Frobenius’ theorem on
division algebras over the field of real numbers and Wedderburn’s theorem on
finite division algebras.

Preface Xvii

Chapter 8 provides a brief introduction to lattices and Boolean algebras. The
main topics treated are the Jordan-Holder theorem on semi-modular lattices;
the so-called “fundamental theorem of projective geometry”; Stone’s theorem
on the equivalence of the concepts of Boolean algebras and Boolean rings, that
is, rings all of whose elements are idempotent; and finally the M6bius function
of a partially ordered set.

Basic Algebra 1 is intended to serve as a text for a first course in algebra
beyond linear algebra. It contains considerably more material than can be cov-
ered in a year’s course. Based on our own recent experience with earlier versions
of the text, we offer the following suggestions on what might be covered in a
year’s course divided into either two semesters or three quarters. We have found
it possible to cover the Introduction (treated lightly) and nearly all the material
of Chapters 1-3 in one semester. We found it necessary to omit the proof of the
Recursion Theorem in the Introduction, the section on free groups in Chapter
1, the last section (on “rngs”) in Chapter 2, and the last section of Chapter 3.
Chapter 4, Galois theory, is an excellent starting point for a second semester’s
course. In view of the richness of this material not much time will remain in
a semester’s course for other topics. If one makes some omissions in Chapter 4,
for example, the proof of the theorem of Lindemann-Weierstrass, one is likely
to have several weeks left after the completion of this material. A number of
alternatives for completing the semester may be considered. One possibility
would be to pass from the study of equations in one unknown to systems of
polynomial equations in several unknowns. One aspect of this is presented in
Chapter 5. A part of this chapter would certainly fit in well with Chapter 4. On
the other hand, there is something to be said for making an abrupt change in
theme. One possibility would be to take up the chapter on algebras. Another
would be to study a part of the chapter on quadratic forms and the classical
groups. Still another would be to study the last chapter, on lattices and Boolean
algebras. '

A program for a course for three quarters might run as follows: Introduction
and Chapters 1 and 2 for a first quarter; Chapter 3 and a substantial part of
Chapter 6 for a second quarter. This will require a bit of filling in of the field
theory from Chapter 4 which is needed for Chapter 6. One could conclude with
a third quarter’s course on Chapter 4, the Galois theory.

It is hoped that a student will round out formal courses based on the text by
independent reading of the omitted material. Also we feel that quite a few topics
lend themselves to programs of supervised independent study.

We are greatly indebted to a number of friends and colleagues for reading
portions of the penultimate version of the text and offering valuable suggestions
which were taken into account in preparing the final version. Walter Feit and
Richard Lyons suggested a number of exercises in group theory; Abraham
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Robinson, Tsuneo Tamagawa, and Neil White have read parts of the book on
which they are experts (Chapters 5, 6, and 8 respectively) and detected some
flaws which we had not noticed. George Seligman has read the entire manu-
script and suggested some substantial improvements. S. Robert Gordon, James
Hurley, Florence Jacobson, and David Rush have used parts of the earlier text
in courses of a term or more, and have called our attention to numerous places
where improvements in the exposition could be made.

A number of people have played an important role in the production of the
book, among them we mention especially Florence Jacobson and Jerome Katz,
who have been of great assistance in the tedious task of proofreading. Finally,
we must add a special word for Mary Scheller, who cheerfully typed the entire
manuscript as well as the preliminary version of about the same length.

We are deeply indebted to the individuals we have mentioned—and to
others—and we take this opportunity to offer our sincere appreciation and
thanks.

Hamden, Connecticut Nathan Jacobson

Basic Algebra |



INTRODUCTION

Concepts from Set Theory.
The Integers

The main purpose of this volume is to provide an introduction to the basic
structures of algebra: groups, rings, fields, modules, algebras, and lattices—
concepts that give a natural setting for a large body of algebra, including clas-
sical algebra. It is noteworthy that many of these concepts have arisen either
to solve concrete problems in geometry, number theory, or the theory of alge-
braic equations, or to afford a better insight into existing solutions of such
problems. A good example of the interplay between abstract theory and con-
crete problems can be seen in the Galois theory, which was created by Galois
to answer a concrete question: “What polynomial equations in one unknown
have solutions expressible in terms of the given coefficients by rational opera-
tions and extraction of roots?” To solve this we must first have a precise for-
mulation of the problem, and this requires the concepts of field, extension field,
and splitting field of a polynomial. To understand Galois’ solution of the prob-
lem of algebraic equations we require the notion of a group and properties of
solvable groups. In Galois’ theory the results were stated in terms of groups of
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permutations of the roots. Subsequently, a much deeper understanding of what
was involved emerged in passing from permutations of the roots to the more
abstract notion of the group of automorphisms of an extension field. All of this
will be discussed fully in Chapter 4.

Of course, once the machinery has been developed for treating one set of
problems, it is likely to be useful in other circumstances, and, moreover, it
generates new problems that appear interesting in their own right.

Throughout this presentation we shall seek to emphasize the relevance of the
general theory in solving interesting problems, in particular, problems of clas-
sical origin. This will necessitate developing the theory beyond the foundational
level to get at some of the interesting theorems. Occasionally, we shall find it
convenient to develop some of the applications in exercises, For this reason, as
well as others, the working of a substantial number of the exercises is essential
for a thorough understanding of the material.

The basic ingredients of the structures we shall study are sets and mappings
(or, as we shall call them in this book, maps). It is probable that the reader
already has an adequate knowledge of the set theoretic background that is
required. Nevertheless, for the purpose of fixing the notations and terminology,
and to highlight the special aspects of set theory that will be fundamental for us,
it seems desirable to indicate briefly some of the elements of set theory.! From
the point of view of what follows the ideas that need to be stressed concern
equivalence relations and the factorization of a map through an equivalence
relation. These will reappear in a multitude of forms throughout our study.
In the second part of this introduction we shall deal briefly with the number
system Z of the integers and the more primitive system N of natural numbers
or counting numbers: 0, 1, 2, .. ., which serve as the starting point for the
constructive development of algebra. In view of the current emphasis on the
development of number systems in primary and secondary schools, it seems
superfluous to deal with N and Z in a detailed fashion. We shall therefore
be content to review in outline the main steps in one of the ways of introducing
N and Z and to give careful proofs of two results that will be needed in the
discussion of groups in Chapter 1. These are the existence of greatest common
divisors (g.c.d.’s) of integers and “the fundamental theorem of arithmetic,” which
establishes the unique factorization of any natural number 0, 1 as a product
of prime factors. Later (in Chapter 2), we shall derive these results again as
special cases of the arithmetic of principal ideal domains.

1» For a general reference book on set theory adequate for our purposes we refer the reader to
the very attractive little book, Naive Set Theory, by Paul R. Halmos, Van Nostrand Reinhold,
1960.

1.
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0.1 THE POWER SET OF A SET

We begin our discussion with a brief survey of some set theoretic notions which
will play an essential role in this book.

Let S be an arbitrary set (or collection) or elements which we denote as a,
b, ¢, etc. The nature of these elements is immaterial. The fact that an element
a belongs to the set S is indicated by writing a € S (occasionally S > a) and the
negation of a € S'is written as a ¢ S. If § is a finite set with elements a,1<i<n,
then we write S = {a,, a,, ..., a,}. Any set S gives rise to another set 2(S), the
set of subsets of S. Among these are included the set S itself and the vacuous
subset or null set, which we denote as 5. For example, if S is a finite set of n
clements, say, § = {a;, a,, ..., a,}, then 2(S) consists of ¢, the n sets {a;} con-
taining single elements, n(n — 1)/2 sets {a;, a;}, i # j, containing two elements,

<"> =nlfiln—D=nm—1)---(n—i+1)/1-2 - subsets containing i ele-

ments, and so on. Hence the cardinality of 2(S), that is, the number of elements in

n n n ) " "

We shall call 2(S), the power set of the set S.2 Often we shall specify a subset
of S by a property or set of properties. The standard way of doing this is to write

A={xeS|}

(or, if S is clear, 4 = {x|---}) where - - - lists the properties characterizing A.
For example, if Z denotes the set of integers, the N = {x € Z|x = 0} defines the
subset of non-negative integers, or natural numbers.

If A and B € 2(S) (that is, 4 and B are subsets of S) we say that A4 is contained
in B or is a subset of B (or B contains A) and denote this as 4 = B {or B> A)if
every element a in A is also in B. Symbolically, we can write this as ae 4 =
a € B where the = is read as “implies.” The statement 4 = B is equivalent to
the two statements 4 > B and B> 4 (symbolically, 4 =B<> 4> B and
B > A where <> reads “if and only if”). If A = B and 4 # B we write A < B
and say that A4 is a proper subset of B. Alternatively, we can write B 2 A.

If A and B are subsets of S, the subset of S of elements ¢ such that ce 4
and c € B is called the intersection of 4 and B. We denote this subset as AnB.
If there are no elements of S contained in both 4 and B, thatis, A n B = (7,

? This is frequently called the Boolean of S, #(S), after George Boole who initiated its systematic
study. The justification of the terminology “power set” is indicated in the footnote on p. 5.
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then 4 and B are said to be disjoint (or non-overlapping). The union (or logical
sum) A U B of A and B is the subset of elements 4 such that eitherd € A ord e B,
An important property connecting  and U is the distributive law:

(1) An(BuC):(AmB)u(AmC)

This can be indicated pictorially by

)

where the shaded region represents (1). To prove (1), let x e 4 A (B v Q). Since
X e (B u C) either xe B or x € C, and since x e 4 either xe(AnB)or xe
(AN C). This shows that 4 A BuClC)c(AnBu (AN C). Now let ye
AnBuUn C) so cither ye 4 A B or yeAn C. In any case yeA and
Y€ B or yeC. Hence yeAdn(Bu C). Thus (AmB)u(AmC)cAm(Bu
C). Hence we have both 4 A Bulc(AdnBu (AN C) and (4 N B)u
ANnCcA4n(BuC) and consequently we have (1).

We also have another distributive law which dualizes (1) in the sense that
it is obtained from (1) by interchanging U and ~:

(2) Au(BmC)z(AuB)m(AuC).

It is left to the reader to draw a diagram for this law and carry out the proof.
Better still, the reader can show that (2) is a consequence of (1)—and that, by
symmetry, (1) is a consequence of (2).

Intersections and unions can be defined for an arbitrary set of subsets of a set
S. Let T be such a set of subsets (=subset of 2(S)). Then we define ﬂ der A =
{x|x € 4 for every 4 in Thand { ), 4= {x|x e 4 for some 4 in [} IFT s
finite, say, I' = {4, 4,, ..., A,} then we write also (V=i Aior A, A Ay A - -
N A, for the intersection and we use a similar designation for the unijon, It is
easy to see that the distributive laws carry over to arbitrary intersections and

‘unions: B A ({ o A) = Uder B A); B U (Naer 4) = (aer(B U A).

0.2 THE CARTESIAN PRODUCT SET. MAPS

The reader is undoubtedly aware of the central role of the concept of function
in mathematics and its applications. The case of interest in beginning calculus

T B M
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real line R; usually, an open or closed interval or the whole of R; and a rule
which associates with every element x of this subset a unique real number f{(x).
Associated with a function as thus “defined” we have the graph in the two-
dimensional number space R consisting of the points (x,f(x)). We soon realize
that f is determined by its graph and that the characteristic property of the
graph is that any line parallel to the y-axis through a point x of the domain
of definition (on the x-axis) meets the graph in precisely one point. Equivalenily,
if (x, y) and (x, y) are on the graph then y = y'. It is clear that the notion of
a graph satisfying this condition is a precisely defined object whereas the in-
tuitive definition of a function by a “rule” is not. We are therefore led to replace
the original definition by the definition of a graph.

We shall now proceed along these lines, and we shall also substitute for the
word “function” the geometric term “map” which is now more commonly used
in the contexts we shall consider. Also, we wish to pass from real-valued func-
tions of a real variable to arbitrary maps. First, we need to define the (Cartesian)
product set S x T of two arbitrary sets S and T. This is the set of pairs (s, t),
s€S, teT. The sets S and T need not be distinct. In the product § x T, the
elements (s, t) and (s, t') are regarded as equal if and only if s=¢ and t = ¢.
Thus if S consists of m elements 815 82,..., 8, and T consists of n elements
t15 82, - ., Ly, then § x T consists of the mn elements (5:> t)).

We are now ready to define a map of a set S into a set T. This consists of the
set S, called the domain of the map, the set T, called the co-domain, and a subset
o of § x T (the graph) having the following two properties:

1. For any s € S there exists a ¢ € T such that (s, 1) e a.
2. If (s, t) and (s, t') e o then t = 7',

The second property is called “single-valuedness.” In specifying a definition one
often says that “the function is well-defined” when one is assured that condition
2 holds. Together, conditions 1 and 2 state that for every s € § there is a unique
t € T such that (s, ) € a. The classical notation for this  is a(s). One calls this
the image of s under o. In many books on algebra (including our previous ones)
we find the notations s* and s« for a(s). This has advantages when we deal with
the composite of maps. However, since the consensus clearly favors the classical
notation a(s), we have decided to adopt it in this book.

Two maps are regarded as cqual if and only if they have the same domain,
the same co-domain and the same graphs. The set of maps “from S to T,” that
is, having domain S and co-domain T will be denoted as 75,3

*If T consists of two elements {0, 1} then we may write T = 2 and have the set 2° of maps of
S into {0, 1}. Such a map is characterized by specifying 4.= {a e S|e{a) = 1}. Conversely, given a
subset 4 of S we can define its characteristic Junction y, by y (@) =1i#fae A and ial@)=0ifa¢ A.
In this way one can identify the set 25 of maps of S into {0, 1} with the set of subsets of S, that
is, with 2(S). This is the reason for the terminology “power set.”
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If 4 is a subset of S, then we write (A) = {c(a)|a € A} and call this the image
of A under «. In particular, we have o(S), which is called the image (or range)
of the map. We shall denote this also as im o. Usually, when the domain and
co-domain are clear, we shall speak of the “map o” (or the “function o) even
though, strictly speaking, « is just one component of the map.

If S, is a subset of § and o is a map of S into T, then we get a map of S,
to T by restricting the domain to S;. This is the map of §, to T whose graph
is the subset of S; x T of elements (s, o(s1)), s; €8,. We call this map the
testriction of o to S; and denote it as « [S;. Turning things around we shall
say that a map « of S to T is an extension of the map B of S, to T if f=alS;.

As was mentioned, the terms “map” and “mapping” come from geometry.
We shall now give a couple of geometric examples. The first is described by
the diagram

P’

T

Here the lines S and T are the domain and co-domain respectively, O is a fixed
point not on § or T and we “map” the point P on S into the point of inter-
section P’ of the line OP with T. Such mappings, called perspectivities, play
an important role in projective geometry. From our point of view, the map con-
sists of the sets S and T and the subset of points (P, P’) of § x T. The second
example, from Euclidean geometry, is orthogonal projection on a line. Here the
domain is the plane, the co-domain is the line, and one maps any point P in the
plane on the foot of the perpendicular from P to the given line:

P

P’

(It is understood that if P is on ! then P’ = P) As in these examples, it is always
a good idea to keep the intuitive picture in mind when dealing with maps,
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reserving the more precise definition for situations in which a higher degree of
rigor appears appropriate. Geometry suggests also denoting a map from § to
Tbyo:S—>T,or S5 T, and indicating the definition of a particular map by
x —y where y is the image of x under the given map: e.g,, P — P’ in the fore-
going example. In the special case in which the domain and co-domain coincide,
one often calls a map from S to S a transformation of the set §.

A map S5 T is called surjective if im o = T, that is, if the range coincides
with the co-domain. S S T is injective if distinct elements of S have distinct
images in T, that is, if s, # s, = a(sy) # ofs,). If o is both injective and surjective,
it is called bijective (or o is said to be a one to one correspondence between §
and T). For example, the perspectivity map defined above is bijective.

Let S-5T and T5 U. Then we define the map S %5 U as the map having
the domain S, the co-domain U, and the graph the subset of § x U of elements
(s, B((s))), s € S. Thus, by definition,

(Be(s) = Blex(s)).

We call this the composite (or product, or sometimes resultant) of o and f (8
following ).* Tt is often useful to indicate the relation y = fu by saying that
the triangle

U

is commutative. Similarly, we express the fact that Ba=26yfors ST, TS U,
SLv,v Su by saying that the rectangle

[

S T
Y 8
A o
14 U

* Note that the composite is written in the reverse order to that in which the operations are
performed: Ba is o followed by p. To keep the order straight it is good to think of fu as B fol-
lowing .
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is commutative. In general, commutativity of a diagram of maps, when it makes
sense, means that the maps obtained by following the diagram from one initial
point to a terminal point along each displayed route are the same. As another
example, commutativity of

means that fo = { = &(dy).

Composition of maps satisfies the associative law: if S ST, T LN U, and
U 5 V, then y(Ba) = (yB)o. We note first that both of these maps have the same
domain S and the same co-domain V. Moreover, for any s € S we have

((Bo))(s) = ((Be)(s)) = v(Blod(s)))
((YP)(s) = (7P)eds)) = y(B(x(s))
so y(fe) and (yf)x are identical. This can be illustrated by the following diagram:

S

The associative law amounts to the statement that if the triangles STU and
TUV are commutative then the whole diagram is commutative.

For any set S one defines the identity map 1g (or 1 if S is clear) as § 55
where 15 is the subset of elements (s, s) of S x S. This subset is called the diagonal
of § x 8. If S 5 T one checks immediately that 1,0 = a = alg. We now state
the following important result:

S 5 T is bijective if and only if there exists a map T L S such that fo = 1g
and off = 1.

Proof. Suppose S = T is bijective. Consider the subset § of T x S of ele-
ments (u(s), s). If t € T, surjectivity of « implies therc is an s in S such that
a(s) =t. Hence condition 1 in the definition of a map from T to S holds for
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the set § of pairs («(s), s) € T x S. Condition 2 holds for f by the injectivity of
o, since if (¢, 5,) and (¢, 52) are in B, then a(s;) = ¢ and «(s,) = ¢, 50 s; = s,. Hence
we have the map TLS If se S, the facts that (s, a(s)) € « and («(s), s) e §
imply that f(x(s)) = s. Thus fo = 15. If t € T, we have t = ofs), se S, and (¢, 5) €
B, so B(t) =seS. Hence «(B(t)) = a(s) =t, so aff = 1. Conversely, suppose
s5T, TSs satisfy o =15, aff =14 If te T, let s= (). Then a(s) =
a(p(t)) = t; hence « is surjective. Next suppose ofs;) = ofs,) for s; € S. Then s, =
Blods1)) = Blodsz)) = 55, and o is injective. [

The map p satisfying flo = 15 and «ff = 1; is unique since if T 2, § satisfies
the same conditions, f'a = 1g, aff’ = 1, then

B =158 = (po)f’ = Bap) = Bl = B.

We shall now denote f as ™' and call this the inverse of the (bijective) map
a. Clearly the foregoing result shows that o ™! is bijective and (&™) ™! = a.

As a first application of the criterion for bijectivity we give a formal proof of
a fact which is falrly obvious anyhow the product of two bijective maps is
bljectlve For, let S 5T and TS U be bijective. Then we have the inverses
7255 and ULST and the composite map o~ 'L U — §. Moreover,

(B *p™) = (BB~ = (Bla™ )Pt = BB =
Also,

(@ BB = o (BT HB) = o (B P = oo = 1.

Hence o 1871

G) (B~

This important formula has been called the “dressing-undressing principle”:
what goes on in dressing comes off in the reverse order in undressing (e.g., socks
and shoes).

It is important to extend the notion of the Cartesian product of two sets to
the product of any finite number of sets.’ If S, S,,..., S, are any sets, then
I[85 0r S; x S5 x -+ x 8,, is defined to be the set of r-tuples (sy, s,, .. ., 5,)
where the ith component s; € S;. Equality is defined by (s, s5,...,5,) = (5},
$2, ..., 8,) if s;=s; for every i If all the S; =S then we write S” for [] S..
The concept of a product set permits us to define the notion of a function of
two or more variables. For example, a function of two variables in S with values

is an inverse of fu, that is

— a~1ﬂ71.

® Also to infinite products. These will not be needed in this volume, so we shall not discuss
them here.
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in Tis a map of S x S to T. Maps of S to S are called r-ary compositions
(or r-ary products) on the set S. The structures we shall consider in the first two
chapters of this book (monoids, groups and rings) are defined by certain binary
(=2-ary) compositions on a set S. At this point we shall be content merely to
record the definition and to point out that we have already encountered several
instances of binary products. For example, in 2(S), the power set of a set S,
we have the binary products 4 U B and A n B (that is, (4, B}—> 4 u B and
(4, B)—> A n B).

EXERCISES

1. Consider the maps f: X » Y, g:Y — Z. Prove: (a) f and g injective = gf injective,
(b) gf injective = f injective, (c) f and g surjective = gf surjective. (d) gf surjec-
tive = g surjective. (¢) Give examples of a set X and a map f: X — X that is
injective (surjective) but not surjective (injective). (f) Let gf be bijective. What can
be said about f and g respectively (injective, surjective)?

2. Show that § -5 T is injective if and only if there isamap T % S such that Po = 1g,

surjective if and only if there is a map T % S such that aff = 1;. In both cases
investigate the assertion: if § is unique then o is bijective.

3. Show that § > T is surjective if and only if there exist no maps 8, B, of T into
a set U such that f§, # f, but f;& = p,0. Show that « is injective if and only if
there exist no maps y,, y, of a set U into S such that y, # y, but ay; = ay,.

4. Let S5 T and let A and B be subsets of 5. Show that a(4 U B) = a(4d) U «(B).
and a(A N B) < a{4) n «(B). Give an example to show that a(4 n B) need not
coincide with a(4)  a(B).

5. Let § 5 T, and let A be a subset of S. Let the complement of A in S, that is, the
set of elements of S not contained in 4, be denoted as ~ 4. Show that, in general,
o~ A) & ~(a{A)). What happens if o is injective? Surjective?

0.3 EQUIVALENCE RELATIONS. FACTORING A MAP THROUGH
AN EQUIVALENCE RELATION

We say that a (binary) relation is defined on a set S if, given any ordered pair
(a, b) of elements of S, we can determine whether or not « is in the given rela-
tion to b. For example, we have the relation of order “>" in the set of real
numbers. Given two real numbers a and b, presumably we can determine whe-
ther or not a > b. Another order relation is the lexicographic ordering of words,
which determines their position in a dictionary. Still another example of a rela-
tion is the first-cousin relation among people (a and b have a common grand-
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parent). To abstract the essential element from these situations and similar ones,
we are led to define in a formal way a (binary) relation R on a set S to be simply
any subset of the product set § x S. If (g, b) € R, then we say that “q is in the
relation R to b” and we write aRb. Of particular importance for what follows
are the equivalence relations, which we now define.

A relation E on a set S is called an equivalence relation if the following con-
ditions hold for any a, b, ¢, in S:

1. aEa (reflexive property).
2. aEb = bEa (symmetry).
3. aEb and bEc = aEc (transitivity).

An example of an equivalence relation is obtained by letting S be the set of
points in the plane and defining aEb if a and b lie on the same horizontal line.
Another example of an equivalence relation E’ on the same S is obtained by
stipulating that aE'b if a and b are equidistant from the same point (e.g., the
origin O).

We shall now show that the concept of an equivalence relation is equivalent
to that of a partition of a set. If S is a set we define a partition n(S) of S to be
a set of non-vacuous subsets of S (that is, 7(S) is a subset of 2(S) not containing
) such that the union of the sets in n{S) is the whole of S and distinct sets
in n(S) are disjoint. The subsets making up n(S) are called the blocks of the
partition. We shall now show that with any equivalence relation E on S we can
associate a partition mg(S) and with any partition 7 we can associate an equiv-
alence relation E,. Moreover, the relation between E and = are reciprocal in
the sense that n; =7 and E,_ = E. First, suppose E is given. If ae S we
let dg (or simply @) = {b e S|bEa}. We call a; the equivalence class (relative
to E or E-equivalence class) determined by a. In the first example considered in
the last paragraph, the equivalence class ay is the horizontal line through a and
in the second, the equivalence class is the circle through a having center O:

a
Py

In both examples it is apparent that the set of equivalence classes is a partition
of the plane. This is a general phenomenon. Let {a|a € S} be the set of equiv-
alence classes determined by E. Since aEa, a € @, hence every element of S is



12 Introduction

contained in an equivalence class and so Uae sd=S. We note next that a=>b

if and only if aEb. First, let aEb and let ¢ € a. Then cEa and so, by condition 3,
cEb. Then c € b. Then @ < b. Also, by condition 2, bEa and so b = a. Hence
a =b. Conversely, suppose @ = b. Since a € a = b we see that aEb, by the de-
finition of b. Now suppose @ and b are not disjoint and let ¢ € @ n b. Then cEa
and cEb. Hence a = ¢ = b. We therefore see that distinct sets in the set of equiv-
alence classes are disjoint. Hence {d|a € S} is a partition of S. We denote this
as Ty

Conversely, let n be any partition of the set S. Then, if a € S, a is contained
in one and only one 4 € n. We define a relation E, by specifying that aE,_ b if and
only if a and b are contained in the same A € n. Clearly this relation is reflexive,
symmetric, and transitive. Hence E, is an equivalence relation. It is clear also
that the equivalence class a of a relative to E, is the subset 4 in the partition
7 containing a. Hence the partition n_ associated with E, is the given 7. It is
equally clear that if E is a given equivalence relation and n; = {a|a € S}, then
the equivalence relation E,_ in which elements are equivalent if and only if they
are contained in the same a is the given relation E.

If E is an equivalence relation, the associated partition = = {@|a € S} is called
the quotient set of S relative to the relation E. We shall usually denote = as
S/E. We emphasize again that S/E is not a subset of S but rather of the power
set Z(S) of S. We now call attention to the map v of S into S/E defined by

via—a

We call this the natural map of S to the quotient set S/E. Clearly, v is surjective.

We shall consider next some important connections between maps and equiv-
alence relations. Suppose S — T. Then we can define a relation E, in S by speci-
fying that aE,b if and only if «(a) = a(b). It is clear that this is an equivalence
relation in S. If ¢ € T we put

4) o Yc) = {a e S|afa) = c}

and we call this the inverse image of the element c¢. More generally, if C is a
subset of T, then we define

(5) o« YC) = {a e S|aa) e C}.

Clearly, o 4(C) = { Jcec o7 '(¢). Also a™'(c) = & if ¢ ¢ im o. On the other hand,
if ¢ = a(a) for some a € S, then a™(c) = o™ Y(a(a)) = {b|a(b) = o(a)} and this is
just the equivalence class dg_in S determined by the element a. We shall refer
to this subset of S also as the fiber over the element ¢ € im o. The set of these
fibers constitutes the partition of S determined by E,, that is, they are the ele-
ments of the quotient set S/E,.

g
%
|
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For example, let « be the orthogonal projection map of the plane onto a line
[ in the plane, as on page 6. If ¢ is on the line the fiber o (c) is the set of
points on the line through ¢ perpendicular to I.

ac)

Note that we can define a bijective map of the set of these fibers into [ by map-
ping the fiber « ™ !(c) into the point ¢, which is the point of intersection of &~ !(c)
with the line L

In the general case o defines a map & of S/E, into T: abbreviating d, =
o~ Yofa)) to a we simply define & by )

(6) &(a) = afa).

Since @ = b if and only if a(a) = a(b), it is clear that the right-hand side is inde-
pendent of the choice of the element a in a and so, indeed, we do have a map.
We call & the map of S/E, induced by o. This is injective since a(@) = &(b) gives
a(a) = a(b) and this implies @ = b, by the definition of E,. Of course, if o is
injective to begin with, then aE b (x(a) = (b)) implies a = b. In this case S/E,
can be identified with § and & can be regarded as the same as «.

We now observe that a(v(a)) = a(a) = «(a). Hence we have the factorization

7 o=y

of the given map as a product of the natural map v of S to S/E, and the induced
map & of S/E, to T. The map & is injective and v is surjective. The relation (7)
is equivalent to the commutativity of the diagram

® S z T

Ri

S/E.
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Since v is surjective it is clear that im o = im . Hence & is bijective if and only if
« is surjective. We remark finally that & is the only map which can be defined
from S/E, to T to make (8) a commutative diagram. Let f§:S/E, — T satisfy
Bv = a. Then f(a) = p(v(a)) = a(a). Hence f = &, by the definition (6).

There is a useful generalization of these simple considerations. Suppose we
are given a map o:S — T and an equivalence relation E on S. We shall say that
o is compatible with E if aEb for a, b in S implies «(a) = a(b). In this case we
can define a map & of S = S/E to T by a:a = az — «(a). Clearly this is well
defined, and if v denotes the natural surjection a — a, then o = &v, that is, we
have the commutativity of

In this case the induced map & need not be injective. In fact & is injective if and
only if E = E,.

The results which we have developed in this section, which at this point may
appear to be a tedious collection of trivialities, will play a fundamental role in
what follows.

EXERCISES

1. Let N=1{0,1,2,...}. Show that the following are partitions of N:
@ {0,2,4,...,2k . 3 {135 ., 2k+1..},(keN)
@) {0,3,6,...,3%. hil47. ... 3%k+1,.. 5{258...,3k+2...}

2. Let N be as in 1 and let N = N x N. On N@ define (a, b) ~ (¢, d) if a + d =
b + c. Verify that ~ is an equivalence relation.

3. Let S be the set of directed line segments PQ (initial point P, terminal point Q) in
plane Euclidean geometry. With what equivalence relation on § is the quotient set
the usual set of plane vectors?

4. TIf S and T are sets we define a correspondence from S to T to be a subset of S x T.
+(Note that this encompasses maps as well as relations.) If C is a correspondence
“from S to T, C ™! is defined to be the correspondence from T to S consisting of the

e
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points (¢, 5) such that (s, t) e C. If C is a correspondence from S to T and D is a
correspondence from T to U, the correspondence DC from S to U is defined to be
the set of pairs (s, u) € § x U for which there exists a t € T such that (s, f) € C and
(t, u) € D. Verify the associative law for correspondences: (ED)C = E(DC), the
identity law Clg = C = 1,C.

5. Show that the conditions that a relation E on S is an equivalence are: (i) E o 1§,
(ii) E = E~ 1, (ili) E o EE.

6. Let C be a binary relation on S. For r = 1,2,3,... define C" = {(s, t)]for some
Siy..5S-1 €S, one has sCsy, 5;Cs,, ..., s._Ct}. Let

E=1l,u(CuC Hu(CucC W2u(CuC HPu:---.

Show that E is an equivalence relation, and that every equivalence relation on §
containing C contains E. E is called the equivalence relation generated by C.

7. How many distinct binary relations are there on a set S of 2 elements? of 3 ele-
ments? of n elements? How many of these are equivalence relations?

8. LetS 3 T4 U. Show thatif U, is a subset of U then (Bo) {(U,) = o™ B~ YU ).

9. Let § 5 T and let C and D be subsets of 7. Show that o~ Y(C U D) = o~ {(C) U
o~ '(D) and o= {(C N D) = o~ {(C) n o~ }(D) (cf. exercise 4, p. 10).

10. Let C be the set of complex numbers, R* the set of non-negative real numbers.
Let f be the map z — |z| (the absolute value of z) of C into R*. What is the equiva-
lence relation on C defined by f?

1. Let C* denote the set of complex numbers # 0 and let g be the map z — |z] 'z
What is the equivalence relation on C* defined by ¢?

0.4 THE NATURAL NUMBERS

The system of natural numbers, or counting numbers, 0, 1,2, 3, ... is funda-
mental in algebra in two respects. In the first place, it serves as a starting point
for constructing more elaborate systems: the number systems of integers, of
rational numbers and ultimately of real numbers, the ring of residue classes
modulo an integer, and so on. In the second place, in studying some algebraic
structures, certain maps of the set of natural numbers into the given structure
play an important role. For example, in a structure S in which an associative
binary composition and a unit are defined, any element a € S defines a map
n—a" where a° = 1, a' = a, and d* = a*~ a. Such maps are useful in studying
the structure S.

A convenient and traditional starting point for studying the system N of
natural numbers is an axiomatization of this system due to Peano. From this
point of view we begin with a non-vacuous set N, a particular element of N,
designated as 0, and a map a — a™* of N into itself, called the successor map.
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Peano’s axioms are:

1. 0 % a™ for any a (that is, 0 is not in the image of N under a — a*).

2. a - a”" is injective.

3. (Axiom of induction.) Any subset of N which contains 0 and contains the
successor of every element in the given subset coincides with N.

Axiom 3 is the basis of proofs by the first principle of induction. This can be
stated as follows. Suppose that for each natural number n we have associated
a statement E(n) (e.g, 0+ 1+ 2+ -+ n=n(n+ 1)/2). Suppose E(0) is true
and E(r*) is true whenever E(r) is true. (The second part is called the inductive
step.) Then E(n) is true for all n € N. This follows directly from axiom 3. Let S
be the subset of N of s for which E(s) is true. Then 0 € § and if » € S, then so
does r*. Hence, by axiom 3, S = N, so E(n) holds for all natural numbers.

Proofs by induction are very common in mathematics and are undoubtedly
familiar to the reader. One also encounters quite frequently—without being
conscious of it—definitions by induction. An example is the definition men-
tioned above of a" by a® = 1, " *! = d"a. Definition by induction is not as trivial
as it may appear at first glance. This can be made precise by the following

RECURSION THEOREM. Let S be a set, ¢ a map of S into itself, a an ele-
ment of S. Then there exists one and only one map f from N to S such that

L fO=a 2 fn")=o(f(m),neN.

Proof. Consider the product set N x S. Let I" be the set of subsets U of
N x § having the following two properties: (i) (0, a) € U, (ii) if (n, b) € U then
(n*, @(b)) € U. Since N x S has these properties it is clear that I' # . Let f be
the intersection of all the subsets U contained in I'. We proceed to show that f
is the desired function from N to S. In the first place, it follows by induction
that if n e N, there exists a b € § such that (n, b) € f. To prove that f is a map
of N to § it remains to show that if (n, b) and (n, b') € f then b = b'. This is
equivalent to showing that the subset T of n € N such that (n, b) and (n, b') € f
imply b = b’ is all of N. We prove this by induction. First, 0 € T. Otherwise, we
have (0, a) and (0, @) € f but a # a'. Then let f* be the subset of f obtained by

® One is tempted to say that one can define f inductively by conditions 1 and 2. However, this
does not make sense since in talking about a function on N we must have an a priori definition
of f(n) for every n e N. A proof of the existence of / must use all of Peano’s axioms. An example
illustrating this is given in exercise 4, p. 19. For a fuller account of these questions we refer the
reader to an article, “On mathematical induction,” by Leon Henkin in the American Mathematical
Monthly, vol. 67 (1960), pp. 323-338. Henkin gives a proof of the recursion theorem based on the
concept of “partial” functions on N. The proof we shall give is due independently to P. Lorenzen,
and to, D. Hilbert and P. Bernays (jointly).

Besendadaii
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deleting the element (0, &) from f. Then it is immediate that f* satisfies the de-
fining conditions (i) and (ii) for the sets U e I". Hence S f.But " & f since
/" was obtained by dropping (0, @') from f. This contradiction proves that
0€ T. Now suppose we have a natural number r such that r e T but r* ¢ T,
Let (r, b) e f. Then (¥, (b)) € f and since r* ¢ T, we have a ¢ # ¢(b) such that
(r*, c) e f. Now consider the subset /" of f obtained by deleting (r*, c). Since
+* # 0 and f contains (0, a), S’ contains (0, a). The same argument shows that
ifneN and n #r and (n,d) e f' then (n*, o(d)) e f'. Now suppose (r, b') e
then b’ = b and (+*, ¢(b)) € f” since (", @(b)) was not deleted in forming f* from
/. Thus we see that f" e I" and this again leads to the contradiction: f* = f,
f" % f. We have therefore proved that if 7 € T then r* e T. Hence T =N by
induction, and so we have proved the existence of a function f satisfying the
given conditions. To prove uniqueness, let g be any map satisfying the condi-
tions. Then g€ I'so g > f. But g > f for two maps f and g implies f = g, by
the definition of a map. Hence f is unique. []

Addition and multiplication of natural numbers can be defined by the recur-
sion theorem. Addition of m to n can be defined by taking a = m and ¢ to be
the successor map n — n*. This amounts to the two formulas:

(@) O+m=m
(b) nt+m=(n+m.

For multiplication by m we use a = 0 and @ is the map n — n + m. Thus we
have

(@) Om = 0
(b) ntm=nm+ m.

It can be proved that we have the associative, commutative, and cancellation
laws of addition and multiplication:’

Al X+ +z=x+(y+2) (Associative law)
A2 X+y=y+x (Commutative law)
A3 X+z=p+tz=x=y (Cancellation law)
M1 (xy)z = x(yz)

"Detailed proofs can be found in E Landau, Foundations of Analysi
deta . s ) ysis, 2nd ed., New York, Chelsea
Publishing Co., 1960. A sketch of the proofs is given in Paul R. Halmos, Naive Set Theor
York, Van Nostrand Reinhold, 1960, * Maive Set Theory, New

R
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M2 Xy = yx
M3 xz=yz,2#0=>x=1y

We also have the fundamental rule connecting addition and multiplication:

D Z2(x +y)=zx+ zy (Distributive law)

A fundamental concept for the system N is the relation of order defined by
stating that the natural number a is greater than or equals the natural number
b (notation: a > bor b < a) if the equation a = b + x has a solution x € N. The
following are the basic properties of this relation:

01 xzy and y=xex=y.
02 xzy and yzz=>x>z
03 Forany (x,y)e N x N either x>y or y>«x

We also have the following well-ordering property of the set of natural
numbers.

04 In any non-vacuous subset S of N there is a least number,
that is, an / € S such that | < s for every s € S.

Proof. Let M be the set of natural numbers m such that m < s for every se S.
Then 0 e M, and if s e S then s* ¢ M. Hence M # N and so, by the axiom of
induction, there exists a natural number [ € M such that I™ ¢ M. Then [ is the
required number, since [ < s for every s € S. Moreover, | € S since otherwise

I < s for every se S and then [* < s for every s e S. This contradicts [T ¢ M.
O

The well-ordering property is the basis of the following second principle of
induction. Suppose that for every n e N we have a statement E(n). Suppose it
can be shown that E(r) is true for a particular r if E(s) is true for all s <.
(Note that this implies that it can be shown that E(0) is true.) Then E(n) is true
for all n. To prove this we must show that the subset F of N of r such that
E(r) is false is vacuous. Now, if F is not vacuous, then, by O4, F contains a least
element ¢. Then E(r) is false but E(s) is true for every s < t. This contradicts
the hypothesis and proves F = (J.

The main relations governing order and addition and order and multiplica-
tion are given in the following statements:

OA azb=a+cz=b+ec

R

OM a>b=-ac > bc.
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EXERCISES

1. Provethatifazbandczdthena+czb+dandac2bd.

2. Prove the following extension of the first principle of induction: Let s e N and
assume that for every n > s we have a statement E{n). Suppose E(s) holds, and if
E(r) holds for some r > s, then E(r™) holds. Then E(n) is true for all n > ; State
and prove the analogous extension of the second principle of induction._ .

3. Prove by induction that if ¢ ; . )
14 ne. ¢ 1s a real number > —1 and ne N then (140>

4. (Henkin)Let N = {0, 1} and define 0" = 1, 1+ = 1. Show that N satisfies Peano’s
axioms 1 and 3 but not 2. Let ¢ be the map of N into N such that @0) =1 and
o(1) = O Show that the recursion theorem breaks down for N and this ¢, that is
there exists no map f of N into itself satisfying f(0) = 0, £ (n") = ¢(f (n))., ’

5. Prove Al and M2,

0.5 THE NUMBER SYSTEM 7 OF INTEGERS

'Instead of following the usual procedure of constructing this system by adjoin-
ing to N the negatives of the elements of N we shall obtain the system of integers
11:1 a Way that seems more natural and intuitive. Moreover, the method we shall
give is analogous to the standard one for constructing the number system @ of
rational numbers from the system Z.

Ogr starting point is the product set N x N. In this set we introduce the
rela.tlon (@b)~(,d)if a+rd=b+c Tt is easy to verify that this is an
equ?valence relation; What we have in mind in making this definition is that the
equivalence class (a, b) determined by (a, b) is to play the role of the difference
of a.and b. If we represent the pair (a, b) in the usual way as the point with
abscissa a and ordinate b, then (a, b) is the set of points with natural number

coordinates on the line of slope 1 through (a, b). We call the equivalence classes
(a, b) integers

r e [ ° @

(a, b)
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and we denote their totality as Z. As a preliminary to defining addition we note
that if (a, b) ~ (¢, b') and (¢, d) ~ (¢, &) then :

(@a+e,b+dy~@+c, b +dY

for the hypotheses are that a+b =d +b and c+d =c' + d. Hence
at+c+b +d =d+c +b+d, ~which means that. (a-!—c,b+d)~
(@ + ¢, b +d). Tt follows that the integer (a + ¢, b +d) is umquel}./ deter-
mined by (g, b) and (c, d). We define this integer to be sum of the integers

(a, b) and (c, d):
(@,b) + (c,d)=(a + ¢, b + d).

It is easy to verify that the rules A1, A2, and A3 hold. Also we note that (a, a) ~
(b, b) and if we set 0 = (4, ) (not to be confused with the 0 of N), then

A4 0+x=x forevery xelZ.

Finally, every integer has a negative: If x = (E,:@, then we denote (b, a) (which
is independent of the representative (a, b) in (a, b)) as —x. Then we have

A5 x+(—x)=0.

We note next that if (a, b) ~ (@, b') and (¢, d) ~ (¢, d’), then a + b’ = d' + b,
¢+d =c +d Hence

ca+b)y+dd +b)+dlc+d)+b(c +d)
=cd +b)+da+b)+dc +d)+blc+d)

so that
ac+bc+add+bd+dc+ad +bcd +bd
=dc+bc+ad+bd+dd +dad+be+bd.
The cancellation law gives
ac+bd+ad +bc =bc+ad+dd +bd,

which shows that (ac + bd, ad + bc) ~ (a'¢’ + b'd’, a'd’ + b'c). Hence, if we
define

(@ b)(c, d) = (ac + bd, ad + bo)

we .obtain a single-valued product. It can be verified that this is associative and

-
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commutative and distributive with respect to addition. The cancellation law
holds if the factor z to be cancelled is not 0.

We regard (a, b) > (¢, d)if a + d > b + c. The relation is well defined (that is,
it is independent of the choice of the representatives in the equivalence classes).
One can verify easily that O1, 02, O3, and OA hold.

The property OM has to be modified to state:

oM’ If x>y and z>0 then xz> yz.

We now consider the set N’ of non-negative integers. By definition, this is the
subset of Z of elements x > 0, hence, of elements x of the form (b+ub). Itis
immediate that (b + u, b) ~ (¢ + u, ¢). Now let u be a natural number (that is,
an element of N) and define «' = (b + u, b). Our remarks show that u— i’
defines a map of N into Z whose image is N. Moreover, if (b + u, b) ~ (¢ + v, c),
then b+u+c=>b+c+vsou=uv Thus u—u is injective. It is left to the
reader to verify the following properties:

U+v) =u+v
4 ' r
(uvy = u'v" .
Uu=v<uy >v.

These and the fact that u — ' is bijective of N into N’ imply that these two
systems are indistinguishable as far as the basic operations and relation of
order are concerned. In view of this situation we can now discard the original
system of natural numbers and replace it by the set of non-negative integers,
a subset of Z. Also we can appropriate the notations originally used for N for
this subset of Z. Hence from now on we denote the latter as N and its elements

as 0, 1, 2,.... It is easily seen that the remaining numbers in Z can be listed
as —1, —2,....
EXERCISES

1. Show that x = y< —x < —y.

2. Prove that any non-vacuous set S of integers which is bounded below (above), in
the sense that there exists an integer b (B) such that b < s (B=s),seS, has a
least (greatest) element.

3. Define |x|=x if x>0 and [x| = —x if x <0. Prove that [xy| = |x|[y| and
Ix + ¥ < |x| + .
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0.6 SOME BASIC ARITHMETIC FACTS ABOUT Z

ger b is a factor or divisor of the integer a if theretexis}::
a c e Z such that a = bc. Also a is called a mult.iple of b and we lc)ler:vc; ehave
i Clearly, this is a transitive relation. If b‘la and al' , s
relaton by ble 4. Then a = adc. If a # 0 the cancellation law gives dc = 1.
a=be b o a(id-— +1,¢= +1. This showsthatifb[aanda|b and a #0,
- ldl M " - te‘er— p,is call—ed a prime (or irreducible) if p#0, +1 and
e b oty s +pand +1.If p is a prime so is —p. '
The starting point for the study of number theory 1s the fact télatte;zferif) 5?5:6
ive i 1 can be written in one and only one way as a pro uc‘ : P
tve Ineser 7 imes, s > 1, and the unigueness means “uniqueness
e e e }hi,s result is called the fundamental theorem
E. Zermelo) of this result based

We shall say that the inte

the only divisors of p are

primes: a = pPs
apart from the order of the factors. :
of arithmetic. We shall now give a proof (due to
on mathematical induction. . _ B
Let n be an integer > 1. Either n1s a prime, Or n =17, where1 ny ind na are
>1 and hence are <n. Hence, assuming that every integer Tl and o
u
iti i have that n, and n, are such pro )
t of positive primes, we I : e
pri)lj;guentll; n = nn, is a product of positive primes. Then (by the seli
CO - . .. . . re—
principle of induction) every integer >1 is a product of positive pilmes e
mains to prove uniqueness of the factorization. Let n = pyp, " * Ié = (Qﬁ; o St
iti imes. First suppose p; = ¢;. Lanc
_and g, are positive primes | ;
;Vhfre t\fvl: glbtain ;1711 =p, Ps=qdy G <N If m = 1 we are through; other
actor, | = o= : o
wise, assuming the property for integers m # 1, m Z n, th}t 1sl, tliat hpazt, o ll)ss
, pt possibly for order, 1t 1s clea
are the same as ¢,, ..., dq; €XCEP . (s s
true also for py, Pas---»>Ps and i, das - -5 G- Thus' u.mqueness follow o
Next assume p; # 41, Say P < 41- In this case it is clear that ¢ >
X 1 ’ . -
0<pigy ¢ <n=4qyqa"" " dr Subtracting p,q, " " - g, from n gives
142 t

and n, are

m=P1(P2"'Ps—42"'Qt)=(41”pl)‘h"'CIr<”-

Si 1.m > 1. We obtain two factorizations of m int(? positive primes by
o 't . m p.—g, - q and g, — p, into positive primes. In the ﬁrs.t I

?:cfl(;rr;nin? in ti)l:: sec?)nd the primes occurring are s, .. -, qt.an'c(i1 the i}:;n(r)xsz
hat di,vide g, — p;- Assuming that the result holds for m, P comil c;3sdwSince ©

t)f the primes ¢,,...,4d; Of it divides gq; — p1. Thc.' latter 1s_ c?xc uh'e noe !
implies py |q1, S0 Py = d1- Hence p; = g; for some j = %. Writing this g;

lfilsli factolr Wé obtain a reduction to the previous case.

8'A different proof of this result and generalizations of it will be given in Chapter IL
A di
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The fundamental theorem of arithmetic can also be stated in the form:

Any integer #0, +1 can be written as a product of primes. Apart from order
and signs of the factors this factorization is unique.

The result can be stated also in terms of the number system @Q of rational
numbers.” In this context it states that every rational number #0, +1 can be
written in the form p,®'p,® - - - p.* where the p; are prime integers and the ¢, =
+1. This is unique except for signs and order.

If ne Z we can write n= +p,p, - - - ps where the p; are positive primes (as-
suming always that n 0, +1). Rearranging the primes, and changing the

notation, we have n = +p*1p,*> - - - p* where the p, are distinct positive primes.

It follows from the fundamental theorem of arithmetic that if m is a factor of n
then m has the form +p,"p," - - p where the I, satisfy 0 < [, < k. If mand n
are two non-zero integers we can write both in terms of the same primes pro-
vided we allow the exponents to be 0 (and recall that a® =1, if g # 0); that
is, we may assume m = £ p,“1p,e -+ p e 5 = +p,7'p," - - ps where the p,
are distinct positive primes and the e, fi = 0. Now put g; = min (e, f), h; =
max (e;, f;) and consider the two integers
) (m,n) = py?py? -~ pf,  [myn]=plip,- - ph

It is readily seen that (m, n) is a greatest common divisor (gcd.) of m and n in
the sense that (m, n)|m, (m, n)|n, and that if d is any integer such that d|m and
d|n then d|(m, n). Similarly [m, n] is a least common multiple (lem.) of m and n

in the sense that m|[m, n], n|[m, n], and if m|e and n|e then [m, n]|e. It is clear
from (9) that if m and n are positive then

(10 : mn = (m, n)[m, n].

There is another way of.proving the existence of a g.c.d. of two integers which
does not require factorizations into primes and which gives the additional infor-

mation that the g.c.d. can be written in the form mu + nv where u, v e Z. This
is based on

The Division AlgorithminZ. 1f a and b are integers and b # 0 then there exist
integers g and 1, 0 < r < |b| such that a = bq + 7.

Proof.  Consider the set M of integral multiples x|b| of |b| satisfying x|b| < a.
M is not vacuous since —|af|b| < —|a| < a. Hence, the set M has a greatest

*We are assuming the reader is familiar with the construction of Q from the system Z. A more
general situation which covers this will be considered in section 29.
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number h|b| (exercise 2, p. 21). Then hlb| < aso a = h|b| + r where r > 0. On the
other hand, (h + 1)|b| = h|b| + |b| > h|b|. Hence (h + 1)|b| > a and hlb| + |b| >
h|b| + r. Thus, r < |b|. We now put g =/ if b>0and ¢ = —hif b <0. Then
hlb| = gb and a = gb + r as required. [

Now letm, n # 0 € Zand letI = {mx + ny|x, y € Z}. This s.et include's |n| > g
Hence there is a least positive integer d = mu + nv € L. We'clalm thatdisa gl.ic. .
of m and n. First, by the division algorithm we can write m = dq + rw ;r'e
0<r<d Thenr =m —dqg=m — (mu + n)qg = m{1 — uq) — nvq € I..ISn;ced is
the least positive integer in I, we must have r = 0. Hence d|m. SH?L ar y|d| 1n0
Next suppose e|m and e|n. Then e|mu and e|nv. Hence e|r?u't + nv. Thus e .d

If & and d are both g.c.d. of m and n then the second condition deﬁnmkg adg,c.o.
gives d|d’ and d'|d. Hence d' = +d. Ifn # 0 tl.le'n d ;é 0 and we may tg ed f> .
This determination of the greatest common divisor is the one we obtained from
the prime factorizations, and we denote this as (m, n).

EXERCISES

1. Show that if p is a prime and p|ab then either p|a or p|b.

2. Define g.c.d. and Lc.m. for more than two integers and prove their existence.

H 1/k
3. Show that if k and m are positive integers and m # r* for ne Z then m

is irrational.

0.7 A WORD ON CARDINAL NUMBERS

We shall have occasion frequently in this book to use the cogcept of the cardl:nal
number of a set. At this point it will be well to list the main facts on cardm‘al
numbers that will be required. No proofs will be given. These can be found in
a number of places, in particular, in Halmos’ Naive Set Theory. o
We begin by saying that two sets have the same cardi.nal number or car‘ccllnallty
(or, are equipotent or just plain equivalent) if there exists a 11 (read “one to

10 There is a third, mechanical way of determining a g.c.d. for two integers, called the Euclid
algorithm. This is indicated in exercises 11, p. 150.
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one”) correspondence between them. For example, the sets N, Z and the set Q
of rational numbers all have the same cardinal number. On the other hand, the
set R of reals has a larger cardinality than Q. As a representative of the class
of sets having the same cardinal number we take a particular ordinal number in
the class and call this the cardinal number of any set in the class. A definition of
the ordinal numbers will not be given here, except the finite ones. We define the
ordinal n for n € N to be the subset of N of natural numbers <n. A set is called
Sinite if it can be put in 1-1 correspondence with some finite ordinal, that is,
with some set of natural numbers less than a given one. Otherwise the set is
infinite. In general, we denote the cardinal number of S by ]Sl and we write
IS| < o0 or |S] = oo according as S is finite or infinite. It is important to know
that if m and » are distinct natural numbers then no bijective map between the
corresponding ordinals exists. Assuming m < n this is easily proved by induc-
tion on n. Another way of saying this is that if S and T are finite sets such that
S| > |T] (in particular, if T is a proper subset of S) then for any surjective
map o of S onto T there exist s, # s, in S such that a(sy) = a(s,). This simple
fact, which everyone is aware of, is called the “pigeonhole” principle: if there
are more letters than pigeonholes then some pigeonhole must contain more
than one letter. This has many important applications in mathematics. The
pigeonhole principle is characteristic of finite sets. For any infinite set there
always exist bijective maps onto proper subsets. If S and T are finite sets then
IS x T|=|S||T| and [ST| =S|I where ST is the set of maps of T into S.

An important result on cardinal numbers of infinite sets is the Schréder-Bern-
stein theorem: If we have injective maps of § into T and of T into S then [S| = |T].



Monoids and Groups

The theory of groups is one of the oldest and richest branches of algebra.
Groups of transformations play an important role in geometry, and, as we shall
see in Chapter 4, finite groups are the basis of Galois’ discoveries in the theory
of equations. These two fields provided the original impetus for the develop-
ment of the theory of groups, whose systematic study dates from the early part
of the nineteenth century.

A more general concept than that of a group is that of a monoid. This is
simply a set which is endowed with an associative binary composition and a
unit—whereas groups are monoids all of whose elements have inverses relative
to the unit. Although the theory of monoids is by no means as rich as that
of groups, it has recently been found to have important “external” applications
(notably to automata theory). We shall begin our discussion with the simpler
and more general notion of a monoid, though our main target is the theory
of groups. It is hoped that the preliminary study of monoids will clarify, by
putting into a better perspective, some of the results on groups. Moreover, the
results on monoids will be useful in the study of rings, which can be regarded
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as pairs of monoids having the same underlying set and satisfying some addi-
tional conditions (e.g., the distributive laws).

A substantial part of this chapter is foundational in nature. The reader will
be confronted with a great many new concepts, and it may take some time to
absorb them all. The point of view may appear rather abstract to the unini-
tiated. We have tried to overcome this difficulty by providing many examples
and exercises whose purpose is to add concreteness to the theory. The axiomatic
method, which we shall use throughout this book and, in particular, in this
chapter, is very likely familiar to the reader: for example, in the axiomatic devel-
opments of Euclidean geometry and of the real number system. However, there
is a striking difference between these earlier axiomatic theories and the ones
we shall encounter. Whereas in the earlier theories the defining sets of axioms
are categorical in the sense that there is essentially only one system satisfying
them——this is far from true in the situations we shall consider. Our axiomati-
zations are intended to apply simultaneously to a large number of models, and,
in fact, we almost never know the full range of their applicability. Nevertheless,
it will generally be helpful to keep some examples in mind.

The principal systems we shall consider in this chapter are: monoids, monoids
of transformations, groups, and groups of transformations. The relations among
this quartet of concepts can be indicated by the following diagram:

Monoids

Monoids

Groups .
b of transformations

Groups of transformations

This is intended to indicate that the classes of groups and of monoids of trans-
formations are contained in the class of monoids and the intersection of the first
two classes is the class of groups of transformations. In addition to these con-
cepts one has the fundamental concept of homomorphism which singles out the
type of mappings that are natural to consider for our systems. We shall introduce
first the more intuitive notion of an isomorphism.

At the end of the chapter we shall carry the discussion beyond the founda-
tions in deriving the Sylow theorems for finite groups. Further results on finite
groups will be given in Chapter 4 when we have need for them in connection
with the theory of equations. Still later, in Chapter 6, we shall study the struc-
ture of some classical geometric groups (e.g., rotation groups).
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11 MONOIDS OF TRANSFORMATIONS
AND ABSTRACT MONOIDS

We have seen in section 0.2 that composition of maps of sets satisfies the asso-
ciative law. If S5 T, TS U, and U5V, and pa is the map from S to U
defined by (Ba)(s) = Bo(s)), then we have y(fo) = (yf)e. We recall also that if
1, is the identity map t —> ¢ on T, then 1,0 = o and f1; = f§ for every S —> T
and f:T — U. Now let us specialize this and consider the set M(S) of transfor-
mations (or maps) of S into itself. For example, let S = {1, 2}. Here M(S) con-
sists of the four transformations

12 12 12 12
R R Gl A (R A

where in each case we have indicated immediately below the element appearing
in the first row its image under the map. It is easy to check that the following
table gives the products in this M(S):

e By

1 1 o B y

(1) « |« 1y B
g | B B B B

Y s Y b Y.

Here, generally, we have put po in the intersection of the row headed by p and
the column headed by ¢ (p, 6 = 1, &, f, 7). More generally, if S = {1,2,...,n}
then M(S) consists of n" transformations, and for a given n, we can write down
a multiplication table like (1) for M(S). Now, for any non-vacuous S, M(S) is an
example of a monoid, which is simply a non-vacuous set of elements, together
with an associative binary composition and a unit, that is, an element 1 whose
product in either order with any element is this element. More formally we give
the following

DEFINITION 1.1. A monoid is a triple (M, p, 1) in which M is a non-vacuous
set, p is an associative binary composition (or product) in M, and 1 is an element
of M such that p(1, a) = a = pl(a, 1) for all ae M.

If we drop the hypothesis that p is associative we obtain a system which is
sometimes called a monad. On the other hand, if we drop the hypothesis on 1
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and so have just a set together with an associative binary composition, then we
obtain a semigroup (M, p). We shall now abbreviate p(a, b), the product under
p of a and b, to the customary ab (or a- b). An element 1 of (M, p) such that
al = a = lafor all ain M is called a unit in (M, p). If 1’ is another such element
then 1'l = land 1'l = 1’,s0 1’ = 1. Hence if a unit exists it is unique, and so we
may speak of the unit of (M, p). It is clear that a monoid can be defined also
as a semi-group containing a unit. However, we prefer to stick to the definition
which we gave first. Once we have introduced a monoid (M, p, 1), and it is clear
what we have, then we can speak more briefly of “the monoid M,” though,
strictly speaking, this is the underlying set and is just one of the ingredients
of (M,p,1).

Examples of monoids abound in the mathematics that is already familiar to
the reader. We give a few in the following list.

EXAMPLES

1. (N, 4+, 0); N, the set of natural numbers, +, the usual addition in N, and 0 the
first element of N.

2. (N, -, 1). Here - is the usual product and 1 is the natural number 1.
3. (P, -, 1); P, the set of positive integers, - and 1 are as in (2).

4. (Z, +, 0); Z, the set of integers, + and 0 are as usual.

5. (Z,-,1); - and 1 are as usual.

6. Let S be any non-vacuous set, 2(S) the set of subsets of S. This gives rise to
two monoids (2(S), v, &) and (#(S), N, S).

7. Let o be a particular transformation of S and define o* inductively by «® =1,
of = o "o, ¥ > 0. Then ofo’ = o *! (which is easy to see and will be proved in section
1.4). Then (o) = {o*|k € N} together with the usual composition of transformations and
«® = 1 constitute a monoid.

If M is a monoid, a subset N of M is called a submonoid of M if N contains
1 and N is closed under the product in M, that is, nyn, € N for every n; e N.
For instance, example 2, (N, -, 1), is a submonoid of (Z, -, 1); and 3, (P, -, 1), is a
submonoid of (N, -, 1). On the other hand, the subset {0} of N consisting of 0
only is closed under multiplication, but this is not a submonoid of 2 since it
does not contain 1. If N is a submonoid of M, then N together with the product
defined in M restricted to N, and the unit, constitute a monoid. It is clear that
a submonoid of a submonoid of M is a submonoid of M. A submonoid of the
monoid M(S) of all transformations of the set S will be called a monoid of
transformations (of ). Clearly the definition means that a subset N of M(S) is
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a monoid of transformations if and only if the identity map is contained in N
and the composite of any two maps in N belongs to N.

A monoid is said to be finite if it has a finite number of elements. We shall
usually call the cardinality of a monoid its order, and we shall denote this as
|M | In investigating a finite monoid it is useful to have a multiplication tabl'e
for the products in M. As in the special case which we considered above, if
M ={a, =1, a,,...,a,} the multiplication table has the form

1 a2 e aj PR am
1
2 N
a; ce a,a;
am

where aa; is tabulated in the intersection of the row headed by «; and the
column headed by a;.

EXERCISES

1. Let S be a set and define a product in S by ab = b. Show that § is a semigroup.
Under what condition does S contain a unit?

2. Let M =7 x Z the set of pairs of integers (x;, x,). Define (x;, X,)y;, yz)'z
(x1¥1 + 2X3V2, X1V2 + Xo¥4), 1 =(1,0). Show that this defines a monou?.
(Observe that the commutative law of multiplication holds.) Show that .1f
(X, %,) # (0,0) then the cancellation law will hold for (x;,x;), that is,

(1, X2)(Y5 ¥2) = (X1 X2)(24, 22) = (y1>¥2) = (21, 22}

3. A machine accepts eight-letter words (defined to be any sequence of eight lettgrs
of the alphabet, possibly meaningless), and prints an eight-letter word consisting
of the first five letters of the first word followed by the last three letters of the
second word. Show that the set of eight-letter words with this composition is a
semigroup. What if the machine prints the last four letters of the first word
followed by the first four of the second? Is either of these systems a monoid?

4. Let (M, p,1) be a monoid and let m € M. Define a new product p, .in M by
p.{a, b) = amb. Show that this defines a semigroup. Under what condition on m

do we have a unit relative to p,,?

5. Let § be a semigroup, u an element not in §. Form M = Su {u} and extend
the product in S to a binary product in M by defining ua = a = au for all a e M.
- Show that M is a monoid.
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1.2 GROUPS OF TRANSFORMATIONS
AND ABSTRACT GROUPS

An element u of a monoid M is said to be invertible (or a unit') if there exists
a v in M such that

(3) uv =1 = ou.

If v’ also satisfies uv’ = 1 = v'u then v' = (vu)’ = v(uv’) = v. Hence v satisfying
(3) is unique. We call this the inverse of u and write v = 4~ L. It is clear also
that ™! is invertible and (u™")~* = u. We now give the following

DEFINITION 1.2. A group G (or (G, p, 1)) is a monoid all of whose elements
are invertible.

We shall call a submonoid of a monoid M (in particular, of a group) a sub-
group if, regarded as a monoid, it is a group. Since the unit of a submonoid
coincides with that of M it is clear that a subset G of M is a subgroup if and only
if it has the following closure properties: 1 € G, g,g, € G for every g; € G, every
g € G is invertible, and g 1 € G.

Let U(M) denote the set of invertible elements of the monoid M and let
Uy, U, € U(M). Then

(“1”2)(”2_1141%) = ((”1“2)”2*1)’41_1 = (u1(l‘2”2m1))”1_1 =uuy P =1

and, similarly, (u, ™ "u; " ")(uqu,) = 1. Hence u,u, € U(M). We saw also that if
ue U(M) then u™' € U(M), and clearly 1-1 =1 shows that 1 e U(M). Thus
we see that U(M) is a subgroup of M. We shall call this the group of units or
invertible elements of M. For example, if M =(Z,-, 1) then UM) = {1, —1}
and if M = (N, -, 1) then U(M) = {1}.

We now consider the monoid M(S) of transformations of a non-vacuous set
S. What is the associated group of units U(M(S))? We have seen (p. 8) that a
transformation is invertible if and only if it is bijective. Hence our group is just
the set of bijective transformations of S with the composition as the composite
of maps and the unit as the identity map. We shall call U(M(S)) the symmetric
group of the set S and denote it as Sym S. In particular, if S = {1, 2, ..., n} then
we shall write S, for Sym S and call this the symmetric group on n letters. We
usually call the elements of S, permutations of {1, 2, ..., n}. We can easily list
all of these and determine the order of S,. Using the notation we introduced
in the case n = 2, we can denote a transformation of {1,2,..., n} by a symbol

! This term is quite commonly used in this connection. Unfortunately it conflicts with the
meaning of the unit 1. It will generally be clear from the context which meaning is intended.
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(r 2 om

(4) OC*(l' 2" n’>

where this means the transformation sending i —»i', 1 <i < n. In order for o to
be injective the second line 1/, . . ., n’ must contain no duplicates, that is, no i can
appear twice. This will also assure bijectivity since we cannot have an injective
map of {1,2,...,n} on a proper subset. We can now count the number of
clements in S, by observing that we can take the element 1’ in the symbol (4)
to be any one of the n aumbers 1, 2, . .., n. This gives n choices for 1. Once this
has been chosen, to avoid duplication, we must choose 2 among the n — 1
numbers different from 1'. This gives n — 1 choices for 2. After the partners of
1 and 2 have been chosen, we have n — 2 choices for 3, and so on. Clearly this
means we have n! symbols (4) representing the elements of S,,. We have therefore

proved

THEOREM 1.1. The order of S, is nl.

This is to be compared with the order n" of the monoid of transformations of
S=1{1,2,...,n}

We have called a submonoid of the monoid of transformations of a set, a
monoid of transformations. Similarly, a subgroup of the symmetric group of S
will be called a group of transformations (o1 transformation group). If S is finite
we generally use the term permutation group for a group of transformations of
S. A set G of transformations of a set S is a group of transformations if and
only if it consists of bijective maps and G has the following closure properties:
1=15eG,0fpeGifaand feG, o 'eGifaeC.

EXAMPLES
1. (Z, +, 0) the group of integers under addition.? Here the inverse of a is —a.

2. (@, +, 0) where @ denotes the set of rational numbers; the composition is addi-
tion; the inverse of a is —a.

3. (R, +, 0), R the set of real numbers, usual + and 0.
4. (C, +,0), C the set of complex numbers; usual + and 0.

5. (@%,-, 1), @%, the set of non-zero rational numbers; the composition is multipli-
cation; 1 is the usual 1 and a~ ! the usual inverse.

6. (R*, -, 1), R* the set of non-zero real numbers; usual multiplication, 1, and inverses.

2 THroughout this book we use the following notations (which have become standard): N, for
the set of natural numbers 0, 1,2, .. .; Z, for the set of integers; @, for the set of rational numbers;
R for the set of real numbers; C, for the set of complex numbers.

.
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7. (C*,+, 1), C* the set of non-zero complex numbers; usual multiplication, 1, and
inverses.

8. (R®, +,0), R® the set of triples of real numbers (x,y,z) with addition as
(%1s V1> 20) + (X2, V2, 22) = (X4 + X, V1 + V2,21 +2,),0=(0,0,0). The inverse of
(x, y, 2) is (—x, —y, —z). This example can be described also as the group of vectors in
three-dimensional Euclidean space with the usual geometric construction of the sum.

9. The set of rotations about a point 0 in the plane; composition as usual. If 0 is
taken to be the origin, the rotation through an angle 6 can be represented analytically

as the map (x, y) - (x/, ') where
x'=xcos 0 — ysinf, y =xsin 6+ ycos 0.

For 6 = 0 we get the identity map, and the inverse of the rotation through the angle 0
is the rotation through —86.

10. The set of rotations together with the set of reflections in the lines through 0. The

latter are given analytically by (x, y) — (x', y) where
x'=xcosf+ ysin §, y = xsinf — ycos 0.

The product of two reflections is a rotation and the product in either order of a reflec-
tion and a rotation is a reflection.

11. Consider the regular n-gon (=polygon of n sides) inscribed in the unit circle in
the plane, so that one of the vertices is (1, 0) e.g., a regular pentagon:

72°

The vertices subtend angles of 0, 2n/n, 4n/n, ..., 2(n — )n/n radians with the positive
x-axis. The subset of the rotation group which maps our figure into itself consists of the
n rotations through angles of 0, 2n/n, ..., 2(n — 1)x/n radians respectively. These form a
subgroup R, of the rotation group.

12. We now consider the set D, of rotations and reflections which map the regular
n-gon, as in 11, into itself. These form a subgroup of the group defined in 10. We shall
call t.he. elements of this group the symmetries of the regular n-gon. The reflection in the
X-axis is one of our symmetries. Multiplying this on the left by the » rotational sym-
metries we obtain n distinct reflectional symmetries. This gives them all, for if we let S
denote the reflection in the x-axis and T denote any reflectional symmetry then ST is
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one of the n-rotational symmetries Ry, ..., R,, say R Since $2 =1, ST = R; gives
T = SR; which is one of those we counted. Thus D, consists of n rotations and n reflec-
tions and its order is 2n. The group D, is called the dihedral group. For n = 3 and 4
the lines in whose reflections we obtain symmetries of our n-gon are indicated as broken

lines in the following figures:

13. Let U, denote the set of complex numbers which are nth roots of unity in the
sense that 2" = 1. Tt is easy to determine these using the polar representation of a com-
plex number: z =re’ =r(cos 0 +isinb), r = |z, 0, the argument (=angle) of z. If
z, = rye®and z, = r,e% thenzyz, = 1,7, @99 Tt follows that if 2" = 1 then|z] = r = 1
and 6 must be one of the angles § =0, 2n/n, 4z, ..., 2n — )r/n. Since 1"=1,
and z," =1 and z," = 1 imply (z,2,)" = z,"z," = 1 and (z, 7Y = (z," "' =1, it is clear
that U, is a subgroup of C*, the multiplicative group of complex numbers (as in ex-
ample 7).

14. The rotation group in three-dimensional Euclidean space. This is the set of
rotations about the origin 0 in the number space R of triples (x, y, 2), X, y, z € R. From
analytic geometry it is known that these maps are given analytically as (x, y, z) —
(x, ¥, 2') where

X' =X+ pyy + iz

V' = AaX + fpy + V,2

= A3x + U3y + viz
and the A;, 1i;, v; are any real numbers satisfying:

A+t vt =1, hidy 4 gy + vy =0 3 T #J,

Ay Yy
Ay Ha Vy|=1
Az H3 V3

We remark that all the examples 9—14 except 13 are transformation groups. We
remark also that in our list of monoids given on p. 29, 1, 2, 3, 5 are not groups and 7
may or may not be a group. The two geometric examples 11 and 12 illustrate a general
principle. If G is a transformation group of a set § and A4 is a subset then the trans-
formations contained in G which map 4 onto itself (6(4) = A) constitute a subgroup
G, 6f G. The validity of this is immediate.
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. We shall now consider a general construction of monoids and groups out of
g%ven monoids and groups called the direct product. Let M,, M,, ..., M, be
g1vzn monoids.and put M = M; x M, x -+ x M,. We introduce a produclt in
M by

(a'l’ dzs .-, an)(bb bzs B bn) = (albla a2b2’ tees anbn)

where a;, b; € M; and put
1=(1,,1,,...,1,)

1;, the unit of M;. Then, writing (a,) for (ay, . . ., a,) etc., we have ((a))(b,))(c, =
((a;b))c)) and (a)((b;)(c;)) = (adbsc;)). Hence the associative law holdls. Also
I{a;) = (a;) = (ay)1 so 1 is the unit. Hence we have a monoid. This is called the
direct product My x M, x -+ x M, of the monoids M;. If every M, is a group
G;, then Gy X G, X -+ x G, is a group since in this case (q;) has the inverse
(@;71). Then Gy x G, x -+ x G, is called the direct product of the groups G,.
A special case of this construction is given in example 8 above. This can ble
regarded as a direct product of (R, +,0) with itself taken three times. As in this
example, it should be noted that we do not require the M, (or the G)) to be
distinct. In fact, we obtain an interesting case if we take all the M; = N la fixed
monoid. Then we obtain the direct product of N with itself takén n t,imes or
the n-fold direct power of N. We shall usually denote this as N,

EXERCISES

1. Determine of, fo and o™ !in S if
a:<12345 ﬂ:12345
2 3 1 5 4) 1 3 4 5 2
2. Verify that the permutations
1:<1 23 1 23 1 23
12 30 2 3 1) 31 2
form a subgroup of S;.

3. Determine a multiplication table for S,.

4. Let G be the set of pairs of real numbers (a, b) with a # 0 and define:
(a, b)(c, d) = (ac, ad + b), 1 = (1, 0). Verify that this defines a group.
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5. Let G be the set of transformations of the real line R defined by x = x" = ax + b
where a and b are real numbers and a # 0. Verify that G is a transformation group
of R.

6. Verily that the set of translations x — x'=x + b is a subgroup of the group
defined in exercise 5.

7. Show that if an element a of a monoid has a right inverse b, that is, ab = 1; and
a left inverse c, that is, ca = 1; then b = ¢, and a is invertible with a~! = b. Show
that q is invertible with b as inverse if and only if aba = a and ab’a = 1.

8. Let o be a rotation about the origin in the plane and let p be the reflection in
the x-axis. Show that pop ™t =a™ .

9. Let G be a non-vacuous subset of a monoid M. Show that G is a subgroup if and
only if every g € G is invertible in M and g1 'g, € G for any gy, g, € G.

10. Let G be a semigroup having the following properties: (a) G contains a right unit -

1,, that is, an element satisfying al, = a, a € G, (b) every element a € G has a right
inverse relative to 1, (ab = 1,). Show that G is a group.?

11. Show that in a group, the equations ax = b and ya = b are solvable for any q,
b e G. Conversely, show that any semigroup having this property contains a unit
and is a group.

12. Show that both cancellation laws hold in a group, that is, ax = ay=x = y and
xa = ya=>x = y. Show that any finite semigroup in which both cancellation laws
hold is a group (Hint: Use the pigeon-hole principle and exercise 11.)

13. Show that any finite group of even order contains an element a # 1 such that
a’?=1.

14. Show that a group G cannot be a union of two proper subgroups.

15. Let G be a finite set with a binary composition and unit. Show that G is a group
if and only if the multiplication table (constructed as for monoids) has the
following properties:

(i) every row and every column contains every element of G,

(i) for every pair of elements x # 1, y # 1 of G, let R be any rectangle in the
body of the table having 1 as one of its vertices, x a vertex in the same row
as 1, y a vertex in the same column as 1, then the fourth vertex of the rectangle
depends only on the pair (x, y} and not on the position of 1.

1.3 ISOMORPHISM. CAYLEY'S THEOREM

At this point the reader may be a bit overwhelmed by the multitude of examples
of monoids and groups. It may therefore be somewhat reassuring to know that
3 The semigroups satisfying (a) and (b'), which is (b) with “right inverse” replaced by “left inverse,”

need not be groups. Their structure has been determined by A. H. Clifford in Annals of Mathe-
matics, vol. 34 (1933), pp. 865-871.
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certain groups which look different can be regarded as essentially the same—
that is, they are “isomorphic” in a sense which we shall define. Also we shall
see that every monoid is isomorphic to a monoid of transformations, and every
group is isomorphic to a group of transformations. Thus we obtain essentially
all monoids (groups) in the class of monoids (groups) of transformations. This
result for groups is due to Cayley. We give first

DEFINITION 1.3. Two monoids (M, p, 1) and (M, p’, 1') are said to be isomor-
phic if there exists a bijective map n of M to M’ such that

) n) =1, x,ye M.

nxy) = n(m(y),

The fact that M is isomorphic to M will be indicated by M = M'. The map
n satisfying the conditions (5) is called an isomorphism of M onto M’. Actually,
the first condition in (5) is superfluous. For, if # satisfies the second condition,
then we have n(x)n(1) = n(x) = n(1)n(x). Since x is surjective, this shows that (1)
acts as the unit 1" in M’, and since we know that the unit is unique, we have
(1) = 1'. Nevertheless, we prefer to include the first condition in (5) as part of
the definition, since this will be needed in a more general context which we shall
consider later.

Perhaps the first significant example of isomorphism between groups which
was discovered was one between the additive group of real numbers and the
multiplicative group of positive reals. We denote these as (R, +, 0) and (R*, -, 1)
respectively. An isomorphism of (R, +, 0) and (R*, -, 1) is the exponential map
x — ¢, This is bijective with inverse y — log y (the natural logarithm) and we
have the “functional equation”

et = ¢¥e?

which is just the second condition in (5) since + is the composition in (R, +, 0).

If M and M’ are isomorphic there may exist many isomorphisms between
these monoids. For instance, if a is any positive real number # 1, the map x — a*
is an isomorphism between the groups we have just considered. It is clear that
isomorphism is an equivalence relation: any monoid is isomorphic to itself (with
respect to the identity map) and if n: M — M’ is an isomorphism, then applying
n"! to the second condition in (5) gives xy =y~ *(n(x)n(y)). Hence if we write
n(x) = x, n(y) =y, then n7'(xW " '(y) = n~x'y), and this holds for all x’,
y' € M’ since 7 is surjective. Thus # ! is an isomorphism from M’ to M. Finally,
if { is an isomorphism of M’ to M” then ({n)(xy) = {(n(xy)) = {H(xm») =
{(x))(n(»). Thus {n: M — M" is an isomorphism.

We shall now prove the result which was mentioned before.
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CAYLEY’S THEOREM FOR MONOIDS AND GROUPS. (1) Any monoid
is isomorphic to a monoid of transformations. (2) Any group is isomorphic to a
transformation group.

Proof. (1) Let (M, p, 1) be a monoid. Then we shall set up an isomorphism
of (M, p, 1) with a monoid of transformations of the set M itself. For any a € M,
we define the map a;:x — ax of M into M. We call a; the left translation (or left
multiplication) defined by a. We claim first that the set M, = {a |ae M} is a
monoid of transformations, which, we have seen, means that the identity map
is in the set M, and this set is closed under the composite product of maps.
Since 1, is x » Ix = x, I, = (= 1) € M. Also a;b; is the map x — a(bx). By
the associative law, a(bx) = (ab)x, and this is (ab).x. Thus arh; = (ab)p € M.
We note next that the map a — a;, is an isomorphism of (M, p, 1) with the mo-
noid of transformations M. The equations 1, = 1 and agb, = (ab),, are the
conditions (5) for a — ar, and, obviously, this map is surjective. Moreover, it is
also injective; for, if a, = b, then, in particular, a = a,1 = b1 = b. Hence
a — a is an isomorphism.

(2) Now let (G, p, 1) be a group. Then everything will follow from the proof
of (1) if we can show that G is a group of transformations. This requires two
additional facts beyond those we obtained in the preceding argument: the maps
a, are bijective and G is closed under inverses. Both follow from 1, =
(a 'a), = (a~ Yy, and 1, = a;(a” "), which show that a;, has the inverse (@™ 1),
and thisis in G;. O

It should be noted that if M (or G) is finite then M acts in the finite set M.
In particular, if |G| = n, then G, is a subgroup of S,, the symmetric group on
a set of n elements. Hence we have the

COROLLARY. Any finite group of order n is isomorphic to a subgroup of the
symmetric group S,.

EXAMPLES

1. Let (R, +,0) be the additive group of reals. If a e R, the left translation ag is
xX—a+ X.

2. Let G be the group of pairs of real numbers (a, b), a # 0 with product (a, b) (¢, d) =
(ac, ad + b), 1 = (1, 0) (exercise 4, p. 36). Here (a, b), is the map

(x, y) = (ax, ay + b).

Another transformation group isomorphic to G is the group of transformations of R

5
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consisting of the maps x — ax + b, a # 0. The map sending (a, b) into the transformation
Tiap defined as x — ax + b, a # 0, is an isomorphism.

EXERCISES

1. Use a multiplication table for S5 (exercise 3, p. 36) and the isomorphism a — a;,
(a;. the left translation defined by a) to obtain a subgroup of Sy isomorphic to
S3.

2. Show that the two groups given in examples 11 and 13 on pages 33 and 34 are
isomorphic. Obtain a subgroup of S, isomorphic to these groups.

3. Let G be a group. Define the right translation a, for a € G as the map x — xa
in G. Show that Gy = {a,} is a transformation group of the set G and a — az~'
is an isomorphism of G with Gg.

4. Is the additive group of integers isomorphic to the additive group of rationals
{examples 1 and 2 on p. 32)?

5. 1Is the additive group of rationals isomorphic to the multiplicative group of non-
zero rationals (examples 2 and 5 on p. 32)?

6. In Z define ao b = a + b — ab. Show that (Z, -, 0) is a monoid and that the map
a— 1 — ais an isomorphism of the multiplicative monoid (Z, -, 1) with (Z, o, 0).

1.4 GENERALIZED ASSOCIATIVITY. COMMUTATIVITY

Let ay, a,,...,a, be a finite sequence of clements of a monoid M. We can
determine from this sequence a number of products obtained by iterating the
given binary composition of M. For instance, if n = 4, we have the following
possibilities:

((aaz)az)as, (a1(axas))as, (a1a,)(a3a4), a1((axas)as), a(a(asay))-

In general, we obtain the products of aq, a,, . . ., a, by partitioning this sequence
into two subsequences dy, ..., a, and dy; 1, ..., d, 1 <m < n— 1. Assuming
we already know how to obtain the products of a,...,a, and a1, ..., a,,
we apply the binary composition to these results to obtain an element of M
which is a product associated with the sequence ay, a5, ..., g, Varying m in
the range 1,...,n — 1 and taking all the products for the subsequences, we
obtain the various products for a,, a,, ..., a,. Now we claim that the associa-
tive law guarantees that all of these products are equal. This is, of course, clear
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for n = 1, if we understand that the “product” in this case is just ay. To prove
the assertion in general we use induction on n and we first prove a little lemma.

LEMMA. Define [[% a; by [ [} ;= ay, [ 17" a; = ([T} @)a,+ 1. Then

n+m

" m
Hail—[ Ay = n Q.
1 1 1

Proof. By definition this holds if m = 1. Assume it true for m = r and consider
the case m = r + 1. Here

n r+1

n r
H a; Il_[ an+j = 1—11 a‘i<<lzl an+j>a‘n+r+1>
1

n ¥
= (H a; H an+j>an+r+1
1

1

n+r
]_—[ Ay 4r+1

1

I

ntr+1

- H ak. D

1

+

Now consider any product associated with the sequence ay, a,, . .., a,. This
has the form uv where u is a product associated with a;,...,a, and vis a
product associated with d,,+1, . . ., @, By induction on n we may assume that
u=T[¢a and v=]]i""a,.; Then, by the lemma, uv =[]} @. Thus all
produets determined by the squence a;, . . ., a, are equal (= [Ti a). From now
on we shall denote this uniquely determined product as aa, - - * a,, omitting
all parentheses.

If all the a; = a, we denote a,a, - * - a, as a”" and call this the nth power of a.

It is clear by counting that

(6) aman - am+n, (am)n - amn.

Also, if we define a® = 1, then it is immediate that (6) is valid for all m, ne N,

If a is an invertible element of M, then we define ™" for ne N by a™" =
(@ y=atal---a ! (n times). It is clear that a™" = (a”)"' and one can
prove easily that (6) holds for all m, n € Z. This is left to the reader to check.

If a and b are elements of a monoid M, it may very well happen that ab # ba.
For example, in the monoid M(S), S = {1, 2}, whose multiplication table is (1)
we Have aff =y whereas foa = f. If ab = ba in M then a and b are said to com-

£
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mute and if this happens for all a and b in M then M is called a commutative
monoid. Commutative groups are generally called abelian groups after Niels
Hendrik Abel, a great Norwegian mathematician of the early nineteenth cen-
tury.* We shall adopt this terminology in what follows.

If a € M we define the centralizer C(a)—or Cy(a) if we need to indicate M—
as the subset of M of elements b which commute with a. This is a submonoid
of M. For, 1 € C(a) since la = a = al and if by, b, € C(a) then

(biby)a = by(bya) = by(ab,) = (bya)b, = (aby)b, = a(bb,).

Also, if be C(a) and b is invertible then b~ ! e C(a), since multiplication of
ab = ba on the left and on the right by b~* gives b~ 'a = ab~!. This shows also
that if M = G is a group then C{q) is a subgroup.

It is immediate that if {M,} is a set of submonoids of a monoid then () M,
is a submonoid. Similarly, the intersection of any set of subgroups of a group
is a subgroup.

If A is a subset of M we define the centralizer of A as C(A) = (),e4 Cla).
Clearly this is a submonoid and it is a subgroup if M is a group. The submonoid
C(M) is called the center of M.

Suppose we have elements a,, a,, . .
and consider any product ay.a,. - a, where 1,2, ..
1,2,...,n Suppose a, occurs in the hth place in a,.a, - -
Then, since the a; € C(a,), a4,y - * a, € C(a,) and so

., @&, € M such that a,a; = a;a, for all i, j
., 1’ is a permutation of
a,, that is, a,, = a,.

gy Qe """y = Ay " " Qg y A1y " 77 GGy

The sequence of numbers 1',...,(h — 1), (h + 1),...,n is a permutation of
1,2,...,n— 1. Hence, using induction, we may assume that

Ay Q-1 Aty " Gy = Q10 """ Oy g

This implies that a;.a, - - a, = aa, - a, Thus the product aa, - a, is
invariant under all permutations of the arguments. In particular, if ab = ba,
then

7N (ab)" = a"b", n=20,12,....

Since a™" = (a~!)" it is clear that (7) holds also for negative integers if a and b
are invertible.

If M is commutative, one frequently denotes the composition in M as + and
writes a + b for ab. Also one writes O for 1. Then + is called addition and 0

* An attractive biography of Abel’s life has been written by Oystein Ore, Niels Hendrik Abel,
Minneapolis, University of Minnesota Press, 1957.
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the zero element. Also in this additive notation one writes —a for a ' and calls
this the negative of a. The nth power a" becomes na, the nth multiple of a. The
rules for powers become the following rules for multiples:

8) ma + na = (m + n)a, m(na) = (mn)a

9 n(a + b) = na + nb.

These are valid for all integral m and »n if M is an abelian group.

EXERCISES

1. Let 4 be a monoid, M(4) the monoid of transformations of A4 into itself, 4,
the set of left translations a,, and A, the set of right translations ag. Show that
Ay (respectively Ap) is the centralizer of Ay (respectively 4;) in M(A) and that
A 0 Ag = {cg = ¢, |c € C}, C the center of 4.

2. Show that if n > 3, then the center of S, is of order 1.

3. Show that any group in which every a satisfies a? = 1 is abelian. What if a® = 1
for every a?

4. For a given binary composition define a simple product of the sequence of cle-
ments a,,4a,,...,a, inductively as either a,u where u is a simple product of
g, ..., 4, or as va, where v is a simple product of ay, ..., a, ;. Show that any
product of >2" elements can be written as a simple product of r elements (which
are themselves products).

1.5 SUBMONOIDS AND SUBGROUPS GENERATED
BY A SUBSET. CYCLIC GROUPS

Given a subset S of a monoid M or of a group G, one often needs to consider
the “smallest” submonoid of M or subgroup of G containing S. What we want
to have is a submonoid (or subgroup) containing the given set and contained
in every submonoid (subgroup) containing this set. If such an object exists it
is unique; for the stated properties imply that if H(S) and H'(S) both satisfy the
conditions, then we have H(S) > H'(S) and H'(S) > H(S). Hence H(S) = H'(S).
Existence can also be established immediately in the following way. Let S be
a given subset of a monoid M (or of a group G) and let {M,} ({G,}) be the set
of all submonoids of M (subgroups of G) which contain the set S. Form the
intersection (S of all these M, (G,). This is a submonoid (subgroup) since the

-
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intersection of submonoids (subgroups) is a submonoid (subgroup). Of course,
{8) = S. Moreover, if N is any submonoid of M (or subgroup of G) containing
S, then N is one of the M, (G,) and so N contains {S which is the intersection
of all the M, (G,). We shall call (S) the submonoid (subgroup) generated by S.
If S is a finite set, say, S = {5, 55, ..., s,}, then we write (s, s, . .., s, in place
of the more cumbersome {{sy, S,, . . ., 5,} ». An important situation occurs when
{§8> = M (or G). In this case we say that the monoid M (group G) is generated
by the subset S, or S is a set of generators for M (or G). This simply means that
no proper submonoid of M (subgroup of G) contains the set S.

The reader may feel somewhat uncomfortable with the non-constructive
nature of our definition of {S>. Modern mathematics is full of such definitions,
and so one has to learn to cope with them, and to use them with case. Never-
theless, it is nice and often useful to have constructive definitions when these
are available. This is the case with {S), as we shall now show. We consider
first the case of monoids. What do the elements of {S) look like? Since ¢S is
a submonoid containing S, clearly (S contains 1 and every product of the
form s,s, - - - s, where the s; are elements of S (which need not be distinct). Thus

(10) (S 28y ={1, 545, o s,|s; € S}.

Here the notation indicates that (S}’ is the subset of the given monoid M con-
sisting of 1 and every product of a finite number of elements of S. Now we
claim that, in fact, {§)> = {§)'. To see this we observe that {(§)’ contains S,
since we are allowing » = 1 in (10). Also (S}’ contains the unit, and the product
of any two elements of the form s, - - - 5,, 5; € S, is again an element of this form.
Hence <S)’ is a submonoid of M and since {S)' = S we have {S)’ = {S). Since
previously we had <{S) o {8}, {§) = {8)'. Thus a constructive definition of
{8 is that this is just the subset of M consisting of 1 and all finite products
of elements of the set S.

In the group case we let (S’ be the subset of the given group G consisting
of 1 and all finite products of elements of S or the inverses of elements of S. In
other words,

(11) (S ={1,s45, " s,]s;ors;, L e S}

It is immediate that {(S> = (S}, that {(§)' > § and (S’ is a subgroup. Hence
(8Y = (5.

We now restrict our attention to groups, and we consider the simplest pos-
sible groups—those with a single generator. We have G = {a), and we call G
cyclic with generator a. The preceding discussion (or the power rules) show that
{ay = {a*|k € Z} and this is an abelian group. One example of a cyclic group
is the additive group of integers (Z, +, 0) which is generated by 1 (or by —1).
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We now consider the map

"

n—a

of Z into (a). Since {a) = {d*} this map is surjective. Also we have m + n—
a®t" = g"q", 0 — 1. Hence if our map is injective it will be an isomorphism.
Now suppose n — a" is not an isomorphism. Then a™ = a" for some m # n. We
may assume # > m. Then ¢" ™ = a"a™ = a"a™™ = 1; so there exist positive
integers p such that a” = 1. Let r be the least such positive integer. Then we
claim that

(12) (ay ={l,a,a%...,d 1}

and the elements listed in (12) are distinct, so [{a)| =r. Let a™ be any element
of {a). By the division algorithm for integers, we can write m = rq + p where
0 < p <r. Then we have a” = a""? = (a")%a” = 1%a” = a”. Hence a™ = a” is
one of the elements displayed in (12). Next we note that if k # [ are in the range
0,1,...,r — 1 then d* # a'. Otherwise, taking [ > k we obtain a'* =1 and
0 < I — k < r contrary to the choice of . We now see that if n — a" is not an
isomorphism, then {a) is a finite group. Accordingly, any infinite cyclic group
is isomorphic to (Z, +, 0) and so any two infinite cyclic groups are isomorphic.

We shall show next that any two finite cyclic groups of the same order are
isomorphic. Suppose <b> has order r. Then, as in the case of {a), we have
by ={1,b,...,b" '}, where r is the smallest positive integer such that b" = 1.
We now observe that if / is any integer such that a” = 1, then r]h (ris a divisor
of h). Wehave h = gr + 5,0 < s <r,s0 1 = a" = (a")a* = 1%° = &'. Since r was
the least positive integer satisfying a” = 1 we must have s =0 and so h = gr.
We now claim that if m and n are any two integers such that ¢” = 4" then also
bp™ = b". For, a™ = a" gives a" " =1; hence m — n = gr. Then b" "= (D")1 =
12 =1 and b™ = b". By symmetry b™ = b" implies a™ = g". It is now clear that
we have a 1-1 correspondence between {a) and {b) pairing ¢" and b". Since
a"a" = g™ " is paired with b™ " = b"b", ¢" — b" is an isomorphism of {a) and
<b>.

Our analysis has proved the following

THEOREM 1.2. Any two cyclic groups of the same order { finite or infinite)
are isomorphic.

We have seen that (Z, +, 0) can serve as the model of a cyclic group of in-
finite order. If r is any positive integer, the multiplicative group U, of the
complex rth roots of unity (example 13, p. 34) can serve as a model for cyclic
groups of order r. The elements of this group are the complex numbers
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e?*milr = cos 2km/r + isin 2kn/r, k=0, 1,...,r — 1. Since % = ¢{0+0) it is
clear that a = e*™/" generates U,.

We can use the notion of a cyclic group to obtain a classification of the cle-
ments of any group G. If a € G we say that a is of infinite order or of finite order
r according as the subgroup {a) is infinite or finite of order r. In the first case
a” # 1 for m # 0. In the second case we have " = 1 and r is the least positive
integer having this property. Also, if @™ = 1 then m is a multiple of ». We shall
denote the order of a by o(a) (finite or infinite). It is clear that if o(a) = r = st
where s and ¢ are positive integers then o(a®) is t. More generally, one sees easily
that if o(a) = r < co then o(a") for any integer k # 0 is [# k1/k = #/(r, k) where
as usual [,] denotes the Lem. and (,) denotes the gc.d. (exercise 4, p. 47).

Cyclic groups are the simplest kind of groups. It is therefore not surprising
that most questions on groups are easy to answer for this class. For example,
one can determine all the subgroups of a cyclic group. This is generally an
arduous task for most groups. We shall now prove

THEOREM 1.3. Any subgroup of a cyclic group {a) is cyclic. If {a) is infinite,
the subgroups #1 are infinite and s — {a*) is a bijective map of N with the set
of subgroups of {a. If {a) is finite of order r, then the order of every subgroup
is a divisor of v, and for every positive divisor q of r there is one and only one
subgroup of order q.

Proof. Let H be a subgroup of {a). If H = 1 (={1}) then H = {(1>. Now let
H # 1. Then there exists an n # 0 in Z such that ¢" € H. Since also g~ " =
(a")~' € H we may assume n > 0. Now let s be the smallest positive integer
such that a* € H. Then we claim H = {a°). Let a" € H and write m = gs + ¢
where 0 <t <s. Then a' = a™(a®) %€ H, and, since s was the least positive
integer such that a® e H, we must have ¢ = 0. Then a” = (¢°)? € <a*). Since a™
was any element of H we have H = {a®), which proves the first statement of the
theorem.

If <a) is infinite we saw that for distinct integers m and n, a™ # a". Hence
for any positive s, the elements ™, m =0, + 1, +2,... are distinct, so {a*)
is an infinite group. Moreover, s is the smallest positive integer such that
a’ € <a’y. Thus every subgroup #1 is infinite and we have the 1—1 cor-
respondence s — (a’) between the set of positive integers and the set of sub-
groups #1 of {a).

Now suppose {a) is of finite order r, so (a) = {1,a,...,a"'}. We have
seen that if H is a subgroup #1 of (a), then H = {(¢*> where s is the smallest
positive integer such that a° € H. We claim that s|r. For, writing r = gs + t with
0<t<s, wehave | =a" = (a')d', 50 a' = (a°) "% € H. The minimality of s then
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forces t = 0 and so r = gs. We can now list the elements of H as

(13) (L, ..., do v

and a® = ¢ = 1. This applies to H = 1 if we take s = r. In this way we obtain
a bijective map s — (a*) of the set of positive divisors s of v onto the set of
subgroups of {a. The order of the subgroup {a”) corresponding to sis g = r/s
and as s runs through the positive divisiors of r, so does g. Hence the order of
every subgroup is a divisor of r and for every positive q|r we have one and
only one subgroup of this order. This completes the proof. O

We note again that the subgroup of order ¢ of the finite cyclic group <a) of
order r can be displayed as in (13). There is another characterization of this sub-

group which is often useful, namely:

COROLLARY. If {a) has order r < oo, then the subgroup H of order q|ris
the set of elements b € {a) such that b* = 1.

Proof. Any element of H has the form a* where s = r/q. Then (a*)* = a* = 1.
Conversely, let b = a™ satisfy b = 1. Then @™ = 1 and hence mq = kr. Then

m=kssob=(a)VeH O

After cyclic groups the next simplest type of groups are the finitely generated
abelian ones, (that is, abelian groups with a finite number of generators). These
include the finite abelian groups. We shall determine the structure of this class
of groups in Chapter 3, obtaining a complete classification by means of numer-
ical invariants. Independently of the structure theory, we shall now derive a
criterion for a finite abelian group to be cyclic. This result will be needed to
prove an important theorem on fields (Theorem 2.18, p. 128) To state our cri-
terion we require the concept of the exponent, exp G, of a finite group G,
which we define to be the smallest positive integer e such that x°* =1 for all
x € G. For example, exp S = 6 = |S;|. The result we wish to prove is

THEOREM 1.4. Let G be a finite abelian group. Then G is cyclic if and only
ifexp G = |G|.

The proof will be based on two lemmas that are of independent interest.

LEMMA 1. Let g and h be elements of an abelian group G having finite rela-
tiveTy prime orders m and n respectively (that is, (m, n) = 1). Then o(gh) = mn.

?
i
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Proof. Suppose (gh)’ = 1. Then k=g"=h""e {g) n {h). Then o(k)]m and
o(k)|n and hence o(k) = 1. Thus (ghy = 1 =¢" = 1 = I". Then m|r and n|r and
hence mn = [m, n]|r. On the other hand, (gh)™ = ¢g""h"™ = 1. Hence o(gh)
=mn. O

LEMMA 2. Let G be afinite abelian group, g an element of G of maximal order.
Then exp G = o(g).

Proof. We have to show that h*@ =1 for every he G. Write o(g) =
P& ps, oh) = p - pfs, where the p; are distinct primes and e; > 0,
f: > 0.If h°@ 3 1, then some f; > ¢; and we may assume f; > e;. Put g’ = g?*",
W = kP2 7" Then o(g') = p,** - - p,® and o() = p,”*. Hence, by Lemma 1,
o(g'h) = p,'p,** - - p& > o(g). This contradicts the maximality of o(g). [

We can now give the

Proof of Theorem 1.4. First suppose G = {(g). Then |G| = o(g) and hence
exp G = |G|. Conversely, let G be any finite abelian group such that exp G = |G].
By Lemma 2 we have an element g such that exp G = o(g). Then |G| = o(g) =
[<g>|- Hence G = {g>. O

EXERCISES

1. As in section 1.4, let C(A) denote the centralizer of the subset A of a monoid M
(or a group G). Note that C(C(4)) > 4 and if 4 = B then C(4) > C(B). Show that
these imply that C(C(C(4))) = C(A). Without using the explicit form of the ele-
ments of {A) show that C(4) = C({A4)). (Hint: Note that if c € C(4) then A = C(c)
and hence 4> < C(c).) Use the last result to show that if a monoid (or a group)
is generated by a set of elements 4 which pair-wise commute, then the monoid
(group) is commutative.

2. Let M be a monoid generated by a set S and suppose every element of S is invert-
ible. Show that M is a group.

3. Let G be an abelian group with a finite set of generators which is periodic in the
sense that all of its elements have finite order. Show that G is finite.

4. Show that if g is an element of a group and o(g) = n then g*, k # 0, has order
[n, k]/k = n/(n, k). Show that the number of generators of {g> is the number of
positive integers <u which are relatively prime to n. This number is denoted as
o(n) and ¢ is called the Euler ¢- function.
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5. Show that any finitely generated subgroup of the additive group of rationals
(Q, +, 0) is cyclic. Use this to prove that this group is not isomorphic to the direct
product of two copies of it.

6. Let a, b be as in Lemma 1. Show that {a) n <(b) =1 and {a, b) = {ab}.

7. Show that if o(a) = n = rs, where (r, s) = 1, then {a) = (b} x {c), where o(b) =
r and o(c) = s. Hence prove that any finite cyclic group is isomorphic to a direct
product of cyclic groups of prime power orders.

1.6 CYCLE DECOMPOSITION OF PERMUTATIONS

A permutation y of {1,2,...,n} which permutes a sequence of elements i,

i, ..., 1, ¥ > 1, cyclically in the sense that

(14) y(iy) = iz,

and fixes (that is, leaves unchanged) the other numbers in {1, 2, ..., n} is called
a cycle or an r-cycle. We denote this as

V(IZ) = i35 Tt y(ir—l) = ir) ‘))(Zr) = il

(15) y = (g ).

It is clear that we can equally well write
y = (izds *** iydy) = (sl "~ " B,dy1), ete.

The permutation y? maps i, into is, i, into iy, . . ., i, into i, etc., and, in general,

foril<k=<r,

i) =t i jHEk<r

(16) iy .
V) = gy I j+k>r

Clearly this shows that y" =1 but y* # 1 if 1 < k <r. Hence y is of order r.

Two cycles y and y’ are said to be disjoint if their symbols contain no common
letters. In this case it is clear that any number moved by one of these trans-
formations is fixed by the other. Hence if i is any number such that y(i) # i then
/(i) = y(i), and since also (i) # y(i), y'y(i) = y(i). Similarly, if y'(i) # i then
Yy() = y'() = yy'(i). Also if y(i) = i = y'(i) then yy'({) = y"y()). Thus yy" = y’y, that
is, any two disjoint cycles commute. Let o be a product of disjoint cycles, that is,

(17 o =(iyiy i) ) (Iily -+ L),

Let m be the least common multiple of 7, s, . .., u. Then we claim that m is the
order of . Putting y; =iy i), 2 =01 " Jh- e =l 1) we have
" = p,"," -y = 1. On the other hand, « permutes iy, ..., i, and so do its
powers and the restriction of a to {i, ..., i} is y;. Hence if «" = 1 then y," =

ﬁ
i
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1 and so n is divisible by r. Similarly, n is divisible by s, . . ., u and so n is divis-
ible by the least common multiple of r,s,...,u. Hence the least common
multiple of these numbers is the order of a.

It is convenient to extend the definition of cycles and the cycle notation to
1-cycles where we adopt the convention that for any i, (i) is the identity map-
ping. With this convention we can see that every permutation is a product of
disjoint cycles. For example, if

oo W
NN

~
— COo
N

then
of1) =3, 0(3) = 5,%(5) = 8, a(8) = 1; a(2) = 6, a(6) = 2: a(d) = 4, a(7) = 7
from which one deduces that
o = (T)(4)(26)(1358).

In general, for any « we can begin with any number in 1,2, ..., n, say i,, and
form a(i,) = i,, a(i,) = i, ..., until we reach a number that occurs previously
in this list. The first such repetition occurs when i, = a(i,) = i;; for, we have
i, = of71(i,) and if i, =i, for >k then o/ "%i,)=1i,. Thus the sequence
iy, 15, ...,1, 18 permuted cyclically by «. If »r <n we choose a j; not in
{iy, i3, 0. If 0™(jy) = o(i;) then j, = a® ™(i,) € {i}, i3, ..., i} contrary to
our choice of j;. Hence we obtain a new sequence of numbers ji, j,, ..., J
permuted cyclically by « and having no elements in common with the first.
Continuing in this way we ultimately exhaust the set {1, 2, ..., n}. Itis clear, on
comparing the images of any i under the two maps o and (I, -~ 1)- -~ (iy - i)
that

= L) Gy i),

a product of disjoint cycles. The different cycles occurring in such a factorization
commute and we may add or drop trivial one-cycles. Apart from order of the
factors and inclusion or omission of 1-cycles this factorization is unique. For,
if we have one which is essentially different from the one displayed above (or
17)), then for some i, j, i # j, which occur in the order i followed by j in one of
the cycles in (17), we have that this is not the case in the other one. The first
factorization then shows that «(i) = j and the second that «(i) # j. This con-
tradiction proves our assertion.
A cycle of the form (ab) is called a transposition. 1t is easy to verify that

(18) iy ) = (g < (s,
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a product of r — 1 transpositions. It follows that any « €S, is a product of
transpositions. In fact, if « factors as a product of disjoint cycles as in (17), then
o is a product of r — )+ (s — D)+ - +(u~— 1) transpositions. We denote
this number, which is uniquely determined by o, as N(x). It is clear that N(1) =
0. There is no uniqueness of factorization of a permutation as a product of
transpositions. For example, we have (123) =(13)(12) = (12)(23) = (23)(13).
However, as we shall now show, there is one common feature of all the factor-
izations of a given a as a product of transpositions. The number of factors
occurring all have the same parity: that is, their number is either always even
or always odd. Our proof of this fact will be based on a simple formula, which
is anyhow worth noting:

(19) (ab)(acy - -~ cybdy -+ d) = (bd, -+~ d)(acy - ¢)-

Here we are allowing h or k to be 0, meaning thereby that no ¢’s or no d’s
occur. Comparing images of any i in {1,2,.., n} shows that (19) holds. Since
(ab)~! = (ab) multiplying both sides of (19) on the left by (ab) gives:

(20) (ab)(bd, - - di)(acy -~ cp) = (acy - cpbdy -+ dy).

If N is defined as above, we have N((ac, - ¢bdy - d))=h+k+1 and
N((bdy + - d)ac, - -~ ¢;)) = h + k. It follows that N((ab)(®)) = N(x) — 1 if a
and b occur in the same cycle in the decomposition of « into disjoint cycles and
N((ab)x) = N(«) + 1 if a and b occur in different cycles. Hence if o is a product
of m transpositions then, since N(1)=0, N(x)= Ym e where g = +1.
Changing an ¢ = —1 to 1 amounts to adding 2 to the sum and so does not
change the parity. If we make this change for every ¢; = —1 the final sum we
obtain is m. Hence m and N(x) have the same parity. Hence the number of fac-
tors in any two factorizations of o as a product of transpositions have the same
parity, namely, the parity of N(x).

We call o even or odd according as o factors as a product of an even or an odd
number of transpositions (equivalently: N(«) is even or odd.) We define the

sign of a, sg o, by
(21) sg o = 1 if o is even, sgoa = —1ifeis odd

Then sg 1 = 1 and if a = (ab) -~ - (kI), B = (pq) "~ - (uv), aff = (ab) -~ (kI)(pq) - - -
(uv). Hence af is even if and only if both « and f§ are even or both are odd
while af is odd if one of the factors is even and the other is odd. It follows that

(22) sg aff = (sg 2)(sg p).

It is—"‘clear also that the subset A4, of even permutations is a subgroup of S,.

.
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This is called the alternating group (of degree n). Suppose we list its elements as
Oy Ogy v e e s Oy
Then if n > 2 we have m different odd permutations
oy (ab), ay(ab), . . ., a,(ab)

and this catches them all, since if § is odd f(ab) is even so f(ab) = «; for some
i and B = o(ab). Hence |S,| = 2m = 2|4,| and so |4,| =n!/2if n > 2.

EXERCISES

1. Write (456)(567)(671)(123)(234)(345) as a product of disjoint cycles.
2. Show that if n > 3 then A, is generated by the 3-cycles (abc).

3. Determine the sign of the permutation

1 2 - p—1 m
n n—1 --- 2 1)
4. Show that if « is any permutation then

aiyiy - it = (i) - - o))

5. Show that S, is generated by the n — ! transpositions (12), (13),..., (1n) and
also by the n — 1 transpositions (12), 23), ..., (n — In).

1.7 ORBITS. COSETS OF A SUBGROUP

Let G be a group of transformations of a set S. Then G defines an equivalence
relation on S by the rule that x ~; y (read: x is G-equivalent to y) if y = a(x)
for some « € G. That this relation is reflexive, symmetric, and transitive is im-
mediate from the definition of a transformation group: x = 14(x), also if y = a(x)
then x = o~ 1(y), and if y = a(x) and z = B(y) then z = (Bo)(x). Moreover, 5 G
and o~ ! and fa € G, if « and B € G. The G-equivalence class determined by an
element x is the set Gx = {a(x)|o € G} and this is called the G-orbit of x € S.
For example, if G is the group of rotations about the origin in a plane, then
the orbit of a point P is the circle through P with center at the origin. As with
any equivalence relation, the set of orbits constitute a partition of the set §. It
may happen that there is just one orbit, that is, S = Gx for some x (and hence
for every x). In this case we say that G is a transitive group of transformations
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of the set S. Ttis clear that S, is transitive on {1, 2, ..., n}. The reader will have
no difficulty showing that this is true also of the alternating group 4, if n > 3.
On the other hand, if xe S, and o = (iy * - i)(jy - j) -+ (ly -+ 1) is the fac-
torization of « into disjoint cycles, where we have included the 1-cycles, and
every letterin {1,2, ..., n} appears once and only once among iy, . . ., by ji, - -«
Jereooslyy. ., 1, then the sets

fneoosih D oadih e oo {ls e oo L)

are the orbits in {1,2,...,n} determined by the cyclic subgroup (o} of S,.
Observe that this gives another interpretation of the number N(«) which we
used in section 1.6, namely, N(x) = Y (k — 1) where k runs over the cardinal
numbers of the orbits determined by {a).

Now let G be any group and let H be a subgroup of G. We recall that we
have the transformation groups G, of left translations g; (x — gx) and Gy of
right translations g both acting in G. Since y = gx and y = xg are solvable
for g for any given y and x it is clear that G, and Gy are transitive groups.
Now let H,;(G) denote the subset of G, of maps hy, (in G) for h e H. Since H is
a subgroup of G and g — g is an isomorphism, H;(G) is a subgroup of G, and
hence H,(G) is a transformation group of the set G. What are the orbits in the
set G determined by H(G)? If x € G then it is clear that its H;(G)-orbit is k

(23) Hx = {hx|h e H}.

In the group theory literature this is sometimes called the left coset of x rela-
tive to the subgroup H and sometimes the right coset of x relative to H. The
majority opinion seems to favor the second terminology. Accordingly, we shall
adopt it here and call Hx the right coset of x relative to H. We have the parti-
tion G = | J,.q Hx. Moreover, any two right cosets Hx and Hy have the same
cardinality since the map (x~*y)z:z — z(x " 'y) is bijective from Hx to Hy. Since
H = H1 is one of the right cosets we have |[Hx| = |H|.

In particular, suppose G is a finite group and |G| = n and |H l = m. We have
the partition

(24) G =Hx, uHx, v uHx,

where we have displayed the distinct cosets, so Hx; n Hx; = J if i # j. We call
the number r of these cosets the index of H in G and denote this as [G:H].
Since [Hx;| = m, we have by (24) that n = mr. This proves a fundamental theo-
rem which is due to Lagrange:

THE@REM 1.5. The order of a subgroup H of a finite group G is a factor of

.
i
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the order of G. More precisely, we have

6] = |H[[G:H].
We also have the following
COROLLARY. If G is a finite group of order n, then x" = 1 for every x € G.
Proof. Let m be the order of {(x>. Then x" =1and n=mr,so x"=1. O

The results on right cosets have their counterparts for left cosets. These are
the orbits in G determined by the transformation group H g(G). The orbit of x
in this case is xH = {xh|h € H} and this is called the left coset of x relative to
H.If Hx is a right coset the set of inverses (hx) ™! = x~'h~! of the elements of
Hx is the left coset x™'H. It is immediate that the map Hx — x~'H is a bijec-
tive map of the set of right cosets onto the set of left cosets, It follows that
these two sets (of left and right cosets) have the same cardinal number. As in
the case of finite groups, we call this the index of H in G and denote it as [G: H |.

EXERCISES

1. Determine the cosets of () in S, where o = (1234).

2. Show that if G is finite and H and K are subgroups such that H = K then
[G:K] = [G:H][H:K].

3. Let H, and H, be subgroups of G. Show that any right coset relative to H, n H,
is the intersection of a right coset of H, with a right coset of H,. Use this to prove
Poincaré’s Theorem that if H, and H, have finite index in G then so has H; n H,.

© 4. Let G be a finitely generated group, H a subgroup of finite index. Show that H
is finitely generated.

5. Let H and K be two subgroups of a group G. Show that the set of maps x — hxk,
heH, ke K is a group of transformations of the set G. Show that the orbit of x
relative to this group is the set HxK = {hxk|he H, k e K}. This is called the
double coset of x relative to the pair (H, K). Show that if G is finite then IHxK] =
|H|[K:x"'Hx K] = |K|[H:xKx~ ' n H].

6. Let H be a subgroup of the finite group G. Show that there exists a subset
{zy,...,2,} of G which is simultaneously a set of representatives of the left and
of the right cosets of H in G, that is, G is a disjoint union of the z;H and also of
the Hz;, 1 <i <r. (Hint: For any g € G, write HgH = | J] x,gH, where the x;e H
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and x;gH n x,gH = (J if j # k. Note that the number of right cosets of H con-
tained in HgH is s and write HgH = | J{ Hgy,, where y; € H. Put z; = x,gy; and
show that HgH = | ) z;H = | ) Hz;)

1.8 CONGRUENCES. QUOTIENT MONOIDS AND GROUPS

In elementary number theory two integers a and b are defined to be congruent
modulo the integer m and this is denoted as a = b (mod m) if a — b is a multiple
of mia — b = km, ke Z> The relation between a and b thus defined for fixed
m is an equivalence relation; for, we have ¢ = a (mod m) since a — a = 0 = Om,
a = b (mod m) implies b = a (mod m) since a — b = km implies b — a = (—k)ym
and a = b (mod m) and b = ¢ (mod m) imply a = ¢ (mod m) since a — b = km
and b — ¢ =Im imply a — ¢ = (k + I)m. In the additive group (Z, +, 0) con-
gruences mod m can be added, that is, if ¢ = ¢’ (mod m) and b = b’ (mod m)
thena + b = d’' + b’ (mod m). This follows since a — @’ = km, b — b’ = Im imply
a+b—(d+b)=(k+ Dm Also in the monoid (Z, -, 1) congruences mod m
can be multiplied: a = ' (mod m), b = b’ (mod m) imply ab = a'b’ (mod m), since
a=da +km, b=>b +1Im imply ab=da'b’ + (a'l + b'k + klm)m. Congruences
mod m in (Z, 4+, 0) and in (Z, -, 1) are examples of a general notion which we
shall now define.

DEFINITION 1.4. Let (M,-, 1) be a monoid. A congruence (or congruence
relation) = in M is an equivalence relation in M such that for any a, a', b, b’ such
that a = a' and b = b’ one has ab = a'b’. (In other words, congruences are equiva-
lence relations which can be multiplied.)

Let = be a congruence in the monoid M and consider the quotient set M =
M/= of M relative to =. We recall that M is the subset of the power set
P(M) consisting of the equivalence classes @ = {b € M|b = a}. For example,
in (Z, +, 0) if we define = (mod m) as above, then @ = {a + km]k € Z}. Since
congruences can be multiplied it is clear in the general case that, if @ = @ and
b =¥, then ab = a’b’. Hence

(@, b) — ab

is a well-defined map of M x M into M; that is, this is a binary composition on
M. We denote this again as -, and we shall now show that (M, -, 1) is a monoid.
We note first that (ab)é = a(bé), since the left-hand side is abé = (ab)c and the

3 It is interesting to read the discussion of congruences for integers at the beginning of the great
classic on number theory, Disquisitiones Arithmeticae, by Carl Friedrich Gauss. This work, pub-
lished in 1801, was written when Gauss was nineteen. English translation by A.A. Clarke, Yale
University Press, New Haven, 1966.

|
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right-hand side is abc = a(bc). Hence (ab)é = a(be) follows from the associative
law in M. Also a1 = al = @and 1a = Ta = a so 1 is a unit. The monoid (7, -, T)
is called the quotient monoid of M relative to the congruence =.

In the special case M = (Z, 4, 0) in which = is =(mod m) where m > 0,
any a€ Z can be written as a = gm + r where 0 < r < m, which means that
a =r(mod m). If r, and r, both satisfy 0 < r; < m then r; = r, (mod m) implies
that r; = r,. Hence in this case the quotient monoid, which we shall denote as
Z/Zm (a special case of a general notation that will be introduced below), con-
sists of m elements:

ol
1
e
p
l\)
E
UJ

L)

m, 1+ 2m, 1+ 3m,...}

P
I
~—
o
[y

m—l={m—1lm—1+mm—1+2m,...}

In the multiplicative case of M = (Z, -, 1) we also have this same set of elements
as the underlying set for the monoid (Z/Zm, -, 1).

We can say a good deal more if M = G is a group and = is a congruence on
G. In the first place in this case the quotient monoid (G, -, T) is a group since
da~'=1=a'a Hence every a is invertible and its inverse is ¢ L. Next we
can determine all congruences on a group—or, more precisely, we can reduce
the problem of determining the congruences to that of determining certain kinds
of subgroups of the given group which we specify in the following

DEFINITION L5. A subgroup K of a group G is said to be normal (sometimes
called invariant, and in the older literature, sclf-conjugate) if

g kge K

Jor every ge G and k e K.

We have the following fundamental connection between congruences on a
group G and normal subgroups of G.

THEOREM 1.6. Let G be a group and = a congruence on G. Then the con-
gruence class K =1 of the unit is a normal subgroup of G and for any g e G,
g = Kg = gK, the right or the left coset of g relative to K. Conversely let K be
any normal subgroup of G, then = defined by:

a=b(modK) if a'bekK



56 1. Monoids and Groups

is a congruence relation in G whose associated congruence classes are the left (or

right) cosets gK.

Proof. Suppose first that we have a congruence = on G and let K=T1. If
ki, k, € K, then k,k, € K since kik, = Tk, =11=1 Also leK and k;, ' eK
since, as we showed above, k; ' =k, ' =1""= 1. Hence K is a subgroup of
G. Next let g be any element of G and consider the congruence class g. lfaeg
then g~ 'a and ag~' € K since g la=g 'a=§ 'g=T1=K and, similarly.
ag ' e K. Tt follows that a e Kg and a e gK. Conversely, let a e Kg. Then
a=kg, keK,and a = ki =15 = g so a = g. The same thing holds if a € gK.

Thus

(25) g =gK =Ky, geG.

It follows that K is normal in the sense of the foregoing definition. This can be
seen directly, or better still, it can be seen by observing that gK = Kg for all g
and a subgroup K is equivalent to normality. If this holds, then for any g€ G
and any k € K, kg € gK, so kg has the form gk', k' € K. Then g~ 'kg € K, so K is
normal. On the other hand, if K is normal, a reversal of the steps shows that
kg € gK for k € K, g € G. Hence Kg < gK. Replacing g by g~ ! in the definition
of normality, we obtain Kg~! = ¢~ 'K, which implies that gK < Kg. Hence
Kg = gK for every g in G.

Conversely, let K be a normal subgroup of G and define a = b (mod K)
to mean a~'b € K. This is equivalent to saying that b € aK, or that b is in the
orbit of a relative to the transformation group Kg(G). We showed in the last
section that the relation we are considering is an equivalence relation in G for
any subgroup K of G. We now proceed to show that normality of K insures that
equivalences can be multiplied and hence that a = b (mod K) is a congruence.
Thus let a = g (mod K) and b =h (mod K). Then a =gk, b= hk,, ke K,
and since Kh = hK, kih = hks, ks € K. Then ab = gk hk, = ghksk, so ab = gh
(mod K). Thus = (mod K) is a congruence relation in G. For this congruence
we have T= {k|17'ke K} = K and for any g, § = {alg”'ae K} = gK. This
completes our verification. [J

We shall now write G/K for G = G/= (mod K) and call this the factor group
(or quotient group) of G relative to the normal subgroup K. By definition, the

product in G/K is
(26) (gK)(hK) = ghK,

K =‘71K is the unit, and the inverse of gK is g K.

.
:
:
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Every group #1 has two normal subgroups: G and 1. G is called simple if
these are its only normal subgroups. Equivalently, G is simple if the only con-
gruences on G are the two trivial ones: =, and the one in which any two cle-
ments are equivalent. It is clear from the definition that any subgroup of an
abelian group is normal. It follows easily that the only simple abelian groups are
the cyclic groups of prime order. It is left to the reader to prove this. We remark
also that if C is the center of G then every subgroup of C is normal in G.

There is another way of looking at factor groups in terms of multiplication of
subsets of a group. If 4 and B are subsets of a group G (similarly of a monoid)
one defines

AB = {ablae A, b e B}.

With this definition of product and 1 = {1}, the set of non-vacuous subsets of
G is a monoid, since (AB)C is the set of elements (ab)c and A(BC) is the set of
elements a(bc), ae A, be B, ce C. Hence, associativity follows from the
associative law in G. Also 14 = 4 = Al. It is clear that a subset H of G is a
subgroup if and only if: (1) H* < H, (2) 1eH, 3) H '={h"'|heH} c H,
and (1) and (2) together imply that H? = H. It is clear also that the coset Hg
(respectively gH) is the product of H and {g} (of {g} and H). A subgroup K is
normal if and only if any of the following equivalent conditions hold: g~ 'Kg =
K,Kg=gK,g 'Kg =K for all g e G. In this case, the product for sets as just
defined gives (gK)(hK) = g(Kh)K = g(hK)K = ghK? = ghK. Thus the product
in G/K as defined by (26) coincides with the set product of gK and hK.

EXERCISES

1. Determine addition tables for (Z/Z3, +) and (Z/Z6, +). Determine all the sub-
groups of (Z/76, +).

2. Determine a multiplication table for (Z/Z6, -).

3. Let G be the group of pairs of real numbers (a, b} a # 0, with the product
(a, b)(c, d) = (ac, ad + b) (exercise 4, p. 36). Verify that K = {(1, b)jb € R} is a nor-
mal subgroup of G. Show that G/K = (R*, -, 1) the multiplicative group of non-
zero reals.

4. Show that any subgroup of index two is normal. Hence prove that A, is normal
in S,.

5. Verify that the intersection of any set of normal subgroups of a group is a normal
subgroup. Show that if H and K are normal subgroups, then HK is a normal
subgroup.
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6. Let G, and G, be simple groups. Show that every normal subgroup of G = G x
G,, # G, # 1 is isomorphic to cither G, or G,.

7. Let = be an equivalence relation on a monoid M. Show that = is a congruence
if and only if the subset of M »x M defining = (p. 10) is a submonoid of M x M.

8. Let {=;} be a set of congruences on M. Define the intersection as the intersection
of the corresponding subsets of M x M. Verify that this is a congruence on M.

9. Let G, and G, be subgroups of a group G and let o be the map of G, x G, into G
defined by a(g,, g») = 919, Show that the fiber over g,g,—that is, &~ '(g,9,)—is
the set of pairs (g,k, k™ 'g,) where k € K = G, n G,. Hence show that all fibers
have the same cardinality, namely, that of K. Use this to show that if G, and G,

are finite than
|G4||G

G,G,| = 12
616 |Gy N G,

10. Let G be a finite group, 4 and B non-vacuous subsets of G. Show that G = 4B
if |4| + |B| > |G].

11. Let G be a group of order 2k where k is odd. Show that G contains a subgroup
of index 2. (Hint: Consider the permutation group G, of left translations and use
exercise 13, p. 36.)

1.9 HOMOMORPHISMS

In dealing with mathematical structures such as monoids, groups, vector spaces,
topological spaces, etc., it is important to specify the types of maps which in
some sense are natural in the particular context. For vector spaces these are
the linear maps, and for topological spaces they are the continuous ones. Nearly
all the interesting results in linear algebra concern linear transformations, or
equivalently, matrices. In fact, there is not much one can say about vector spaces
that does not involve explicitly the notion of a linear transformation or matrix.®
The natural maps for monoids (and for groups) are called homomorphisms.
These are obtained simply by dropping the requirement of bijectivity in the
definition of an isomorphism. The concept of homomorphism was a rather late
bloomer in the theory of groups, and it became an important tool for the study
of groups only comparatively recently—during the past forty or fifty years. The
concept is applicable to all types of algebraic structures. In the case of monoids
we can state the definition formally as follows:

DEFINITION 1.6. If M and M' are monoids, then a map n of M into M’ is

6 Perhaps the deepest result of linear algebra not using linear transformations is the theorem on
the invariance of dimensionality (any two bases have the same cardinality).

.
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called a homomorphism if

n(ab) = nlay(b), a,beM.

n(1) =1,
If M’ is a group the second condition is superfluous. For, if the first holds, we
have 5(1) = #(1%) = 5(1)*> and multiplying by 5(1)" ' we obtain 1’ = »(1). We
have already encountered several instances of homomorphisms which may not
be isomorphisms. One of these is the map

Hein— a"

of the additive group of integers into any group G, determined by a fixed
element a € G. Since #,(n + m) = a""" = a"a™ = (M, (m), this is a homomor-
phism of (Z, +, 0) into G. Another example we had is the map

o — sg o

of the symmetric group S, into the multiplicative group {1, —1}. That this is
a homomorphism is clear from (22). Some additional examples of homomor-
phisms (and of one fake) are given in the following list.

EXAMPLES

1. Let M and M’ be monoids and map every a € M into the unit 1" of M'. This is a
homomorphism of M into M.

2. Let M be the multiplicative monoid of integers: M = (Z, -, 1). Map every ae M
into 0. This satisfies n(ab) = y(a)y(b) but it is not a homomorphism since 1 — 0 (#1).

3. Let G = (R, 4+, 0), G =(C*, -, 1) the multiplicative group of non-zero complex
numbers. Let #:0 — €. This is a homomorphism of G into G'.

4. Let G be the group of pairs (a, b), a # 0, given in exercise 4, p. 36, and map G into
G’ = (R*, -, 1) by (a, b) » a. This is 2 homomorphism.

5. Let G be a transformation group of a set § and let T be a subset of § which is
stabilized by G in the sense that a(T) = T for every « € G. Let «|T be the restriction of
ato T. Then ¢ — a| T is a homomorphism of G into Sym T. This is called the restriction
homomorphism.

We emphasize that—as in the foregoing examples—a homomorphism # need
not be surjective or injective. If, by chance, # is surjective then we call it an
epimorphism, and if it is injective then we call it a monomorphism. Of course, if
it is bijective, then # is an isomorphism.

If # is a homomorphism of the monoid M into the monoid M’, then induction
shows that for any ae M and ke N, y(a*) = n(a)*. If a is invertible, applica-
tionof ptoaa ! = 1 = a ta gives lay(a™') = 1 = nla” "Hy(a). Hence a’ = n(a)
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is invertible in M’ and n(a~*) = n(a)~*. It then follows that n(a*) = y(a)* for all
k e Z. Another useful result which we have to refer to frequently enough to

warrant stating as a theorem is

THEOREM 1.7. Let n and { be homomorphisms of a monoid M (or group G)
into a monoid M’ and let S be a set of generators for M (for the group G). Suppose
n(s) = {(s) for all s€ S. Then n = C.

Proof. We consider first the case of monoids and let
M, = {a e M|n(a) = {(a)}.

Then 1 e M, since y(1) = 1" = {(1) and M, > S. Also ifa,be M, thenabe M,
since n(ab) = n(ay(b) = {(@)((b) = {(ab). Thus M, is a submonoid, and since it
contains a set of generators, M, = M. Hence y(a) = ¢(a) for all a, and so n = {.
The proof is similar in the case of a group G. In this case the argument shows
that the subset G, = {a € G|n(a) = {(@)} is a submonoid. But if ae G4, then
na™ Y =nla)~* = @) ' ={a ). Hence a~!e G, and G, is a subgroup. Then
G, = G since G, contains a set of generators of G (as a group). O

A homomorphism of M into itself is called an endomorphism and an iso-
morphism of M to M is called an automorphism of M. The identity map is an
automorphism. Theorem 1.7 applied to any endomorphism # and to { =1
shows that if 7 is an endomorphism of a monoid or a group and 7 is the iden-
tity map on a set of generators then 77 = 1. We remark also that if # is an en-
domorphism, then the set of fixed elements under n (7(a) = a) is a submonoid
if M is a monoid and a subgroup if M = G is a group. This is clear from the
proof of Theorem 1.7.

Let n:M —» M’ and {: M’ — M" be homomorphisms of monoids. Then for
a, b e M, {n(ab) = {(n(ab)) = Ln(@n(b)) = (Cn(a))(Cn(b)). Also {n(1) = {(1) = 17,
the unit of M”. Hence {n:M — M” is a homomorphism. If # is bijective then,
as we saw before, #~ ! is an isomorphism of M’ into M. It is clear that the
identity map is an automorphism. Hence the set, Aut M, of automorphisms of
a monoid is a group of transformations of the monoid. We call this the group
of automorphisms of M. We remark also that the larger set, End M, of endomor-
phisms is a monoid of transformations, the endomorphism monoid of M.

Let M be a monoid, = a congruence on M and M the quotient monoid
determined by =. Then the natural map v:a — a (the congruence class of ay is
a homomorphism, since, v(1) =T is the unit of M and v(ab) = ab=ab=

T
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v(a)v(b), by definition of the product in M. We shall now derive the main result
on homomorphisms of monoids and groups which we state as the

FUNDAMENTAL THEOREM OF HOMOMORPHISMS OF MONOIDS
AND GROUPS. Let n be a homomorphism of a monoid M into a monoid M’.
Then the image y(M) is a submonoid of M' and if M is a group, (M) is a sub-
group of M. The equivalence relation E, determined by the map n (aE,b means
n(a) = n(b)) is a congruence in M and we have a unique homomorphism 1 of the
quotient monoid M = M/E, into M' making

=30

M

commutative. v is an epimorphism and ij is a monomorphism. In the case of groups,
1=K =n"Y1)is a normal subgroup of M, M = M/K, v is a - aK, and 7} is
aK — nla).

Proof.  As happens frequently at the foundational level, the proof is not much
longer than the statement of the theorem and it amounts merely to a direct
verification of the various assertions. Let n: M — M’ be a homomorphism of
monoids. Then 1" = #(1) € y(M),.and n(a)y(h) = n(ab) shows that (M) is closed
under the product in M’. Hence n(M) is a submonoid. If M is a group, #(a) is
invertible with inverse n(a~ 1), and so (M) is a subgroup of M'. Now consider
the equivalence relation E, in M. Suppose a,E,a, and b E,b,, which means
that n(a,) = n(a;) and n(by) = n(b,). Then nla;by) = nlan(b,) = nla)n(b,) =
n(azby) so aibiE,ayb,. Thus E, is a congruence. Our results on maps of sets
(section 0.3) show that we have a unique induced map 7 of M = M/E, into M’
such that ijv = #. We have seen that v is a homomorphism. All that remains
(for the case of monoids) is to show that i is a homomorphism. We have
7i(@) = n(a). Then fj(ab) = ij(ah) = n(ab) = n(ay(b) = 7(@7(b) and (1) = n(1) =
1/, which is what we needed. We saw in section 0.3 that v is surjective and 7 is
injective. Hence these are respectively an epimorphism and monomorphism of
M and M. Now suppose M and M' are groups. Since E, is a congruence in
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the group M, we know that the congruence class K of 1 is a normal subgroup
of M and the congruence class of any a is Ka = aK (section 1.8). By definition,
the congruence class of 1 is

K = {aeM|na)=n(1) = 1},

that is, K = n~1(1"). The rest is clear by Theorem 1.6. [

In the foregoing discussion we have derived the results on groups as conse-
quences of results on monoids. For the latter the concepts of congruence and
quotient monoid defined by a congruence are essential. On the other hand, the
basic results on group homomorphisms can also be derived directly without
recourse to congruences. We proceed to do this. This will help clarify the situa-
tion in the most important case of group homomorphisms.

We start from scratch and consider a homomorphism # of a group G into
a group G'. Then it is immediate that the image im G is a subgroup of G'. Next
we consider K = (1), which is analogous to the null space of a linear map
of one vector space into a second one. Direct verification shows that K is a
normal subgroup of G. We call this the kernel of 5 and denote it also as ker #.
We observe first that # is injective if and only if ker n = 1; for, if ker n # 1 then
we have b # 1 in G such that n(h) = 1" = »(1). On the other hand, if # is not
injective then we have a#b in G with #(a) = #(b). Then a~'b#1 and
n(a~h) = n(a) n(b) = 1, so ker  # 1. :

Now let L be a normal subgroup of G contained in K. Then we can form
the factor group G = G/Lconsisting of the cosets aL = La, a € G, with multi-
plication (aL)(bL) = abL and unit T = L (see the last paragraph on p. §6). This
definition shows that the map v:a — aL is a homomorphism of G onto G = G/L.
Now suppose aL = bL. Then b =al, I L, and n(b) = nlay(l) = y(a)l’ (since
L < ker ) = n(a). Hence we have a well-defined map #:aL — n(a) of G/L into
G'. Since f((aL)bL)) = f(abL) = n(ab) = n(an(b) = fi(aL)if(bL), 77 is a homomor-
phism. We call 7 the homomorphism of G = G/L induced by n. If ae G then
av(a) = ii(al) = n(a). Thus n =7y, which means that we have a commutative
diagram as on the preceding page.

Evidently im 7 = im #. What is the kernel of 7? By definition, this is the set of
cosets aL such that 7j(aL) = 1. Since 7i(aL) = n(a), the condition is p{a) =1".
Hence ker ij = {aL|a € ker n} = ker /L (Clearly L is a normal subgroup of K.)

Since a homomorphism is injective if and only if its kernel is 1, 7 is injective if
and only if L = ker #.

The facts we have listed go beyond those stated in the “Fundamental Theo-
rem” in the replacement of K = ker # by any normal subgroup L of G contained

.
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in K. Now suppose K = L and 5 is surjective. Then the homomorphism 7 of
G = G/K into G’ is surjective and injective, hence an isomorphism. We therefore
have the

COROLLARY. IfG isagroup and n is an epimorphism of G onto the group G’
with kernel K, then the induced map 7.aK — n(a) is an isomorphism. Thus any
homomorphic image of a group G is isomorphic to a factor group G/K by a normal
subgroup K.

EXERCISES

1. Let G=(Q, +,0), K = Z. Show that G/K = the group of complex numbers of the
form 2™, 0 € @, under multiplication.

2. Let G be the set of triples of integers (k, [, m) and define (kq, [;, m )k, [,, my) =
(ky + ko + Iimy, 1y + 1, my + my). Verify that this defines a group with unit
(0, 0, 0). Show that C = {(k, 0, 0)| k € Z} is a normal subgroup and that G/C = the
group Z® = {(I, m)|l, m € 7} with the usual addition as composition.

3. Show thata — a~?is an automorphism of a group G if and only if G is abelian, and
if G is abelian, then a —a* is an endomorphism for every k e Z.

4. Determine Aut G for (i) G an infinite cyclic group, (ii) a cyclic group of order six,
(iii) for any finite cyclic group.

. 5. Determine Aut Ss.

6. Let ae G, a group, and define the inner automorphism (or conjugation) 1, to be
the map x — axa™! in G. Verify that I, is an automorphism. Show that a — I, is
a homomorphism of G into Aut G with kernel the center C of G. Hence conclude
that Inn G = {I,|a € G} is a subgroup of Aut G with Inn G = G/C. Verify that
Inn G is a normal subgroup of Aut G. Aut G/Inn G is called the group of outer
automorphisms.

7. Let G be a group, G, the set of left translations a,, a € G. Show that G, Aut G
is a group of transformations of the set G and that this contains Gz. G, Aut G
is called the holomorph of G and is denoted as Hol G. Show that if G is finite,
then [Hol G| = |G||Aut G|.

8. Let G be a group such that Aut G = 1. Show that G is abelian and that every
element of G satisfies the equation x? = 1. Show that if G is finite then |G| =1
or 2. (Hint: Use the procedure of finding a base for a vector space to show that
G contains elements ay, a,, ..., a, such that every element of G can be written
in one and only one way in the form a,*'a,**- - a®, k; = 0, 1. Then show that
there exists an automorphism interchanging a; and a,.)
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9. Let & be an automorphism of a group G which fixes only the unit of G (a(a) =

a=-a = 1). Show that a — «(a)a” ! is injective. Hence show that if G is finite, then

every element of G has the form afa)a™".

10. Let G and a be as in 8, G finite, and assume a? = 1. Show that G is abelian of odd
order.

» 11. Let G be a finite group, o an automorphism of G, and set
I={geGlalg)=9g '}

Suppose |I| > 3|G|. Show that G is abelian. If I =3G
abelian subgroup of index 2.

, show that G has an

1.10 SUBGROUPS OF A HOMOMORPHIC IMAGE.
TWO BASIC ISOMORPHISM THEOREMS

We shall establish a 1—1 correspondence between the set of subgroups of a
homomorphic image G of a group G and the set of subgroups of G containing
the kernel of a given homomorphism. Since any homomorphic image is isomor-
phic to a factor group we may assume G = G/K, K a normal subgroup of G.

Then we have

THEOREM 1.8. Let K be a normal subgroup of G, H a subgroup of G con-
taining K. Then H = H/K is a subgroup of G = G/K and the map H— H is a
bijective map of the set of subgroups of G containing K withﬁthe set of subgroups
of G. H(> K) is normal in G if and only if H is normal in G. In this case,

_GIK
- 5K

~

| QY

G
H

Proof. The fact that H/K is a subgroup of G/K is clear from the definition of
G/K. Now let H, and H, be two subgroups of G containing K and suppose
H,/K = H,/K. Then for any h, € Hy, h,K € H,/K, so h; K = h,K for some h, €
H,. Then h, ‘h, € K, so h; = hyk, ke K. Since K c H, this shows that h; €
H,. Thus H, < H, and, similarly, H, « H,. Hence H, = H,, and we have
shown that H — H/K is injective. To see that it is surjective let H be a subgroup
of G, so that H is a collection of cosets. Let H be the union in G of these cosets.
If hy, hye H, h K, h,KeH and hh,K = (h K)(h,K) e H. Hence h;h, e H.
Similarly h, 'K = (h;K) '€ H, so h; ' € H. Hence H is a subgroup of G.
Clearly A = H/K. Tt is evident that if H is normal in G, then H is normal in
G. Conversely, if H is normal in G, then for any he H, ge G, (g "hg)K =
(gK)~Y(hK)(¢gK) = WK for some h' € H. It follows that g~ 'hg € H and H is nor-
mal in G. If this condition is satisfied we can form the factor group G/H and

g
%
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we have the natural homomorphism 7:5 — gH of G with G/H. We also have
the natural homomorphism g — g of G with G. Hence we have the homomor-
phism g — gH of G with G/f. The kernel is the set of g e G such that § e A,
that is, the set of g such that gK = hK for some h € H. This is just the subgroup
H. Hence, by the fundamental theorem of homomorphisms, gH — gH is an
isomorphism of G/H with G/H. [

It is sometimes useful to state Theorem 1.8 in what appears to be a slightly
more general form, as follows:

THEOREM 1.8'.  Let n be an epimorphism of G onto G’ and let A be the set of
subgroups H of G containing K = ker n. Then the map H — y(H) of A gives a
1-1 correspondence between the set A and the complete set of subgroups of G'.
H is normal in G if and only if n(H) is normal in G'. In this case

(27) gH — n(g)n(H)
is an isomorphism of G/H with G'/y(H).

This can either be proved directly in a manner similar to the proof of Theo-
rem 1.8, or, it can be deduced from Theorem 1.8 via the isomorphism gK — n(g)
of G/K with G'. We leave the details to the reader.

The isomorphism (27) is often called the first isomorphism theorem for groups.
There is also a basic second isomorphism theorem. This is

THEOREM 1.9. Let H and K be subgroups of G, K normal in G. Then HK =
{hk]h € H, ke K} is a subgroup of G containing K, H ~ K is normal in H and
the map

(28) hK >h(K ~nH), heH

is an isomorphism of HK/K with H/(K ~ H).

Proof. Since K is normal we have hK = Kh, he H. Since HK = Unen hK
and KH = { ).z Kh, clearly HK = KH. Then (HK)? = HKHK = H?K? =
HK. Also 1 e HK and if hk e HK (h € H, k € K) then (hk) ' = k" 'h~' e KH =
HK. Hence HK is a subgroup of G. Clearly, HK > 1K = K and K is normal
in HK. We now consider the restriction v/ = v |H where v:g — gK. The image of
V' is the set of cosets 1K, h € H. Since any coset of the form hkK,he H keK,
coincides with 1K, it is clear that im v’ is HK/K. The kernel of this homomor-
phism is the set of # € H such that hK = K, the unit of HK/K. Since hK = K if
and only if h € K, we see that ker v = H n K and so this is a normal subgroup
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of H, and by the fundamental theorem of homomorphisms, i(H n K) — hK is
an isomorphism of H/(H n K) with HK/K. The inverse is hK — h(H N K) as

given in (28). [

The proofs of the theorems in this section illustrate the power of the funda-
mental theorem. As another illustration of this and also of the use of the sub-
group correspondence of Theorem 1.8, we shall now give a quick re-derivation-
of the results on cyclic groups. Everything will follow from the determination of
the subgroups of (Z, +,0) and their inclusion relations. Let K be a subgroup
+£0 of Z. Then if n e K so does —n; hence K contains positive integers and
consequently K contains a least positive integer k. Now let n be any element
of K. Then the division algorithm in Z permits us to write n = gk + r where
0 <r <k Clearly gke K and since ne K, r =n — gk € K. This forces r =0,
since k is the least positive integer in K. Thus we see that every element of
K is a multiple of k and, of course, every multiple of k is in K. Hence K =
Zk = {mk|m e 2}. Conversely, it is clear that for any k > 0, Zk is a subgroup.
This includes the subgroup 0 as Z0. Thus the set of subgroups of Z are the
various sets Zk, k e N. Suppose k, [ € N and ZI > Zk. Then ke Zl so k =1m
and I|k. The converse is clear. Hence

(29) 21> Zk<1|k.

Next we note that if k =0 then Z/Zk =~ Z and if k > 0 then Z/7k is just the
set of congruence classes modulo the integer k, and these are

0=2zk T1={1+mk|lmeZ}, 2={2+mklmeZ},

o k—1={(k—1)+mklmeZ}.

Thus the order of Z/Zk is k. Clearly Z/Zk is cyclic with 1 as generator.

Now let G = <{a), so that G is a cyclic group with generator a. Since a"a" =
a"*" we have the epimorphism of (7, +, 0) into G sending n — ¢". Hence G =
Z/Zk for some k € N. If k=0, G~ Z and if k > 0, G is finite of order k. Hence
it is clear that any two cyclic groups of the same order are isomorphic.

We can also determine the subgroups of Z/Zk. If k = 0 we are dealing with Z
and we have the determination which we made: the subgroups are 71,1 =0,
and 71 is cyclic with generator I If k > 0 it follows from Theorem 1.8 that the
subgroups of Z/Zk have the form Z1/Zk where [ > 0 and ZI > Zk. Then |k, say,
k = Im. Now (Z/Zk)|(ZI/Zk)= Z/Z] so |z1/zk| = |z/zk|)\z)Z]| = K/l = m. Tt
follows that the cyclic group Z/Zk of order k has one and only one subgroup
of order m for each divisor m of k. Moreover, this subgroup, Z1/Zk, is cyclic with
I + Zk as generator.

i
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EXERCISES

1. Show that ZI n Zk = Z[1, k] and ZI + Zk = {a + bla € ZI, b e Zk} = Z(l, k).

2. Let {H,} be a collection of subgroups containing the normal subgroup K. Show

that () (H/K) = () HJ/K.

1.11 FREE OBJECTS. GENERATORS AND RELATIONS

The method used in the last section of studying cyclic groups by considering
these as a homomorphic images of the “universal” cyclic group (Z, +, 0) can
be gencralized to obtain the structure of finitely generated abelian groups. We
shall carry out this program in Chapter 3. At this point we shall define these
universal finitely generated abelian groups, called free abelian groups, and con-
sider also their analogues for commutative monoids, for arbitrary monoids, and
for arbitrary groups.

We construct first for any positive integer r an@ abelian group 7% with r
generators Xy, X, . . . , X, such that if G is any abelian group and ay, a,, ..., a,
are elements of G then there exists a unique homomorphism of Z* into G
sending

x;—a,1<i<r
Let Z® be the r-fold direct power of Z:7Z® is the set of r-tuples (ny, n,, ..., n,)

of integers n; with addition by components, (m;) + (n;) = (m; +n;) and 0 =
(0,0,...,0). This is an abelian group. Put

i
(30) x=(0,...,0,1,0,...,0), I<i<r

Then (ny, 1, . .., 1) = Y1 mx;, so the x; generate Z*. Now let ay, day, ..., 4,
be a sequence of r elements of any abelian group G and consider the map

(31) UHCIN Y

Since the g; commute, we have

L) ata,™ e a

(alnuazmz e a’mr)(almaznz v a nr) — a1nu+ma2m2+nz e q my -+ 1y
' ¥ ¥
which implies that # is a homomorphism of Z* into G. Moreover,
i
n(x) =n,...,0, LO,...,0=a,° - al gy, a’=a
and, since the x; generate Z®, there is only one homomorphism of Z*) sending
x; = a;, 1 < i< r(see Theorem 1.7). We shall call 7% the free abelian group with

1 (free) generators x;.
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Identical considerations apply to commutative monoids. Let N® be the r-fold
direct power of the monoid (N, +, 0). This is a commutative monoid generated
by the r elements x;, as in (30). Moreover, as in the group case, if a;, a,, ...,
a, are clements of a commutative monoid M, there exists a unique homomor-
phism of N® into M such that x; — a;, 1 < i < r. We call N® the fiee commuta-
tive monoid with r (free) generators x;.

We shall now drop the requirement of commutativity in these considerations.
We seek to construct first a monoid, then a group, generated by » elements x;
such that if @, are any r elements of a monoid M (group G), then there exists
a unique homomorphism of the constructed monoid (group) sending x; — a;,
I1<i<r.

We consider first the monoid case. Put X' =X = {x4, x,,...,%,}. X' =
X x X x - x X, j times, where j =2, 3,.... Let FS® denote the disjoint
union of the sets X1, X%, .. .. The elements of FS® are “words in the alphabet
X,” that is, they are sequences (x;, Xy, ..., X;), X;, € X, m=1,2,3,.... We
introduce a multiplication in FS® by juxtaposition, that is,

(32) (Xips Xigs v+ o5 Xip X g X v+ o X;) = (Xips o ooy Xips Xjpp v v 5 X

This is clearly an associative product, but we have no unit. However, we can
adjoin one and call it 1 (see exercise 5, p. 30) to obtain a monoid FM®. It is
clear from (32) that (x;,, ..., X;,) = X;, *** X;,; hence FM® is generated by the
x;. Now let a,, a,, ..., a, be any r elements of any monoid M. Then since we
have a unique way of writing an element #1 of FM® as (x;,, ..., x;,)

X ), a

131

n:t—1, (X5 -

tm

is a well defined map of FM®, 1t is clear from (32) that this is a homomorphism
of FM™ sending x; — a;, 1 < i < r. Since the x; generate FM™ this is the only
homomorphism having this property. We call FM® the free monoid (freely)
generated by the r elements x; (or the monoid of words in the x,).

To obtain a construction of a free group we observe first that the subgroup
of a group generated by a subset X coincides with the submonoid generated
by the union of X and the set of inverses of the elements of X. This suggests
forming the set X U X’ where X is the given set {x,, x,, . .., x,} and X"is another
set {x}, x5, ..., x;} disjoint to X and in 1-1 correspondence x; «> x; with X.
Form the free monoid F M®" generated by X U X'. Now suppose G is a group,
and a,, a,, . . ., a, is a sequence of elements of G. Then we have a unique homo-
morphism # of FM®) into G sending x; —» a;, x; > a;” ', 1 <i < r. By the
fundamental theorem of homomorphisms, we obtain a congruence E, on FM®@”
by specifying that aE,b means that n(a) = n(b). Then x;x;E,1 and xx;E,1.
This'suggests that we consider the set T of all the congruences =, on FM®"

S
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in which x;x{ =, 1 and xjx; =, 1 for 1 < i < r, and form their intersection =.
By definition, a = b means a =,b for every =,. This is again a congruence
(exercises 8, p. 57) and so we can form the quotient monoid FM®)/=, which
we shall denote as FG™., We observe first that FG* is a group generated by
the congruence classes X;, 1 < i < r. This is clear since the congruence class X;
has the inverse X; in FG™ and FG" is generated as monoid by the elements
%; and X}. Again, let G be a group, a,, a,, ..., a, a sequence of elements of G.
We have the unique homomorphism # of FM®" into G sending x; — a;, X; =
a;" 1, 1 < i < r which gives a congruence E, on FM®@" such that x,x;E,1 and
xix;E,1. Then a = b on FM®” implies aE,b and hence we obtain a well defined
map of FG* sending the element @ into #(a). This is a homomorphism of FG*
mapping X; — a;, 1 <i <. Since the X; generate FG® this is the only homo-
morphism which does this.

To summarize: given the set X = {xy, ..., x,} we have obtained a map x; — X;
of X into a group FG® such that if G is any group and x; - a;, 1 < i <ris
any map of X into G then we have a unique homomorphism of FG® into G,
making the following diagram commutative:

X o £

G

We shall now show that the map x; — X; is injective. We do this by taking
G in the foregoing diagram to be the free abelian group Z® generated by the
elements (0,...,0,1,0,...,0)and choose the vertical arrow to be the map send-

i
ing x; »(0,...,1,0,...,0). Since this is injective, and injectivity of the
composite fo of two maps implies injectivity of «, it follows that x; — X; is
injective. Our last step is to identify x; with its image ;. We can then say that
FG™ is generated by the x;. Moreover, if a;e G then we have a unique
homomorphism of FG® into G such that x; —» a;, 1 < i < r. We call FG" the
free group (freely) generated by the r elements x;.”

A group G is said to be finitely generated if it contains a finite set of generators
{a;|1 < i < r}. Then we have the homomorphism  of FG® sending x; — a;.

Since the a; generate G, this is an epimorphism and G =~ FG®/K where K is

"Another construction of free groups is given on p. 89 of Basic Algebra I1.



70 1. Monoids and Groups

the kernel of #. The normal subgroup K is called the set of relations connecting
the generators a;. If S is a subset of a group, we can define the normal sub-
group generated by S to be the intersection of all normal subgroups of the group
containing S. This is a normal subgroup containing S and contained in every
normal subgroup containing S. If S is a subset of FG" we say that G is defined
by the relations S if G=F G"/K where K is the normal subgroup generated
by S. If § is finite, then we say that G is a finitely presented group.

As an example, we shall now show that the dihedral group D, consisting of
the n rotations and the n reflections mapping a regular n-gon into itself (example
12, p. 34) is defined by the relations

(33) X", y%, Xyxy

in the free group generated by x and y. It is clear that D, is generated by the
rotation R through an angle of 2r/n and the reflection S in the x-axis. We have

the relations

(34) R'=1,  S§*=1, SRS=R™

Hence D, is a homomorphic image of FG'?/K where K is the normal subgroup
generated by the elements (33). We shall now show that |F G®/K| < 2n which
will imply that D, = FG®/K. Let x = xK, j = yK in FG®/K. Then, since
X", 2, and xyxy € K we have ¥" = 1, 32 = 1, Xj%j = 1. Then jX = X~ 'y which
implies that jx* = £ *. From this we see that the product of any two of the
elements ¥, 9, k = 0, 1,. .., n — 1,is one of these elements. Also, 1 is included
in the displayed set of elements and the set is closed under inverses. Hence it is
a subgroup of FG?/K. Since it contains the generators % and j, FG?/K =

(x*, 7|0 < k < n — 1}. Thus [FG®/K| < 2n and D, = FGYW/K.

EXERCISES

1. Let S be a subset of a group G such that g~*Sg = § for any g € G. Show that
the subgroup ¢S) generated by S is normal. Let T be any subset of G and let
S =Jgeq g 'Tg. Show that (S is the normal subgroup generated by T.

2. Let G be the group defined by the following relations in FG™:x;x; = x3x,x,,
X3X; = X, X3, X3X; = X»X3. Show that G is isomorphic to the group defined in
exercise 2, p. 62

The following three exercises are taken from Burnside’s The Theory of Groups of
Finite Order, 2nd ed., 1911. (Dover reprint, pp. 464-465.)

|
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- 3, Using the generators (12), (13), ..., (1n) (see exercise 5, p. 51) for §,, show that
S, is defined by the following relations on Xy, x5, ..., X,—; in FG®™™:

Xi27 (xixj)sy (xixjxixk)z’ Ljk #.

4. Using the generators (12), (23),. .., (n — 1n) for S, show that this group is defined
by x4, ..., X, subjected to the relations:

xi2> (x4 1)35 (xix,-)z,j > i+ 1.
5. Show that 4, can be defined by the following relations on x4, X5, .. ., X, 2!

X 4x2 1> L (x4 1) (xixj)z’j >i+1

112 GROUPS ACTING ON SETS

Historically, the theory of groups dealt at first only with transformation groups.
The concept of an abstract group was introduced later in order to focus atten-
tion on those properties of transformation groups that concern the resultant
composition only and do not refer to the set on which the transformations act.
However, in geometry one is interested primarily in transformation groups, and
even in the abstract theory it often pays to switch back from the abstract point
of view to the concrete one of transformation groups. For one thing, the use
of transformation groups provides a counting technique that plays an impor-
tant role in the theory of finite groups. We have already seen one instance
of this in the proof of Lagrange’s theorem. We shall see other striking examples
of results obtained by counting arguments in this section and the next.

It is useful to have a vehicle for passing from the abstract point of view to
the concrete one of transformations. This is provided by the concept of a group
acting on a set which we proceed to define. The idea is a simple one. We begin
with an abstract group G and we are interested in the various “realizations” of
G by groups of transformations. At first one is tempted to consider only those
realizations which are “faithful” in the sense that they are isomorphisms of G
with groups of transformations. Experience soon shows that it is preferable to
broaden the outlook to encompass also homomorphisms of G into transfor-
mation groups.

We now consider a group G and a homomorphism T of G into Sym §, the
group of bijective transformations of a set S. Writing the transformation cor-
responding to g € G as T(g), the conditions on T are:

1. T =1 (=1g, theidentity map of ).

2. Tigr92) = Tlg)Tg2). g€ 6.
The first of these can be omitted if we assume, as we are doing, that every T{g)
is bijective. On the other hand, if we retain condition 1, then the hypothesis that
T(g) is bijective is redundant. For, if T is a map of the group G into the monoid
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M(S) of transformations of S satisfying both conditions, then T is a homo-
morphism of G into M(S). Hence the image of G is a subgroup of M(S) and
so this is contained in Sym S. It is useful to regard the image T(g)x of x under
the transformation T(g) corresponding to g as simply a product gx of the ele-
ment g € G with the element x € S. Thus we obtain a map

(g.x) = gx  (=T(g)x)

of G x S into S. What are its properties? Clearly, conditions 1 and 2 imply
respectively:

)] Ix =x, xeS
(i) (9192)% = g1{g2%).

We shall now reverse the order and put the following

DEFINITION 1.7. A group G is said to act {or operate) on the set S if there
exists a map (g, x) = gx of G x S into S satisfying (i) and (ii).

We have seen that a homomorphism T of G into M(S) defines an action of G
on § simply by putting

gx = T(g)x.

Conversely, suppose G acts on S. Then we define T(g) to be the map x — gx,
x € S. Then (i) and (i) imply 1 and 2 so T:g — T(g) is a homomorphism of G
into Sym S.

We shall refer to T as the homomorphism associated with the action and to
T(G) as the associated transformation group. If T is a monomorphism then we
shall say that G acts effectively on the set S. Also the kernel of T will be called
the kernel of the action. Thus G acts effectively if and only if the kernel of the
action is 1.

EXAMPLES

1. Let S = G, the underlying set of the group G. Define gx for g€ G and x € § to be
the product in G of g and x. Then (i) and (i) are clear. This action is called the action
of G on itself by left translations (or left multiplications). This is the action which was
used to prove Cayley’s theorem. The point of the proof of that theorem was that this
action is effective.

2. Next we define an action of G on itself by right translations. Again we take the
set S t6 be the set G. In order to avoid confusion with the group product gx we now

;
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denote the action of g€ G on x €S by g« x and we define this to be xg™'. Then we
have 1 o x = x1 = x and (g1¢,) e x = x(g:192) "' = xg, g1 ' = g © (g, ° x). Hence we
do indeed have an action of G on itself. We call this action G the action by right trans-
lations. This is effective.

3. Another action of G on itself is the action by conjugations. This time we denote
the action of g € G on x € S (= G) by 9x which we define to be gxg~*. Then 'x = x and
9192y = (g,92)%(g:192) " = 91(g2xg, gy~ = #(#>x). The kernel of this action is the set
of ¢ such that °x = x for all x. This means cxc™! = x or ¢x = xc. Hence the kernel is
the center C and the action is effective if and only if the center is trivial (C = 1).

4. If we have an action of G on a set S we have an action of any subgroup H of G
on S by restriction. In particular, we have the actions of H on G by left and by right
translations.

5. Let H be a subgroup and let G/H denote the set of left cosets xH, x € G. We used
this notation previously only when H was normal in G and G/H denoted the factor
group. We shall call G/H the (left) coset space of G relative to H. If g € G we take g(xH)
to be the set product of {g} with xH, so g(xH) = gxH. It is clear that this defines an
action of G on G/H. The kernel of this action is the set of g such that gxH = xH for all
x € G, which is equivalent to x~gx e H for all x. This is equivalent to g € xHx ™" for all
x or g € )eee XHx™'. We see easily that the right-hand side is the largest normal sub-
group of G contained in H. Hence the action of G on G/H is effective if and only if H
contains no subgroup #1 which is normal in G.

6. As in 5 we obtain an action of G on the set G\H of right cosets Hx by g  (Hx) =
(Hx)g ' = Hxg™'.

7. Suppose we have an action of G on a set S and T is a subset stabilized by the
action in the sense that gT < T for every g € G. Then restricting the action to T' gives
an action of G on T. For example, consider the action of G on itself by conjugation.
If K is a normal subgroup of G then K = K, g € G, so we have an action of G on K
by restricting the conjugation action to K.

8. If G acts on a set S, then we have an induced action on the power set 2(S). Here,
if A is a non-vacuous subset we define g4 = {gx|x € A} and if 4 = & we put g&J = .
Then 14 = A and (g,9,)4 = g:(g,A), so we have defined an action of G on Z(8). It is
clear that |gA4| = |4). Hence we have induced actions also on the subsets of § of a fixed
cardinality.

There is a natural definition of equivalence of actions of a fixed group G: we
say that two actions of G on S and §' respectively are equivalent if there exists
a bijective map x — x’ of S onto S’ such that

(35) (9x) = gx',

If we denote x — x’ by « and the transformations x — gx and x" — gx’ by T(g)
and T'(g) respectively, then (35) means the same thing as

ge G, xel.

(36) al(g)=T(gl, geGC.
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In other words, for every g € G we have the commutativity of the diagram

a
s () -
o o
st ; s’
T'(g)

Since « is bijective (36) can be written also as
(367) T'(g) =oT(g™t, geG.

As an example of equivalence we consider the two actions of G on itself by
left and by right translations. Here the map x — x ! is an equivalence since
(gx) ' =x"1g7 =goxTt

The equivalence relation on a set S defined by a transformation group of S
carries over to actions. If G acts on S we define x ~; y for x, y € S to mean
that y = gx for some g € G. Evidently this means the same thing as equivalence
relative to the transformation group T(G), as we defined it before. As before
we obtain a partition of § into orbits, where the G-orbit of x is Gx = {gx|g € G}.
We denote the quotient set consisting of these orbits by S/G.

If H is a subgroup of G then the H-orbits of the action of H on G by left
(right) translations are the right (left) cosets of H. Now let G act on itself by
conjugations. In this case the orbit of x € G is “x = {gxg~'|g € G}. This is called
the conjugacy class of the element x. Of course, we have a partition of G into
the distinct conjugacy classes. It is worth noting that ®x consists of a single
clement, “x = {x}, if and only if x is in the center. Thus the center is the union
of the set of conjugacy classes which consist of single clements of G.

As an example of a decomposition into conjugacy classes we consider the
problem of determining this decomposition for S,. We have noted before
(exercise 4, p. 51) that if f € S, then (i i, - - i)~ = (BG,), Blin), . . ., B@)). It
follows that if o is a product of cycles yy,9,,...as in (17) then faf~! =
(BrsB™)ByaB™") -+ Hence if o= (iy -+~ i)+~ (I, -~ 1,) then

(37 Pafp=t = (), ..., PGI) -~ (B ..., B(L)).

It is convenient to assume thatr > s > - -+ > u and that the decomposition into
disjoint cycles displays every number in {1, 2, ..., n} once and only once. In this
way we can associate with « a set of positive integers (1, s, . . ., u) satisfying

(38) rzs>=c >, Fts+cd+u=n

§

.

.
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We call such a sequence (r, s, . . ., u) a partition of n. It is clear from (37) that two
permutations are conjugate if and only if they determine the same partition. It
follows that the conjugacy classes are in 11 correspondence with the different
partitions of n. Hence if p(n) denotes the number of distinct partitions of n, then
there are p(n) conjugacy classes in S,. The function of positive integers p(n) is
an interesting arithmetic function. Its first few values are

p(2) =2, p(3) = 3, p(4) = 5, p(5) = 7, p(6) = 11.

If there is just one orbit in the action of a group G on a set S, that is, if
S = Gx for some x € § (and hence for every x € S), then we say that G acts
transitively on S. It is clear that the actions of G on itself by translations are
transitive. More generally, if H is a subgroup the action of G on the coset space
G/H (set of left cosets) is transitive, since for any xH and yH we have gxH = yH
for g = yx~!. We are now going to show that in essence these are the only
transitive actions of a group G. To see this we need to-introduce the stabilizer,
Stab x, of an element x € S, which we define to be the set of elements ge G
such that gx = x. It is clear that this is a subgroup of G. For example, in the
action of G on G by conjugation, Stab x = C(x), the centralizer of x in G. If
y = ax then gy =y is equivalent to gax = ax and to (a~'ga)x = x. Hence
Stab x = a~ ! (Stab y)a. It follows that if G acts transitively on S then all stabi-
lizers of elements of S are conjugate: Stab y = a(Stab x)a 1.

We shall now prove the following result, which gives an internal character-

ization of transitive actions.

THEOREM 1.10. Let G act transitively on S and let H = Stab x for x € S.
Then the action of G on S is equivalent to the action of G on the coset space G/H.

Proof. Consider the map a:g — gx of G into S. This is surjective since G is
transitive on S. Hence we have an induced bijective map & of the quotient set
G of G defined by «. We recall that G is the set of equivalence classes in G
defined by g = {a|a(a) = a(g)} = {a]ax = gx}. Now ax = gx is equivalent to
g 'ax = x, that is, to g™ 'a e Stab x. Hence § is the coset g(Stab x) of Stab x
and so we have the bijective map &:¢g(Stab x) — gx. It remains to see that this
is an equivalence of actions. This requires verifying that if ¢'e G then
g'(g Stab x) — g'(gx) by a. This is clear since these are respectively (¢'g)Stab x
and (g'g)x. O

From the point of view of finite groups one of the most important conclusions
that can be drawn from the preceding theorem is that if G is a finite group acting
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transitively on a set S then |S| = [G:Stab x] for any x € §. This shows that ||
is finite and this number is a divisor of |G|. More generally, we can apply this
to any action of a finite group G on a finite set 5. We have the partition

(39) S:OIUOZU'..UOP

where the O, are the different orbits of elements of S under the action of G. Then
G acts transitively in 0;, so if x; € O; then |0,| = [G:Stab x;]. Hence we have
the following enumeration of the elements of S,

(40) S| = [G:Stab x;],

where the summation is taken over a set {xy, X5,..., X} of representatives of
the orbits. It is important to take note that all the terms [G:Stab x;] on the
right-hand side are divisors of |G|. Another useful remark that is applicable to

any group is
(41) Stab axa~ ' = a(Stab x)a™*

The proof is clear. ‘
An important special case of (40) is obtained by letting G act on itself by

conjugations. Then (40) specializes to
(42) 1G] = Y. [G:C(x))]

where C(x;) is the centralizer of x; and {x;} is a set of representatives of the
conjugacy classes of G. This formula is called the class equation of the .ﬁn-ite
group G. We can modify the formula slightly by collecting the classes consisting
of the x; such that C(x;) = G. These are just the elements of the center C of G,
and their classes contain a single element. Hence we have

429 |G| = |C| + > [G:Cy)]

where y; runs through a set of representatives of the conjugacy classes which

contain more than one element. ‘ .

The type of counting of elements of a finite group given in (40) and (4_12) is
an important tool in the study of finite groups. Some instances of this will b_e
encountered in the next section when we consider the Sylow theorems. At this

point we illustrate the method by using the class equation to prove

THEOREM 1.11. Any finite group G of prime power order has a center C#1

Proof. The left hand side of (42) is divisible by the prime p and every term on
the right-hand side is a power of p. Moreover, since Cly) # G, [G:Cyp] > L,
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so [G:C(y;)] is divisible by p. Then (41') shows that |C| is divisible by p and
soC#1. 0O

There is a useful distinction we can make for transitive actions called primi-
tivity and imprimitivity. This has to do with the induced action on the power
set 2(S). We shall say that a partition n(S) of S is stabilized by the action of
G on S if gA € n(S) for every g € G and A € n(S). There are two partitions which
trivially have this property: 7,(S) = {S} and n(S) consisting of the set of sub-
sets {x}, x € S. Now we shall call the action primitive if n; and =, are the only
partitions of S stabilized by G. We have the partition of S into the orbits relative
to G and this partition is stabilized by G since g4 = 4 for every orbit A and
every g € G. If the orbits consist of single points, then G acts trivially in the
sense that gx = x, g € G, x € S; if there is just one orbit then G is transitive.
Hence if we have a non-trivial and intransitive action of G on S then this action
is imprimitive. The interesting situation is that in which G acts transitively on
a set with more than one element. In this case we have the following criterion.

THEOREM 1.12. If G acts transitively on a set S with |S| > 1, then G acts
primitively if and only if the stabilizer, Stab x, of any x € S is a maximal subgroup
of G, that is, there exists no subgroup H such that Stabx ¢ H ¢ G.

Proof. We observe first that G acts imprimitively on a set S if and only if there
exists a proper subset A of S with ]A] > 2 such that for any g € G either g4 = A
or gA n A = . If this condition holds, then for any g,, g, € G we have ecither
g1A =g A4 or g4A N g, A= . Let B be the complement in S of | J,.¢ g4.
Then g4 B N g,4 =  for every ¢4, g, € G, which implies that gB = B for every
g € G. It follows that the set of (distinct) subsets g4, g € G, together with B con-
stitute a non-trivial partition of S which is stabilized by G. Conversely, suppose
G acts imprimitively on S so that we have a partition n(S) that contains a proper
subset A with |4| > 2 such that n(S) is stabilized by G. Then if g € G either
gAd=AorgdAn A=(.

Now suppose Stab x for some x € S is not maximal, and let H be a subgroup
such that Stab x & H & G. Since we are assuming that G acts transitively on S,
this action is equivalent to the usual one on the coset space G/Stab x. Since
equivalent actions are either both primitive or both imprimitive, it suffices to
show that the action of G on G/Stab x is imprimitive. Now consider the set 4
of cosets of the form / Stab x, h e H. Since Stab x ¢ H & G we have [4| > 2 and
A is a proper subset of G/Stab x. If ' € H then k' A is the set of cosets #'h Stab x,
he H,and so i'A = A. On the other hand, if g ¢ H, then gh, Stab x # h, Stab x
for every hy, h, € H. Otherwise, we have gh,k,.= h,k,, where hy, h, € H, k,,
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k, € Stab x. This implies that g = hyk,k, “*h,”' e H, contrary to our hypo-
thesis. We now see that gA, which is the set of cosets of the form gh Stab x,
h e H, has vacuous intersection with 4 if g ¢ H. Thus g4 n 4 = J in this case.
It follows as above that G acts imprimitively on G/Stab x, hence on S.

Next assume that G is transitive but not primitive on S. Then we have a
subset A of S, A # S, |A| = 2, such that for any g € G, either g4 = 4 or ga n
A= . Letxe Aandlet H={he G|hA = A}. Then H is a subgroup of G and

HDStabxsincegx=x=>gAmA#@ﬁgA:AASinceAaéSand Gis tran- -

sitive on S, there exists a g € G such that gx ¢ A. Then g4 # A and g ¢ H. Hence
G # H. Now let ye A, y # x (existence clear since |A| > 2). Then we have a
g € G such that gx = y. Then (g4 N A)ay and, consequently, g4 = A4 but gx #
x. Thus g € H, ¢ Stab x, and so H # Stab x. Hence Stab x is not a maximal
subgroup of G. This completes the proof. [

EXERCISES

1. Lety={(12---n)in S,. Show that the conjugacy class of y in S, has cardinality
(n — 1)!. Show that the centralizer Cly) = {p>.

2. Determine representatives of the conjugacy classes in S5 and the number of ele-
ments in each class. Use this information to prove that the only normal subgroups
of S5 are 1, 45, Ss.

3. Let the partition associated with a conjugacy class be (114, 15, . . ., n,) where
M= =l > My == g g, P g T
Show that the number of elements in this conjugacy class is

n!
TTad[ T,
4. Show that if a finite group G has a shbgroup H of index n then H contains a

normal subgroup of G of index a divisor of n!. (Hint: Consider the action of G on
G/H by left translations.)

5. Let p be the smallest prime dividing the order of a finite group. Show that any
subgroup H of G of index p is normal.

6. Show that every group of order p? p a prime, is abelian. Show that up to iso-
morphism there are only two such groups.
1

7. . Let H be a proper subgroup of a finite group G. Show that G # Ugee gHg™

.
.
.
-
’
.
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8. lLetGactonS, Hacton T,and assume ST = F. Let U = § u T and define
for ge G, he H, se S, teT; (g, h)s = gs, (g, i)t = ht. Show that this defines an
action of G x H on U.

9. A group H is said to act on a group K by automorphisms if we have an action
of H on K and for every h € H the map k — hk of K is an automorphism. Suppose
this is the case and let G be the product set K x H. Define a binary composition
in K x H by

k1, hid(ka, By} = (ky(hyky), hihy)

and define 1 = (1, 1)—the units of K and H respectively. Verify that this defines
a group such that & — (1, h) is a monomorphism of H into K x H and k—(k, 1)
is a monomorphism of K into K x H whose image is a normal subgroup. G is
called a semi-direct product of K and H. Note that if H and K are finite then
|K X H] = |K||H|

10. Let G be a group, H a transformation group acting on a set S and let G5 denote
the set of maps of S into G. Then G% is a group (the S-direct power of G) if we
“define (f, fo)(s) = f1(s)fo(5), /i€ G5, s e S. If he H and f € G° define hf by (W )(s) =
f(h™'s). Verify that this defines an action of H on G° by automorphism. The
semi-direct product of H and G is called the (unrestricted) wreath product G | H

of G with H.

11. Let G, H, S be as in exercise 10 and suppose G acts on a set T. Let (f, h)e G lH
where fis a map of S into G. If (f1, h,), (f>, ) are two such elements, the product
in G His (filhy f2), hihy). I (5, 5) € T x S define (f, h)(t, s) = (f(s)t, hs). Verify that
this defines an action of G|H on T x §. Note that if everything is finite then
|G| H| = |G|'S!|H| and the degree of the action, defined to be the cardinality of the
set on which the action takes place, is the product of the degrees of the actions

of H and of G. .
12. Let G act on S. Then the action is called k-fold transitive for k=1,2,3, ..., if
given any two elements (xy, ..., Xg), (1, - - - » ) in S®, where the x; and the y; are

distinct, there exists a g € G such that gx; = y,, 1 < i < k. Show that if the action
of G is doubly transitive then it is primitive.

13. Show that if the action of G on S is primitive and effective then the induced action
on S by any normal subgroup H # 1 of G is transitive.

1.13 SYLOW'S THEOREMS

We have seen that the order of a subgroup of a finite group G is a factor of
|G| and if G is cyclic, there is one and only one subgroup of order any given
divisor of |G|. A natural question is: If k divides |G| is there always a subgroup
of G of order k? A little experimenting shows that this is not so. For example,
the alternating group A4,, whose order is 12, contains no subgroup of order 6.
Moreover, we shall show later (in Chapter 4) that 4, for n > 5 is simple, that
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is, contains no normal subgroup #1, 4,. Since any subgroup of index two is
normal, it follows that A4,, n > 5, contains no subgroup of order nl/4. The
main positive result of the type we are discussing was discovered by Sylow.
This states that if a prime power p* divides the order of a finite group G, then
G contains a subgroup of order p*. Sylow also proved a number of other
important results on the subgroups of order p™ where p™ is the highest power
of p dividing |G|. We shall now consider these results.
We prove first

SYLOW L If p is a prime and p*, k > 0, divides |G| (assumed finite), then G
contains a subgroup of order p*.

Proof.  We shall prove the result by induction on |G|. It is clear if |G| = 1, and
we may assume it holds for every group of order <|G|. We first prove a special
case of the theorem (which goes back to Cauchy): if G is finite abelian and p
is a prime divisor of |G| then G contains an element of order p. To prove this
we take an element a # 1 in G. If the order r of a is divisible by p, say r = pr’,
then b = ¢ has order p. On the other hand, if the order r of a is prime to p,
then the order |G|/r of G/{a) is divisible by p and is less than |G|. Hence this
factor group contains an element b{a) of order p. We claim that the order s
of b is divisible by p, for we have (h{a))® = b*(a) = 1(=<a)). Hence the order
p of b{a) is a divisor of s. Now, since b has order divisible by p, we obtain an
element of order p as before. After this preliminary result we can quickly give
the proof. We consider the class equation (41): |G| = |C| + ), [G:C(y;)]. If
p4|C| then p}[G:C(y;)] for some j. Then pk| |C(y))| and the subgroup C(y;) has
order < |G| since y;is not in the center. Then, by the induction hypothesis, C(y;)
contains a subgroup of order p*. Next suppose p| |C|. Then, by Cauchy’s result,
C contains an element ¢ of order p. Now {c) is a normal subgroup of G of
order p, and the order |G|/p of G/{c) is divisible by p*~!. Hence, by induc-
tion, G/{c) contains a subgroup of order p*~!. This subgroup has the form
H/{c)> where H is a subgroup of G containing <{c). Then

|H| = [H:{c)IKed| =P tp=p" O

Let p™ be the largest power of p dividing |G|. Then Sylow I proves the
existence of subgroups of order p™ of G. Such subgroups are called Sylow p-
subgroups of G. The next Sylow theorem concerns these.

SYLOW IL. (1) Any two Sylow p-subgroups of G are conjugate in G; that is, if
P, and P, are Sylow p-subgroups, then there exists an a€ G such that
P, = aP,a”'. (2) The number of Sylow p-subgroups is a divisor of the index

|
|

1.13 Sylow’s Theorems 81

of any Sylow p-subgroup and is =1 (mod p). (3) Any subgroup of order p* is
contained in a Sylow subgroup.

We shall obtain the proof by considering the action of G on the set I1
of Sylow p-subgroups by conjugation. More generally, we note that if H is
a subgroup of a group G and ge G then gHg™ ! is a subgroup. It follows
that we have an action of G on the set I' of subgroups of G by conju-
gation: H = gHg~*. The stabilizer of H under this action is the subgroup
N(H) (or Ny(H)) = {ge G|gHg ' = H}. This is called the normalizer of H
in G. BEvidently H < N(H) and hence H is a normal subgroup of N(H).
The orbit of H under the conjugation action of G is {gHg '|g e G}. The
counting formula on p. 74 shows that [{gHg '|g e G}| =[G:NH)]. If G
is finite then [G:N(H)]|[G:H] since G > N(H) > H and hence [G:H] =
[G:NH)][N(H):H].

Now let G be finite and let IT denote the set of Sylow p-subgroups of G. If
PeTl then gPg 'ell, so we have an action of G on IT induced by the
conjugation action on I'. We shall require the following

LEMMA. Let P be a Sylow p-subgroup of G, H a subgroup of order p’ con-
tained in N(P). Then H < P,

Proof. Since H is a subgroup of N(P) and P is a normal subgroup of N(P),
HP is a subgroup and HP/P = H/(H n P) (by the first isomorphism theorem,
p. 64). Thus HP/P is isomorphic to a factor group of H and so it has order p*.
Then |HP| = p"P|. Since P is a Sylow p-subgroup, k=0, HP = P and so
Hc P [

Evidently P is a Sylow p-subgroup of N(P). Moreover, it is clear from the
foregoing lemma that P is the only Sylow p-subgroup of N(P).
We are now ready to give the

Proof of Sylow II. Let IT be the set of Sylow p-subgroups and let G act on
IT by conjugation. Let X be one of the orbits under this action. Now let Pe X
and restrict the action of G on X to an action of P on X. Then we have a
decomposition of X into P-orbits, one of which is {P}. Moreover, {P} is the
only P-orbit in X of cardinality one. For, if {P'} is such a P-orbit then
P < N(P'),so P = P’since P’ is the only Sylow p-subgroup of N(P'). Now every
P-orbit has cardinality a power of p since this cardinality is a divisor of |P|
Hence |Z| = 1 (mod p). We show next that X = I1. Otherwise, we have a P e I,
¢ Z. Applying the foregoing argument to this P we see that there are no P-orbits



82 1. Monoids and Groups

in T of cardinality one. This gives |Z| = 0 (mod p) contrary to |Z| = 1 (mod p).
Hence ¥ = IT, which means G acts transitively on II. Hence (1) is proved.
We also have [TT| = 1 (mod p), which is the second assertion in (2). The first is
clear also, since [TI| = [G:N(P)]. Now let H be a subgroup of G of order
p* and restrict the action of G on II to H. Since the H-orbits have cardinality
a power of p and since |TI| = 1 (mod p), there exists an orbit {P} containing
one element. Then H = N(P) and so H = P, by the lemma. This proves (3).

[

EXERCISES

1. Show that if P is a Sylow subgroup then N(N(P)) = N(P).
2. Show that there are no simple groups of order 148 or of order 56.

3. Show that there is no simple group of order pg, p, and g primes (cf. exercise 5,
p. 77).

4. Show that every non-abelian group of order 6 is isomorphic to S3.

5. Determine the number of non-isomorphic groups of order 15.

An element of order 2 in a group is called an involution. An important insight into
the structure of a finite group is obtained by studying its involutions and their
centralizers. The next five exercises give a program for characterizing S5 in this way.
These were communicated to me by Walter Feit who attributes the first four to Richard
Brauer—though he notes that John Thompson first recognized the importance of the
result in 9. In all of these exercises, as well as in the rest of this set, G is a finite group.

6. Let u and v be distinct involutions in G. Show that {u, v} is (isomorphic to) a
dihedral group.

7. Let u and v be involutions in G. Show tha? if uv is of odd order then u and v are
conjugate in G (v = gug ™).

8. Let u and v be involutions in G such that up has even order 2n, so w = (uv)" is an
involution. Show that u, v € C(w).

9. Suppose G contains exactly two conjugacy classes of involutions. Let u; and u,

be non-conjugate involutions in G. Let ¢; = ’C(ui)l, i=1,2LetS,i=12,bethe

set of ordered pairs (x, y) with x conjugate to u,, y conjugate to u,, and (xy)" = u;

for some n. Let 5; = |S|. Prove that |G| = ¢;s, + ¢,5,. (Hint: Count the number

of ordered pairs (x, y} with x conjugate to 4, and y conjugate to i, in two ways.

First, this number is (|G|/c;)(|G]/c,). Since x is not conjugate to y, exercises 7 and

-8 imply that for n = o(xy)/2, (xy)" is conjugate to cither u; or u,. This implies that
(|G|/C1)(|G|/Cz) = (|Gl/e1)s, + (1Gl/e2)s2)

i
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10. (An abstract characterization of §5.) Let G contain exactly two conjugacy classes
of involutions and let , and u, be representatives of these classes. Suppose C; =
Cluy) = (uyy x Sy and C, = C(u) is a dibedral group of order 8. Then G = S;.

Sketch of proof.

(i) Since some involution is in the center of a Sylow subgroup, C, is a Sylow
2-subgroup.

(ii) Replacing u; by a conjugate, one may assume i, € C,; and then u, € C;.

(iii) C, contains three classes of involutions. If x is an involution in C,, X # u,
then x is conjugate to xu,. Since G contains two classes of involutions, de-
duce that either s, = 0 or s, = 4 and C, contains a non-cyclic group V' of
order 4 such that all involutions in V are conjugate to u, in G.

(iv) C, contains three conjugacy classes of involutions. If x is an involution in
C,, x # uy, then x is not conjugate to xu, in C. Since G contains two classes
of involutions (iii) implies that for any involution x in Cy, x # uy, exactly
one of x and xu, is conjugate to u;. Hence deduce that s; = 9 (in the notation
of exercise 9).

(v) Use exercise 10 to show that either s, = 4, |G| = 120 or 5, =0, |G| = 72.

(vi) Show that |G| # 72 as follows. Let P be a Sylow 3-group of C;. Assume |G| =

72. Let Q be a Sylow subgroup of G containing P. Then |0] =9 and

(Cy, 0> = N(P). Then 36HN(P)|. Hence there exists H with C(P) = H and

|H| = 36. This implies that u, € H and since u, is a square, u, € H. Since

[G:H] =2, H<G and so H contains all involutions in G. Then C, n H

contains all involutions in C,. This is impossible as |C, n H| = 4 and C,

contains five involutions.

By (iii), C, contains a non-cyclic group V of order 4 such that u, e V and

all the involutions in ¥ are conjugate in G. Let x be an clement of G such

that x ™ *u,x # ty, x u,x € V. Then x7'C,x # C, and uy € Clx ™ tuyx) =

x 1C,x.

(viii) C(V) = V. N(V) contains at least two Sylow 2-subgroups of G, by (vii).

(ix) N(V)/V = Aut V = S,. Hence [N(V)| = 24.
(x) [G:N(V)] = 5. Show that G acts effectively on the coset space G/N(V) and
hence that G = S5.

~

(vii

The next four exercises are designed to prove the following extension of Sylow’s first
theorem. If p is a prime and p* ‘ (G|, then the number of subgroups of order p* is congruent
1 (mod p). The theorem is due to Frobenius. The proof we shall indicate is a very slick
one due to P. X. Gallagher (Archiv der Mathematik, vol. XXIII (1967), p. 469). It is based
on the action of G on the set § of subsets of cardinality p*. This type of proof of Sylow’s
theorem has had a curious history. It seems to have been discovered by G. A. Miller
more than fifty years ago (Annals of Math., vol. 16 (1915), pp. 169—171). However, it
seems to have been totally forgotten until it was rediscovered by H. Wielandt in 1959.

11, Let ]G[ = p*m where p is a prime, and let n denote number of subgroups of G of
order p. Let S be the set of subsets of G of cardinality p* and let G act on S by
left translation. If 4 € S, let H,, = Stab A. Then H 4 acts on A4 by left translations.
Note that the orbits in 4 under the action of H  are collections of right cosets.
Hence prove that |H 4| l .
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12. Let 8, be the subset of A € S such that |H ;| = p*, and 5, the subset of B & S such
that |Hy| = p', I < k. Note that the orbit of any B under the action of G on S has
cardinality divisible by pm and hence prove that

IS| = |So| (mod pm).

13. Let AeS,andletx € A. Then H,x < A and since |H | = p* = |4, H ;x = A. Thus
A is a right coset of H,, a subgroup of order p*. Conversely, let H be any sub-
group of order p*, Hx one of its right cosets. Then H(Hx)= Hx so Stab Hx
contains H. Then, by exercise 11, Stab Hx = H and so Hx € S,. Conclude from
this that

|So| = nm
where n is the number of subgroups of order p*.

14. Note that |S| depends only on |G| and p¥, and that by exercises 12 and 13, n =
|So|/m = |S|/m (mod p). Hence the congruence class of n (mod p) depends only on
|G and p*, and not on G. Now look at a cyclic group of order |G|. In this case
there is exactly one subgroup of order p* Hence # = 1 (mod p).

The next two exercises are designed to construct a group isomorphic to any Sylow
p-subgroup of S, p a prime not exceeding n.

15. Show that the order of the Sylow p-subgroup of S, is p**™" where

-] [5] 3]
b p p

where [k/I] denotes the largest integer <k/I. Show also that if we write
n=dy+ap+ap? + -+ agt

where 0 < a; < p (note that this is the representation of n using the base p), then

k
v) = 3 al +p+-+p7
i=1

16. Let Z, denote the subgroup of S, generated by the cycle (12 - - p). Note that the
wreath product ZplZp has order p?*! and is isomorphic to a subgroup of S,.
(exercises 10 and 11, p. 79). Define Z¥, r > 1, inductively by ZI' = Z,, Z¥*! =
Z%)Z,. Show that ZV has order p® '*#***1 and is isomorphic to a
subgroup of S, Hence show that if n=ay +a;p+--- + ap*, 0 < a; < p, then
any Sylow p-subgroup of S, is isomorphic to

1., 1 12 o .0 12 ... LAV 1k
Z," x x Z,W x Z,1* x x Z,1% x x Z, x x Z,.

I I Lo
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Rings

In this chapter we begin the study of a second type of algebraic structure, called
a ring. The prototype for these structures is the ring Z of integers, which in
the last chapter we regarded from the monoid point of view as providing the
two monoids (Z, +, 0) and (Z, -, 1). The ring theoretic way of viewing Z treats
these two structures simultaneously and relates the two by means of the distri-
butive law. Unlike the theory of groups, which had essentially one source—
namely, the study of bijective transformations relative to the resultant com-
position—the theory of rings has been fused out of a number of special theories.
For this reason it will appear less orderly and unified than the theory of groups.
However, the multitude of examples, including many familiar to the reader,
should be convincing evidence of the richness of this branch of algebra. In the
next chapter we shall see that rings also arise in a manner analogous to that
of transformation groups, namely, as rings of endomorphisms of abelian groups.
Morcover, we have the concept of a module, which for rings is the exact
analogue of the concept of a group acting on a set.

We begin our discussion with definitions and examples of the various types
of rings: domains, division rings, commutative rings, and fields. After this we
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study the basic notions of ideals, quotient rings, and homomorphisms, which
are analogous, respectively, to normal subgroups, factor groups, and homo-
morphisms for groups. In the second half of the chapter we restrict our attention
mainly to commutative rings, first considering constructions and characteriza-
tions of certain extensions of these: ficlds of fractions of commutative domains,
polynomial rings in an indeterminate x. After this we consider the elementary
factorization theory of commutative domains. Applications, especially to
number théory, will be indicated from time to time. The last section, which
may be regarded as optional, will be devoted to “rings without unit” and the
imbedding of these in “rings,” which we consider always as having a unit.

A good deal of this material will seem familiar. However, the student should
note that our point of view has some differences from those which he may have
encountered before. For example, polynomials are treated formally rather than
functionally, and matrices are allowed to have entries in any ring, rather than
just in the ring R of real numbers. Also we emphasize the basic homo-
morphism properties associated with certain constructions of extensions of a
given ring. In important instances these properties give a characterization of
the extension and play an important role in what follows.

21 DEFINITION AND ELEMENTARY PROPERTIES

DEFINITION 2.1. A ring is a structure consisting of a non-vacuous set R
together with two binary compositions +, - in R and two distinguished elements

0, 1 € R such that

1. (R, +, 0) is an abelian group.
2. (R, -, 1) is a monoid.
3. The distributive laws

D . a(b + ¢) = ab + ac
(b + cja=ba + ca

hold for all a, b, ce R

1 The term “ring” appears to have been used first by A. Fraenkel, who gave a set of axioms for
this concept in an article in Journal fiir die reine und angewandete Mathematik, vol. 145 (1914).
However, his definition was marred by the inclusion of some ad hoc assumptions that are not
appropriate for a general theory. The concept as defined here is due to Emmy Noether, who
formulated it in a paper in M| athematische Annalen, vol. 83 (1921). Before this the term “Zahlring”
had occlirred in algebraic number theory.
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Thus the assumptions included under 1 and 2 are that a + b and ab € R, and
the following conditions hold: ’

Al {@a+b)+c=a+(b+c).

A2 a+b=>b+a.

A3 a+0=a=0+a

A4 For each a there is an inverse —a such that a + (—a)=0=—a+a.
M1 (ab)e = a(bc).

M2 al =a=la.

The structure (R, +, 0) is called the additive group of R and (R, -, 1) is called
the multiplicative monoid of R. A subset S of a ring R is a subring if S is a sub-
group of the additive group and also a submonoid of the multiplicative monoid
of R. Clearly the intersection of any set of subrings of R is a subring. Hence if
A is a subset of R one can define the subring generated by A to be the inter-
section of all subrings of R which contain 4. This is characterized by the
properties: it is a subring, it contains A, and it is contained in every subring
containing A.

EXAMPLES
1. Z, +,+, 0, 1 as usual. We noted in the Introduction that this is a ring.
2. @ the rational numbers with usual +, -, 0, 1.
3. R the ring of real numbers.
4

. C the ring of complex numbers. R, @, and Z are subrings of C.

wn

. The set Z[\/E] of real numbers of the form m + nv/2, m, n e Z. Clearly the dif-
ference of two numbers in Z[/2] is in Z[/2]. Also 1€ Z[\/2] and if m, n, m', ' € Z

then (m + nﬁ)(m’ + n’ﬁ) = (mut’ + 2nm') + (mn’ + nm')\/2 € Z[/2 :
. H
a subring of R. N2 € Z[\/2]. Hence Z][\/2] is

6..Same as (5) with Z replaced by Q. The same calculations show that this is a
subring of R.

7. Similarly, we C{heck that Z[/—1] and Q[\/—1]—the sets of complex numbers
m + n+/ —1, where, in the first case m, n € Z, and in the second m, n € @—are subrings

of C. These are thc? subrings generated by Z and </ —1, and by Q and \/:, respectively.
The first of these is called the ring of Gaussian integers.

8. The set I" of real-valued continuous functions on the interval [0, 1] where we define

[+ g and fg as usual by (f +g)(x) =f(x) + g(x), (f)(x) = f(x)g(x). Let 0 and 1 be the
constant functions 0 and 1, respectively. Then (I', +, -, 0, 1) is a ring.
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9. The set {0, 1, 2} with the indicated 0 and 1, and with addition and multiplication
defined by the tables:

£ 012 012
0 012 01000
1t 1120 11012
2 1201 21021

is a ring. This can be verified directly. Tt will be clear without such direct verification
soon (perhaps it is already).

A number of elementary properties of rings are consequences of the fact that
a ring is an abelian group relative to addition and a monoid relative to multi-
plication. For example, we have —(@+b=—a—-b=—a+ (—b) and if na is
defined for n € Z as before, then the rules for multiples (or powers) in an abelian

group,
n{a + b) = na + nb
(n + m)a = na + ma
(nm)a = n(ma)
hold. We also have the generalized associative laws for addition and multiplica-
tion and the generalized commutative law for addition (see pp. 40 and 41). There

are also a number of simple consequences of the distributive laws which we now
note. In the first place, induction on m and n gives the generalization

(ay +ax + vt a)by by b,)
=a1b1+a1b2+'-'+alb,,+a2b1+a2b2+"'+a2b,,+“'
+ ambl + ame + + ambm

'<ia,.><z'bj>: " ab;.
1 1 i=1,j=1

a0 =0=20a

or

i

We note next that

for all a; for we have a0 = a0 + 0) = a0 + a0. Addition of —a0 gives a0 = 0.
Similarly, 0a = 0. We have the equation

A Oh — (g4 (—ah = ab + (_a)b9

4
;

el -
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which shows that
(—a)b = —ab.
Similarly, a(—b) = —ab; consequently
(—a)(—b) = —a(—b) = —(—ab) = ab.

If a and b commute, that is, ab = ba, then a™b” = b"a™. Also, by induction we
can prove the binomial theorem

B @by =+ (Y)a”“b + @ab R

where the binomial coefficient

n n!
2 =
@) <i > il(n —i)!
The inductive step of the proof comes from the formula
r + ¥ B 7! - rl
k k—1) kK@E—k!  (k—DIF—k+1)

o+ fr+1
'k!(r—k+1)!‘< k )

The reader should carry out the proof and note just how the commutative law
of multiplication intervenes.

EXERCISES

1. Let C be the set of real-valued continuous functions on the real line R. Show that
C with the usual addition of functions and 0 is an abelian group, and that C with
product (f- g)(x) = f(g(x)) and 1 the identity map is a monoid. Is C with these
compositions and 0 and 1 a ring?

2. Show that in a ring R, a(b — ¢) = ab — ac where b — ¢ = b + (—¢) and n(ab) =
(na)b = a(nb) if ne 7.

3. Show that if all the axioms for a ring except commutativity of addition are
assumed, then commutativity follows, and hence we have a ring.

4. Let I be the set of complex numbers of the form m + n+/—3 where either m,n e Z
or both m and n are halves of odd integers. Show that I is a subring of C.
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5. If a and b are elements of a ring, define a'” = a,a' =[a, b] = ab — ba and
inductively a® = [a®*~ ", b] (note that for the sake of simplicity we do not indicate
the dependence of a® on b). Prove the following formula:

R T AV
> Hab =y < o >b"‘1a‘”.

Fo\j+1

2.2 TYPES OF RINGS

We obtain various types of rings by imposing special conditions on the multi-
plicative monoid. For example, a ring R is called commutative if (R, -, 1) is com-
mutative. All the examples listed in the preceding section have this property.
Examples of non-commutative rings will be given in the next two sections. A
ring is called a domain (also integral domain) if the set R* of non-zero elements
of R is a submonoid of (R, -, 1). It is implicit in the definition of a domain R
that R # 0. Besides this, the condition that R is a domain is that a # 0 and
b # 0 in R imply ab # 0. Clearly any subring of a domain is a domain. All the
examples in section 1 except 8 are domains. On the other hand, in 8 we can take
the two elements f and g such that

0 for 0<x<4%
f(x)_{x—% for <x<1
(x) = —x+1 for 0<x<4i
=0 for f<x<l.

Then f # 0 (the constant function 0) and g # 0 but fg = 0. Hence the ring of
real-valued continuous functions on [0, 1] is not a domain .

If a is an element of a ring R for which there exists a b 5 0 such that ab =0
(ba = 0), then a is called a left (right) zero divisor. Clearly 0 is a left and a right
zero divisor if R has more than one element. If a # 0 is a left zero divisor and
ab = 0 for b # 0, then b is a non-zero right zero divisor. If is clear from this
and the definition of a domain that R # 0 is a domain if and only if it possesses
no zero divisors #0 (right or left).

We note also that a ring is a domain if and only if R # 0 and the restricted
cancellation laws hold, that is, ab = ac, a # 0, imply b = ¢, and ba = ca, a # 0,
imply b = c. For, if R is a domain and ab = ac, then a(b —c¢) =0, so if a # 0,
then b — ¢ =0 and b = c. Similarly, ba = ca,a # 0 give b = ¢. Conversely,
let R be a ring #0 in which these cancellation laws hold. Let ab =0, a # 0.
Then ab = a0, so that cancelling gives b = 0. Hence R is a domain.

kD
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A ring R is called a division ring (also skew field, sfield, or field) if the set R*
of non-zero elements is a subgroup of (R, -, 1). This is equivalent to: 1 # 0, and
for any a # O there exists a b such that ab = 1 = ba. Examples 2, 3, 4, 6, and
9 as well as the second example in 7 are division rings in which multiplication
is commutative. Division rings that have this property are called fields. We
shall give an example of a non-commutative division ring in section 2.4.

It is clear that any division ring is a domain, and since subrings of domains
are domains, any subring of a division ring is a domain. The converse does not
hold, since Z is a domain which is not a division ring, and Z is a subring of
the field Q. A subring of a ring which is itself a division ring will be called a
division subring. If a # 0 in a division ring R then the equation ax = b has the
solution x = a~*b. By the restricted cancellation law this is the only solution
of the equation. Similarly, ya = b has the unique solution y = ba .

We have seen that the set of invertible elements of any monoid is a subgroup.
In particular, the set U of invertible elements of (R, -, 1) is a subgroup. We shall
call the elements of U units—even though this conflicts slightly with the desig-
nation the unit for 1-—and U is called the group of units (or invertible elements)
of the ring. For example, the group of units of Z is {1, —1}.

EXERCISES

1. Show that any finite domain is a division ring.

2. Show that a domain contains no idempotents (¢* = ¢) except e = 0 and ¢ = 1. An
element z is called nilpotent if z" = 0 for some n e Z". Show that 0 is the only
nilpotent in a domain.

3. Let z be an element of a ring for which there exists a w # 0 such that zwz = 0.
Show that z is either a left or a right zero divisor.

4. Show that if 1 — ab is invertible in a ring then so is 1 — ba.

5. Show that a function f in the example (8) of section 2.1 is a zero divisor if and
only if the set of points x where f(x) = 0 contains an open interval. What are the
idempotents of this ring? The nilpotents? The units?

6. Let u be an element of a ring that has a right inverse. Prove that the following
conditions on u are equivalent: (1) u has more than one right inverse, (2) u is not
a unit, (3) u is a left 0 divisor.

- 7. (Kaplansky.) Prove that if an element of a ring has more than one right inverse
then it has infinitely many. Construct a counterexample to show that this does
not hold for monoids.
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8. Show that an element u of a ring is a unit with v = u~* if and only if either of the
following conditions holds: (1) uvu = u, vu?v =1, (2) uvu = u and v is the only
element satisfying this condition.

= 9, (Hua.) Let a and b be elements of a ring such that g, b, and ab — 1 are units. Show
that a — b~ ' and (a — b~ "t — a~ ! are units and the following identity holds:

(@a—b " H ' —a Yy '=daba—a.

- 10. (Cohn) Let G be a group, e an element of G and 6 a map of the subset
G, = {x € G|x # 1} into itself satisfying
@) 6yxy~ ) =yOx)y~",  x€Gy,yeG.
(i) 6%(x) = x.
(iii) O(x~1) = e(Ox)x"".
(iv) OGey™") = (0O~ MO(Y™ "), X yeGy,x#y.
Show that there exists a unique division ring D such that D¥ = G and in G,
fx=1—-x,xeG,e=—L

2.3 MATRIX RINGS

The reader is probably already familiar with matrices and determinants from
his study of linear algebra or multivariable calculus. We shall now generalize
these notions to the extent which will be needed in our subsequent work: matri-
ces with entries in any ring and determinants of matrices with entries in a
commutative ring. For a reader already familiar with matrices and determinants
the content of this section can be summarized by saying that the familiar results
carry over in this generality.

Let R be a ring, n a positive integer. We shall now define the ring M (R) of
n x n matrices over the ring R. The underlying set of this ring are the n x n
arrays or matrices

a1 12 A1n
dyy dpy "7 Oy
@) A= !
Ay Q2 ann

of n rows and columns with entries (also elements, coefficients, or coordinates)
a;; € R. The element a;; of R in the intersection of the ith row and jth column
of A will be referred to as the (i, j)-entry of A. Two matrices 4 and B = (b;;) are
regarded as equal if and only if a;; = b;; for every i, j, and the set M,(R) is the
complete set of n x n matrices with entries in R.-In short, M,(R) is the product
set of n? copies of R.

T
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We define addition of matrices by the formula

Ay Qyp 77 Ay, biy by 0 by,
dzy Gpp "7 Qay byy by, v by,
_|..
anl anz e ann bnl an e bnn
ayy +byy ag, + by, Ay, + by,
@21+ by Ay + by Ao + bay
anl + bnl anZ + an ann + bnn

Thus, to obtain the sum we add the entries a;; and b;; in the same position. We
define the matrix 0 to be the matrix whose entries are all 0. Then it is easy to
verify that with the given addition and 0, M (R) is an abelian group. Multipli-
cation of matrices is defined by

ay; A2 " Ay [bi bia by
azy UOz2 Ay | (D21 b2z by,
anl anZ e ann bnl bnz Tt bnn
Z ayxbiy Z Aybir Z aiby,
_ Z azibiy Z aybey - Z A2xbiu

Z Qb Z by Z Quicbien
Thus the product P = AB has as its (i, j)-entry the element
Pij = @by + apby; + 0+ ayby.

For example, in the ring M;(Z) of 3 x 3 matrices over Z we have

1 -2 3 0o 3 4 -7 =25 8
0o 1 -1 2 5 1]={ 3 11 -1
2 5 —=2/\—-1 —6 2 12 43 9
We define the unit matrix 1 by
10 0
e
00 - 1
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that is, we have the unit 1 of R on the “main” diagonal running from the upper
left-hand corner to the lower right-hand corner, and all other entries are 0. Then
it is immediate that A1 = 4 = 14 for A € M,(R). Also multiplication is asso-
ciative: the (i, I)-entry of A(BC), A = (a;3), B = (b)), C = (c;)) is Y ik aij{bjcy) and
the (i, )-entry of (AB)C is Y ik (@b y)en. These are equal by the associativity
of multiplication in R. The distributive laws hold, for the (, j)-entries of
A(B + C) and of AB + AC are respectively Y au(by; + ¢;) and

Z (aikbkj -+ a’ikckj)
3

and these are equal by one of the distributive laws in R. Similarly, we have the
other distributive law in M (R). Hence we have shown that (M,(R), +,",0, 1)
is a ring.

We now define ¢;; to be the matrix having a lone 1 as its (i, j)-entry and gll
other entries 0. The n® matrices e;;, 1 <i,j < n are customarily called matrix
units, though they are not (except for n = 1) units (= invertible elements) of
M,(R). It is easy to verify the following multiplication table:

4 el = Opey
where &, is the Kronecker delta defined by
5) d;=1, O =0 if j#k
Also we have

(6) 1 =e11 +622 + +enn'

The e;; are idempotent: e;;> = e;;, and if n > 1, we have e e, = €45, €15¢11 =0,
which shows that M (R) is never commutative if # > 1 and R # 0.
. N
We shall denote the matrix

31

having the entries ay, d, . .., a, in this order on the main diagonal and 0’s
elsewhere as diag{ay, s, . . ., a,}. It is clear that the set of these diagonal ma-
trices is a subring of M,(R). We now put ¢’ = diag{a, a,...,a}. Thena—d’is
injective and we have (a + b) = a’ + b/, (ab) = a'b’,0’ =0, 1" = 1. Thus the map
a— a is both a monomorphism of (R, +, 0) into (M,(R), +, 0) and of (R, -, 1)
into (M,(R), -, 1). It follows that R’ = {d’|a € R} is a subring of M,(R)and a — &’

.
%
%

2.3 Matrix Rings 95

regarded as a map of R into R’ is an isomorphism of rings, where we define
this to be a map which is both an isomorphism for the additive groups and an
isomorphism for the multiplicative monoids.

We shall now identify R with the isomorphic subring R’ of M (R), identifying
an a € R with the corresponding diagonal matrix a’' = diag{a, 4, .. ., a}. This
identification is similar to the one which is made in identifying the integers with
the rational numbers with denominators 1, and has the effect of embedding R
in M,(R). We now observe that multiplication of a matrix 4 on the left (right)
by a € R amounts to multiplication of all the entries on the left (right) by a.
Hence ae;; = e;;a and this matrix has the element a in the (i, j)-position and 0’s
elsewhere. Then it is clear that for the matrix 4 of (3) we have

(7) A = Z aijeij.
LJ

Thus every matrix is a linear combination of the e;; with “coefficients” g;; € R.

The group of invertible elements of M (R) is called the linear group GL,(R).
We shall now derive, for the case R commutative, a determinant criterion for
a matrix 4 to be invertible, that is, to belong to GL,(R). It is assumed that the
reader is familiar with the definition of determinants and the elementary facts
about them.? It is easy to convince ourselves that the main formulas on deter-
minants, which can be found in any text on linear algebra, arc valid for deter-
minants of matrices over any commutative ring. Thus if R is commutative we
can define for 4 = (a;;) the determinant

®) det 4 = Z (sg n)a1i1a2i2 Ty,

where the summation is taken over all permutations  of 1,2,...,n,and sgm = 1
or —1 according as = is even or odd. The cofactor of the element a; in A,
as in (3), is (—1)'*7 times the determinant of the n — 1 x n — 1 matrix obtained
by striking out the ith row and the jth column of A. We recall that we can
“expand” a determinant by any row and any column in the sense that we obtain
det A by multiplying thé entries of any row (or column) by their cofactors and
adding the results. Thus if 4;; denotes the cofactor of a;; then we have
o) anAi + A+ + ayd;, = det 4

ayAy; + azydy + 0 + aud, = det A

We recall also that the sum of the products of the elements of any row (column)

? The principal theorems on determinants will be derived later in this book, using exterior

algebras (section 7.2, pp. 416—419).
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and the corresponding cofactors of the elements of another row (column) is 0:
aj Ay +apAp +o amApy =0, i#j,

10 o

( ) aliAlj“}"aziAzj + +a,u'A"j:0, l?é]

These relations lead us to define the adjoint of the matrix A = (a;)) to be the
matrix whose (i, j)-entry is o; = Aj. Using this definition it is immediate that
formulas (9) and (10) are equivalent to the matrix equations

(11) A(adj A) = det A = (adj A)A

where det A4 in the middle is the corresponding element diag {det 4, f det A}
in M ,(R). We recall also the rule for multiplying determinants, which in matrix

A

(12) det AB = (det A)(det B).

form is

The multiplication rule (12) and the fact that det 1 = 1 imply that 4 — de't A
is a homomorphism of the multiplicative monoid of M, (R), R commutative,
into the multiplicative monoid of R. It is clear that such a homomorphism maps
the group GL,(R) into U(R), the group of units of R: that is,if A GL,,(R), then
det A is a unit in R. Conversely, suppose A = det A is a unit. Since R is com-
mutative aB = Ba for every a€ R, Be M,(R). In particular, (adj DA™ =

A~ Y(adj 4) so

Afadj A)A~1 = AA~L = (A" adj A)A.
Thus we see that
(13) (adj AL = A1,

This result shows that if det 4 is a unit then 4 is invertib@i moreover, we have
the formula (13) for its inverse. The main part of the result we have proved is
stated in the following

THEOREM 2.1. If R is a commutative ring, a matrix A € M,(R) is invertible if
and only if its determinant is invertible in R.

A noteworthy special case of the theorem is the

COROLLARY. If Fis afield, A € M,(F) is invertible if and only if det A # 0.

T
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EXERCISES
1. Show that the matrix

10.

1 4 1
0 1 —I
—3 —6 -8

is invertible in M4(Z) and find its inverse.

Prove that if R is a commutative ring then AB = 1 in M (R) implies BA = 1. (This
is not always true for non-commutative R.)

Verify that for any pe R and i #j, 1 + pe;; is invertible in M (R) with inverse
1 — pe;;. More generally, show that if z is a nilpotent element of a ring (that is,
z" = 0 for some positive integer n), then 1 — z is invertible. Also determine its
inverse.

Show that diag {a,, a,,...,a,} is invertible in M (R) if and only if every g, is
invertible in R. What is the inverse?

. b\ . . . .
Verify that for a, be R, a + by/— —>< a b ) is an isomorphism of C with a
—b a
subring of M,(R).

Show that in any ring the set C(S) of elements which commute with every element
of a given subset S constitute a subring. If S is taken to be the whole ring, then
C = C(8) is called the center of the ring. Note that this subring is commutative.
Determine C(S) in M(R) for S = {e;;]i,j=1,...,n}. Also determine the center
of M (R).

Determine C(S) where S is the single matrix N = ey, + €35 + -+ e,

Show that if R is commutative and D is the set of diagonal matrices in M (R),
then C(D) = D.

Let S be any ring which contains a set of matrix units, that is, a set of elements
{e;;]i,j =1,..., n} such that e;e,, = oy and Y} e; = 1. Forany i,j, 1 <i,j<n
and any ae S define a; = ) 3, e ae;. Show that a;€ R = C({eylk, [ =1,.. .,
n})and that a = Y, ; a;e;;. Show that il r;; are any elements of R, then ) r;e;; = 0
only if every r;; = 0. Hence show that § = M,(R) (= denotes isomorphism).

Let R be a ring, R" a set,  a bijective map of R’ into R. Show that R’ becomes
a ring if one defines:

a + b =n"Nud) + @),

ab' = n~ (@ ®)),
and that y is an isomorphism of R’ with R. Use this to prove that if « is an in-
vertible element of a ring then (R, +, - u, 0, u~ ') where a-,b = aub is a ring isomor-

phic to R. Show also that (R, @, 0, 1,0) wherea®b=a+b—lacb=a+b—
ab is a ring isomorphic to R. :

0'=n"10)
'=n"'(1)
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11. Show that the rings M,(R) and M, (M,(R)) are isomorphic (Hint: Use “block”
addition and multiplication of matrices.)

12. Show that if R is a field, A € M,(R) is a zero divisor in this ring if and only if
A is not invertible. Does this hold for arbitrary commutative R? Explain.

2.4 QUATERNIONS

In 1843, W. R. Hamilton constructed the first example of a division ring in
which the commutative law of multiplication does not hold. This was an exten-
sion of the field of complex numbers, whose elements were quadruples of real
numbers (a, B, 7, 6) for which the usual addition and a multiplication were de-
fined so that 1 =(1,0,0,0) is the unit and i =(0,1,0,0), j = 0,0,1,0), and
k=(0,0,0,1)satisfy i* = j2 = k* = —1 = ijk.* Hamilton called his quadruples
quaternions. Previously he had defined complex numbers as pairs of real num-
bers (o, f) with the product (o, f)(y, 0) = (xy — B0, od + By). Hamilton’s discov-
ery of quaternions led to a good deal of experimentation with other such
“hypercomplex” number systems and eventually to a structure theory whose
goal was to classify such systems. A good deal of important algebra thus evolved
from the discovery of quaternions.

We shall not follow Hamilton’s way of introducing quaternions. Instead we
shall define this system as a certain subring of the ring M,(C) of 2 x 2 matrices
with complex number entries. This will have the advantage of reducing the
calculations to a single simple verification. B

We consider the subset H of the ring M,(C) of complex 2 x 2 matrices that
have the form

(14) x={ ¢ b —< o + oy 1 a2+a3”_1) o, real
YENE a) a1 ag—an/—1)

We claim that H is a subring of M,(C). Since a; — a, = d; — a, for complex
numbers it is clear that H is closed under subtraction; hence H is a subgroup
of the additive group of M,(C). We obtain the unit matrix by taking a =1,
b = 01n (14). Hence 1 € H. Since

a b\ c d ac—bd  ad + bé
—b a)\-d ¢ —bc—ad —bd+ac
3 1t seems to have taken Hamilton ten years to arrive at this multiplication table. Tn fact, he
had spent a good deal of effort trying to construct a field of triples of real numbers (which is not
possible) before he realized that it was necessary to go to quadruples and to drop the commutativity
of multiplication. Perhaps this bit of history may serve as an encouragement to the student who

sometimes finds himself on the wrong track in attacking a problem. (See Carl A. Boyer, 4 History
of Mathematics, New York, Wiley, 1968, p. 625.)

:
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1

and a,a, = d,d,, the right-hand side has the form

u v
—v u

where u = ac — bd, v = ad + be. Hence H is closed under multiplication and so
H is a subring of M,(C).
We shall now show that H is a division ring. We note first that

o + o/ —1 o Fos/—1) _ 2 2 2 2
A_:_'det = Uy +d1 +O(2 +a3.
ety 4 s —1 g — o/ —1

Since the «; are real numbers this is real, and is 0 only if every «; = 0, that is, if
the matrix is 0. Hence every non-zero element of H has an inverse in M,(C).
Moreover, we have, by the definition of the adjoint given in section 2.3, that

af 5 2)-6 )

Since a= a this is obtained from the x in (14) by replacing a by @ and b by
—b, and so it is contained in H. Thus if the matrix x is #0 then its inverse is

an~t —bA!
bA™' aA™!
and this is contained in H. Hence H is a division ring.

The ring M contains in its center the field R of real numbers identified with
the set of diagonal matrices diag{a, ¢}, « € R. H also contains the matrices

() ) (s )

We verify that
(15) X = 0g + oqi + oyf + a3k
and if ag + o7 + o] + ask = fig + fii + Poj + Bsk, f; € R, then

<°‘0+°‘1\/tT oy +ozy/—1 <Bo‘f'.31\/jT ﬂz“‘ﬁs\/"—l
*0‘2‘*‘053\/*—1 oo — oy/—1 —ﬂz"*‘ﬁa\/:—l ﬁo“ﬁm/——l

soa; = B;, 0 <i< 3. Thus any x in H can be written in one and only one way
in the form (15). The product of two elements in H

(0tg + ayi + 0pf + a3 k)(Bo + Bri + Baj + B3k)
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is determined by the product and sum in R, the distributive laws and the multi-
plication table

. . 22 — 2 _
(16) 12—] =k*= —1
ij= —ji=kjk=—kji=1iki=—ik =]
Incidentally, because these show that H is not commutative we have con-
structed a division ring that is not a field. The ring H is called the division
ring of real quaternions.

EXERCISES

1. Definex = og — oyi — otyj — azkfor x = oy + oy + 0,5 + otsk. Show that X F y =
X+ 7, xy=j% and that x=xif xe R

2. Show that xxX = N(x) where N(x) = ay® + oy + 0,2 + 232 Define T(x) = 2o,.
Show that x satisfies the quadratic equation x? — T(x)x + N(x) = 0.

3. Prove that N(xy) = N(x)N(y).

4. Show that the set Hy, of quaternions x = oy + a7 + 0,7 + a3k, whose “coordi-
nates” o; are rational, form a division subring of H.

5. Verify that the set I of quaternions x in which all the coordinates o, are either
integers or all are halves of odd integers is a subring of H. Is this a division sub-
ring? Show that T(x) and N(x) € Z for any x € I. Determine the group of units
of I

6. Show that the subring of M,(C) generated by C and H is M,(C).

7. Let m and n be non-zero integers and let R be the subset of M 5(C) consisting
of the matrices of the form

<a+b\/;; c+d\/1;>
n(c»d\/ﬁ) a—bym

where a, b, ¢, d € Q. Show that R is a subring of M,(C) and that R is a division
ring if and only if the only rational numbers x, y, z, t satifying the equation x* —
my> —nz> +mnt? =0 are x=y=z=1=0. Give a choice of m, n that R is a
division ring and a choice of m, n that R is not a division ring.

8. Determine the center of H. Determine the subring C(i) commuting with i.

9. Let S be a division subring of H which is stabilized by every map x — dxd ~*,d # 0
in H. Show that either S = H or S is contained in the center.

-~ 10. (Cartan-Brauer-Hua.) Let D be a division ring, C its center and let S be a division
subring of D which is stabilized by every map x — dxd ', d #£ 0 in D. Show that
gither S=D or S = C.
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2.5 IdEALS, QUOTIENT RINGS

We define a congruence = in a ring to be a relation in R which is a congruence
for the additive group (R, +, 0) and the multiplicative monoid (R, -, 1). Hence
= is an equivalence relation such thata=d' andb=b implya+b=d + b
and ab = a'b’. Let a denote the congruence class of ae R and let R be the
quotient set. As we have seen in section 1.5, we have binary compositions +
and - in R defined by @ + b = a + b, ab = ab. These define the group (R, +, 0)
and the monoid (R, -, 1). We also have

ab+¢)=a(b+c)=alb +c)=ab + ac = ab + ac = ab + ac.

Similarly, (b + ¢)a = ba + ca. Hence (R, +, -, 0, 1) is a ring which we shall call a
quotient (or difference) ring of R.

We recall also that the congruences in (R, +, 0) are obtained from the sub-
groups I (necessarily normal since (R, +) is commutative) by defining @ = b if
a — b e I. Then the congruence class d is the coset a + I. If this is also a con-
gruence for the multiplicative monoid, then for any @ € R and any b € I we have
a=aand b=0, and so ab = a0 = 0 and ba = 0. In other words, if ¢ € R and
b eI then ab and ba € I. Conversely, suppose I is a subgroup of the additive
group satisfying this condition. Then if a=d' and b=V (mod I), a —a' eI
soab—db=(a—a)bel. Also a'b—d'b'=d(b—b)el Hence ab— a'b' =
(ab —a'b) + (@b — a'b’) e I. Hence ab = a’'b’ (mod I). We now give the following

DEFINITION 2.2 If R is a ring, an ideal I of R is a subgroup of the additive
group such that for any ae€ R and any be 1, ab and ba e 1.

Our results show that congruences in a ring R are obtained from ideals I of
R by defining a = a' if a — o’ € I. The corresponding quotient ring R will be
denoted as R/I and will be called the quotient ring of R with respect to the ideal
I. The elements of R/I are the cosets a + I and the addition and multiplication
in R/I are defined by

a+D+Gb+D=(@+b)+1
(@a+ Db+ D=ab+ L

17

Also I is the 0 and 1 + I the unit of R/L.

It is interesting to look at the “algebra” of ideals of a ring R. We note first
that the intersection of any set of ideals in R is an ideal. This is immediate from
the definition. If S is a subset of R then the intersection (S) of all ideals of R
containing S (non-vacuous, since R is such an ideal) is an ideal containing S
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and is contained in every ideal containing S. We call (S) the ideal generated by
S.If S is a finite set, {ay, da, - - a,}, then we write (ay, a, - - - a,) for (S.). It is
not easy to write down all the clements of this ideal. It is clear first that it con-
tains all finite sums of products of the form xa;y where x, y € R and the.re is no
way of combining xa;y + x'q;y into a single term. Thus we see that'to indicate
explicitly all the elements of the ideal (a;, dy, - - . » 4,) We must consider all ele-
ments of the form
(18) Z X0 Vi T z Xaiy,@2Y2i, Tt lz Xt @Y nin+

i1 12 n
Now it is clear that the set I of elements of the form (18) is an ideal. It is clear
also that I contains every a; = la;1. Hence

I = (ah Aoy v v v s a,,).

If I and J are ideals we denote the ideal generated byl uJasI+ J. Weclaim

that this is the set K of elements of the form a + b, ael, be J. This is clear
since K is an ideal containing I and J and is contained in every ideal containing
I and J. Another important ideal associated with I and J is the product I.J ,
defined to be the ideal generated by all the products ab, ae I, be J. Itis casily
seen that 1J coincides with the set of clements of the form a b, + azb, +- " +
b,, where a;e I, b; € J.
Sometimes we need to consider a sequence of ideals I, I,,... such that
I, < I, c-- . We call this an ascending chain of ideals. 1t is useful t0- observe
that for such a chain, | JI; is an ideal. It suffices to show that | J I; is closed
under subtraction and under left and right multiplication by arbitrary elements
of R. To see the first, let a, b € (JI; Thenael; for some j and b € I, for some
k. If 1 is the greater of j and k then both a and b are in I,. Hence a —bel;
since I, is an ideal. Also xa and ax € I; for any x € R. Thus a - be U I; and
xa, ax € | ) I, for any a and b in \J1; and any x € R. Then [ J I is an ideal.

If R is commutative, our description of the elements of (ay, ay, . . . , Gy,) Sim-
plifies considerably: namely, this ideal is the set of elements c?f the form Y} x4;
(=>4 ax), x; € R. This is clear from (18). In particular, the 1dea.1 (a) generated
by a is the set of elements xa, x € R. This is called the principal ideal generated
by a. .

We can give a neat characterization of fields in terms of ideals: namely, we

a

m

have

THEOREM 2.2. Let R be a commutative ring #0. Then Ris a field if and only
if the only ideals in R are R (=(1)) and 0 (=(0)).

Proo}f Suppose R is a division ring and I is a non-zero ideal in R. If a # 0

e
i
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|
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is in I then so is 1 = aa™'. It is clear that the only ideal of a ring containing
1is R (since I will then contain every x = x1). Hence I = R. This proves that the
only ideals in a division ring are 0 and R. In particular this holds for fields.
Conversely, suppose that R is a commutative ring #0 whose only ideals are 0
and R. If a # 0 is in R then (a) # 0, so (a) = R. Tt follows that 1 € (@) and hence
there is an x € R such that ax = 1. Thus every non-zero element of R is invert-
ible and R is a field. O

A

EXERCISES

1. Let I be the ring of real-valued continuous functions on [0, 1] (example 8, p. 87).
Let S be a subset of [0, 1] and let Zs = {f|f(x) = 0, x € $}. Verify that Zg is an
ideal. Let S; =[0,%], S, =[31], Iy = Zs,, I, =Zs,. Show that I,I, =1, n
I,=0

2. Show that the associative law holds for products of ideals: (IJ)K = I(JK) if I, J,
and K are ideals.

3. Does the distributive law, I(J + K) = IJ 4+ IK hold?

4. If Ris a ring we define a right (left) ideal in R to be a subgroup of the additive
group of R such that ba eI (ab € 1) for every a e R, b e I. Verify that the subset

. 0 0). g 0
of matrices of the form ( b) is a right ideal and the subset of the form <Z 0)
a
is a left ideal in M,(R) for any R. Are either of these sets ideals?

5. Prove the following extension of Theorem 2.2. A ring R # 0 is a division ring if
and only if 0 and R are the only left (right) ideals in R.

6. Let R be a commutative ring and let N denote the set of nilpotent elements of
R. Show that N is an ideal and R/N contains no non-zero nilpotent elements.

7. LetIbeanideal in R, U the group of units of R. Let U, be the subset of elements
a e U such that a =1 (mod I). Show that U, is a normal subgroup of U.

8. Let I be an ideal in R and let M, (I) denote the set of n x n matrices with entries
in I. Show that M,(I) is an ideal in M,(R). Prove that every ideal in M (R) has
the form M (I) for some ideal I of R, and that I — M (I) is a bijective map of the
set of ideals of R onto the set of ideals of M (R).

2.6 |IDEALS AND QUOTIENT RINGS FOR 7Z

After the generalities of the last section we now consider the ideals of Z and

their corresponding quotient rings 7Z/I. This will lead us to some interesting
number theoretic results.
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As we have seen in section 1.5 and again in section 1.10, the subgroups of
the additive group (Z, +, 0) are the cyclic groups (ky where k is a non-
negative integer. Since k> = {xk|x e Z} it is clear that (k) is the same thing
as the principal ideal (k) of multiples of k. Since any ideal is a subgroup it
follows that every ideal in Z is a principal ideal. Now it is clear that (I) = (k)
if and only if k e (1), hence, if and only if k = Im, me Z. Thus the inclusion
relation (I) o (k) for the principal ideals (D), (k) is equivalent to the divisibility
condition [|k. A consequence of this is that if m, n € Z and (m, n) denotes the
ideal generated by m and n, then (m, n) = (d) where d is a g.c.d. of m and n.
Since (m, n) > (m) and (1), we have d|m and d|n. On the other hand, if e|m and
e|n then () = (m) and (¢) = (). Then (¢) = (m, n) = (d) so e|d. Similarly, we see
that (m) N (n) = ([m, n]) where [m, n] is a least common multiple of m and n.

We look next at the quotient ring Z/(k), which is called the ring of residues
modulo k. Since (k) = (—k) we may assume k> 0. If k = 0, then Z/(k) can be
identified with Z, and if k > 0, the elements of Z/(k) are the k cosets

=, T=1+0)2=2+®,. . .k—T=k—1+(K

Suppose first that k is composite: k = Im, [>1, m>1 Then 10 and m # 0
in Z/(k) but i = k = 0. Thus Z/(k) has non-zero zero divisors if k is composite.
Next let k = p be a prime. In this case every a # 0 in Z/(p) is invertible. Since
Z/(k) is commutative (@b = ab = ba = ba), it follows that Z/(p) is a field. Given
@ # 0, then pfa and 1is a gcd. of p and a. Hence we have integers x and y
such that ax + py = 1. Then T = ax + py = ax + py = ax. Hence a is invertible
with X as inverse.
These simple results are important enough to state as a theorem.

THEOREM 2.3. The ring Z/(k) for k composite is not a domain. On the other
hand, Z/(p) for p prime is a field.

We shall now determine the group U(Z/(k)) of units of Z/(k). If k = 0 then
these are 1 and — 1. If k > 0 we have

THEOREM 2.4. The group U(Z/(k)), k > O, consists of the classes a = a + (k)
such that a and k are relatively prime (that is, have 1 as g.c.d.).

Proof. If (a, k) =1 (equivalently: the ideal (g, k) = (1)), then we have integers
x and y such that ax + ky = 1. Then ax = 1, so @ is invertible. Conversely, if
ab =T, then ab =1, so ab = 1 + mk, me Z. Clearly this equation shows that
any common divisor of a and k divides 1. Hence a and k are relatively prime. [

:
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The foregoing result shows that |U(Z/(k))| is the number ¢(k) of positive
integers less than k and relatively prime to k. The function ¢ of positive integers
thus defined is called the Euler @-function (see exercises 4, p. 47). For example,
if k =12, the units of Z/(k) are T, 5, 7, 11, and thus ¢(12) = 4. In the next
section we shall indicate in an exercise a formula for computing ¢(k) from the
factorization of k into primes. At this point we note that if p is a prime, then
it is clear from the definition that ¢(p) = p — 1. Also it is easy to see that ¢(p®) =
pe—p° =p(l —1/p)

We recall that is G is a finite group, then 4!l = 1 for every a e G. A conse-
quence of this result and Theorem 2.4 is that if (4, k) = 1, then @*® = 1. The
usual way of stating this result is

THEOREM 2.5. (Euler.) If a is an integer prime to the positive integer k, then
a*® =1 (mod k).

For k = p a prime this reduces to an earlier result due to Fermat.

COROLLARY. If p is a prime and a is an integer not divisible by p then
a?~ ' =1 (mod p). '

This result can also be stated in a slightly different form, namely, that a* =
a (mod p). This holds for all a since it is trivial if a is divisible by p. On the
other hand, if a” = a (mod p) and a # 0 (mod p), then a?~ ! =1 (mod p) by
cancellation. Hence the two statements are equivalent.

EXERCISES

1. Write down addition and multiplication tables for Z/(5) and for Z/(6).

2. Show that Z/(k) contains non-zero nilpotent elements (z" =0, z # 0) if and only

if/ic is divisible by the square of a prime. Determine the nilpotent elements of
Z/(180).

3. Prove that if D is a finite division ring then a'?! = a for every a € D.

4, LetAe GLZ(Z/(p)? (that is, A is an invertible 2 x 2 matrix with entries in Z/(p)).
Show that A% = 1if g = (p? — 1)(p> — p). Show also that A**? = A* for every A €
M(Z/(p))-
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a 0
5. Let T denote the set of triangular matrices <b ) where a, b, ¢ € Z. Verify that
c

T is a subring of M,(Z). Determine the ideals of T.

2.7 HOMOMORPHISMS OF RINGS. BASIC THEOREMS
In this section we define homomorphism for rings and derive their basic

properties. Everything will follow from our earlier results on homomorphisms
of monoids and of groups (in sections 1.9 and 1.10) since our starting point is

DEFINITION 2.3. A homomorphism of a ring R into a ring R’ is a map of R

into R’ which is a homomorphism of both the additive group and the multiplicative

monoid of R into the corresponding objects of R’

Recalling that  is a homomorphism of a group G into a group G if n(ab) =
1n(a)y(b), we see that the conditions that a map » of a ring R into a ring R' is a

homomorphism are

n(a+b) = n(a) + nb),  nlab) = n(am®d), n1)=1

where 1’ is the unit of R". If I is an ideal in R we have the corresponding con-
gruence in R and the quotient ring R = R/I. Also we have the natural map

via — a. This is an epimorphism for the additive groups and the multiplicative

monoids, hence it is an epimorphism (=surjective homomorphism) of the ring
R onto the ring R. As in the case of groups, we call K = 5~ Y(0') the kernel of
the homomorphism # of R (0" the zero element of R’). Since a = b (mod K)—
that is, a — b € K—is a congruence, the result of section 2.5 shows that K
is an ideal in R (a fact, which can be verified directly also). The homomorphism
1 is a monomorphism (=injective homomorphism) if and only if the kernel is
0. It is clear also that the image under a homomorphism of R into R’ is a
subring of R/, since it is a subgroup of the additive group of R’ as well as a
submonoid of the multiplicative monoid.

Now suppose # is a homomorphism of the ring R into the ring R’ and [ is
an ideal contained in the kernel of #. Then we know that

n:a=a+1-na)

is a group and a monoid homomorphism, hence it is a ring homomorphism.
We call 7 the induced (ring) homomorphism of R/I into R’. It is clear that we
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have the commutativity of

and 7 is the only homomorphism from R/I to R’ making this diagram com-
mutative. Also 7 is a monomorphism if and only if I coincides with the kernel
of . In this case we have the

FUNDAMENTAL THEOREM OF HOMOMORPHISMS OF RINGS.
Let n be a homomorphism of a ring R into a ring R, K = n~Y0) the kernel. Then
K is an ideal in R and we have a unique homomorphism i1 of R/K into R’ such
that n = iy where v is the natural homomorphism of R into R/K. Moreover, v is
an epimorphism and # is a monomorphism.

This, of course, has the immediate

COROLLARY. Any hamomorphic image of a ring R is isomorphic to a quotient
ring R/K of R by an ideal K.

The subgroup correspondence of a group and a homomorphic image given
in Theorem 1.8 is applicable to rings via their additive groups. The result for
rings is

THEOREM 2.6. Let i be an epimorphism of a ring R onto a ring R', K the
kernel. Then in the 1-1 correspondence of the set of subgroups H of (R, +, 0)
containing K with the set of subgroups of R’ pairing H with y(H), H is a subring
(ideal) if and only if n(H) is a subring (ideal) of R'. Moreover, if I is an ideal of
R containing K then

(19) a+1-pla)+ I, I' =y

is an isomorphism of R/I with R'/I'.
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Proof. Since the image under a homomorphism is a subring it is clear that if
H is a subring of R then n(H) is a subring of R". If H is an ideal in R, then n(H)
is a subgroup of the additive group of R". If h € H and x" € R’ then there exists
an x such that y(x) = x". Hence n(h)x" = n(h)n(x) = n(hx) € n(H) and similarly
x'n(h) € n(H). Hence y(H) is an ideal. If H' is a subring (ideal) in R’ then n~Y(H)
is a subgroup of the additive group of R and it is immediate that this is a
subring (ideal) of R. It follows that the 1—1 correspondence between the set of
subgroups of the additive group of R containing K with the set of subgroups
of R’ induces 1—1 correspondences between the sets of subrings and also
between the sets of ideals contained in the two sets of subgroups. Also we know
from the group result that (19) is an isomorphism of the additive groups of R/I
and R//I' if I is an ideal in R containing K and I' = n(I). Since

(@a+ Db+ 1)=ab+I->nlab) + 1 =nlanb) + I
(n(a) + I)(n(b) + I')

l

(19) is a ring isomorphism. [

The isomorphism of R/I and R'/I' given in the foregoing theorem is some-
times called ‘the first isomorphism theorem for rings. We also have, as we have
for groups, the

SECOND ISOMORPHISM THEOREM FOR RINGS. Let R be aring, S a
subring, I an ideal in R. Then S+ 1= {s+i|seS, iel} is a subring of R
containing I as an ideal, S n I is an ideal in S, and we have the isomorphism

(20) s+I-s+(Snl, seS

of (S + D/I with S/(S n I).

Proof. Direct verification shows that S + I is a subring. Obviously I is an
ideal in S + I. We have the homomorphism s — s + I of S into R/I which is
the restriction to S of the natural homomorphism of R into R/I. The image is
clearly (S + I)/I and the kernel is the set of s such that s + I = I. This is the
set S A I. Hence we have the isomorphism s + (S n I) » s + I of S/(S n I) into
(S + I)/I. The isomorphism (20) is the inverse of this map. [l

We shall now apply the fundamental homomorphism theorem of rings to
identify the smallest subring of a given ring R, that is, the subring generated by
1. We shall call this the prime ring of R (though it may have nothing to do with
primes). For our purpose we need to use the ring of integers Z with unit 1 and
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for the moment it will be clearer if we use a different symbol, say e, for the unit
of R. Consider the map n — ne, n € Z, of Z into R. Since

(n + m)e = ne + me

(nm)e = (nm)e? = (ne)(me)

hold in R (see section 2.1) and 1 — e, our map is a homomorphism of Z into
R. The image Ze = {ne|n € Z} is therefore a subring of R. Moreover, if S is
any subring of R then e€ S and so Ze < S. Hence it is clear that Ze is the
prime ring. Our homomorphism can also be regarded as one into Ze, in which
case it is an epimorphism. Consequently Ze = Z/K for some ideal K in Z and
we know that K =(k), k = 0. If k =0 we have Ze = Z and if k > 0 then Ze
is isomorphic to the ring of residues modulo k. We can now safely shift back to
the notation 1 for the unit of R and we can identify the prime ring with the
ring Z or Z/(k) to which it is isomorphic. With this understanding we have
the following

THEOREM 2.7. The prime ring of a ring R is either Z or the ring Z/(k) of
residues modulo some k > 0.

We recall that if k is composite then Z/(k) has non-zero zero divisors. Hence
if R is a domain then the prime ring is either Z or Z/(p) for some prime p.
We shall say that R is of characteristic k if its prime ring is Z/(k), k = 0 (so
that Z/(0) = Z). Hence for a domain the characteristic is either 0 or a prime
p. We remark also that if the characteristic of a ring is k > 0 then ka = (kl)a =
0 for all a in the ring. Clearly, k is the smallest positive integer having this
property.

EXERCISES

1. Prove that if 5 is a homomorphism of the ring R into the ring R’ and { is a homo-
morphism of R’ into R” then {5 is a homomorphism of R into R".

2. Show that if u is a unit in R and # is a homomorphism of R into R’ then #(u) is
a unit in R’. Suppose n is an epimorphism. Does this imply that # is an
epimorphism of the group of units of R onto the group of units of R'?

3. Let I be an ideal in R, n a positive integer. Apply the fundamental theorem on
homomorphisms to prove that M, (R)/M (I} = M (R/]).
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Show that if R is a commutative ring of prime characteristic p then a — a” is an
endomorphism of R (=homomorphism of R into R). Is this an automorphism?

Let F be a finite field of characteristic p (a prime). Show that p — 1‘ |F| — 1. Hence
conclude that if |F| is even then the characteristic is two. (We shall see later that
|F| is a power of p.)

A ring R is simple if R # 0 and R and 0 are the only ideals in R. Show that the
characteristic of a simple ring is either 0 or a prime p.

If S is a subset of a ring (field) R then the subring (subfield) generated by S is defined
to be the intersection of all the subrings (subfields) containing S. If this is R itself
then S is called a set of generators of the ring R (ficld R). Show that if , and 1,
are homomorphisms of the ring R (field R) into a second ring (field) and #,(s) =
n,(s) for every s in a set of generators of the ring R (field R) then n; = #,.

Show that every homomorphism of a division ring into a ring R#0 is a
monomorphism.

If R, R,,...,R, are rings we define the direct sum R, @ R, @ - ® R, as for
monoids and groups. The underlying set is R = R; x R, x * -+ x R,. Addition,
multiplication, 0, and 1 are defined by

,b)=(a;+by,ay,+b,y,...,a,+Db)
(ay, agy ..., a)by by, .. b)) = (a1hy, azbhs, ..., a,b,)
0=(04,0,,...,0,)
1=(01,1,,...,1),

(ay, Gz, -+, a,) +(by, by, ..

0,, 1, the zero and unit of R;. Verify that R is a ring. Show that the units of R are
the elements (us, s, .. ., Uy 4; @ unit of R,. Hence show that if U = U(R) and
U, = U(R) then U = U, x U, x -+ x U, the direct product of the U, and that
|U| = II|U| if the U; are finite.

(Chinese remainder theorem). Let I; and I, be ideals of a ring R which are
relatively prime in the sense that I; + I, = R. Show that if a; and a, are elements
of R then there exists an a € R such that a = ¢; (mod I,). More generally, show
thatif I, ..., I, are ideals such that I; + ()« ;I = R for 1 <j < m, then for any
(ay, as, . . -, ay), 6; € R, there exists an a € R such that a = g, (mod 1)) for all k.

Use the Chinese remainder theorem and the fundamental theorem of homo-
morphisms to show that if I; and I, are relatively prime ideals and I =1; n I,
then R/I = R/I; ® R/I,.

Use exercise 11 to prove that if m and n are relatively prime integers then g(mn) =

@(m)(n), ¢ the Buler g-function (p. 105). Show also that if p is a prime then
o(p?) = p° — p°~ 1. Hence prove that if n = p,°'p,*2 - - - p,*, p; distinct primes, then

r r 1
om =11 (S —ps™H=n]] <1 - —>-
i=1 1

i

Show that the only ring homomorphism of R into R is the identity.

.
!

i e e e

e
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14. Let R be the ring of real-valued continuous functions on [0, 1] (example 8, p. 87).
Note that if 0 < ¢ < 1 then the evaluation map g,:f — f(t) is a homomorphism of
R into R. Show that any homomorphism 5 of R into R is of this form. (Hint: If
n # n, there is an f, € R such that #(f) # n(/f) = f{t). Then g, = f, — (/)1 € R
and g,(t) # 0 but 5(g,) = 0. Show that there exist a finite number of t; such that
g(x) =Y g, X(x) # 0 for all x. Then g~ ' € R but 5(g) = 0.

15. Define a maximal ideal of a ring R to be a proper ideal I such that there exists
no proper ideal I’ such that T’ 2 I. Show that an ideal I of a commutative ring
R is maximal if and only if R/I is a field.

16. Define a prime ideal I of a commutative ring R by the conditions: I # R and if
ab e I then either a e I or b e I. Show that if I is maximal then I is prime.

17. Determine the ideals and the maximal ideals and prime ideals of Z/(60).

2.8 ANTI-ISOMORPHISMS

Let R be a commutative ring, M,(R) the ring of n x n matrices with entries in
R.If A = (a;) € M(R) we define the transpose of A (or transposed matrix) ‘A to
be the matrix having a; as its (i, j)-entry. This means that ‘4 is obtained by
reflecting the elements of A4 in its main diagonal. For example, if

1 2 3
A={2 -1 4
5 -1 6
then -

1
U={2 -1 -1
3 6

It is clear that ‘("4) = A4, so A — A4 is bijective. Also, if A = (a;) and B = (b))
then A + B = (a;; + b;)), so (A + B) has a;; + b; as its (i, j)-entry. Hence (4 +
B) =4 + 'B. Thus the transpose map t:4 -4 is an automorphism of the
additive group of M (R). Clearly ‘1 = 1. Now consider P = AB whose (i, j)-entry
is py; = Z}ézl ayby;. Hence the (i, j)-entry of 'P is Yr_i agby. On the other
hand, the (i, j)-entry of ‘B'A is Y §_ | byay = Y #—y dpby, since R is commuta-
tive. We have shown that

21) (4B) = (B)('A).

A map x — x* of a ring R into itself which is an automorphism of the additive
group, sends 1 into 1 and reverses the order of multiplication: (xy)* = y*x* is
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called an anti-automorphism of R. If, in addition, x** = x, x € R, then the map
is called an involution. Our calculations show that this is the case with the
transpose map in M,(R), R commutative.

Another important instance of an involution is the map

(22) x = oy + ogi + 0 +oazk X

= oy — Oql — 0pf — o3k, o e R,

in Hamiltons quaternion algebra H. This can be verified directly or it can be
deduced from the anti-automorphic character of the transpose map, as we
proceed to show. We observe first that if u is an invertible element of a ring
then the map x — uxu~ ! is an automorphism. As in the case of groups, such
automorphisms are called inner automorphisms. We note next that if we
compose an automorphism with an anti-automorphism in either order the
result is an anti-automorphism. As a consequence of these two remarks we see
that the map

a b 0 —1\fa c 0 1\ d—b:ad.ab
a7l ol d\or o) T e a) T 4

. . . fa b

is an anti-automorphism in M ,(R). Moreover, the formula for adj <c d) shows

, b . . . .
that adj (adj (a Z>> = (a d>' Hence the “adj” map is an involution. We now
¢ ¢

specialize R = C and we refer back to the definition of H as the subring of M,(C)

b
of matrices of the form < g Zz>' We recall also the definitions of i, j, k as

. (~-1 0 . (01 - 0 V-1
i=\"g _JZi) ‘T\=1 o) TT\J/-1 0 )
Then adji = —i, adjj = —j, and adj k = — k. Thus the involution x — adj x

in C, stabilizes H and induces the involution x — X, as in (22), in H.

A map x — x’ of a ring R into a ring R’ is called an anti-isomorphism if it is
an isomorphism for the additive groups and satisfies

(23) (xyy = y'x, 1 — 1’, the unit of R'.

If such a map exists, then R and R’ are said to be anti-isomorphic. 1t is some-
times useful to have a ring which is anti-isomorphic to a given ring R. Such a
ring can be constructed easily. To do this we take the same underlying set R,
the same +, 1 and 0, but we define a new product by simply reversing the

?
:
!
;

T
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factors and then multiplying as in R. Denoting this product as a x b we have
the definition:

(24) axb=ba
Then
(a x b) x ¢ = ba x ¢ = c(ba)
ax (b xc)=axch=/(chua.
and

axb+c)=b+cla=ba+ca=axb+axc
b+cyxa=ab+c)y=ab+ac=bxa+cxa

Also ax 1 =1la=a=al =1 x a. Hence (R, +, x,0,1) is a ring. To dis-
tinguish this from R = (R, +, -, 0, 1) we shall denote it as R® (read “R opposite”)
and call it the opposite (ring) of R. Tt is clear that the identity map is an
anti-isomorphism of R and R°. Also any anti-isomorphism of R is the same
thing as an isomorphism of R°.

EXERCISES

1. Show that the identity map in R is an anti-automorphism if and only if R is
commutative.

2. Shcﬂ)_ﬂwthatx =0y + ayi + oyf + ozk - x* =0 — 040 + o,j + azkisaninvolution
in H. -

3. Let x — x' be an anti-isomorphism of R onto R". If 4 = (a;)) let A* = (a;;). Verify
that 4 — A* is an anti-isomorphism of M, (R) onto M (R’).

4. Let a — a* be an anti-automorphism of a ring R. Let H = {h|I* = h} (called sym-
metric ot % - symmetric elements) and K = {k|k* = —k} (called skew or * - skew
elements). Verify that H and K are subgroups of the additive group of R. Define
{ab} = ab + ba and [ab] = ab — ba. Show that if g, b, c € H then so do

aba, a" for n e N, {ab}, abc + cba, [[ab]c],

e[md]that [ab] € K. Show that if a, b € K then [ab] € K and if a € H and b € K then
able H.
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Let

in M4(Q) and let

_uO _01
““lo w2 TT\o o

where u is as indicated and 0 and 1 are the 0 and unit matrices in M 4(Q). Hence

x, y € M(Q). Verify the following relations
X} =0=y%  yx=x%

Let R be the subring of M4(Q) generated by @, x and y. Show that every element

of R has the form f(x) + g(x)y where f(x) = a + bx + cx?, g(x) = a’ + b'x + ¢'x?,
and g, b, ¢, a,b,c' €Q, and that (1;%; x% 7y, yx; yx?)is a base for R as vector

" space over Q. Show that if X’ is a nilpotent element of R and y' is an element

10.

11.

of R such that y'? =0, then y'x'*> =0. Hence conclude that R has no anti-
automorphisms.

Define anti-homomorphism of a ring R into a ring R’ to be a map n which is a
homomorphism of the additive group of R into R’ sending 1 into 1 (for 1') and
satisfying n(ab) = n(b)y(a). Verify that the composite of a homomorphism (anti-
homomorphism) and an anti-homomorphism (homomorphism) is an anti-homo-
morphism and the composite of two anti-homomorphisms is a homomorphism.

Define a Jordan homomorphism i of a ring R into a ring R’ by the conditions:
11 is an additive group homomorphism, #(1) = 1, and n(aba) = n(ay(b)y(a). Show
that any homomorphism or anti-homomorphism is a Jordan homomorphisni.
Show that Jordan homomorphisms satisfy:

(@) = n(a), ke N
nabc + cba) = n(ay(b)n(c) + nic)n(b)n(a)
w(ab + ba) = n(awmd) + n(bn(a).
(Jacobson and Rickart.) Show that if 4 is a Jordan homomorphism of a ring R
into a domain D then for any a, b € R either #(ab) = n(an(b) or nlab) = n(b)n(a).

(Hua.) Let  be a mapping of a ring R into a ring R’ such that n(a + b) = y(a) +
n(b), n(1) = 1, and for any a, b in R either n{ab) = n(a)y(b) or y(ab) = y(b)y(a). Prove
that # is either a homomorphism or anti-homomorphism.

(Jacobson and Rickart.) Prove that any Jordan homomorphism of a ring into a
domain is either a homomorphism or an anti-homomorphism.

(Hua.) Let # be a map of a division ring D into a division ring D’ satisfying the

following conditions: (i) # is a homomorphism of the additive groups, (i) #(1) = ’,
(ifi) if @ # O then n(a) # 0 and n(a)™! = n(a~*). Show that # is either a homomor-
phism or an anti-homomorphism. (Hint: Use Hua’s identity, exercise 9, p. 92).

T
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2.9 FIELD OF FRACTIONS OF
A COMMUTATIVE DOMAIN

We have seen that any subring of a division ring is a domain. It is natural to
ask if the converse holds: namely, can every domain be imbedded in a division
ring? By this we mean: given domain D, does there exist a monomorphism of
D into some division ring F? If this were the case then D would be isomorphic
to a subring D’ of F, so that by identifying D with D’ we could regard D as
a subring of the division ring F. The question we have raised was an open one
for some time until it was answered in the negative by A. Malcev, who gave
the first example of a domain which cannot be imbedded in a division ring.
We shall indicate Malcev’s example in some exercises below. Our main concern
in this section will be in the most important positive result in this direction,
namely, that every commutative domain can be imbedded in a field. The method
for doing this is exactly the familiar one that is used to construct the field of
rational numbers from the ring of integers. To understand why it works it will
be well to look first at the relation between a subring D of a field and the sub-
field F generated by D.

Accordingly, we suppose we have a subring D of a field. Let F be the subfield
generated by D. What are the elements of F? First it is clear that if a, b € D and
b # 0 then ab™' € F. We now make the important observation that F is just
the set of elements of this form. First, the following equations show that

{ab~!

a,beD,b#0}
is a subfield of the given field:

ab™ ' +cd™' =adb'd™* + chbb~1d™! = (ad + bc)(bd)
0=0p""1
—ab™ ' =(—ap !

T (ab™Yed™Y) = ach™'d ™ = ac(bd) ™"

l=aa !

(ab=H t=ba ' if a#0.

(It should be noted that commutativity of multiplication is used in several places
in these calculations.) Since F is generated by D, no subfield of F different from

F contains D, and since the set of {ab~'} contains D as the subset of elements
al™! = g, it is clear that

(25) F={ab~"|a,beD,b 0}
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One more question needs to be raised. When do we have equality, ab ™! = ¢d ™1,
for the elements of the set we have determined? It is clear that this is the case
if and only if ad = be, since this relation follows from ab™' = ¢d ! if we mul-
tiply both sides by bd, and ab™' = ¢d ™' results if we multiply both sides of
ad = bc by (bd)™ %,

Suppose now that we are given a commutative domain D. We wish to imbed
D in a field. The foregoing remarks indicate that if this can be done, then the
elements of a minimal field extension of D are to be obtained from the pairs
(a,b),a,be D, b #0. We have in mind that (g, b) is to play the role of ab~ 1.
Hence we adopt the following procedure, which is suggested by the foregoing
considerations.

Let D* denote the set of non-zero elements of D. Then D* # ¢ since D # 0,
We consider the product set D x D* of pairs (a, b), a € D, b € D* and we intro-
duce a relation ~ in D x D* by defining (a, b) ~ (c, d) if and only if ad = bc.
Then (a, b) ~ {(a, b) since ab = ba, and if (4, b) ~ (c, d), then ad = bc; hence cb =
da, and so (c, d) ~ (a, b). Finally, if (a, b) ~ (c, d) and (c, d) ~ (e, f) then ad = bc
and ¢f = de. Hence adf = bcf = bde. Since d # 0 and D is commutative, d may
be cancelled to give af = be, which is the condition that (a, b) ~ (e, ). We have
therefore proved that ~ is an equivalence relation. We shall call the equivalence
class determined by (a, b) the fraction (or quotient) a/b. Thus we have a/b = c/d
if and only if ad = bc. Let F = {a/b} the quotient set determined by our equiva-
lence relation in D x D*,

We shall now introduce an addition, multiplication, 0, and 1 in F to make F
a field. We note first that if a/b and ¢/d are two fractions, then bd # 0 since
b #0 and d # 0. Hence we can form the fraction (ad + bc)/bd. Moreover, if
a/b=d'/b" and ¢/d = ¢'/d, then

(26) (ad + bc)/bd = (a'd' + b'¢)/b'd,
for, by assumption, ab’ = ba’ and c¢d’ = dc’. Hence
ab'dd’ = ba'dd" and c¢d'bb’ = dc'bb’

so that

ab'dd’” + cd'bb’ = ba'dd’ + dc’bb’
or

(ad + be)b'd = (a'd’ + b'c)bd,

which implies (26). It is now clear that

Qn a/b + ¢/d = (ad + be)/bd

B 3 :
g
:
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defines a (single-valued) composition + in F. Similarly we see that if a/b and
¢/d are fractions then so is ac/bd. Moreover, if a/b = a'/b’ and ¢/d = c'/d', then
ab’ = ba’ and cd’ = c'd, so ab'cd’ = ba'c'd. Hence ac/bd = a'c’/b'd’ and so

(28) (a/b)c/d) = ac/bd

defines a (single-valued) multiplication in F. If we put 0 = 0/1 and 1 = 1/1 we
obtain a/b + 0 = a/b + 0/1 = (al + b0)/b1 = a/b and similarly 0 + a/b = a/b.
Also (a/b)1 = a/b = 1(a/b). A straightforward verification, which is left to the
reader, will show that (F, +,-,0,1) is a commutative ring. Now suppose
a/b # 0. Then a # 0, since 0/b = 0/1 by 01 = 0 = 0b. Hence b/a is a fraction
and (a/b)(b/a) = ab/ab = 1/1 = 1. Thus a/b has the inverse (a/b)"! = b/a and
hence F is a field.
We now consider the map

(29) a—afl

of D into F. Clearly this maps 0 into 0, 1 into 1; and a + b — (a + b)/1 = a/l +

b/1 and ab — ab/1 = (a/1)(b/1). Hence (29) is a homomorphism. If a/1 = 0 = 0/1

then gl = 10 = 0, so a = 0. Hence the kernel is 0 and (29) is a monomorphism.
We have therefore proved the following

THEOREM 2.8. Any commutative domain can be imbedded in a field.

We shall now identify a with a/1 (just as we identify the integer a with the
rational number a/1). Then D is identified with a subring of F. Moreover, for
any element a/b of F we have a/b = (a/1)(1/b) = (a/1)(b/1) "' = ab~* (because
of our identification). Thus it is clear that D generates the field F. We shall call
F the field of fractions of D. The basic homomorphism property of this field
is given in

THEOREM 2.9.  Let D be a commutative domain, F its field of fractions. Then
any monomorphism ny, of D into a field F' has a unique extension to a monomor-
phism of ng of F into F'.

Proof.  We indicate 17, as a — a’. We shall prove first that if 7, can be extended
to a homomorphism 4, of F into F’ then this can be done in only one way. In
other words, we settle the uniqueness question first. Now this part is clear, since
ifb # 0 then b~ ' — (') ™" under . Hence ab ' — a/(b’)~* under #. Since every
element of F can be written as ab™ ! it follows that 5 is determined to be the
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map ab™' — (")~ L. It is now clear that our task is to show that ab™' —
a(b)" ! is a well-defined map and is a monomorphism of F into F’ which
extends 7,. To prove that this defines a map we assume that ab™' = cd ™.
Then we have ad = bc and consequently a'd = b'c’ in F'. Hence a'(b') ' =
¢(d)~*. This shows that ab™ ' - a'(b') "' is single-valued. Next we check the
homomorphism property. This follows from the following calculations in which

a,bc,deDand b#0,d #0.

ab~! + cd~' = (ad + bo)(bd) ™t > (ad + be)((bd))~*
(@d + beYb) d)!

a(b) !+ c(d)

ac(bd)™ — a'’c¢ (b))~ Md) !

= (a(p)""N(@d) ).

I

Il

It

(ab™Hed ™)

1t is clear also that 1 — 1/, the unit of F’, since D and F have the same unit and
yp is a homomorphism. We note next that ab™' — a'(h’)~" is an extension of
np since it maps a = al~! - d'(1)"! = a’. We have seen that any homomor-
phism of a field is a monomorphism (exercise 8, p. 110). Hence we have proved
that 1, can be extended to a monomorphism 1 of F, and we saw at the outset

that this is unique. [J

EXERCISES

1. What is the field of fractions of a field?

2. Show that if D is a domain and F; and F, are fields such that D is a subring
of each and each is generated by D, then there is a unique isomorphism of F; onto
F, that is the identity map on D.

3. Show that any commutative monoid satisfying the cancellation law (ab = ac =
b = ¢) can be imbedded in an abelian group.

4. Show that if a" = b™ and a" = b", for m and n relatively prime positive integers,
and a and b in a commutative domain, then a = b.

5. Let R be a commutative ring, and S a submonoid of the multiplicative monoid
of R. In R x S define (a, s} ~ (b, t) if there exists a u € § such that u(at — bs) = 0.
Show that this is an equivalence relation in R x S. Denote the equivalence class
of (g, 5) as a/s and the quotient set consisting of these classes as RS™". Show that

~

g
|
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RS~ ! becomes a ring relative to
ajs + b/t = (at + bs)/st
(a/s)(b/t) = ab/st
0=0/1
1=1/1.

Show that a—a/l is a homomorphism of R into RS™! and that this is
~a monomorphism if and only if no element of S is a zero divisor in R.
Show that the elements s/1, s € S, are units in RS 1.

6. (Ore) Let D be a domain (not necessarily commutative) having the right
common wmultiple property that any two non-zero elements a,be D have
a non-zero right common multiple m = ab; = ba,. Consider D x D*, D* the set of
non-zero elements of D, and define (a, b) ~ (c, d) if for b; # 0 and d, # 0 such that
bd, = db; we have ad; = cb;. Show that this is independent of the choice of b,
d, and that ~ is an equivalence relation in D x D* Let F denote the set of
equivalence classes a/b. Show that F becomes a division ring relative to a/b +
c/d = (ady + cby)/m where m=0bd, =db, #0, 0=0/1, 1 =1/1, (a/b)c/d)=
acy/db; where by # 0 and cb, = bcy. Show that a — a/1 is a monomorphism of
D into F and F is the set of elements (a/1)}b/1)" Y, a, be D, b # 0.

7. (Malcev.) Show that if a;, b, 1 <i < 4, are elements of a group satisfying the rela-
tions a,a, = asby, a,b, = asb,, bya, = bya,, then b;b, = b;b,. Let W be the free
monoid generated by elements a;, b, 1 < i < 4 (see p. 68), and let = be the smallest
congruence relation (=intersection of all congruence relations) in W containing
the elements (a;a,, asa,), (b, asb,), (bia,, bia,). Let S = W/=. Show that S
satisfies the cancellation laws but that S cannot be imbedded in a group.

8. (Malcev.) Let Z[S] be the set of integral linear combinations of the elements of
the monoid S of exercise 7 with the obvious definitions of equality, addition, mul-
tiplication, 0, and 1 (see exercise 8, p. 127). Show that Z[S] is a domain that cannot
be imbedded in a division ring.

210 POLYNOMIAL RINGS

For the remainder of this chapter—except in section 2.17 and in an occasional
exercise—all rings will be commutative and the word “ring” will be synonymous
with “commutative ring.”

One is often interested in studying a ring R’ relative to a given subring R. In
this connection we wish to consider subrings of R’ generated by R and subsets
U of R'. Such a subring will be denoted as R[ U] and will be called the subring
obtained by “adjoining” the subset U to the subring R. If ¥ is a second subset
then R[U][V ] is the subring obtained by adjoining V to the subring R[U]. We
claim that this coincides with R[U U V'], the subring of R’ resulting from the
adjunction of U U V to R. First, it is clear that R[U u V] contains R[U] and
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V and, since the subring generated by R[U] and V is contained in every subring
containing these sets, we have R[U u V] o R[U][V]. Next, it is clear that
R[U][V] contains R and the subset U U V; hence R[UJ[V]>R[U u V]
Thus R[UJ[V] = R[U u V]

We are interested primarily in subrings obtained by adjoining finite subsets
to the “base” ring R.If U = {uy, uy, . . ., u,; wewrite R[uy, us, ..., u,]for RLU].
Inducting on the foregoing remark we see that

(30) Rluy, tig, ..o u,]) = R[u J[us] - [u,],

that is, R[uy, U,, . . ., u,] is obtained from R by a succession of adjunctions of
single elements to previously constructed subrings. It is therefore natural to
study first subrings of the form R[u]. We can immediately write down all the
elements of R[u]; these are just the polynomials in u with coefficients in R, that
is, the set of elements of the form

(31) ao + ayu + au® + -+ au’, g eR

It is clear that R[u] contains all of these elements. Moreover, if ) ¢ au’ and
& b/ are polynomials in u with coefficients in R and n > m, then

(ap + ayt + - + au) + (bo + byt + -+ + b
(32) = (ao + bO) -+ (“1 + bl)u R & (am + bm)um

+ am+1“m+1 4o (lnl/ln
and, since (au’)(bu’) = a;bu’*’, we have, by the distributive laws,

(aO + apu + 0t an””)(bo + blu + 0+ bmum)

33
( ) = Po + DU +oee pn+mu”+m
where
(34) pi= ) ahi_;= ajby
j=0 jfE=i
Moreover, 0 and 1 are polynomials in u and — Y § au = > § (—a;)u’. Thus the

set of polynomials in u with coefficients in R form a subring of R". Hence this
set coincides with Rfu].

The formulas (32)—(34) show us how to calculate the sum and the prod-
uct of given polynomials. All of this is simple enough. However, there is one
difficulty—that of deciding when two polynomial expressions in u represent the
same element. It may happen that we have different-looking expressions for the
same element. For example, if u € R (which is not excluded) then the clement
u e R[u] can be represented both as a, with a, = u and as a,u with a; = 1.
Less trivially, taking R' = C and R = R, u = /— 1, we have u? = —1.

.
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We shall now construct a ring R[x] in which the only relations of the form
dg + a;x + = by + byx + - - - are the trivial ones in which g; = b, for all i.
Heuristically, the ring we seek is the set of expressions ao + ayx + -+ + + a,x",
a; € R, where equality is defined by equality of the coefficients: ) ax’ =3 bx!
only if a; = b; for all i. Addition and multiplication will be given by (32)—(34)
with x replacing u. The statement on equality means that we want a polynomial
in x to determine the sequence of its coefficients and, of course, these are all 0
from a certain point on. We are therefore led to identify a polynomial in x with
a sequence (dg, dg, - - -, 4y, 0, 0,...), a; € R, and to introduce an addition and
multiplication for such sequences corresponding to the formulas (32)—(34).

We shall now carry out this program precisely and in detail. Let R be a given
ring and let R[ x| denote the set of infinite sequences

((lo, Ay, das . s )

that have only a finite number of non-zero terms a;. Sequences (ay, dy, d,, . . .)
and (b, by, b,, . . .) are regarded as equal if and only if a; = b, for all i. In other
words, R[x] is the set of maps i — a; of the set N of non-negative integers into
the given ring R such that g, = 0 for sufficiently large i. For the present, x in our
notation R[x] is meaningless, but a genuine x will soon make its appearance to
justify the notation. We introduce a binary composition in R[x] by

((lo, ag, dy, .. ) + (bO: bl: bla o ) = (aO + bOa a; + bls a, + bZa H )
which evidently is in R[x] and zero element by
0=(0,0,0,...).

Then it is immediate that (R[x], +, 0) is an abelian group. Next we introduce
another binary composition - in R[x] by

(35) (ag, ay, azy .. Nbo, b1, byy .. ) = (Pos P1> P25 - - -)

where p; is given by (34). If a; = 0 for i > n and b; = 0 for j > m then p, = 0 for
k > m + n. Hence the element on the right-hand side of (35) is in R[x]. We also
put

1=(1,0,0,...).

Then (ag, a,.. ) =(ag, ag,...)=ag,ay,...). I A=(ag,a,...), B=
(bg, by, ...), and C = (cg, ¢y, ...) € R[x], then the (i + 1)-st term in (4B)C is

Z (abi)e, = Z (abye;.

jtk=m jrkti=i
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Similarly, the corresponding term in A(BC) is

Z EIJ< Z bkcl> = ) Z aj(bkcl).
m+j=i k+i=m Jrk+i=i

Hence (4B)C = A(BC) follows from the associative law in R. Similarly, we can
verify the distributive laws. Also commutativity of multiplication is clear from
the definition of the p; in (34) and the commutative law in R. Hence (R[x], +,
', 0, 1) is a commutative ring.

We now consider the map

a—a =(a0,0,...)

of R into R[x]. It is clear that this is a monomorphism of the ring R into R[x].
We shall now identify R with its image in R[x], identifying a with &’ In this
way we can regard R as a subring of R[x]. Now let x denote the element
(0,1,0,0,...) of R[x]. The formula for the product and induction on k show
that if k > 0, then

k+1

X =(00,5..,0,1,0,...).

We have for a € R (identified with o' = (q, 0, .. .)),

k+1

ax* =(0,0,...,0,a,0,..).

Hence
(@, ay, .., a,,0,0,...)=ay +ax +- +a,x"

and R[x] is the ring obtained by adjoining x to R. We shall call R[x] the ring
of polynomials over R in the indeterminate x. The foregoing formula and the defi-
nition of equality show thatif )’ ax’ = )" b,x!, then a; = b, for all i. In particular,
Y ax' = 0 implies every g; = 0.

Once we have constructed the ring R[x] we can use it to study any ring R[u],
for we shall see that any R[u] is a homomorphic image of R[x]. Thus we shall
have R[u] = R[x]/I, I an ideal in R[x]. This will imply that the problem of
relations in R[u] can be solved by noting that ay + a,u + - - = by + bju+---
if and only if ) a;x’ = ) b;x* (mod I). Hence we shall know the relations if we
know the ideal I. The fundamental homomorphism property of R[x] is given in

THEOREM 2.10. Let R and S be (commutative) rings, y a homomorphism of
R into S, u an element of S. Let R[x] be the ring of polynomials over R in the
indeterminate x. Then n has one and only one extension to a homomorphism
1. of R[x] into S mapping x into u.

;
%
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Proof. fA=ay+ aix+ -+ a,x" then we simply put

n{Ad) = do +dyu+ - + au”

where, in general, ' =n(a). If B=1>b, + byx + -+ + b,x", then AB = p, +
pix + 4 Py where p; = Zj+k=i a;by. Then

l]"(AB) = p’O + p’lu 4 4 p;l+mun+m
and

o N
pi= ashy,
jtE=i

since # is a ring homomorphism. On the other hand,

NAAMB) = (do + s+ + au) (b + by + -+ + blyu”)
= p,() + pllu +0 4+ p;1+mu"+m = ’7u(AB)

Still easier is the verification of #,(A4 + B) = y,(A) + n,B), which is left to the
reader. Now we have for a € R that n,(a) = ' = y(a), so n, is an extension of .
Alson,(1) = 5#(1) = 1 (the unit of §) and 5,(x) = u. Hence 5, is a homomorphism of
R[x] which extends # and maps x into u. Since R[x] is generated by R and x
it is the only homomorphism having this property (exercise 7, p. 110). This com-
pletes the proof. [

Now let S be any overring of R—that is, let S be a ring containing R as a
subring—and let u € S. Then the theorem shows that we have a unique homo-
morphism, which is the identity map on R and sends x — u. We shall now write
A(x)for A = aq + a;x + - - - + a,x" and we shall denote the image of A(x) under
this homomorphism as A(u). In this way we shall be using the customary func-
tional notations in the present situation, though we are not really dealing with
functions. It will be convenient also to speak of “substituting u for x in A(x)”
when in reality what we are doing is applying the homomorphism of R[x] into
S which extends the identity map on R and sends x into w. If I is the kernel
of our homomorphism, then R[u] = R[x]/I. Since the homomorphism is the
identity on R, we have R n I = 0. This result tells us precisely what the rings
R} u] obtained by adjoining a single element u to R look like: namely, we have
the

COROLLARY. R[u] = R[x]/I where x is an indeterminate and I is an ideal
in R[x] such that I n R =0
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Conversely, if I is an ideal in R[x] such that I n R = 0, then the restriction
to R of the natural homomorphism v of R[x] into R[x]/I is a monomorphism.
We may identify R with its image (the element a € R with the coset a + I). In this
way R[x]/I = R as a subring. Since R[x] is generated by R and x, its homo-
morphic image is generated by R and u = x + I. Hence R[x]/I ~ R[u]. [

The homomorphism A(x) — A(u) is a monomorphism if and only if A(u) =0
implies A(x) = 0, that is, ag + a,u + - -+ + a,u" = 0 implies everya; = 0. In this
case u is called transcendental over R, otherwise u is algebraic over R. The
classical case of this is the one in which S = R (or C) and R = Q. Then a real (or
complex) number is called algebraic or transcendental according as this element
of R (or C) is algebraic or transcendental over (.

We shall now consider the extension of all of this from one element to a
finite number. Reversing somewhat the foregoing order of presentation, we shall
launch directly into the generalization of Theorem 2.10, which we state in the
following form.

THEOREM 2.11. For any ring R and any positive integer r there exists a ring
R[xy, x5, . .., x,| with the following “universal” property. If S is any ring and y
is a homomorphism of R into S and i — u; is a map of {1,2,...,r} into S, then
there exists a unique extension of n to a homomorphism n,, . . of R[xy, ..., x,]
into S sending x; > u;,, 1 <i<r.

Proof. We define R[x, ..., x,] inductively: R[x, | is the polynomial ring in
an indeterminate x, (for x) over R and, generally, R[x,..., x;] is the poly-
nomial ring in an indeterminate x; over R[ Xy, ..., x; |,1 <i < r. By Theorem
2.10, we have a homomorphism #,, of R[x,] into S extending » and send-
ing x, — u,. Using induction, we may assume we have a homomorphism of
R[4, ..., x,_,] extending » and sending x; - u;, | <i<r — 1. Then Theorem
2.10 provides an extension of this to a homomorphism #,,  , of

R[x(, ..., x]=R[xy, .., % 1[*]

into § sending x, —u,. Then #,, ., is a homomorphism extension of # to
R[xy,...,x,] such that x; »u;, 1 <i <r. The uniqueness of n,, , is clear
since R[xy,..., x,] is generated by R and the x’s. [

There is essentially only one ring having the property stated in Theorem 2.11.
To show this, suppose that R[yy, .. ., y,] is another one. Then we have a homo-
morphism { of R[x,, ..., x,] into R[ y, ..., y,] which is the identity on R and
sends x;— y;,1 < i < r. We also have a homomorphism ¢’ of R[y,, .. ., y,] into
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R[xy, ..., x,] which is the identity on R and sends y, - x,,1 < i < r. Then 44
is an endomorphism of R[x,, ..., x,], which is the identity on R and the x’s.
Hence {'{ is the identity automorphism of R[x,. .., x,]. Similarly, {{’ is the
identity on R[y;, ..., y,). Then { and {’ are isomorphisms.

We shall now call R[x, ..., x,] the ring of polynomials over R in v indeter-
minates Xy, ..., X,. The result just proved shows that how one constructs this
ring is only a matter of esthetics, since it is essentially unique. (Another con-
struction will be indicated in exercise 9, at the end of this section.) Though our
construction (by successive adjunctions of single indeterminates) does not treat
the x’s symmetrically, the end product is symmetric. In fact, we have the
following

THEOREM 2.12. Let R[xy, ..., x,] be the polynomial ring in r indeterminates
over R and let m be a permutation of 1,2,...,r. Then there exists a unique
automorphism {(n) of R[xy,...,x,] which is the identity on R and sends x; — Xgiys
1<i<r

Proof. Theorem 2.11 gives a unique endomorphism {(r) satisfying the stated
conditions. We have to show that this is an automorphism. Now, if we compare
effects on the set of generators R U {xy,...,x,}, we see that if 7, and =, are
two permutations of 1,...,r, then {(n,7,) = {(r,){(n,). Also {(1) = 1. Hence
{ml(rY) =1={(rn"Y)¢{(r). Thus {(n) is an automorphism. [

If (i, . .., i,) € N, that is, we have an r-tuple of non-negative integers, then
we can associate with this the monomial x,"* - x,* in the x’s. We have
Geg XM x ) = xR P Tt follows  readily from  this
as in the special case r=1) that R[x,...,x,] is the set of polynomials
Y iy Xy ' X, (finite sum) where the coefficients a;,...; € R. For example,

 R[x, y] is the set of polynomials

oo + 10X + do1y + Gy0X” + Ay XY + agyy* + - -, a; € R

We shall now show that if (i;,...,i) % j;,...,j.) then the associated mono-
mials x," - - - x,", x,7' - - x,/ are distinct and the only relations 3 a;,..., x," . ..
x,” = 0 connecting distinct monomials are the trivial ones with everya;,..., = 0.
This will follow by showing that if

% Qi Xy X =0, () =(iy,...,10)

where the summation is taken over a finite number of distinct elements () e
N®, then every coefficient is 0. Note that this will imply that for (i) # (j),
Xt xm# x - x, since, otherwise, we have the non-trivial relation
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Ix,1+++ x, ¥ — 1x;/t - - - x, 7 = 0. To prove our assertion we observe that the
case r = 1 has already been established and we assume the result for r — 1 if
r > 1. We can write

N Xt

. xrir — Z Airxrlr
@ ir

where i, ranges over a finite subset of N and

iy, .. i1
A = Z iy 15,X1 Xp—1"
i

where (i') = (i, . . . » i, 1), and the summation is taken over a finite set of distinct
(). Yy sy X, = 0,2 Ay x," = 0,i,=0,1,2,.... Thenevery 4; = 0
and so, by induction, we conclude that a;,..,_;, = 0 for any fixed i, and every
(7). Then g;,..; = 0 for every (i).

As in the case r = 1 treated before, we see that for any R[uy, ..., u,] the
homomorphism of R[x, ..., x,] into R[uy, ..., u] sending a > a, a € R, and
x; = u;,1 < i<r,is an isomorphism if and only if the following independence
property holds for the ws: Y a;,..,.us™ - -+ u,” = 0 only if every a;,..,, = 0. If
this is the case the r elements uy, . . ., 4, arc said to be algebraically independent
over R. It is clear that this property of the x’s gives another characterization of
the ring R[xy, ..., X,] as an extension of R.

EXERCISES

1. Show that the complex number 0 = —% + 1./3i (i = \/—1) is algebraic (over Q).
Show that @[] = Q[x]/I where I is the principal ideal (x* + x + 1).

2. Show that /3 ¢ @[\/5] and that the real numbers 1, \/2, +/3, /6 are linearly
independent over Q. Show that u = \/5 + \/5 is algebraic and determine an ideal I
such that Q[x]/I = Q[u].

3. Let [ be an ideal in R and let I[x,, ..., x,] denote the subset of R[x;, ..., x,] of
polynomials whose coefficients are contained in I. Show that I[xy,..., X,
is an ideal in the ring R[xy,...,x,], and that R[x,,...,x}/I[x; ... x]=
(R/D[y1s . .- » y,] where the y; are indeterminates over R/I.

4. Let A=1]];(x;—x) in Z[xy,...,x,] and let {(n) be the automorphism of
Z[xy, - - ., x,] which maps x; = X, 1 <i<r. (Every automorphism of the ring
Z[x, ... ,x,] is the identity on Z. Why?) Verify that if r is a transposition then
A = —A under {(r). Use this to prove the result given in section 1.6 that if =
is a product of an even number of transpositions, then every factorization of © as
a product of transpositions contains an even number of transpositions. Show that
A? =.A% under every {(n).

z
.
.
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5. Verify that the constructions in the text of R[x] and R[xy, ..., x,] are valid also
for an R which is not necessarily commutative. Show that in this case the x; are
in the center of R[x,,..., x,]. State and prove the analogues of Theorems 2.10
and 2.11 for R[x] and R[xy,..., x,].

6. Show that the matrix ring M (R[x, ..., x.]) = M(R)[x4, ..., x.], x; indetermi-
nates in both cases.

7. Let R[[x]] denote the set of unrestricted sequences (ao, ay, @5, - . .), @; € R. Show
that one gets a ring from R[[x]] if one defines +,-,0, 1 as in the polynomial
ring. This is called the ring of formal power series in one indeterminate.

8. Let M be a monoid, R a commutative ring, and R M ] the set of maps m — f(m) of
M into R such that f(m) = 0 for all but a finite number of m. Define addition,
multiplication, 0, and 1 in R[M] by

(f + g)(m) = f(m) + g(m)
(fg)(m) = Z f(p)g(a)

Om) =0
(1) =1, 1m)=0 if m#1

Show that R[M] is a ring. Show that the set of maps a’ such that a'(1) = a and
a(m)=0 if m # 1 is a subring isomorphic to R, and the set of maps m’ such
that m’(m) = 1 and m'(n) = 0 if n # m is a submonoid of the multiplicative monoid
of R M] isomorphic to M. Identify the subrings and monoids just indicated. Show
that R is in the center of R[M] and that every element of R[M] can be written
as a linear combination of elements of M with coefficients in R: that is, in the form
Y w1 € R, m; € M. Show that > ran; = 0 if and only if every r; = 0. Show that
if ¢ is a homomorphism of R into a ring S such that o(R) is contained in the
center of S, and if 7 is a homomorphism of M into the multiplicative monoid of S,
then there exists a unique homomorphism of R[M] into S coinciding with ¢ on
R and with t on M. If M is a group, R[M] is called the group algebra of M over R.

9. Let R be any commutative ring and let N® be the free commutative monoid with
r generators x; as on page 68. Show that R[N®] defined as in exercise 8 is the
same thing, as R[xy, ..., x,], x; indeterminates.

10. Let M = FM™ be the free monoid with » generators x,, ..., x, (p. 68), and con-
struct R[ M as in exercise 8. This is called the free algebra over R generated by the
x;. State the basic homomorphism property of this ring,

211 SOME PROPERTIES OF POLYNOMIAL RINGS

AND APPLICATIONS

Let R[x] be the ring of polynomials in an indeterminate x over the (commu-
tative) ring R. If f(x) # 0 is in R[x] we can write

(36) J&)=ao+ax +- +ax"
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with a, # 0. Then a, is called the leading coefficient of f(x) and n is the degree,
deg f, of f(x). It will be convenient also to say that the degree of 0 is the symbol
— o and to adopt the usual conventions that —co <n foreveryne N, —oo +
(—w)= —o0,—0 +n=—wn. We remark that f(x) € R if and only if deg f =
0 or —co and f(x) € R*, the set of non-zero elements of R, if and only if

deg f = 0. Also it is clear that
(37 deg[ f(x) + g(x)] < max (deg f(x), deg g(x))

and equality holds in (37) unless deg f =degg. If g(x) =bo +byx+ + +
b x™ with b,, # 0 and f(x) is as in (36) then

(38) F(x)g(x) = abo + (aphy + arbo)x + -+ a,by X"
Hence if either a, or b, is not a zero divisor then a,b,, # 0 and
(39) deg f(x)glx) = deg f(x) + deg g(x).

If we take into account our convention on — oo, we see that (39) holds for all
f(x)and g(x) if R=D is a domain. In the case of a domain the properties of

the degree function imply the following

THEOREM 2.13. If D is a domain then so is the polynomial D[x;,...,x]in
v indeterminates over D. Moreover, the units of D[x1, ..., x,] are the units of D.

Proof. We consider first D[x]. If f{x)g(x) = 0 then its degree is — oo. By (39),
this can happen only if either deg f(x) = —oo or deg g(x) = —oo: that is, if
either f(x) = 0 or g(x) = 0. If f(x)g(x) = 1 then the degree relation (39) implies
that deg f = 0 = deg g. Hence if f(x) is a unit in D[x] it is contained in D
and its inverse is in D. Thus the units of D[x] are the units of D. The extension
of the two statements to D[x;, . . ., x,] is immediate by induction on r. O

We look next at the extension of the familiar division algorithm for poly-
nomials. Generally we are interested in this only when the coeflicient ring is a
ficld. However, occasionally we must consider the following more general

situation.

THEOREM 2.14. Let f(x) and g(x) # 0 be polynomials in R[x], R a ring, and
let m be the degree and b,, the leading coefficient of g(x). Then there exists a
k e N and polynomials g(x) and 1(x) € R[x] with deg r(x) < deg g(x) such that

(40) > ba'f(x) = a(x)g(x) + 1(x).
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Proof. 1f deg f < degg the result is clear on writing f(x) = 0 g(x) + f(x).
Hence suppose deg f = m = deg g. Then put

(41) bmf(x) - aixx”711lg(x) =f1(X).

Since the coefficients of x" in b,,f(x) and in a,x" " "g(x) are both a,b,, it is clear
that deg f; < deg f. Hence we can use induction on the degree of f(x) to obtain
ak, E,N’ q1(x), Hx) € R[x] with deg #(x) < deg g(x) such that

(42) b f1(x) = g(x)q4(x) + 7(x).
Then, by (41) and (42),
b, T (x) = by ta,x"""glx) + g(x)gi(x) + 1(x) = g(x)q(x) + #(x)

where g(x) = b, 'a,x""™ + q,(x). O

There are several remarks that are worth making about Theorem 2.14. In
the first place, it is easy to see that the proof leads to an algorithm for finding
k, g(x), and r(x) in a finite number of steps. This is the usual “long” division
for polynomials. We leave it to the reader to convince himself of this by looking
at some examples. It is easy to see that we can always take the integer k to be
the larger of the two integers 0 and degf — deg g + 1. We note also that if b,
is a unit then we can divide out by b,* and obtain a relation of the form

(40 JG) = q(x)g(x) + r(x)

(not the same ¢ and r as in (40)), where deg #(x) < deg g(x). This is always the
case if R = F is a field. Moreover, in this case the “quotient” g(x) and “remain-
der” ¥(x) are unique. For, if

J(x) = qx)g(x) + 1(x) = g, (x)g(x) + ry(x)
and deg r(x) and deg r,(x) < deg g(X) then we have
[4(x) — q:(x)]g(x) = r1(x) — #(x).

Hence, if g(x) # q,(x) then the degree of the left-hand side is at least m, and
the degree of the right-hand side is less than m. This contradiction shows that
q(x) = q,(x) and hence r(x) = r(x). It is clear from this that g(x) is a divisor or
factor of f(x)—that is, there exists a g(x) such that f(x) = g(x)q(x) if and only if
r(x) = O——and this fact can be ascertained in a finite number of steps by carrying
out the division algorithm. Finally, we note that if we pass to the field of
fractions, then (40') is equivalent to f(x)/g(x) = g(x) + #(x)/g(x), which may be
a form more familiar to the reader.
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An important special case of Theorem 2.14 is

COROLLARY 1. (The “remainder theorem.”) If f(x) € R[x] and a € R then
there exists a unique q(x) € R[x] such that

(43) J(x) = (x — a)g(x) + fla).

Proof. The argument above shows that we have a unique g(x) € R[x] and an
r € R such that f(x) = (x — @)g(x) + r. Substitution of x = g (that is, applying
the homomorphism of R[x] into R, which is the identity on R and sends x — q)
gives f(a) = (a — a)q(a) + r = r. Hence we have (43), and ¢(x) is unique. [J

An immediate corollary of Corollary 1 is

COROLLARY 2. (The “factor theorem.”) (x — a)|f(x) ((x — a) is a factor of
f(x)) if and only if f(a) =0.

We shall now apply these results to obtain some important properties of
F[x], F a field, and more generally of F[u], a ring generated by F and a single
element u. We shall call a domain D a principal ideal domain (abbreviated as
pi.d.) if every ideal in D is principal. We recall that this is the case for D =7
(section 2.6) and we now prove

THEOREM 2.15. If F is a field then the ring F[x] of polynomials in one inde-
terminate x over F is a principal ideal domain.

Proof. Let I be an ideal in F[x]. If I = 0 (the ideal with the single element
0) then we can write I = (0). Now assume I # 0 and consider the non-zero
elements of I. Since these have degrees which are non-negative integers, there
exists a g(x) # 0 in I of minimal degree among the non-zero elements of I. Let
f(x) be any element of I. Applying the division algorithm we obtain f(x) =
q(x)g(x) + r(x) where deg r(x) < deg g(x). Since I is an ideal and f(x) and g(x)
are in I then r(x) = f(x) — q(x)g(x) € I. If r(x) # O we have a contradiction to the
choice of g(x) as an element #0 of least degree in I. Hence r(x) = 0 and f(x) =
q(x)g(x). This shows that every element of I is a multiple of g(x) e I and, of
course, every such multiple is in 1. Hence I = (g{x)). Since this holds for every
ideal I and since F[x] has no non-zero zero divisors, F[x] is a p.id. I

THa

.
.
:
i
.
:
|
:

s G

211 Some Properties of Polynomial Rings and Applications 131

This result does not extend beyond the case of one indeterminate: F[x,,

Xz, ..., %] is not a pid. if r > 1. For example, let I be the set of polynomials
in F[x;,...,x,] having 0 as constant term: that is, having the form
Y ay,.x,™ 0 X, with ag...o = 0. Tt is clear that [ is an ideal with the genera-
tors Xy, X, - - - » X, If I =(a) then a|x; for 1 <i<r. Since x; is an irreducible

polynomial, either a is a unit or a is an associate of x;. Since r > 1 and I # (1),
both of these possibilities are excluded. Thus I is not principal.

In F[x] we have (f(x)) = (g9(x)) if and only if g(x) = f(x)h(x), that is, if and
only if f(x)|g(x). If f(x)|g(x) and g(x)|f(x) we have g(x)=f(x)h(x) and
f(x) = g(x)k(x) so g(x) = g(x)k(x)h(x). Hence if g(x) # O then k(x)h(x) = 1, and k
and h are non-zero elements of F. It follows that the generator g(x) of (g(x)) # 0
is determined up to a unit multiplier. We may therefore normalize the generator
so that its leading coefficient is 1, and it is then uniquely determined by this
property. Polynomials having leading coefficient 1 will be called monic.

We now consider any ring of the form F[u], F a field. We have the epimor-
phism f(x) - f(u) of F[x] onto F[u], whose kernel is an ideal I such that
INnF= 0/(section 2.10). Now I = {g(x)) and g(x) is not a unit since I n F = 0.
Hence e{ther g(x) = 0 or deg g(x) > 0. In the first case I = 0, so the epimorphism
f(x) = f(u) is an isomorphism and u is transcendental over F. If deg g(x) > 0
we may assume it to be the monic generator of I. Then we shall call g(x) the
minimum polynomial over F of the (algebraic) element u. This is the monic poly-
nomial of least degree having u for a roor in the sense that g(u) = 0. Moreover,
it is clear that if f(x) is any polynomial such that f(u) = 0 then f(x) € I = (g(x)),
and f(x) is thus a multiple of g(x). The structure of F[u] depends on the way
g(x) factors in F[x]. For example, we have

THEOREM 2.16. Let u be algebraic over F with minimum polynomial g(x).
Then Flu] is a field if g(x) is irreducible in F[x] in the sense that we cannot
write g(x) = f(x)h(x) where deg f(x) > 0 and deg h(x) > 0. On the other hand, if
g(x) is reducible then F[u] is not a domain.

Proof. We know that any ideal of F[x]/I has the form J/I where J is an ideal
of F[x] containing I = (g(x)) (Theorem 2.6, p. 107). Then J = (f(x)) and g(x) =
F(x)h(x). If g(x) is irreducible either f(x) or h(x) is a unit. In the first case, J =
F[x]; in the second case, J = I. Hence F[u] = F[x]/I has just two ideals: 0 and
the whole ring. This implies that F[u] is a field, by Theorem 2.2, p. 102. Now
assume ¢g(x) = f(x)h(x) where deg f(x) > 0 and deg h(x) > 0. Then deg f(x) and
deg h(x) < deg g(x). Hence f(u) # 0 and h(u) # 0. However, f(wh(u) = g(u) = 0.
Thus F[u] has zero divisors #0. [J
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We shall apply next the “factor theorem” to establish the following important
result on roots of a polynomial.

THEOREM 2.17 Let f(x) be a polynomial of degree n > 0 in F[x], F a field.
Then f(x) has at most n distinct roots in F.

Proof. Letay,a,,...,a, be distinct roots of f(x). We shall prove by induction
on r that f(x) is divisible by [ [; (x — a;). This has just been proved for r = 1.
Assume it for ¥ — 1. Then f(x) = [[17" (x — a)h(x) in F[x]; hence 0 = f(a,) =
[T (a, — aphla,). Since every a, —a;#0 we get h(a,) = 0. Hence h(x)=
(x — a)k(x), by the case r = 1. Then f(x) = [Ti (x — apk(x). Comparison of
degrees shows that r <n. [

As an application of this result and a criterion for a finite abelian group to
be cyclic, which we gave in Theorem 1.4 (p. 46), we shall now prove the following
beautiful theorem on fields.

THEOREM 2.18. Any finite subgroup of the multiplicative group of a field is
cyclic.

Proof. Let G be a finite subgroup of the multiplicative group F* of non-zero
elements of the field F. Of course, G is abelian since F is a field. The criterion
we had was that G is cyclic if and only if \GI = exp G, the smallest integer m
such that @™ = 1 for every a € G. Since a!°! = 1 for every a in a finite group we
always have exp G < |G|. On the other hand, by Theorem 2.17, f(x) = x*** ¢ —
1 has at most exp G solutions in F and hence in G. Hence |G| < exp G. Thus
exp G = |G| and G is cyclic. O

We remark that the foregoing result is not valid for division rings that are
not commutative. For example, let H be the division ring of quaternions over
R. The quaternions +1, +i, +j, =k form a finite non-cyclic subgroup of the
multiplicative group of H.

As a special case of Theorem 2.18 we see that if F is a finite field then F*
is cyclic. In particular, the non-zero elements of Z/(p), p a prime, constitute a
cyclic group of order p — 1 under multiplication. Some number theoretic con-
sequences of the results we have obtained will be indicated in the following
exercj‘ses.

.
:
J
.
.
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12.

13.
14.

15.
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EXERCISES

Let f(x) = x"+ a;x" '+ - +a, q;€ F, afield, n > 0, and let u = x + (f(x)) in
F[x]/(f(x)). Show that every element of F[u] can be written in one and only one
way in the form bo + byu + -+ b,_ "', b;eF.

Take F = @, f(x) = x* + 3x — 2 in exercise 1. Show that F[u] is a field and ex-
press the elements

Qu +u—3)3u2—du+1), @W—-u+H?!

as polynomials of degree <2 in u.

(a) Show that @[\/5] and Q[+/3] are not isomorphic.
(b) Let F, = Z/(p), p a prime, and let R; = F,[x]/(x* — 2), R, = F[x]/(x* = 3).
Determine whether R, = R, in each of the cases in which p = 2, 5, or 11.

Show that x* + x2 + 1is irreducible in (Z/(2))[x] and that (Z/2))[x]/(x* + x* + 1)
is a field with eight elements.

Construct fields with 25 and 125 elements.
S}ﬁ that x*> — x has 6 roots in Z/(6).

Use the Chinese remainder theorem (exercises 10 and 11, p. 110) to show that if
F is a field and f(x) € F[x] is monic and factors as f(x) = g(x)h(x), (g(x), h(x}) = 1,
then F[x]/(f(x)) = F[x]/(g(x)) @ F(x)/(h(x)). Show also that if f(x) = | [1(x —a)
in F[x] where the a, are distinct then F[x]/(f(x))=F ® --- ® F (n F’s).

Show that the quaternion division ring H contains an infinite number of elements
u satisfying u* = —1.

Show that the ideal (3, x* — x* + 2x — 1) in Z|[x] is not principal.

Let I denote the ideal given in exercise 9. Is Z[x]/I a domain? (Hint: Show that
Z[x)/1 = Z[x]/T where Z = Z/3)and [ = (x* — x> + 2x — 1), = x + (3).)

Let R be a ring without nilpotent elements #0 (z" = 0 in R = z = (). Prove that
if f(x) € R[x] is a zero divisor then there exists an element a # 0 in R such that
af(x) = 0 (Note: This holds without restriction on R.)

Let F be a field of g elements, F* = {a,, ..., a,_,} the set of non-zero elements
of F. Show that a;a, -~ - a,_4 = —1. (Hint: Use the proof of Theorem 2.18 and
also exercise 5, p. 110, if ¢ is even.)

Prove Wilson’s theorem: If p is a prime in Z, then (p — 1)} = —1 (mod p).

Find generators for the cyclic groups Z} of non-zero elements of Z/(p) for p = 3,
5,7, and 11.

An integer a is called a quadratic residue modulo the prime p or quadratic non-
residue mod p according as the congruence x> = a (mod p) has or has not a solu-

tion. We define the Legendre symbol <E> by <E> = 0if a = 0 (mod p), <ﬁ> =1if
p p p
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a # 0(mod p) and a is a quadratic residue (mod p), <ﬁ> = —1ifaisnot a quadratic
p
residue modulo p. Note that (%) =1 if and only if a + (p) is a square in the

multiplicative group of Z/(p). Hence show that for p # 2, g =1 if and only if

b b
a®~ 12 =1 (mod p). Show that for any integers a and b, <%> = <§><E>

16. Let f(x), g(x) # 0 be elements of F[x] with degg = m. Show that f(x) can be
written in one and only one way in the form aq(x) + a,(x)g(x) + a,(x)g(x)* + - +
a,(x)g(x)" where deg a,(x) < m.

The following exercise gives an alternative proof of the remainder theorem that has
several advantages over the proof in the text; notably, it gives an explicit formula for the
quotient and it is valid for non-commutative rings.

17. Let f(x)=ap+ax+ - +ax". We have the formulas x' —a'=(x"""+
axi™2 + -+ da " Yx — a), i > 1. Left multiplication by ¢; and summation on i
gives Y8 ax’ — Yhaa =34 a(x' "' + ax""? + - + a7 H)(x — a). Hence f(x) =
q(x)(x — a) + f(a) where f(a) = Y5 aa’ and g(x) =37} q;x' 7", g5 = a; + a0 +
c o aa

2.12 POLYNOMIAL FUNCTIONS

The reader is undoubtedly familiar with the notion of a polynomial function
of a real variable which occurs in the calculus. We shall now consider the gen-
eralization of such functions to any field F and determine the relation between
the ring of polynomial functions and the ring of polynomials in indeterminates

over F.
Let S be a non-vacuous set and F a field, and let F® denote the set of maps

s — f(s) of S into F. As usual, / = g means f(s) = g(s) for all s and addition and
multiplication of functions are defined by

(f + g)s) = f(s) + g(s)
(f)(s) = f(s)g(s)-

If a e F then a defines the constant function a such that a(s) = a for all 5. In
particular we have the constant functions 0 and 1. It is straightforward to
verify that (F5, +, -, 0, 1) is a (commutative) ring. For example, we have

((f + g)(s) = (f(s) + g(s)h(s) = f(s)h(s) + gls)h(s) = (fh + gh)(s).
Hence (f + g)h = fh + gh. If we define (—f)(s) = —f(s) we have f+ (—f) = 0.

:
L
;
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It is immediate also that the map of F into F5 which sends any a € F into the
corresponding constant function is a monomorphism. From now on we identify
F with its image, so F® becomes an extension of the field F.

We now take S = F, and so are considering the ring of maps of F into itself.
In addition to the constant functions a particularly important map is the iden-
tity s — s, which we have usually denoted as 1 (or 1;). In the present context
we shall use the customary calculus notation s for this function as well as for the
variable s—with the hope that we will create no more than the usual confusion
that results from the double meaning assigned to this symbol. We now consider
the subring F[s] generated by F (that is, the field of constant functions) and
s (the identity function). The elements of this ring will be called polynomial
functions in one variable over F. Since the ring F[s] is generated by F and s
we have the epimorphism of F[x], x an indeterminate, onto F[s], which is the
identity map on F and sends x — s. Here f(x) — f(s) and f{(s) is the function
s—odg+as+ - +asiff(x)=a,+ax+ -+ ax"

The homomorphism f(x) — f(s) is an isomorphism if and only if F is infinite.
To see this we observe that f(s) = 0 in the ring of polynomial functions means
that f(s) = O for all values of the variable s: that is, f(a) = 0 for all ae F. We
have already seen that if f(x) # 0 and deg f = n then f(x) has no more than n
distinct roots in F. Thus if F is infinite, then f(a) = 0 for all a forces f = 0. Hence
the kernel of the epimorphism is 0 and f(x) —f(s) is an isomorphism of F[x]
with the ring of polynomial functions. On the other hand, if F is finite—say, if
F = {ay, a,, ..., a;;—then the polynomial

hix) =(x —a)x —az) (x—a) #0
whereas the function

hs)=(s—ay)(s—ay) - (s—ay)=0.

This is clear since h(a;) = 0, 1 <i < g. Hence the homomorphism f(x) — f(s) is
not an isomorphism if F is finite. This is clear also by counting: the set of all
maps of F into F is finite. Hence F[s] is finite. On the other hand, F[x] is
infinite. Hence no isomorphism can exist between F{x] and F[s].

The definition of polynomial functions in several variables is an immediate
generalization of the foregoing. Here we take S = F%, the product set
FxFx---xF of r copies of F. Its elements are the finite sequences
(51, Sa, . . ., 5,). As before, we have the ring of functions FS = F'”, which is an
extension of the field F. We now pick out r particular functions, “the projections
on the r axes.” These are the maps

(815 82+ 05 8,) = 84, I<i<r
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Again, following tradition, we denote the ith projection, just displayed, as s;,
and we consider the ring F[sy, s,, ..., s,.| obtained by adjoining these to the
field F (of constant functions). The elements of F[sy, ..., s,] are called polyno-
mial functions in r variables over F. If F[xy, x5, ..., x,] is the polynomial ring in
# indeterminates we have the epimorphism of F[x,, ..., x,] into F[s,...,s,],
sending a — a, a € F, x; — s; the ith projection function. We denote the image
of f(x1, Xgs . - -» %) @S f(S1, S2, .- .» 8,). If F is a finite field of g elements, then
we see, as in the special case r = 1, that f(x;, ..., x,) = f(sy,...,s,) s not an
isomorphism; but if F is infinite it is an isomorphism, as we shall now prove.
This assertion is equivalent to the following basic theorem.

THEOREM 2.19. If F is an infinite field and f(xy, X,, . .., X,) is a polynomial
#0in F[xy, X, . . ., X,] (x; indeterminates) then there exist elements ay, s, . . ., @,
in F such that f(ay, az, . .., a,) # 0.

Proof. The case r = 1 has been proved. Hence we assume r > 1 and we assume
the result for » — 1 indeterminates. We write

f(xh Xos v xr) = BO + ler + Bzxr2 +oe+ anrn

where B; € F[x,, X,, . . ., X, ] and we may assume B, = B,(x;, ..., X,—() #0.
Then, by the induction hypothesis, we know that there exist a; € F such that
Bfay,...,a,_,) #0. Then

f(a'b cees pgs xr) = BO(alb e ar—l) + Bl(ab R | ar—l)xr

+ T + Bn(ah R | ar—l)xrn :7é 0

in F[x,]. Hence we can choose x, = g, so that f(ay, . . ., a)#0. O

We can also easily determine the kernel K of the foregoing epimorphism of
F[xy,...,x,] into the ring of polynomial functions in the case of a finite F.
We sketch the argument for this and leave it to the reader to fill in the details.
First, we note that if |[F| = ¢ then the foregoing argument will show that if
f(x1, ..., %) € F[x;,...,x,], and the degree of f in every x; < g, then the cor-
responding polynomial function f(sy, ..., s,) # 0. Next we observe that x;* —
x; € K since a? = a, a € F (exercise 3, p. 105). The next step is to prove that
every polynomial f(x,, . .., x,) can be written in the form

(44) f(xla o xr) = z::fi(xla o xr)(xiq - xi) +.ﬂ)(x1’ e xr)

where the degree of f, in every x; is <g¢. This can be seen by expressing every
powerx;* = (x2 — x)qu(x;) + ri(x) where gy, 1 € F[x;] and deg r, < g. Making
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these substitutions in every monomial x,*x,** - - - x,* occurring in f(x, ..., x,)
we obtain (44). We now see that f(x,, ..., x,) € K if and only if fo(x(, ..., x,) =
0. This shows that K is the ideal (x{? — x, x,? — x,,..., x,¢ — Xx,) generated by
the x;7 — x;. Hence the ring of polynomial functions in r variables over a field of
g elements is isomorphic to

|

|

Flxg, oo X /(0 — xg, X270 — Xgy 000 %0 — X,

EXERCISES

1. Prove the following extension of Theorem 2.19. If f(x4,...,x) € F[xy, ..., x.],
F infinite, and f(ay, .. ., a,) = 0 for all (a4, a,, . . ., a,) for which a second polyno-
mial g(x;, ..., x,) # 0 has values g(a;, a,, ..., q,) # 0, then

flxy,...,x,)=0.
In the remainder of the exercises F is a finite field with |F| = q.

2. Prove that every function in r variables over F (every element of FF®) is a
polynomial function. (Hint: Count both sets.)

3. Define the degree of the monomial x;™---x, to be >7i; and the (total)
degree of the polynomial f as the maximum of the degrees of the monomials
occurring in f (that is, monomials having non-zero coefficients a;,..; in f =
Y @y, X4+ -+ x,7). Show that the method of proving (44) by replacing every x;* =
(%7 — x)qudxy) + r(x;) where deg 1, < g yields a polynomial fy(x4,...,x,) of
deg < deg f (as well as of deg < g in every x;).

4. Show that if f; and g, are two polynomials of deg < ¢ in every x;, and f;, and g,
define the same function, then f, = g,.

5. Let f(xy,...,x,) satisfy f(0,...,0)=0 and f(a,,...,a,) #0 for every (ay,...,
a,) #(0,...,0). Prove that if g(x, ..., x) =1 — f(xg, ..., x)? ! then

1 if (ag,...,a)=(0,...,0)
0 otherwise.

g(ala-"’ar):{

6. Show that the g of exercise 5 determines the same polynomial function as
f()(xls L] xr) = (1 - xlq_l)(l - quil)' . (1 - xrq_l)'
Hence prove that deg g > r(q — 1).

7. (Artin-Chevalley.) Let f(x,, ..., x,) be a polynomial of degree n < r, the number
of indeterminates. Assume f(0,...,0) = 0. Prove that there exist (ay,...,a) #
(0, ..., 0) such that f(a,,...,a)=0.
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Let R be a ring, R[xy,..., x,] the ring of polynomials over R in r indeter-
minates. We have seen that if « is a permutation i —» i of {1,2,...,r} then =
determines an automorphism {(n) of R[xy,...,x,] such that a > a, aeR,
X; > X, 1 <i < (Theorem 2.12, p. 125). A polynomial f(x,,..., x,) is said to
be symmetric (in the x’s) if f(x,, ..., x,) is fixed under {(n) for every permuta-
tion 7. The set of symmetric polynomials is a subring = of R[xy, ..., x,] con-
taining R. The coefficients of the powers of x of the polynomial

(45) g(x) = (x = x)(x = x3) (X — x,)

are symmetric, for we can extend the automorphism {(z) to an automorphism
{'(m) of R[xy,...,x,; x] sending x —>x. Then {'(n)(g(x)) = (x — x)(x — x,)
“(x — x,,) = g(x). Hence if we write

(46) glx) = x" = pyx" T 4+ pox"T2 — - 4 (= 1Y,

where p; e R[xy, ..., x.], then {(n)(p;) = p; for all =. Thus p; e £. Comparing
(45) and (46) we obtain

(@7 p, = ; X;, =) xix;, Y XX Xps e D= XXyt X

i<j i<j<k

The polynomials p; are called the elementary symmetric polynomialsin x, . . ., x,.
We shall now prove that X = R[py, p,, . .., p,] and that the p; are algebraically
independent over R.
The equation T = R[py, ..., p,] means, of course, that every symmetric poly-
nomial can be expressed as a polynomial in the elementary symmetric poly-
nomials p; with coefficients in R. It suffices to prove this for homogeneous
polynomials. By a homogeneous polynomial we mean one in which all of the
terms ax,** - - x,* which occur have the same (total) degree k, + ky + -+ + k,.
Any polynomial can be written in one and only one way as a sum of homo-
geneous polynomials of different degrees. Since the automorphism {(x) maps
homogeneous polynomials of degree k into homogeneous polynomials of degree
kit is clear that if f(xy, . .., x,) is symmetric then so are its homogeneous parts.
We now suppose that f(x,, . .., x,) is a homogeneous symmetric polynomial
of degree, say m. We introduce the lexicographic ordering in the set of mono-
mials of degree m: that is, we say that x,* - -+ x.* is higher than x,"* - - - x,* if
ky=1,..., k=1 but ke, y > I,y (s> 0). For example, x,%x,X3 > x;x,> >
x3%,%%35. Let x,*x,*2 - - - x,* be the highest monomial occurring in f (with non-
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zero coefficient). Since f is symmetric it contains all the monomials obtained
from x,*'x,** -+ x,* by permuting the x’s. Hence k; > k, > k3 > - > k,.
We now consider the highest monomial in the homogeneous symmetric
polynomial p,*p,* -+ p,*, d; = 0. We observe that if M, and M, are mono-
mials of degree m and N is a monomial of degree r then M, > M, implics
NM, > NM,. Hence if N, > N, then M;N, > M,N,. Now it is clear that the
highest monomial in p; is x,x, - - - x;. It follows that the highest monomial in

digyy d2. .. 4 drj
PP s

ditdoke s bdey doketde Ly d
2

Xy x, .

Hence the highest monomial in p,*1 ~*2p,*2~%s ... p ¥ i the same as that in f,
so if the coefficient in f of this monomial is a, then the highest monomial in
fi = f—ap, " *p,f27ks . p krig less than that of . We can repeat the process
with f;. Since there are only a finite number of monomials of degree m, a finite
number of applications of the process yields a representation of f as a
polynomial in py, ps, ..., P,

We show next that the p; are algebraically independent. Suppose

ds ... dr
Z ag..q, P p=0
d) .

where this is summed over a finite set of distinct (d) = (d;,...,d,), d;e Z". If
the relation is non-trivial we have a,,.., # 0 for some (d). For any (d) define
(k) = (ky, kyy ..., k)bY k;=d; + d; | + - + d,. Then the degree of p,**- - - p,%
inthe x’sism = Y| k; = Y| id; and the highest monomial of this degree occur-
ringinp, -+ prisx,f - x I (@) =y, ..., d)and ki=d+ -+ d. =k
for 1 <i<rthend;=d;,1<i<r Thus distinct monomials p,* - - p,% in the
p’s have distinct highest monomials in the x’s occurring in them. We now choose
among the (d) such that a;, ..., # 0 the one such that m is maximal and the
highest monomial x,** - - - x,* is maximal. Then expressing our relation in the
p’sin terms of the x’s we get the terms x,*! kr onlLd%ge and with non-zero
coefficient ay,...,.. This contradicts the algebralc indepéndence of the x’s.

T e

We have now proved the first two statements in \ed gt pET

P ’

THEOREM 2.20. Every symmetric polynomial is expressible as a polynomial
in the elementary symmetric polynomials p,. The elementary symmetric poly-
nomials are algebraically independent over R. Every x; is algebraic over R[p,

Das-- s pr]
The last statement is clear since (45) and (46) give

g(x) =X = pix/ T+ pox/ T2 — o+ (—1)p, = 0.
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EXERCISES

1. Express Y 2X:2x;%x,, 7 > 5, in terms of the p’s.

2. Let A=]]i<;(x; — x,). Show that A? is symmetric and express A? for r =3 in
terms of the elementary symmetric polynomials.

3. (Newtow's identities.) Let s, = 7., x;*. Establish the following relations con-
necting the symmetric polynomials s, and the elementary symmetric polyno-
mials p;is — p1Se—q + PaSk—a —  F (=1 g ys F (= Dkp, =0, 1 <k <n,
Spij = PiSusjo1 T H (D DSurjon + -+ (—1)'ps; =0, j > 0. (Note that
these are recursive formulas for expressing the power sums s, as polynomials in
the p;. On the other hand, they show that klp, is a polynomialin sy, . .., s, with

integer coefficients.) (Sketch of proof. Write f{(x) = x" — pyx" "1 4 -+ + (= 1)p, = =~

T (x — x)) = (x — x)¢;(x). By exercise 17, p. 134, g;(x) = x" ! — (p, — x)x" "2 +
S (=DM — Do Xi + P — o (DR At - Formal differ-
entiation (see pp. 230-231) gives nx" "' —(n— Dp,x" 2+ - =31 gi(x) =
X"t —(apy = s X" 4+ (= DRp — 1Sy o A (= DR TR 4

Comparison of the coefficients of x""*~! yields the first set of Newton’s identities

for k < n — 1. The remaining identities can be obtained by summing on i the
relations x;"*/ — pyx"*/ 7 + - + (= 1)p,x7 = 0 for j > 0.)

2.14 FACTORIAL MONOIDS AND RINGS

In the remainder of this chapter we consider the elementary theory of divisibility
in (commutative) domains. In a number of important domains every a # 0 and
not a unit can be written as a = p,p, - * - p,, where the p, are irreducible, and
such factorizations are unique up to unit factors and the order of the factors.
When this is the case we can determine all the factors (up to unit multipliers)
of a and hence we can give a simple condition for a]b, that is, for ax = b to
be solvable. Since the factorization theory that we shall consider is a purely
multiplicative one, mainly concerned with the multiplicative monoid of a
domain, it will be clearer to consider first the divisibility theory of monoids.
Let M be a commutative monoid satisfying the cancellation law: ab = ac
implies b = c. Let U be the subgroup of units of M. If a, b € M, we say that b
is a factor or divisor of a if there exists an element ¢ in M such that a = bc. We
indicate this by writing b|a, and in this case we say that a is a multiple of b.
The relation of divisibility is transitive and reflexive—if b|a and c|b then c|a,
and a|a—but it is not symmetric. An element u is a unit if and only if u|1. The
units are trivial factors since they are factors of every element (a = u(u™'a)). If
alb and b|a then we shall say that a and b are associates and write a ~ b. The
conditions for this are b = au, a = bv. Hence b = bvu, and thus, by the cancel-
lation law, vu = 1 and v and u are units. The converse is immediate, so the
condition that a ~ b is that @ and b differ by a unit factor. Since the set of units
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is a subgroup of M, it is clear that the relation of associatesness is an equivalence
relation.

If b|a but afb (a is not a factor of b) then we say that b is a proper factor of
a. If u is a unit and u = vw, then it is immediate that v and w are units. Thus the
units of M do not have proper factors. An element a € M is said to be irreduc-
ible* if a is not a unit and a has no proper factors other than units. If ¢ is not
a unit and is not irreducible then a = bc where b and ¢ are proper factors of a.
Any associate of an irreducible element is also irreducible.

If ;\element a € M has a factorization a = pp, * - * p,, where the p; are irre-
ducible) then a also has the factorization a = p'p} - - - p, where p; = u;p; and
the u; are units such that u,u, - - u, = 1. Hence if M has units #1 and s > 1
we can always alter a factorization in the way indicated to obtain other factor-
izations into irreducible elements, and since the commutative law holds we
can also change the order of the factors. We shall say that a factorization into
irreducible elements is essentially unique if these are the only changes that
can be made in factoring an element into irreducible ones. More precisely, a =
P1P2 * D 18 an essentially unique factorization of a into irreducible elements
p; if for any other factorization a = p/p), - - - p,, p} irreducible, we have t = s
and pj ~ p; for a suitable permutation i—i of {1,2,...,s}. We use this
definition to formulate the following '

DEFINITION 24. Let M be a commutative monoid satisfying the cancella-
tion law. Then M is called factorial (sometimes Gaussian or a unique factor-
ization monoid) if every non-unit of M has an essentially unique factorization into
irreducible elements. A domain D is factorial if its monoid D* of non-zero ele-
ments is factorial.

Our main objective in the remainder of this chapter is to show that a number
of important types of domains are factorial. That this is not always the case can
be seen in considering the following

EXAMPLE

Let D = Z[\/TS:[, the set of complex numbers of the form a + b/ — 5, where a, b € Z.
It is easy to check that D is a subring of C. Hence D is a domain. To investigate the
arithmetic in D we introduce the norm of an element of this domain: if » = a + b/ —35,
then we define the norm N(r) = ri = a® + 5b. Since the absolute value of complex num-
bers is a multiplicative function, N is multiplicative on D: that is, N(rs) = N(r)N(s). Also

* We use this term rather than “prime,” which we have used hitherto in discussing the arithmetic
of Z. In the general case prime elements will be defined differently below (p. 142).
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N(r) is a positive integer if r # 0. We use the norm first to determine the units of D. If
rs = 1 then N(#)N(s) = 1, so N() = a% + 5b% = 1. Since a and b are integers this holds
only ifa = &1 and b = 0. Hence U = {1, —1}. It follows that the only associates of an
element # are r and —r. We shall now show that 9 has two factorizations into irreducibles

in D which do not differ merely by unit factors. These are:
9=3-3=02+/=52— -5

All of the factors 3,2 + \/TS are irreducible, for if 3 =rs, 7, s € D, then 9= N(3) =
N(*)N(s). Hence if r and s are non-units then N(r) = 3 and N(s) = 3. However, it is clear
that N(r) = @* + 5b? = 3 has no integral solution. Thus 3 is irreducible and, similarly,
24+ = 5and 2 —+/— 5 are irreducible. Also, it is clear that 3,2 ++/ —5 and 3,2 —
\/75 are not associates. Hence 9 does not have an essentially unique factorization into
irreducible elements (though it does have factorizations into irreducibles), and Z[\/TS ]

is therefore not factorial.

In any factorial monoid M one can determine up to unit factors all the fac-
tors of a given non-unit a, provided that a factorization of a into irreducible ele-
ments is known; for, if a = p,p,  * * ps Where the p; are irreducible, and if a = bc
where b = p, + -+ py, ¢ = pi - p,,and the p; and py are irreducible, then

a=ppyPs=DPiP2 PP Da
Hence, by the uniqueness property, P~ p;, where i; # iy if j#k Hence
b ~ p,pi, " ** pi,- Thus any factor of a is an associate of one of the products of
the form p;,p;, - * p;, obtained from the factorization a = pp, - - ps. If we call
the number s of irreducible factors in the decomposition a = py = * " ps the length
of a then it is clear that any proper factor of a has smaller length than a. Hence
it is clear that any factorial monoid satisfies the following

Divisor chain condition. M contains no infinite sequences of elements a;,
d,, . ..such that each a;, is a proper factor of a;.

Equivalently, the condition is that if a,, a,, ... is a sequence of elements of
M such that a;.|a; then there exists an integer N such that ay ~ ayy1 ~
ysg~ """

We obtain next a second necessary condition for factoriality-An element p of
M is called a prime if p is not a unit and if p |ab implies either p |aorp |b. In other
words, p is not a unit and pfa and pfb implies pfab. Now let p be an irreducible
clement in a factorial monoid M and suppose p|ab. Then p is not a unit and if
ais a unit then ab ~ b so p|b. Similarly, if b is a unit then p|a. If a and b are
non-units we have a = p, - ps b=p\ " P Di P irreducible. Then ab =
py - ppy Py and since p|ab, cither p ~ p; for some i or p ~ p; for some j.
Thus ¢ither p|a or p|b, and we have proved that any factorial monoid satisfies
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the
Primeness condition. Every irreducible element of M is prime.

We shall now show that the foregoing two conditions are sufficient for
factoriality. We note first that the divisor chain condition insures the existence
of a factorization into irreducible elements for any non-unit of M. Let a be a
non-u it. We shall show first that a has an irreducible factor. If a is irreducible
ther‘e is‘'nothing to prove. Otherwise, let a = a,b; where a, is a proper factor ot’“
a. Either a, is irreducible or a; = a,b, where a, is a proper factor of a,. We con-
tinue this process and obtain a sequence a, a,, a,, . . . in which each element is a
proper factor of the preceding one. By the divisor chain condition this process
terminates in a finite number of steps with an irreducible factor g, of a.

Now put a, = p; and write a = p,d’. If ¢’ is a unit, a is irreducible and we are
through. Otherwise, a’ = p,a” where p, is irreducible. Continuing this process
we obtain the sequence a, @', a”, . . . where each element is a proper factor of th(;

Preceding and each a1V = p,a®, p, irreducible. This breaks off with an irreduc-
ible element a®~ Y = p_. Then

a=pi@ =pipad” =" =pipy P

and we have the required factorization of a into irreducible factors.
We shall shpw next that the primeness condition insures the essential unique-
ness of factorization into irreducible elements. Let

“) a=pips D= PPy B

pe two factorizations of a into irreducible elements. If s = 1, a = p, is irreduc-
ible; hence ¢ = 1 and p| = p;. We shall now use induction and assume that any
element which has a factorization as a product of s — 1 irreducible elements has
essentially only one such factorization. Since p, in (48) is irreducible, it is prime
by the primeness condition, and it is clear by induction that if p is a prime and
pJ ad, " d, then p|a; for some i. Hence p1|p; for some j. By rearranging the
p', if necessary, we may assume p1] p1. Since p) is irreducible this means that
p"l ~ p; and so py = pyuy, uy a unit. We substitute this in the second factoriza-
tion in (48) and cancel p, to obtain

b=pypo=uph pi=p; o p

Where py = u;py and p; = pj, i > 2, are irreducible. By the induction assump-
t'10r1 we have s — 1 =1 — 1 and for a suitable ordering of the p} we have p; ~ p/,
j=2,...,s. Thens=tand p,~p,, 1 <i<s. ' Y
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We have now established the following criterion:

THEOREM 221. Let M be a commutative monoid satisfying the cancellation
law. Then M is factorial if and only if the divisor chain condition and the primeness

condition hold in M.

We shall show next that we can replace the second condition in the foregoing
theorem by the condition that every pair of elements of M have a greatest
common divisor. An element d is called a greatest common divisor (g.c.d.) of a
and b if d|a and d|b; and if ¢ is any clement such that c|a and c|b, then c|d.
If 4 and d are two gc.d’s of a and b, then the definition shows that d |d" and
d’[d. Hence d ~ d'. Thus, the g.c.d., if it exists, is determined up to a unit multi-
plier. We shall find it convenient to denote any determination of a g.cd. of @
and b as (a, b). The dual notion of a g.c.d. is a least common multiple. We call
m a least common multiple (l.em.) of a and b if a|m and b|m; and if n is any
element such that a|n and b|n, then m|n. We denote any l.c.m. of a and b by
[a, b]. 2

We shall now show that in a factorial monoid any two elements a and b
have a g.c.d. and an lLem. If a is a unit then it is clear that a is a g.cd. and
bis an Le.m. of ¢ and b. Hence we may assume that a is not a unit. Then we look
at a factorization of a as a product of irreducible elements. By replacing asso-
ciated irreducible factors in such a factorization of a by a single representative
one multiplied by unit factors, we obtain a factorization

e ., [

(49) a=up“'p,* - pT

where u is a unit, the p; are irreducible and not associates, and the e; are positive
integers. It is clear now that the factors of a have the form w'p,“p, -+ p,*
where ' is a unit and the ¢, are integers such that 0 < e; < e;. It is easy to
see also that if ¢ and b are two non-units, then we can write these in terms of
the same non-associate irreducible elements, that is, we can obtain

(50) q = upletpzez - ptet, b= Uplflpsz L. ptf:

where u and v are units, if we allow the ¢; and f; to be non-negative integers.

Now consider the element
(51) d=p,"p,* - p’, g; = min (e;, f3).

Clearly d|a and d|b. Moreover, if ¢|a and ¢|b, then ¢ = wp,*'p,** - -+ pX where
w is asunit and 0 < k; < e,, f;. Then k; < g; and c|d. Thus the element d is a
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gcd. of a and b. In a similar manner one sees that if h; = max (e;, f}), then

(52) m=pMp,h- - plhe

is an Lem. of a and b.

If g and b have a unit as g.c.d. then we have (4, b) = 1 and we say that ¢ and
b are relatively prime. This is the case if and only if either @ or b is a unit or
no irreducible factor of either one is a factor of both.

Now let M be a commutative monoid with cancellation law and assume that
M satiéges the

G.cd. condition. Any two elements of M have a g.c.d.

We shall show that this implies that irreducible elements of M are prime.
We break the argument up into a number of simple lemmas.

LEMMA 1. Any finite number of elements ay, ..., a, of M have a g.c.d., that
is, there exists a d in M such that d|a,, 1 <i<r, and if e € M satisfies ela; for
L <i<r, then e|d.

Proof. Letd, =(ay, ay), d, =(dy, a3), ...,d =d, =(d,_,, a). Then the defini-
tions show that dis a gcd. of ar,...,q. O

We denote any g.cd. of ay,...,qa, as (ay,..., a,)
LEMMA 2. ((a, b), ¢) ~ (a, (b, ¢)).

Proof. Both are gcd’s ofa, b, and ¢. O
LEMMA 3. c(a, b) ~ (ca, ¢b).

Proof. Let (a, b) =d, (ca, cb) = e. Then cd|ca and cd|ch, and so cd|(ca, cb).
Hence e = cdu. Now ca = ex = cdux. Hence a = dux, that is, du]a. Similarly,
du|b and so du|d. Hence u is a unit and (ca, ¢b) ~ cd ~ c(a, b). [

LEMMA 4. If (a,b) ~ 1 and (a, ¢) ~ 1 then (a, bc) ~ 1.

Proof. 1f (a,b) ~ 1, then Lemma 3 shows that (ac, bc) ~ ¢. It is clear that
(a, ac) ~ a. Hence

1 ~(a, c) ~ (a, (ac, b)) ~ ((a, ac), be) ~ (a, be). O



146 2. Rings

We can now prove
LEMMA 5. The g.c.d. condition implies the primeness condition.

Proof. Let p be irreducible and suppose pfa and p}b. Since p is irreducible
these imply that (p, a) ~ 1 and (p, b) ~ 1. Then Lemma 4 shows that (p, ab) ~ 1
and so p}ab. Thus if p|ab then either p|a or p|b. U

These results yield our second criterion for factoriality:

THEOREM 2.22 Let M be a commutative monoid satisfying the cancellation
law. Then M is factorial if and only if the divisor chain condition and the g.c.d.
condition hold in M.

Proof. Lemma 5 shows that if the indicated conditions hold then the divisor
chain condition and primeness condition hold. Hence M is factorial by Theo-
rem 2.21. Conversely, if M is factorial then M satisfies the divisor chain condi-
tion and, as we have seen, every pair of elements of M have a gcd. U

EXERCISES

1. Show that if M is factorial then ab ~ [a, b](a, b) in M.

2. Let M be a commutative monoid with cancellation law. Show that the relation
of associateness ~ is a congruence relation. Let M be the corresponding quotient
monoid. Show that M satisfies the cancellation law and that T is the only unit
in M. Show that M is factorial if and only if M is factorial.

3. Show that Z[\/—35] satisfies the divisor chain condition.
4. Show that Z[x] satisfies the divisor chain condition.

5. Let D be the set of expressions a;x** + a,x*2 + - - + a,x* where the g; € some
field F and the «; are non-negative rational numbers. Define equality and addition
in the obvious way and multiplication using the distributive law and (a,x*)(a;x*) =
aa;x* "%, (This can be done rigorously using the procedure of exercise 8, p. 127)
Show that D is a domain. Show that the divisor chain condition fails in D.

6. Show that any prime is irreducible.

7. Let Z[+/10] be the set of real numbers of the form a + b+/10 where a, b € Z. Show
that Z[/10] is not factorial.

|
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8. Let p be a prime of the form 4n + 1 and let ¢ be a prime such that <q> = —1 (see
p

p. 133 for the definition of <Q> ). Show that Z [\/;Tq] is not factorial.
p

215 PRINCIPAL IDEAL DOMAINS AND EUCLIDEAN DOMAINS

We are now going to apply our results on factorization in monoids to domains.
The Eesults are applicable to any commutative domain D, since the set D* of
non-Zero elements of D is a submonoid of the multiplicative monoid of D and
the cancellation law holds. The concepts and results carry over. We now make
the important observation (which we have already made for Z) that the divisi-
bility b|a is equivalent to the set inclusion (b) = (a) for the principal ideals (b)
and (a). For, (b) o (a) is equivalent to a € (b) and this is equivalent to a = bc, by
the definition of (b). Since a and b are associates in D* if and only if a|b and
b|a, we see that a ~ b if and only if (a) > (b) and (b) = (a); hence, if and only
if (@) = (b). Thus a is a proper factor of b if and only if we have the proper

" inclusion (a) 2 (b). The divisor chain condition for M = D* is therefore equiva-

lent to:

The ascending chain condition for principal ideals. D contains no infinite pro-
perly ascending chain of principal ideals (a,) < (a,) = (a3) & -

We have defined a principal ideal domain (p.i.d.) to be a domain in which
every ideal is principal. We have seen that Z and F[x] for any field F are p.i.d.,
and we shall give other examples of p.i.d. below. We shall now show that any
pd.d. D is factorial. We establish first the divisor chain property by proving the
ascending chain condition for principal (hence all) ideals. We recall that in any
ring the union of an ascending chain of ideals is an ideal (section 2.5, p. 102).
Hence if (a;) = (a,) = (a3) = - - - then I = | J(a;) is an ideal in D. Consequently,
I =(d)forsomed el Thend e (a,) for some nand I = (d) < (a,). Thenif m > n,
(a,) = (a,) » I >(a,) so (a,) =(a,,,) ="-. This proves that D contains no
infinite properly ascending chain of ideals.

To complete the proof of factoriality it is enough to show that D* satisfies
either the primeness condition or the g.c.d. condition. We shall prove both,
thereby giving two alternative proofs of factoriality.

Let a, b e D and consider the ideal (a, b) generated by a and b.° Exactly as
in the case of Z (p. 104) we see that if (a, b) = (d) then d is a g.c.d. Since every
ideal is principal this shows that every pair of elements of D have a g.c.d.

® There is no harm in allowing either @ = 0 or b = 0 in these considerations.
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We shall give next a direct proof that irreducible elements of a p.i.d. are pr%me.
This will give a proof of factoriality that is independent of the considerations
on greatest common divisors that led to Theorem 2.22. N

Let p be irreducible in D* and suppose p|ab but p{a, a, b e D*. The cgndltlon
p irreducible means that there exists no ideal I such that D 2 I 2 (p). Since pta,
a ¢ (p)so (p, a) 2 (p) and hence (p, a) = (1). Thus we hgveu, v € D such that up +
va = 1. Then upb + vab = b. Since p|ab, this implies that p|b. Hence p is a
prime.

We have now doubly proved:

THEOREM 2.23. Any principal ideal domain is factorial.

In particular, this implies that if F is a field, then F[x] is f'actorial. We remark
that it also gives another proof of the fact that Z is factorial (p. 22).

The notion of a principal ideal domain is a nice abstract concept: Howe've.r,
we need a practical criterion for proving that certain rings are p.id. This is
provided by the notion of a Euclidean domain, which we now define.

DEFINITION 2.5. A domain D is called Euclidean if there exists amap 6 :a —
5(a) of D into the set N of non-negative integers such that if a,b # 0e D, then
there exist q, r € D such that a = bq + r Where 3(r) < 5(b).

The ring Z becomes Euclidean if one defines 6(a) = |a|- Also the diYision algo-
rithm for polynomials shows that F[x] is Euclidean for any field F if we define
S(f(x)) = 2%/ (where it is understood that 27 = 0). Another important ex-

ample of a Euclidean domain is the

Ring of Gaussian integers Z[/—1].  This is the subset of C of complex numbers

of the form m -+ ni wherem, n € Z and i = +/— L. Thus Z[\/—1] can be identified
with the set of “lattice” points, that is, points with integral coordinate_s in the
complex plane. It is readily verified that Z[i] is a subring of C, hence an integral
domain. If @ = m + ni we put &(a) = aa = |a|* = m* + n®. Then 5(a). € N and
5(ab) = 8(a)d(b). To prove that ¢ satisfies the condition of the definition of a
Euclidean domain, we note that if b # 0 then ab™* = y + vi, where p and v are
rational numbers. Now we can find integers u and v such that |u — y| < 3,
lv—v| <% Sete=p—un=v—u,sothatlef <3and |s| <3 Then

a=b[(u+¢e+ -+ ni]
=bq+r

|
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where g = u + vi is in Z[i] and r = b(e + yi). Since r = a — bg, r € Z[{]. More-
over

6(r) = |r|* = [b]*E* + »?) < [BI*G + 3 = 1o(b).

Thus (r) < 6(b). Hence Z[/~1] is Euclidean.
The main result on Euclidean domains is the following

THEé\REM 2.24.  Euclidean domains are principal.

Proof. The proof is identical with the one given in the special case D = F|x].
Let I be an ideal in a Euclidean domain D. If I = 0 we have I — (0). Otherwise,
let b # 0 be an element of I for which §(b) is minimal for the non-zero elements
of I. Let a be any element of I. Then a = bg + r for some 4, r € D with §(r) <
o(b). Since 1 = a — bq € I and &(r) < 6(b) we must have r = 0 by the choice of
bin I. Hence a = bg so I = (b). O '

Since every p.i.d. is factorial we have the

COROLLARY. Euclidean domains are factbrial.

EXERCISES

1. Let Fbeafield Is F a pid?

2. Show that the set Z[\/E] of real numbers of the form m -+ n\/z mned, is a
Euclidean domain with respect to the function 6(m + n+/2) = [m? — 2n?|.

3. Let D be the set of complex numbers of the form m + n~/— 3 where m and n are
either both in Z or are both halves of odd integers (exercise 4, p. 89). Show that

D is a Euclidean domain relative to d(m + n/ —3) =m* + 3n%

4. Let D be a pid., E a domain containing D as a subring. Show that if d is a g.c.d.
of a and b in D, then d is also a gcd. ofgand b in E.

5. Show that if a # 0 in a pid. D, then Df(a) is a field if a is a prime and D/(a) is
not a domain if a is not prime.

6. Let D be a Euclidean domain whose function ¢ satisfies: (i) 6(ab) = 8(a)5(b) and
(i) o(a + b) < max (5(a), 5(b)). Show that either D is a field or D = F [x], F a field,
X an indeterminate.
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7. Let p be a prime of the form 4n + 1, ne Z. Use the criterion of exercise 15, p. 133

to show that <——> = 1. Hence prove that p is not a prime in Z[i], the ring of
p

Gaussian integers.

8. Use exercise 7 to prove that any prime p of the form 4n + 1 is a sum a® + b,
a,bel.

9. Determine the primes (=irreducible elements) of Ziil.

10. Show that a positive integer m is a sum of two squares of intege.rs if and only
if the primes of the form 4n + 3 occurring in the prime decomposition of m occur

with even multiplicities.

11. (Buclid’s algorithm for finding the g.c.d.) Let a,, a, be non-zero elements of a Eu-
clidean domain. Define a; and g; recursively by a; = g1, + 03, & = qiti+1 + it 2
where 8(a; 4 ,) < 8(a;+1)- Show that there exists an n such thz.it a, # 0 but yry = 0,
and that d = a, = (ay, a,). Also use the equations to obtain an expression for d

in the form xa; + ya,.

12. Apply the foregoing to the polynomials x>+ x*+x—3and x* —x3 +3x> +
x — 4 in Q[x].

The next three exercises are designed to explain one of the mysteries of the integral
calculus: the partial fraction decomposition of rational functions.

13. Let F be a field and suppose f(x)is a non-zero polynomial in F [x] which has a
factorization f(x)= fi(x)f>(x) where deg f,> 0 and (fy, f,) = 1. Show that if
deg g(x) < deg f(x), then there exist u(x) € F [x] such that g(x) = uy(x)f1(x) +
uy(x)fo(x) and degu; < deg f;. (Hint: Existence of vy(x) and v,(x) s'u(.:h that
0,(x)f1(x) + 04(x)fa(x) = g(x) is clear. Now divide 1{,-(x) b.y f{x) obtamlng the
remainder u,(x) of degree < deg f;. Apply degree considerations.) Note that in t‘he
field of fractions F(x) of F[x] one has g(x)/ F(x) = uy(x)/fi(x) + L.lz(x)/ fz(.x). Use in-
duction to prove that if f(x)= p(x)* - p(x)*, pix) distinct primes, then
gx)/f(x) = Y7 gix)/px)* where deg g; < deg p;*.

14. Show that if g(x), p(x) # 0 in F[x] then there exist afx) e F[x] with deg a; <
deg p such that

g(x) = ag(x) + a;(Ip(x) +*+ + a1 ()p()°

ﬂ’f)_ _ ae(x) a,(x) . d,—1(x) )
plx plo Pt p(x)

15. Assuming the result (which will be proved in Chapter 5) the'xt the irreducible poly-
nomials in R[x] are either linear or quadratic, show that if f1 (x), g(x) e R[x] and
deg g < deg f, then one can decompose the fraction g(x)/f(x) in R(x) as a sum of
of partial fractions of one of the forms af(x — 1) or (bx + )/(x* + sx + t)° wI;ere
x% + sx + t is irreducible. More precisely, suppose f(x) = | [T (x — r,-)e." 1 (x +
§X 1 j)f 7 where the quadratics are irreducible then g(x)/f(x) can be written in the

%
?
%
g

R e R

2.16 Polynomial Extensions of Factorial Domains 151
form
m,e; aiki n,f; bjejx + Cjej
Y4 + Z 2 e; "
i=(E=1 (0 =) =i =1 (X 4 sx 1)

16. Investigate the uniqueness questions posed by exercises 13—15.

17. Define the Mo6bius function u(n) of positive integers by the following rules: (a)
w1y =1, (b) u(n) = 0 if n has a square factor, (c) u(n) =(—1y ifn =p,p, "+ p., p;
distinct primes. Prove that u is multiplicative in the sense that pu(nn,) = u(nu(n,)
if (n,, n,) = 1. Also prove that

y;c(d)={1 if n=1

din 0 if n;él.

18. Prove the Mobius inversion formula: If f(n) is a function of positive integers with
values in a ring and

gln)= d;f(d)

then

Sy =3 u <l~1> g(d).
d|n d

19. Prove that if ¢(n) is the Euler @-function then

(n
o(n) = l;” ,u<2> d.

20. Let F be a field with ¢ (< co) elements. Prove that the number of irreducible monic
quadratic polynomials with coefficients in F is g(g — 1)/2 and the number of irre-
ducible cubics with coefficients in F is g(q®> — 1)/3. (See Corollary 2 to Theorem
4.26, p. 289.)

2.16 POLYNOMIAL EXTENSIONS OF FACTORIAL DOMAINS

In this section we prove the important theorem that states that if D is factorial
then so is the domain D[x] of polynomials in an indeterminate x over D.

Let D be factorial. Then any finite set of non-zero elements of D have a
g.c.d. We shall find it convenient to define the g.c.d. (a4, 4, . . ., @) where a; € D
to be O if all the a; =0, and otherwise to be the g.c.d. of the non-zero a,.
Iffix)=ay+a;x+ -+ a,x"#0 we define the content c(f) of f(x) as (ay,
ays ..., a,) (#0). If d = c(f) we can write a; = dai, 0 < i < n, and f(x) = df,(x)
where

filx)=ay +ajx + -+ ax”

We have seen in our discussion of g.c.d’s in monoids (section 2.14) that
(da, db) = d(a, b). 1t follows by induction that d(by, b,, ..., b,) ={dby, ..., db,).
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This evidently implies that the content ¢(f1) is 1. A polynomial having this prop-
erty is called primitive. Hence we have the factorization f(x) = ¢(f)fi(x) as a
product of the content of fand a primitive polynomial. Now let f(x) = ef5(x) be
any factorization of f(x) as a product of a constant e and a primitive polyno-
mial fo(x) = aj + a{x + -+ a,;x". Then a; = aje and 1 is a gc.d. of the
a;. Hence e is a g.c.d. of the a;, and so e ~ c(f).

It is useful to extend the factorization of a polynomial as product of an ele-
ment of D and a primitive polynomial to polynomials with coefficients in the
field of fractions. The result we require is

LEMMA 1. Let D be a factorial domain, F the field of fractions of D, and
f(x) # 0 € F[x]. Thenf(x) = yf1(x) where y € I and f,(x) is a primitive polynomial
in D[x]. Moreover, this factorization is unique up to unit multipliers in D.

Proof. Let f(x) = oo + oyx 4+ + 0, X" where the o; € F and o, # 0. We can
write o; = ab;" ", a;, b;e D. Then if b =[]b; bf(x)e D[x] so bf (x) = cf1(x)
where f,(x) € D[x] and-is primitive. Then f(x) =1y fi{x) where y = cb teF.
Now let f(x) = &fy(x) where 6 € F and fy(x) € D[x] and is primitive. Then
§=de !, d, eeD. Hence we have ch™ 'f;(x) = de™ 'f5(x) and cefi(x) = bdf5(x).
The result proved before for polynomials with coefficients in D shows that
fi(x) ~ f>(x) and ce ~ bd. Then we have bd = uce, u is a unit in D, and
de~' = uch~!. Hence 6 = uy as required. [J

As in the case of D[ x], we call the clement y, which is determined up to a unit
multiplier by f(x), the content of f(x) e F[x]. An immediate consequence of
Lemma 1 is the

COROLLARY. Let f(x) and g(x) be primitive in D[x] and assume these are
associates in F[x]. Then they are associates in D[x].

Proof. We are given that f(x) = ag(x), « # 0 in F. Then the uniqueness part of
Lemma 1 shows that o is a unit in D. [

The key lemma for proving the factoriality of D[x] is
LEMMA 2 (Gauss’ lemma.) The product of primitive polynomials is primitive.

Proof. Suppose f(x) and g(x) are primitive but h(x) = f(x)g(x) is not. Then
there exists an irreducible element (hence a prime) p € D such that pff(x), pfg(x)
but p|h(x). We now observe that saying that p is a prime is equivalent to sa_ying
that D= D/(p) is a domain. This is immediate from the definitions. Hence D[x]
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is a domain. We now apply the homomorphism of D[x] onto D[x] sending
a e D into its coset @ = a + (p) and x — x. This gives f(x)g(x) = h(x) = 0 but
f(x) # 0, g(x) # 0. This contradicts the fact that D[x] is a domain and hence
proves the lemma. [l

LEMMA 3. If f(x) € D[x] has positive degree and is irreducible in D[x], then
f(x) is irreducible in F[x].

Proof.  1f f(x) € D[ x] has positive degree and is irreducible in D[x] then f(x) is
primitive. Suppose that f(x) is reducible in F[x]: f(x) = @,(x)¢@,(x) where p{(x) €
F[x] and deg ¢(x) > 0. We have ¢(x) = a;f(x) where «; € F and f(x) is primi-
tive in D[x]. Then f(x) = o a,f(x)f>(x) and fi(x)f5(x) is primitive by Gauss’
lemma. It follows that f(x) and f,(x)f,(x) differ by a unit multiplier in D. Since
deg fi(x) > 0 this contradicts the irreducibility of f(x) in D[x]. [

We are now ready to prove
THEOREM 2.25. If D is factorial then so is D[ x].

Proof. Let f(x) € D] x] be non-zero and not a unit. Then f(x) = df,(x) where
d € D and fi(x) is primitive. If deg f,(x) > 0 then f;(x) is not a unit and if this is
not irreducible we have f;(x) = f, 1(x)f12(x) where deg f;{x) > 0 so deg f,(x) <
deg fi{x). Clearly f,(x) is primitive. Hence using induction on the degree we
see that f,(x) = q,(x)q,(x) - - - g{x) where the g,(x) are irreducible in D[x]. If d
is not a unit we have d = p,p, ' * - p, where the p; are irreducible in D. Clearly
these are then irreducible in D[x]. Using the factorizations of d and f(x) (when
these are not units) we obtain a factorization of f(x) into irreducible factors in
D[ x]. It remains to prove uniqueness up to unit multipliers of any two such
factorizations. Suppose first that f(x) is primitive. Then the irreducible factors of
f(x) all have positive degree. Thus we have f(x) = q.(x) - g,{x) = ¢\ (x) - - -
gi(x) where the g/(x) and g(x) are irreducible of positive degree. Then these
are irreducible in F[ x| by Lemma 3. Since F[x] is factorial we have h = k, and
by suitably ordering the g)(x) we may assume that g,(x) and gi(x) for 1 <i<h
are associates in F[x]. Then the corollary to Lemma 1 shows that g{x) ~ gi(x)
in D[ x]. Next suppose that f(x) is not primitive. Since the irreducible factors of
positive degree are primitive, their product is primitive. Hence any factorization
of f(x) into irreducible elements in D[x] contains factors belonging to D, and
their product is the content of f(x). By modifying by a unit multiplier we may
assume that this is the same for the two factorizations. Since D is factorial we
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can pair off the irreducible factors of f(x) belonging to D into associate pairs.
The product of the remaining factors, if any, is a primitive polynomial. Since we
have taken care of these the proof is complete. []

An immediate consequence of the theorem is that if D is factorial so is the
ring D[x,, ..., x,] of polynomials in » indeterminates over D: for example,
Z[xy, ..., x,] is factorial and so is F[x;, ..., x,] for any field F. It is clear from
this that the class of factorial domains is more extensive than that of p.i.d. (see
p- 131 and also exercise 5 below).

An important consequence of the factoriality of D[ x] and of Lemma 3 is the
following

COROLLARY. If D is factorial and f(x) € D[x] is monic, then any monic fac-
tor of f(x) in F]x] is contained in D[x].

Proof. We can write f(x) = p;(x)® - - - p{x)™ where the p,x) are monic and
irreducible in D[x], p/(x) # pjx) if i # j and ¢; > 0. Then the monic factors of
f(x) in D[x] have the form p,(x)"* - - - p,(x)/" with 0 <f; < e,. If we now pass
from D[x] to F[x] then, by Lemma 3, the p,(x) are irreducible in F[x]. Hence
f(x) has the same monic factors in D[x] and in F[x]. O

EXERCISES

1. Prove that if f(x) is a monic polynomial with integer coeflicients then any rational
root of f(x) is an integer.

2. Prove the following irreducibility criterion due to Eisenstein. If f(x) = a, + a;x +
o'+ a,x"e Z[x] and there exists a prime p such that pla, 0 <i<n— 1, pla,
and p}ay, then f(x) is irreducible in Q[x].

3. Show that if p is a prime (in Z) then the polynomial obtained by replacing x by
x+1inx?7 1+ xP7% 4+ 1= (x¥ — 1)/(x — 1) is irreducible in Q[x]. Hence
prove that the “cyclotomic” polynomial x?~ ' 4+ x?~2 4+ - -+ + 1 is irreducible in

4. Obtain factorizations into irreducible factors in Z[x] of the following polynomials:
X=Lxt L -, xf L= x8 =1 X% — 1, %101,

5. Prove that if D is a domain which is not a field then D[x] is not a p.i.d.

6. Let F be a field and f(x) an irreducible polynomial in F[x]. Show that f(x) is
irreducible in F(t)[x], t an indeterminate.

|
!
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In most algebra books a ring is defined to be non-vacuous set R equipped with
two binary compositions + and - and an element 0 such that (R, +, 0) is an
abelian group, (R, -) is a semigroup (p. 29), and the distributive laws hold. In
other words, the existence of a unit for multiplication is not assumed. We shall
consider these systems briefly, and so as not to conflict with our old terminology
we adﬁopt a different term: rngs® for the structures which are not assumed to
have units. We remark first that the elementary properties of rings which we
noted in section 2.1 (generalized associativity, generalized distributivity, rules
for multiples, etc.) carry over to rngs. The verification of this is left to the reader.
We shall now show that any rng can be imbedded in a ring. This fact permits
the reduction of most questions on rngs to the case of rings.

Suppose we are given a rng R. Our procedure for constructing a ring con-
taining R is to take S = Z x R the product set of Z and R. If m,ne Z and
a, b € R we define addition in S by

(53) (m,a)+(n,b)=(m+na+b)

We define 0 = (0, 0). Then it is clear that (S, +, 0) is an abelian group: in fact,
it is the direct product (also called direct sum) of (Z, +, 0) and (R, +, 0). We
define multiplication in S by

(54) (m, a)(n, b) = (mn, mb + na + ab)

where on the right-hand side mb and na denote respectively the mth multiple
of b and the nth multiple of a as defined in the additive group (R, +, 0). We have

((m, a)(n, b))(q, ¢) = (mn, mb + na + ab)(g, c)
= ((mn)q, (mn)c + g(mb + na + ab) + (mb + na + ab)c)
= ((mn)q, (mn)c + g(mb) + q(na) + q(ab) + (mb)c
+(najc + (ab)c)
(m, a)((n, b)(q, ¢)) = (m, a)(ng, nc + qb + bc)
= (m(nq), m(nc) + m(gb) + m(bc) + (nq)a
+ a(nc + gb + bc)).
It now follows from the associative laws in Z and in R, the distributive laws in
R, and the properties of multiples in R that the associative law of multiplication

is valid in S. If we put 1 = (1, 0) then we have 1(m, a) = (1, 0)(m, a) = (m, a) =
(m, a)(1, 0) = (m, a)1. Hence (S, -, 1) is a monoid.

6 Suggested pronunciation: ritngs. This term was suggested to me by Louis Rowen.
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Also we have

(m, a)[(n, b) + (g, c)] = (m, a)(n + ¢, b + ¢)
=(mn+ q),mb +c) + (n + q)a + alb + ¢))

(m, a)(n, b) + (m, a)(q, ¢) = (mn, mb + na + ab) + (mq, mc + qa + ac)
= (mn + mq, mb + na + ab + mc + qa + ac).

Hence (m, a)[(n, b) + (g, ¢)] = (m, a)(n, b) + (m, a)(g, c). Similarly, the other dis-
tributive law holds. Hence (S, +,+,0,1)is a rmg:

We now consider the subset of elements (0, a) in S. We have (0, a) + (0, b) =
0, a + b), (0, a)(0, b) = (0, ab) and 0 = (0, 0) is in this subset. Thus the subseF
is ,a subrng isomorphic to R (with the obvious definitions of these terms). We

have therefore proved
THEOREM 2.26. Any rng can be imbedded in a ring.

We note also that R identified with the corresponding subset of S is an ideal
in S since (m, b)(0, a) = (0, ma % ba) and (0, a)(m, b) = (0, ma + ab).

EXERCISES

1. An element a of a rng R is called right (left) quasi-invertible (or right or left quasi-
regular) if there exists a b such that a + b — ab'= O.(a +b— ba'= 0). Show Zh.at
this is equivalent to saying that 1 — g has the right inverse (left inverse) 1 — b in
S = Z x R, with the ring structure defined above.

2. (Kaplansky) Let R be a rng in which every element but one is right quasi-
invertible. Show that R has a unit and R is a division ring.

3. Let R be a g for which there exists a positive integer k such thatﬁ ka = Oifor all
a€R. Let S, = Z/(k} x R. Write i = m + (k) in Z/(k) and deﬁne_(m, a) + (n, b) =
(m + i1, a + b), (m, a)(7i, b) = (mn, mb + na + ab), 0 = .(0,. 0, 1= (1,‘ 0). Verify that
(Sk» +, 0, 1) is a ring of characteristic k and that R is imbedded in St

i ivi at is, ab = 0 in R implies either a = 0
4. Let R be a rng without zero divisors #0 (that is, a
or b = 0). Assume R contains elements a and b # 0 such that ab + kb = 0 for some
positive integer k. Show that ca + k¢ = 0 = ac + ke for alf ¢ € R.

5. Let R be a rng without zero divisors #0 and let S be the rigg z x R as in the
text. Let Z = {z € S|za = 0 for all a € R}. Show that Z is an ideal in S and S/Z
is a domain. Show that a — a + Z is a monomorphism of R into §/Z.

|
i
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\ Modules over 3
Principal Ideal Domain

The central concept of the axiomatic development of linear algebra is that of
a vector space over a field. The axiomatization of linear algebra, which was
effected in the 1920°s, was motivated to a large extent by the desire to introduce
geometric notions in the study of certain classes of functions in analysis. At
first one dealt exclusively with vector spaces over the reals or the complexes.
It soon became apparent that this restriction was rather artificial, since a large
body of the results depended only on the solution of linear equations and thus
were valid for arbitrary fields. This led to the study of vector spaces over arbi-
trary fields and this is what presently constitutes linear algebra.

The concept of a module is an immediate generalization of that of a vector
space. One obtains the generalization by simply replacing the underlying field
by any ring. Why make this generalization? In the first place, one learns from
experience that the internal logical structure of mathematics strongly urges the
pursuit of such “natural” generalizations. These often result in an improved
insight into the theory which led to them in the first place, A good illustra-
tion of this is afforded by the study of a linear transformation in a finite dimen-
sional vector space over a field—a central problem of linear algebra. As we
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shall see in sections 3.2 and 3.10, given a linear transformation T in a vector
space V over F, we can use this to convert Vinto a module over the poly-
nomial ring F[/], 1 an indeterminate." The study of this module will lead to
the theory of canonical forms for matrices of a linear transformation and to
the solution of the problem of similarity of matrices.

It is an easy step to pass from modules over F[1] to modules over any
principal ideal domain. This will give us other applications. In particular, spe-
cializing the p.i.d. to be Z, we shall obtain the structure theory of finitely
generated abelian groups, hence, of finite abelian groups.

It would be wrong to conclude from these remarks that the historical devel-
opment of the theory of modules followed the logical path of extension of
linear algebra which we have indicated. The concept of a module seems to have
made its first appearance in algebra in algebraic number theory—in studying
subsets of rings of algebraic numbers closed under addition and multiplication
by elements of a specified subring. Modules first became an important tool in
algebra in the late 1920’s largely due to the insight of Emmy Noether, who was
the first to realize the potential of the module concept. In particular she ob-
served that this concept could be used to bridge the gap between two important
developments in algebra that had been going on side by side and independently:
the theory of representations {=homomorphisms) of finite groups by matrices
due to Frobenius, Burnside, and Schur, and the structure theory of algebras
due to Molien, Cartan, and Wedderburn. We consider these matters in Vol. II
of this work. More recently one has had the development of homological alge-
bra, in which modules also play a central role. This, too, is considered in Vol. II.

The principal topic of this chapter is the study of finitely generated modules
over a p.id. D and the two special cases, in which D is either Z or a polynomial
ring F[A], F a field. As we have noted, these give, respectively, the structure
theory of finitely generated abelian groups and canonical forms for linear trans-
formations. Of course, we shall need to begin with some general theory. How-
ever, we shall not develop this much beyond what is actually needed to achieve
our immediate objectives. Most of the general theory of modules and other
applications are discussed in our second volume.

3.1 RING OF ENDOMORPHISMS OF AN ABELIAN GROUP

Let M be an abelian group. We use the additive notation in M: + for the given
binary composition, 0 for the unit, —a for the inverse of a, and ma, m € Z, for
the mth power. Let End M denote the set of endomorphisms of M. By defini-

1 We use A to denote an indeterminate in the present chapter. We do this in order to reserve
X to represent vectors or, more generally, elements of a module.
Tt
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tion, these are the maps y of M into M such that

1 nx+y =nx)+ny), n0=0

and we have seen that the second condition is a consequence of the first. Hence
a map n of M into M is an endomorphism if and only if

(1) nx + ) = nx) +n(y).

We recall that this implies also that n(mx) = mn(x) for any me Z. We recall
further that if X is a set of generators for M, then 7 is determined by its effect
on X: that is, if n(x) = {(x) for two endomorphisms n and { and all x in a set
of generators, then n = {.

Let us look at some

EXAMPLES

1. Let M be an infinite ¢yclic group (7, +, 0). Then 1 is a generator and if #(1) = m
then g(x) = n(x1) = xn(l) = xm. Hence 5 is the map x — mx, x € M, where m = r](l)?
Moreover, if m is any element of Z, then the map x — mx is an endomorphism since
we have the power rule m(x + y) = mx + my. It is clear that x — mx maps 1 into m.
Since endomorphisms are determined by their effects on the generator 1 it is clear we

have a 1-1 correspondence between the set End M, M = (Z i i
, M =(Z,+,0) and Z, which
ne€End M with 5(1) =me Z. ( ) e e

2. Let M = (Z®, +, 0), the direct product (or sum) of two copies of (Z, +, 0). The
elements here are the pairs of integers (x, y) and we have (x, y) = x(1, 0) + (0, 1), so
e= (1, 0) and /' = (0, 1) generate Z®). Hence if € End Z®, then 1 is determined ’by,the
pair of elements n(e), #(f). Moreover, any pair of elements (u, v) € Z¥ x 7'® can be ob-
tained in this way, this is, if (4, v) is given, then there exists an endomorphism # such
.that n{e) = u and 5(f) = v. To see this we let 17 be the map which sends (x, y) = xe + yf
into xu + yv. Then (x, y) - x'u + yu and (x + x, y + V)= x+xXW+(y+yp=
(xu + yv) + (x'u + y'v). Hence 5 is a homomorphism and n(e) = u and y(f) = v, as re-
quired. Thus we have a 1-1 correspondence between End Z® and 72 x 7 whic’h pairs
an endomorphism 7 with the element (y(e), #(f)) € Z® x 7, ,

These considerations generalize immediately to M = Z® for any positive integer n and

n
lead to a 1-1 correspondence between End Z® and Z"”(- >Z(").

.3. Let M .be a finite cyclic group. In this case we may take M = (Z/(n), +,0) where
118 a positive integer, and, in general, X is the coset x + (n). Then 1 is a generator
tand we have a 1-1 correspondence between End Z{(n) and Z/(n) sending 5 e End Z/(n)
mnto x(1).

We shall.now organize End M for any abelian group M into a ring. We
know t}?at if n,{ € End M, then the composite n{ e End M, and we have the
associative law (58)p = n(Cp). Also, the identity map 1:x — x is an endomor-
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phism. Hence (End M, -, 1) is a monoid. All of this holds even if M is not
abelian. However, a good deal more can be said in the abelian case: namely,
as we shall now show, End M with composite multiplication and an addition
and 0, which we shall now define, constitute a ring. If #, { € End M we define

n+{by
@ (n + Ox) = nlx) + ).

This map of M into M is an endomorphism since

 + 00+ y) = nlx +y) + {x + )
= n(x) + ny) + () + L)
= n(x) + {(x) + 1) + )
= (1 + )(x) + (1 + H)-

We remark that the commutativity of + is used in the passage from the second
to the third of these equations. Next we define the map 0 as x —=0,xeM.
Evidently this is an endomorphismand n + 0 =5 =0+ foranyne End M.
Let — be the map x — —y(x) s0 — 118 the composite of # and the map x - —x,
which is an automorphism, since M is abelian. Hence —1 € End M, and clearly
N+ (=) =0=—n+n Since ((1+ ) +p)x) =0+ O +pE)=nl)+
() + p(x) and (1 + (€ + p))X) = n(x) + € + P)) = n(x) + {x) + p(x), asso-
ciativity holds for the addition composition -+. Commutativity also holds since
(1 + O(x) = n(x) + {(x) = {x) + nlx) =+ n)(x). Thus we have verified that
(End M, +, 0) is an abelian group.

Previously, we had that (End M, -, 1) is a monoid. Now, we have for
n, ¢, peEnd M,

(o(n + 0)(x) = p(r(x) + L)) = (pm(x) + (pD(x) = (pn + pC)x)

Similarly, ((5 + Qp)(x) = n(p(x)) + {(p(x)). Hence both distributive laws hold in
End M, and so we have verified the following basic

THEOREM 3.1 Let M be an abelian group (written additively) and let
End M denote the set of endomorphisms of M. Define nl and n + { for n,
{eEnd M by (0)(x) = n({(x)) and (n + O(x) = n(x) + {(x), 1 and 0 by 1x =X,
O0x = 0. Then (End M, +,-,0, 1) is a ring.

We shall call (End M, +, -, 0, 1) or, more briefly, End M, the ring of endo-
morphisms of the abelian group M. We consider again the examples we gave
above and we seek to identify the rings End M in these cases.

Tt
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EXAMPLES

1. M =(Z, +, 0). We saw that the map 5 — (1) is a bijective map of End M onto Z.
Inthismap n + { = (7 + O(1) = (1) + {(1), { - @) = n(€(1)) = nl(1H1) = {Dn(1) =
7(1)¢(1) and 1 — 1(1) = 1. Hence 5 — y(1) is an isomorphism of End M with the ring of
integers Z. Hence we can say that the ring of endomorphisms of an infinite cyclic group
is the ring Z.

2. M = (Z®, +, 0). In this case we obtain the bijective map 1 — (i(e), #(f)) of End M
onto Z? x 7', the set of pairs of elements of Z®, Here e = (1, 0) and f = (0, 1). Suppose
n(e) = (a, b) and #(f) = (c, d). Then we evidently have a bijective map

a c
3 ’7_><b d>

of End M onto the ring M,(Z) of 2 x 2 integral matrices. We claim that this is an iso-
morphism. Suppose { is a second endomorphism and {(e) = (a', b), {(f) = (¢, d). Then

a
. ()

Now (7 + {)(e) =nle) + {(e) = (a, b) + (d', ') = (a + &, b+ b) and similarly (5 + (/)=
(¢ + ¢, d+ d). Hence

Lt at+ad c+c
.
1 bib d+d

and this is the sum of the matrices in (3) and (4). Next we determine (y{)(e) =
nl(e)) = n(d, b') = nld'e + bf) = nla'e) + n(blf) = a'nle) + b'u(f) = a'a, b) + b'(c, d) =
(da, a'b) + (b'c, b'd) = (ad’ + cb', ba' + db’). Similarly, #HO(f) = (ac’ + cd’, bc’ + dd).

Thus
ad +cb ac’ + cd a c\(a ¢
nt - =
ba' +db’" bc' + dd b dJ\b d,
the product of the matrix in (3) followed by the one in (4). Also 1(e) = (1, 0} and
10
1{f)=0Dsol— ( 0 1>. Hence we have verified that the map (3) is an isomorphism

of End M with the matrix ring M ,(Z).

3. M a cyclic group of order n. One sees, as in 1, that End M is isomorphic to the
ring Z/(n).

The fact that End M is a ring with respect to the compositions and the 0
and 1 that we defined is analogous to the fact that the set of bijective maps of
a set with the usual composition and 1 is a group. We now define a ring of
endomorphisms to be any subring of a ring End M, M an abelian group. We
shall now prove the analogue for rings of Cayley’s theorem for groups (p. 38).
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THEOREM 32. Any ring is isomorphic to a ring of endomorphisms of an
abelian group.?

Proof. The idea of the proof is identical with that of Cayley’s theorem. Given ;

the ring R we take M = (R, +, 0), the additive group of R, and for any a
we call the map a,:x — ax the left multiplication determined by a.* Since
af(x + y)=alx + y)=ax + ay =a;x + a;y, a, € End M. Also (a+ b)x =
(@ + b)x = ax + bx = a;x + byx = (a,, + b;)x (by definition of the sum of endo-
morphisms) and (ab);x = (ab)x = a(bx) = a,(b,x) = (arbp)(x), 1x = x. Hence
a— ay is a homomorphism of the ring R into End M. Since ay, = by implies

a=ayl=>b1=>b,a— aisa monomorphism. The image is a subring R; of

End M and we have R~ R,. O

It is interesting to consider also the right multiplications of a ring. We define
ag:x—xa and note that this is an endomorphism of M = (R, +, 0) since
{(x + y)a = xa + ya. Also it is immediate that g — ag is an anti-homomorphism
of R into End M. The image Ry = {ag} is a subring of End M and R and Ry
are anti-isomorphic. We note also that the subrings R; and Ry are the cen-
tralizers of each other in End M, that is, we have

THEOREM 3.3 R, = C(Rg) and Ry = C(R,) in End M.

Proof. 1t is clear from (ax)b = a(xb) that a b, = bray for any a, b € R. Now
let n be an endomorphism of M such that a; = ya,, a € R. Then 7(x) = p(x1) =
n(x,1) = x(n(1)) = xn(1). Hence = n(1)g € Ry. Thus C(R;) = Ry and, by sym-
metry C(Rg) =R;. O

EXERCISES

1. Let G be a group (written multiplicatively), and let F = G€ be the set of maps of
G into G. If 4, { e F define »{ in the usual way as the composite 5 following (.
Define # 4+ { by (i + {)(x) = n(x){(x). Define 1:x - x,0:x — 1. Investigate the
properties of the structure (F, +, -, 0, 1).

% This result in a somewhat more special sitution—that of algebras—seems to have been noted
first by Poincaré.
3 We recall that in the group case our preferred terminology was “translation” for such a map.
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2. Let M be an abelian group. Observe that Aut M is the group of units (inverti-
ble elements) of End M. Use this to show that Aut M for the cyclic group of order
n is isomorphic to the group of cosets i = m + (m) in Z/(n) such that (m, n) = 1.

3. Determine Aut M for M = (Z?, +, 0).
4. Determine End (Q, +, 0).

5. Imgeveral cases we have considered, we have End (R, 4, 0) = R for a ring R. Does
this@ld in general? Does it hold if R is a field?

3.2 LEFT AND RIGHT MODULES

The concept of a left module is the ring analogue of a group acting on a set.
As in the group case, this arises in considering a homomorphism of a given
ring R into the ring of endomorphisms, End M, of an abelian group M. If 5 is
such a homomorphism, n(a) € End M, so we have

na)x + y) = n(@)x) + na(y, x,yeM,

and since # is a homomorphism we have

n(a + b)(x) = (y(a) + n(b))(x) = n(a)(x) + n(b)(x)
ntab)(x) = (n(a) n(b))(x) = n(a)(n(b)(x))
n(D(x) = x,

x €M, a, be R Wenow consider the map (q, x) ~ n(a)(x) of R x M into M and
we abbreviate the image #(a)(x) as ax. Then the foregoing equations read:

1. alx +y)=ax + ay
2 (a + b)x = ax + bx
3. (ab)x = a(bx)

4 Ix=x

for x,y e M, a, b, 1 € R. We formalize this in the following

DEFINITION 3.1. If R is a ring, a left R-module is an abelian group M
together with a map (a, x) = ax of R x M into M satisfying properties 1-4.

We have seen that a homomorphism n of R into End M gives rise to a left
module structure on M by defining ax = n(a)(x) for a € R, x € M. Conversely,
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suppose we are given a left R-module M. For any a € R we let g be the map
x — ax of M into itself. Then the module property 1 states that a; € End M.
Moreover, it is clear from properties 2—4 that ¢ — a; is a homomorphism of
R into End M. The module obtained from this homomorphism by the proce-
dure we gave is the given left module. On the other hand, if we begin with a
homomorphism # of R into End M and we construct the corresponding left R-
module M, then the associated homomorphism a — a; coincides with #, since
arx = ax = n{a)(x). Thus it is clear that the concept of a left R-module is equiv-
alent to that of a homomorphism of R into the ring of endomorphisms of some
abelian group.

The notion of right R-module is dual to that of left R-module. We give this
in

DEFINITION 3.1'. A right module for a ring R is an abelian group M to-
gether with a map (x, a) — xa of M x R into M satisfying for a, b, 1 € R and
x, ye M:

1. (x +%)a = xa + ya
2, x(a + b) = xa + xb
3. x(ab) = (xa)b

4, x1 = x.

Let ai denote the map x — xa in M. Then ai € End M and a — ay satisfies
(a + b)g = ag + by, (ab)g = brag, 1x =1, so this is an anti-homomorphism of
R into End M (section 2.8, p. 114). Conversely, if # is an anti-homomorphism
of R into the endomorphism ring, End M, of an abelian group, M becomes an
R-module if we define the action xa, x € M, a € R, to be n(a){x).

Any anti-homomorphism 5 of a ring R can be regarded as a homomorphism
of the opposite ring R° of R (p. 113). This is clear since the identity map is an
anti-isomorphism of R® onto R and the composite of this and » is a homo-
morphism. Tt follows from this that if M is a right (left) module for R, and we
put ax = xa (xa = ax), we make M into a left (right) R%module. If R is com-
mutative, R® = R as rings and so any left (right) R-module is also-a right (left)
R-module in which ax = xa. Thus for commutative rings there is no distinction
between left and right modules.

We now consider some important instances of modules. We observe first that
any abelian group M (written additively) is a Z-module. Here one defines ax
in the usual way for a € Z, x € M. The module conditions 1-4 are clear from
the properties of multiples in an abelian group. The observation that abelian
groups are Z-modules permits us to subsume the theory of abelian groups in

E
I
I

3.2 Left and Right Modules 165

that of modules. The usefulness of this reduction will be apparent in what
follows.

A type of module which is very probably familiar to the reader is a vector
space V over a field F. We recall that a vector space is defined axiomatically
as an abelian group V together with a product ax € V for a € F, x € V such that
conditions 1—-4 hold. Thus V is a left F-module. Now suppose T is a linear
transforslat.inon in V. We abbreviate T(x) as Tx. Then the defining conditions
are that T'maps V into V and

(5) T(x+y) =Tx+ Ty, T(ax) = a(Tx),

aeF,x,yeV. The first of these conditions is that T € End Vand the second is
that a, T = Ta,, for every endomorphism a;:x — ax, a € F. It follows that the
subring F,[T], generated by F; = {a,|a € F} and T, is a commutative subring
of End V. Since a — a;, is a homomorphism of F, the basic homomorphism
property of F[A], 2 an indeterminate, (Theorem 2.10, p. 122) shows that the
map

ag + ayd 4+ a, " > agp +ag T+ 4 a, T

(a; € F) is a homomorphism of F [A] into F,[T], hence, into End V. Then it is
clear that ¥ becomes a left F[A]-module if we define

(aO + all + i amllm)x - a’Ox + al(Tx) + 4+ am(me)

n

single linear transformation of a finite dimensional vector space can be derived
by viewing the vector space as an F[A]-module in this way.

As our last example of a module we consider any ring R, and take M to be
the additive group (R, +, 0) of R. Let R act on M by left multiplication: ax for
a € R and x € M is the product as defined in R. Then 1-4 are clear, and so M is
a left R-module. Similarly M is a right R-module if we define xa, xe M, ae R,
to be the ring product.

for every f(4) = ag + a;A + - - - + a,,A" € F[A]. We shall see that the theory of a

EXERCISES

1. Let M be a left R-module and let # be a homomorphism of a ring S into R. Show
that M becomes a left S-module if we define ax = n(a)(x) for ae S, x € M.

2. Let M be a left R-module and let B = {be R|bx = 0 for all x € M}. Verify that
Bis anideal in R. Show also that if C is any ideal contained in B then M becomes
a left R/C-module by defining (a + C)x = ax.
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3. Let M be a left R-module, S a subring of R. Show that M is a left S-module if
we define bx, be S, x € M, as given in M as left R-module. (Note that this is a
special case of exercise 1). In particular, the ring R can be regarded as a left
S-module in this way.

4. Let V= R™ the vector space of n-tuples of real numbers with the usual addition
and multiplication by elements of R. Let T be the linear transformation of V
defined by :

X = (Xlo Xoseos xn) - Tx = (X,,, X1y X250 0 ey xn—l)'

Consider Vas left R[A]-module as in the text, and determine: (a) Ax, (b) (A% + 2)x,
(A"~ 4+ 2""2 4 - - 4 1)x. What elements satisfy (A2 — 1)x = 0?

5. Consider the example of exercise 4 and let B be the ideal in R[4] defined as in
exercise 2. Give an explicit description of B.

6. Let M be an abelian group written additively. Show that there is only one way of
making M into a left Z-module.

7. Let M be a left @-module. Show that the given action of Q is the only one which
can be used to make M a left Q-module.

8. Let M be a finite abelian group, #0. Can M be made into a left Q-module?

3.3 FUNDAMENTAL CONCEPTS AND RESULTS

From now on we shall deal almost exclusively with left modules and we shall
refer to these simply as “modules,” “R-modules,” or “modules over R” (R the
given ring). Of course, what we shall say about these will be applicable also to
right modules. The modifier “right” will be used when we wish to state results
explicitly for these.

Let M be an R-module. The fact that x —ax is an endomorphism of
(M, +, 0) implies that a0 = 0 and a(—x) = —ax, x e M, a e R. The fact that
a->ap 18 a homomorphism of R into End M gives 0x =0, (~a)x = —ax.
Also, by induction, we have a (), x;) = ) ax; and (3 a)x = a;x.

We define a submodule N of M to be a subgroup of the additive group
(M, +, 0) which is closed under the action of the elements of R: that is, if ¢ € R
and y € N, then ay € N. Explicitly, the conditions for a non-vacuous subset N of
M to be a submodule are: (a) if y,, y, € N then y, + y,€N, (b) if ye N and
a € R then ay e N. These are certainly satisfied by submodules. On the other
hand, if N satisfies these conditions, then N contains 0 =0y, ye N, and N
contains —y = (—1)y. Thus N is a subgroup of the additive group and hence
a submodule of M.

What are the submodules of the types of modules we considered in section
3.2? First, let M be a Z-module. If N is a subgroup of (M, +,0), and n is a
positive integer and y e N, then ny =y + - + y (n terms) e N. Also Oy and

T
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(—n)y e N. Hence N is a Z-submodule. The converse is clear. Hence the Z-
submodules of M are the subgroups of (M, +, 0). Next let V be a vector space
over a field F. Then it is clear from the definitions that the submodules are the
subspaces of V. Now let T be a linear transformation in ¥ and regard V as an
F[/]-module in the manner of section 3.2. In this case the submodules are
simply the subspaces W stabilized by T—that is, satisfying TW(=T(W))
W-—singe this condition on a subspace amounts to Awe Wifw e W, and clearly
this implies that (aq + a;4 + - - + a,A")w € W. Finally, we consider the case of
R regarded as left R-module (M = (R, +, 0) and the module action is left multi-
plication). Here the submodules are the subsets of R that are closed under addi-
tion and under left multiplication by arbitrary elements of R. Such a subset is
called a left ideal of R (cf. exercise 4 on p. 103). Similarly, the submodules of R
regarded as right R-modules in the usual way are the right ideals: subsets closed
under addition and under right multiplication by arbitrary elements of R.

If {N,} is a set of submodules of M, then (1N, is a submodule. Hence if S
is a non-vacuous subset, then the intersection <S> of all the submodules of M
containing S is a submodule of M., We call this the submodule generated by S,
since it is a submodule containing S and contained in every submodule con-
taining S. It is immediate that (S is the subset of elements of the form g v+
ay, + -+ a,y, where the ¢; € R and the y,¢ S. If {N,} is a set of submodules,
then the submodule generated by | ) N, is the set of sums Yoy T Vet + 1y,
where y,, € N,,. We call this the submodule generated by the N . and denote it as
> N, If {N,} is finite, say, {N,, N,, ... . N}, then we write cither Y N; or
Ny + N, + -+ N, for the submodule generated by the N,.

We now consider the factor group M = M/N of M relative to a submodule
N. Its elements are the cosets x =x + N with the addition (x, + N) +
(X2 + N) = x; + x, + N, the O-clement N, and —(x + N)y= —x+ N.IfaeR
and x; = x, (mod N), that is, x, — x, € N then ax, — ax; = a(x, — x;) € N so
ax; = ax, (mod N). It follows that if we put

(6) ax =a(x + N)=ax + N = ax

then this coset is independent of the choice of the element x in its coset. Hence
(a, X) > ax is a map of R x M into M. We also have

a(Xy + X,) = a(x; + x,) = ax; + ax,

=ax; + ax, = ax, + ax,

and, similarly, (a + b)x = aX + bX, (ab)X = a(bx) and 1x = X. Thus M = M /N
with the action (6) is an R-module. We call this the quotient module M/N of M
with respect to the submodule N.
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We define homomorphisms for modules only if the rings over which these
are defined are identical. In this case we define a homomorphism (module homo-
morphism, R-homomorphism, homémorphism over R) of M into M’ to be a map
n of M into M’ which is a homomorphism of the additive groups and which
satisfies n(ax) = an(x), a € R, x € M. It is clear from (6) that if N is a submodule
of M then the natural map v:x — X = x + N is a module homomorphism of
M into M.

The kernel of a homomorphism of M into M’ is defined to be the kernel
n~%0) of the group homomorphism. This is a subgroup of M, and since
n(y) = 0 implies n(ay) = an(y) = 0, ker 5 is a submodule of M. The image n(M)
(or im 5 = {n(x)|x € M}) is a submodule of M'; for it is a subgroup of M’, and
if yen(M), y=n(x), xe M, and ay = an(x) = n(ax) € f(M). As in the case of
groups, it is immediate that if N is a submodule contained in ker #, then the

map
(7 j:x=x+ N-nx

is 2 module homomorphism of M/N into M’ such that 5 = v where v is the
homomorphism x — X = x + N. Moreover, 7 is a monomorphism if and only
if N = ker #. In this case we have the fundamental theorem of homomorphisms for
modules that any homomorphism # can be factored as /v where v is the natural
homomorphism of M onto M = M/ker n and 77 is the induced monomorphism
of M into M’ (5: M — M’). If y is surjective so is 7, and i is then an isomorphism.
Thus any homomorphic image of M is isomorphic to a quotient module.

The results in sections 1.9 and 1.10 on group homomorphisms carry over to
modules. It is left to the reader to check this; we shall feel free to use the corre-
sponding module results when we have need for them.

The analogue for modules of cyclic groups are cyclic modules. Such a module
is generated by a single element and thus has the form M = Rx = {ax|a € R}
where x € M. The role played by the infinite cyclic group (Z, +, 0) is now taken
by R as R-module. This is generated by 1, since R = R1. If M = Rx then we
have the homomorphism g, of R into Rx which sends a — ax. Clearly this is
a group homomorphism and p(ba) = (ba)x, and bu,(a) = b(ax). Hence p(ba) =
bu(a) and p, is indeed a module homomorphism of R. Evidently this is sur-
jective and hence M = Rx = R/ker u,. Now ker y, = {d € R|dx = 0} and,
being a submodule of R, it is a left ideal of R. We shall call this the annihilator
of x (in R) and denote it as ann x. In this notation we have the following for-
mula for a cyclic module:

8 Rx = R/ann x.

G
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If ann x = 0 we have Rx = R. In the special case R = Z we have either Zx >~ R,
or ann x = (n) where n > 0 and n is the smallest positive integer such that nx =
0. Clearly this is the order of the element x and of the cyclic group (x). Thus
ann x for an element x of a module can be regarded as a generalization of the
order of an element of a group. For this reason ann x is sometimes called the
order ideal of the element x.

Now let M and N be modules and let Hom(M, N) (or Homgz(M, N)) denote
the set of homomorphisms of M into N. This set can be made into an abe-
lian group by defining n + { for u, { e Hom(M, N) by (5 + (%) = #(x) + {(x)
and 0 by 0(x) = 0 (the zero element of N). The verification that # +(, 0 €
Hom(M, N) and that (Hom(M, N), +,0) is an abelian group requires only one
step more than the corresponding verification that the endomorphisms of an
abelian group form an abelian group (p. 160). This is that (5 + {)(ax) =
a((n + 0)(x)), which is clear, since (1 + {)(ax) = n(ax) + {(ax) = an(x) + al(x)
and a((n + )(x)) = a(n(x) + {(x)) = an(x) + al(x). Now consider a third module
P, and let y € Hom(M, N), { e Hom(N, P). Then {r is a homomorphism of the
additive group (M, +,0) into (P, +,0), and since ({n)(ax)= {(y(ax)) =
{{an(x)) = al(n(x)) = a((y)(x)), {(neHom(M, P). As in the special case of
End M, we have the distributive laws ({; + {)n = {in+ G, Lny +15) =
{ny + Cny if 1, 1y, nyeHom(M, N) and {, {,, {,eHom(N, P). It is clear also
that 1y =5 =nl,, and if Q is a fourth module, then (w{)y = w({y) for
neHom(M, N), {e Hom(N, P), w e Hom(P, Q). These results specialize to the
conclusion that (Hom(M, M), +,-, 0, 1) is a ring. We shall denote this ring as
EndyM and call it the ring o