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FOURIER COEFFICIENTS OF MODULAR FORMS
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Abstract
We develop a theory of Fourier coefficients for modular forms on the split exceptional
groupG2 overQ.
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Introduction
One of the most surprising aspects of the classical theory of modular formsf on the
group SL2(Z) is the wealth of information carried by the Fourier coefficientsan( f )
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for n ≥ 0. The Fourier coefficients of Eisenstein series were calculated by E. Hecke
and C. Siegel and are instrumental in the study of zeta functions at negative integers.
The Fourier coefficients of theta series have been studied since the work of C. Jacobi;
they give many deep results on Euclidean lattices, such as the unicity of the Leech
lattice. Finally, the action of Hecke operators on Fourier coefficients goes back to
L. Mordell and allows one to show that the Mellin transform of an eigenform is an
L-function with Euler product. For an introduction to these basic results, the reader
can consult [Se1] or [R].

Siegel developed a theory of Fourier coefficientscN( f ) for holomorphic formsf
on the symplectic group Sp2g(Z). Here the coefficients, for forms of even weight, are
indexed by positive semidefinite, integral even quadratic spacesN of rankg. There is
an analogous theory for holomorphic forms on tube domains, where the Fourier coef-
ficients are indexed by orbits on integral elements in the corresponding homogeneous
cone.

On the other hand, one has a less refined notion of Fourier coefficients for a
general automorphic formf on a general reductive groupG. Given any parabolic
subgroupP = M · N of G and a unitary characterχ of N(A) trivial on N(Q), the
χ th Fourier coefficient off is the function onG(A) given by

fχ (g) =
∫

N(Q)\N(A)
f (ng) · χ(n)dn.

This notion of Fourier coefficients is useful for many purposes, such as the definition
of cusp forms, but sincefχ are functions rather than numbers, it is often difficult
to extract arithmetic information from them. For arithmetic applications it is thus
desirable to have a refined theory of Fourier coefficients analogous to that for the
holomorphic forms discussed above.

In this paper we develop such a theory of Fourier coefficients for certain mod-
ular forms on the exceptional Chevalley groupG2(Z). Here the symmetric space
X = G2(R)/SO4 does not have an invariant complex structure; there are thus no
holomorphic modular forms. The real components of the automorphic representa-
tions we consider are in the quaternionic discrete series (see [GW]). For forms of
even weight, we show that the Fourier coefficientscA( f ) are indexed by totally real
cubic ringsA: commutative rings with unit, which are free of rank 3 overZ and such
that theR-algebraA⊗ R is isomorphic toR3.

The definition of the Fourier coefficients requires some background on the
Heisenberg parabolic subgroupP ⊂ G2; this is provided in the first three sections.
We then determine the orbits of the Levi factor ofP which is isomorphic to GL2,
on the space of binary cubic forms. These orbits correspond to cubic rings, and the
orbits of primitive forms (namely, those for which the greatest common denominator
(gcd) of the coefficients is equal to 1) correspond to the Gorenstein cubic rings over
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Z. We then combine our results on orbits with a recent result of N. Wallach [W3], on
the uniqueness of certain linear forms on quaternionic discrete series representations
of G2(R), to give a definition ofcA( f ) in Section 8. Once the coefficients have been
defined, it is natural to ask if the Fourier coefficientscA( f ) determine the formf .
Unlike the case of modular forms on SL2(Z), this is not automatic, but we show in
Section 8 that it is the case iff is a cusp form.

As an illustration of the theory, we calculate the Fourier coefficients for Eisen-
stein series (Section 9) and analogs of theta series (Section 10). There is a natural
family of Eisenstein seriesE2k (of even weight 2k) which was first investigated by
D. Jiang and S. Rallis [JR]. Assuming an extension of their local results, we show
that for a maximal cubic ringA, the Ath Fourier coefficient of the Eisenstein series
E2k is the nonzero rational numberζA(1− 2k). The analogs of theta series are con-
structed via the dual pair correspondence arising from the restriction of the minimal
representation of the quaternionic form of the exceptional groupE8 (see [Ga1]). The
Ath Fourier coefficients of the analogs of theta series count embeddings of the ringA
into integral exceptional Jordan algebras, just as the coefficients of Siegel theta series
count embeddings of quadratic spaces overZ.

The rest of the paper studies the action of spherical Hecke operators on Fourier
coefficients. We give some background on the general theory in Section 11 and then
work out in Section 13 the relative Satake transform whenG = G2 and L = GL2

is the Levi factor of the Heisenberg parabolic subgroupP. Using this transform, we
determine the action of the two generators of the spherical Hecke algebra atp on the
Fourier coefficients. This involves the determination of single coset representatives
for the double cosets corresponding to the two generators, and the computations are
carried out in Section 14. The resulting formulas in Section 15 are analogs of the
well-known formula

an(Tp| f ) = anp( f )+ p2k−1an/p( f )

for the action of the Hecke operatorTp on the Fourier coefficients of a holomorphic
modular form f of weight 2k on SL2(Z). Finally, we show in the last section that if
f is a Hecke eigenform, then the primitive coefficients (i.e. those at Gorenstein cubic
rings) and the Hecke eigenvalues determine the rest of the coefficients and hencef (if
f is a cusp form). This is the analog of the classical result that iff is a holomorphic
cuspidal Hecke eigenform on SL2(Z), then f is determined bya1( f ) and its Hecke
eigenvalues.

1. Maximal parabolic subgroups
We begin by reviewing some material on maximal parabolic subgroups in simple
algebraic groups (cf. [Bo], [BoT], [Sp]). Let G be a simple algebraic group of adjoint
type over an algebraically closed fieldk. Let g = Lie(G), and letT ⊂ B ⊂ G be a
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maximal torus, contained in a Borel subgroup. Let1 be the set of simple roots forT
determined byB.

The maximal parabolic subgroupsP of G which containB are associated to
simple rootsα. If θ = 1 − {α}, andWθ is the subgroup of the Weyl group ofG
generated by the simple reflections inθ , thenP =

⋃
w∈Wθ

BwB. There is a unique
Levi factorL of P which containsT ; it has Lie algebra

Lie(L) = Lie(T)⊕
( ⊕

mα(β)=0

gβ

)
,

wheremα(β) is the multiplicity ofα in the rootβ, andgβ is the one-dimensional root
space corresponding toβ. The unipotent radicalU of P has Lie algebra

V = Lie(U ) =
⊕

mα(β)>0

gβ .

The center ofL, which is isomorphic toGm, acts onV and gives a grading ofk-vector
spaces

V =
⊕
n≥1

Vn, (1.1)

Vn =
⊕

mα(β)=n

gβ .

Each subspaceVn is a linear representation ofL, and the following proposition de-
scribes its structure.

PROPOSITION1.2
The representationVn of L is nonzero when1 ≤ n is less than or equal to the multi-
plicity of α in the highest rootβ0. In this case, the representationVn is indecompos-
able.

If the characteristicp of k is 2 or 3, and there are two rootsβ1 andβ2 which
satisfy

mα(β1) = mα(β2) = n,

||β1||
2
= p · ||β2||

2,

thenVn has a unique irreducibleL-submodule, generated by the short root spaces,
and the quotient module (which is generated by the long root spaces) is irreducible.
In all other cases, whenVn 6= 0, the representationVn of L is irreducible.

Proof
This is a consequence of the results of [ABS], which show that the restriction ofVn
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to the normalizer of a maximal torus inL has at most two irreducible constituents,
corresponding to the different lengths of rootsβ with mα(β) = n. The submodule is
then determined using a Chevalley basis ofg.

Now letβ0 be the highest root. IfG is not of typeA, there is a unique simple rootα
with 〈β∨0 , α〉 = 1. Furthermore,α has multiplicity 2 inβ0 and is a long root, provided
thatG is not of typeC. The associated maximal parabolic subgroupP ⊂ G is called
the Heisenberg parabolic, and the Lie algebraV of U has a 2-step gradation{

V = V1⊕ V2,

V2 = gβ0.
(1.3)

The Lie bracket gives an alternating form onV1, with values inV2, and hence gives
anL-linear map

f :
2∧

V1 −→ V2. (1.4)

PROPOSITION1.5
If the characteristicp of k is 2 and if G is of typeC, then f = 0 and the Lie algebra
V is abelian. In all other cases,f 6= 0.

Assume thatf 6= 0. If V1 is an irreducibleL-module, then the alternating formf
is nondegenerate, andV2 is the center ofV. If V1 contains a nontrivialL-submodule
Vshort

1 , then this is the radical of the alternating formf , andVshort
1 ⊕ V2 is the center

of V.

Proof
When char(k) = 2 andG is of typeC, all roots inV1 are short, and the Chevalley
relations show thatf = 0. In all other cases,α andα′ = β0 − α are long roots inV1

with f (α ∧ α′) = [α, α′] 6= 0.
If f 6= 0, the radical is anL-submodule ofV1 and hence is zero whenV1 is

irreducible. WhenV1 is reducible, we can use the bracket law on a Chevalley basis to
determine the radical off , and a direct computation proves the proposition.

2. The unipotent radical
We now use some results of M. Demazure [D, pp. 438 – 440] and J.-P. Serre [Se1, pp.
530 – 531] to convert our knowledge of the Lie algebraV = Lie(U ) =

⊕
n≥1 Vn to

information on the unipotent radicalU of P.
The unipotent groupU has a canonical filtration byL-stable, characteristic sub-

groups
U = U1 ⊃ U2 ⊃ · · · ⊃ Ud ⊃ {1},
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whereUi is the product of all root subgroupsUβ with mα(β) ≥ i . Note that in [D]
our subgroupUi is denotedUi−1, so thatU = U0. We have

Lie(Ui ) =
⊕
n≥i

Vn.

Demazure proved that the successive quotientsUi /Ui+1 are vector groups overk and
that theL-action on them isk-linear. Finally, he proved that these representations of
L are isomorphic to the representations ofL on thek-vector spaces

Lie(Ui /Ui+1) = Vi .

Hence, the results of the previous section show that they are indecomposablek[L]-
modules.

The commutator gives a map

Ui ×U j → Ui+ j .

Projecting to the quotientUi+ j /Ui+ j+1, we get anL-bilinear form

Ui /Ui+1×U j /U j+1→ Ui+ j /Ui+ j+1.

Results of Serre on the canonical exponential show that this form can be identified
with the Lie bracketVi × Vj → Vi+ j . Indeed, ifk has characteristic zero (or char-
acteristicp > h, the Coxeter number ofG), there is an isomorphism of unipotent
groups

exp : Lie(U ) −→ U,

where the group structure onV = Lie(U ) is given by the Campbell-Baker-Hausdorff
formula (see [B, Chap. II, §6])

v +H w = v + w +
1

2
[v,w] +

1

12

[
v, [v,w]

]
+

1

12

[
w, [w, v]

]
+ · · · .

The identity of the group Lie(U ) is v = 0, and the inverse ofv is −v. The iso-
morphism exp is characterized by the fact that its derivative is the identity map on
Lie(U ). Moreover, exp isL-equivariant, and the above shows that it can be defined
overQ. The exponential induces an isomorphism of subgroups Lie(Ui ) → Ui , and
the isomorphism

exp : Vi −→ Ui /Ui+1

overQ has no denominators. It thus gives an isomorphism of these vector groups over
Z and hence gives a canonicalL-isomorphism in all characteristics. Further, since

v +H w +H (−v)+H (−w) = [v,w] + · · · ,
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we see that the commutator map on the graded quotients is indeed the Lie bracket
map

Vi × Vj −→ Vi+ j .

In the case of the Heisenberg parabolicP, we have filtration

U = U1 ⊃ U2 = Uβ0 ⊃ {1}.

Translating the results of Proposition1.5, we have the following.

COROLLARY 2.1
If char(k) = 2 andG is of typeCn+1, thenL = G Sp2n andU is abelian of dimension
2n+1. In all other cases the commutator subgroup ofU is U2, andUab

= U/(U,U )
is isomorphic toV1 as anL-module. When thisL-module is irreducible (e.g., when
char(k) 6= 2,3), the center ofU is isomorphic toU2.

3. The Heisenberg parabolic inG2

We specialize the results of Sections 1 and 2 to the groupG = G2 and the Heisenberg
parabolicP. If the simple roots ofG are1 = {α, α′}with α long, thenP is associated
to α and the Levi factorL of P is isomorphic to GL2, with simple rootα′. We have
four root spaces contributing toV1,

{α, α + α′, α + 2α′, α + 3α′},

and a single root space
β0 = 2α + 3α′

contributing toV2.
The pairing

f :
2∧

V1→ V2

is nondegenerate, andV1 is irreducible, provided char(k) 6= 3. If the characteristic of
k is 3, then theL-submoduleVshort

1 is spanned by the two root spaces

{α + α′, α + 2α′}

and this submodule is the radical of the nonzero pairingf . In all cases,Uab ∼= V1 is
a 4-dimensional representation ofL.

PROPOSITION3.1
The representationL on the spaceHom(U,Ga) is isomorphic to the twisted repre-
sentation ofGL2 on the space of binary cubic forms

p(x, y) = ax3
+ bx2y+ cxy2

+ dy3
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overk, where

γ =

(
A B
C D

)
∈ GL2

acts by the formula

γ · p(x, y) =
1

det(γ )
· p(Ax+ Cy, Bx+ Dy).

Proof
Since Hom(U,Ga) = Hom(Uab,Ga), the representation ofL on the character group
is isomorphic toV∗1 . This is indecomposable, and when char(k) 6= 3, it is in fact
irreducible. Our identification of the unique submodule shows that Hom(U,Ga) ∼=

S3(k2) as representations ofLder∼= SL2. Since the center ofL acts by a fundamental
character onV1 and hence onV∗1 , we may choose an isomorphismL ∼= GL2 so that
the central element (

A 0
0 A

)
acts by multiplication byA. This gives the result.

Remarks.
(i) The twisted representation of GL2 on the space of binary cubic forms is faith-

ful, whereas the usual action has kernelµ3.
(ii) Under the choice of the isomorphismL ∼= GL2 in the above proof, the modu-

lus characterδP of P is given by

δP(g) = det(g)−3 for g ∈ L.

Here is another way to see that linear forms onV1 correspond to binary cubic forms
p(x, y). Define the cubic mappingθ : k2

→ V1⊗ det by the formula

θ(x, y) = x3eα + x2yeα+α′ + xy2eα+2α′ + y3eα+3α′ . (3.2)

Here〈eα,eα+α′,eα+2α′,eα+3α′〉 is a Chevalley basis, normalized by

[eα′,eα] = eα+α′,

[eα′,eα+α′] = 2eα+2α′,

[eα′,eα+2α′] = 3eα+3α′ .

A short computation shows that one can choose an isomorphismL ∼= GL2 so thatθ
is L-equivariant. Hence, linear formsp on V1 give cubic formsp ◦ θ(x, y) onk2.

A Borel subgroup ofL stabilizes a unique complete flag

0⊂ W1 ⊂ W2 ⊂ W3 ⊂ W4 = V1
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with dimWi = i . It also stabilizes a unique linel in the standard representationk2.
The lineW1 is equal toθ(l ); more generally, we have the following.

PROPOSITION3.3
A linear form p vanishes on the subspaceWi if and only if the corresponding cubic
form p ◦ θ onk2 vanishes to order greater than or equal toi on the linel .

Proof
It suffices to check this for the Borel subgroupB of upper triangular matrices which
stabilizes the linel = 〈(x,0)〉 since all the Borel subgroups are conjugate. The com-
plete flag inV∗ stabilized byB is given by

0⊂ 〈x3
〉 ⊂ 〈x3, x2y〉 ⊂ 〈x3, x2y, xy2

〉 ⊂ V∗1 .

Hence, the linear formsp vanishing onW1 are those of the formax3
+ bx2y+ cxy2,

which vanish to order greater than or equal to 1 onl . The p vanishing onW2 are those
of the formax3

+bx2y, and these cubic forms vanish to order greater than or equal to
2 on l . Finally, thep vanishing onW3 have the formax3 and vanish to order greater
than or equal to 3 onl .

We now considerG = G2 as a Chevalley group overZ, with Heisenberg parabolic
P = L ·U . The Levi factor is now isomorphic to the group scheme GL2 overZ, and
V1 andV2 are freeZ-modules (of ranks 4 and 1) on whichL acts. By our results over
fields, the bracketf :

∧2 V1 → V2 is surjective,[U,U ] ∼= Uβ0, and Hom(U,Ga)

is isomorphic to the freeZ-module Hom(V1,Ga) = Hom(U (Z),Z). We have shown
the following (cf. [Sp, pp. 160 – 161]).

PROPOSITION3.4
The representation ofL(Z) on the moduleHom(U (Z),Z) is isomorphic to the twisted
representation ofGL2(Z) on the space of binary cubic forms overZ.

Thus, the set ofL(Z)-orbits on Hom(U (Z),Z) is in canonical bijection with the set
of GL2(Z)-orbits on the space of binary cubic forms. In the next section we identify
these orbits with the isomorphism classes of ringsA of rank 3 overZ.

4. Binary cubic forms and cubic rings
We recall that the twisted action of

γ =

(
A B
C D

)
∈ GL2(Z)
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on the element
p(x, y) = ax3

+ bx2y+ cxy2
+ dy3

in the space of binary cubic forms with integer coefficients is given by

γ · p(x, y) =
1

det(γ )
· p(Ax+ Cy, Bx+ Dy). (4.1)

As remarked earlier, this twisted action is faithful. In this section we parametrize the
GL2(Z)-orbits.

We say that a commutative, associative ringA (with unit 1) is acubic ring if A is
a freeZ-module of rank 3.

PROPOSITION4.2
There is a bijection, given below, between the set ofGL2(Z)-orbits on the space of
binary cubic forms with integer coefficients and the set of isomorphism classes of
cubic ringsA.

Proof
If A is a cubic ring, choose a basisA = Z ·1+Z ·α+Z ·β overZ. By adding integers
to α andβ, we may arrange that the product

αβ = n

lies in Z. Call this agood basisfor A (cf. [DF, pp. 103 – 105]). We first establish a
bijection between cubic rings with a good basis (up to isomorphism) and binary cubic
forms.

A cubic ring with a good basis is determined up to isomorphism by the products
αβ = n,

α2
= m+ bα − aβ,

β2
= l + dα − cβ,

(4.3)

with a,b, c,d, l ,m,n in Z. SinceA is associative,we have

α2
· β = α · αβ,

α · β2
= αβ · β.

Writing these out, we find that 
n = −ad,

m= −ac,

l = −bd,

(4.4)
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but that the integers(a,b, c,d) are arbitrary. ToA with the good basis(1, α, β), we
associate the binary cubic formp(x, y) = ax3

+bx2y+ cxy2
+dy3, and to the form

p, we associate the cubic ring with multiplication given by (4.3) and (4.4). This is the
first bijection.

Now consider the operation where a good basis(1, α, β) of A is replaced by
another good basis(1, α′, β ′). Write 1 0 0

u A B
v C D

 1
α

β

 =
 1
α′

β ′


with

γ =

(
A B
C D

)
∈ GL2(Z),

andu andv integers determined byγ (and the fact thatα′β ′ = n′ is an integer). After
some calculation, best suppressed here, we find that the form

p′(x, y) = a′x3
+ b′x2y+ c′xy2

+ d′y3

associated to(1, α′, β ′) is equal toγ · p. This completes the proof of the proposition.

As an example, the orbit ofp = (0,0,0,0) gives the cubic ring

A = Z[α, β]/(α2, β2, αβ),

and the orbit ofp = (1,0,0,0) gives the cubic ring

A = Z[α]/(α3).

Remarks.P. Deligne has observed that the bijection of orbits and rings established in
Proposition4.2holds over any base schemeS. There is an equivalence of categories
between the following two kinds of objects, with morphisms being the isomorphisms:
(a) a vector bundleV of rank 2 with p in Sym3(V)⊗

∧2
(V)−1;

(b) a vector bundleA of rank 3 with a (commutative) algebra structure.
The key point is that we are not looking at the action of GL(V) on binary cu-

bic forms (i.e., on elements of Sym3(V)) where the subgroupµ3 in the center acts
trivially, but at the twisted action on Sym3(V)⊗

∧2
(V)−1, which is faithful.

The invariants and covariants of the formp(x, y), studied in the nineteenth century
by G. Eisenstein, C. Hermite, and others (see [DF, p. 167]), can all be given in terms
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of the cubic ringA (see the recent article [HM]). For example, the discriminant1 of
p(x, y), defined by

1 = b2c2
+ 18abcd− 4ac3

− 4db3
− 27a2d2, (4.5)

is equal to the discriminant ofA overZ. Indeed, if Tr: A→ Z is the trace form, we
have

disc(A/Z) = det

 Tr(1) Tr(α) Tr(β)
Tr(α) Tr(α2) Tr(αβ)
Tr(β) Tr(αβ) Tr(β2)


for anyZ-basis(1, α, β) of A. Using a good basis, we find

Tr(1) = 3,

Tr(α) = b,

Tr(β) = −c,

Tr(α2) = b2
− 2ac,

Tr(β2) = c2
− 2bd,

Tr(αβ) = −3ad.

From this we obtain the identity disc(A/Z) = 1.
Eisenstein defined a quadratic covariant ofp(x, y):

q(x, y) = (b2
− 3ac)x2

+ (bc− 9ad)xy+ (c2
− 3bd)y2. (4.6)

We have
disc(q) = −31,

andq is positive definite when1 > 0. If p(x, y) is associated toA with a good basis
(1, α, β), and we write

γ = xα + yβ =
Tr(γ )

3
+ γ0

with γ0 ∈ (1/3) · A of trace zero, then we have

q(x, y) =
3

2
Tr(γ 2

0 ). (4.7)

Similarly, Hermite defined a cubic covariant ofp(x, y):

n(x, y) = (2b3
− 9abc+ 27a2d)x3 (4.8)

+ (3b2c− 9ac2
+ 27abd)x2y

+ (−3bc2
+ 18b2d − 27acd)xy2

+ (−2c3
+ 9bcd− 27ad2)y3,
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with
1(n) = 36

·13.

With the above notation, we have the formula

n(x, y) = 27 · N(γ0). (4.9)

The relation between the covariants (of degree 6),

n(x, y)2+ 27 ·1 · p(x, y)2 = 4 · q(x, y)3,

follows from the formula for the discriminant ofγ0 in terms of the coefficients of its
characteristic polynomial.

5. Primitivity and Gorenstein cubic rings
One invariant of the GL2(Z)-orbit of p(x, y) is the contente ≥ 0 of the form p,
defined as the nonnegative generator of the idealZa + Zb+ Zc+ Zd of Z. We say
that p(x, y) is primitive if e= 1. Every nonzero formp may be written uniquely as

p = e · p0 (5.1)

with e≥ 1 the content ofp, andp0 primitive. If the cubic ringA corresponds to the
GL2(Z)-orbit of p(x, y), then we also say thatA has contente.

We say that the cubic ring is Gorenstein if theA-module Hom(A,Z) is projective.
For example, ifA = Z[γ ] is generated by a single element, it is Gorenstein. Indeed,
Hom(A,Z) = A · f is free, with basis given by the map

f (1) = 0,

f (γ ) = 0,

f (γ 2) = 1.

PROPOSITION5.2
The formp(x, y) is primitive if and only if the associated cubic ringA is Gorenstein.
If p = e · p0 with e≥ 1, thenA = Z+ eA0.

Before proving this result, we give a useful description of the function|p(x, y)|, using
the rank 2Z-moduleA/Z.

LEMMA 5.3
The elementγ = mα + nβ (modZ) in A/Z generates a subring of finite index inA
if and only if p(m,n) 6= 0. In this case,|p(m,n)| is the index ofZ[γ ] in A.
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Proof
Since

γ 2
= m2α2

+ 2mnαβ + n2β2
+ k(mα + nβ)+ l ,

wherek andl are integers, we have

γ 2
≡ (bm2

+ dn2
+ km)α + (−am2

− cn2
+ kn)β

in A/Z.
The index ofZ[γ ] in A is finite if and only if the matrix

M =

(
m bm2

+ dn2
+ km

n −am2
− cn2

+ kn

)
has nonzero determinant, in which case the index is|det(M)|. Since det(M) =
−p(m,n), the lemma is proved.

Proof of Proposition5.2
Let l be a prime number, and putAl = A⊗ Zl . We show thatp(x, y) 6= 0 (modl ) is
equivalent to the fact that Hom(Al ,Zl ) is a freeAl -module.

If p(x, y) ≡ 0 (modl ), then the ring

A/ l A = Z/ lZ[α, β]/(α2, β2, αβ)

is not Gorenstein overZ/ lZ. Indeed, it is a local ring with maximal idealm= (α, β).
Sincem2

= 0, the kernel ofm on A/ l A has dimension 2, butA/m has dimension 1.
Now assume thatp(x, y) 6= 0 (modl ). Sincep has at most three distinct roots

(modl ), we can find(m,n) ∈ Z2
l such thatp(m,n) is a unit inZl , unlessl = 2 and

p(x, y) is equivalent to the formx2y− xy2 overZ2. In the latter case,A2 ∼= Z3
2, and

Hom(A2,Z2) ∼= A2 by the trace form. So we may assume thatp(m,n) is a unit in
Zl . By Lemma5.3, Al = Zl [γ ] with γ = mα + nβ. Hence, Hom(Al ,Zl ) is a free
module by the remarks preceding Proposition5.2. This proves the first assertion in
Proposition5.2.

If (1, α0, β0) is a good basis forA0, with form p0(x, y), then(1, α = eα0, β =

eβ0) is a good basis forA = Z + eA0. The associated form isp = e · p0 by the
formulas in(4.3). This proves the second asssertion of Proposition5.2.

For our calculations with Hecke operators in Section15, we need a local variant of the
contente. We say that thep-depth ofA is n if e is divisible by pn and not bypn+1.
Assume, for the rest of the section, that thep-depth ofA is zero. LetAn = Z+ pn A
which hasp-depthn, and letq(x, y) be a binary cubic form in the orbit corresponding
to A. For all n ≥ 0, the abelian groupAn/An+1 is isomorphic to(Z/pZ)2, so there
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are(p+ 1) free abelian groupsB with An+1 ⊂ B ⊂ An. How many of these lattices
are cubic rings?

PROPOSITION5.4
There is one-to-one correspondence between the solutions ofq(x, y) ≡ 0 (mod p)
and the cubic ringsB with A1 ⊂ B ⊂ A.

If n ≥ 1, any latticeB with An+1 ⊂ B ⊂ An is a cubic ring.

Proof
Let 〈1, α, β〉 be the good basis forA corresponding to the cubic formq(x, y). Any
lattice B betweenA1 and A is spanned by 1,pα, pβ, and an additional element
aα+bβ for some integersa andb (which are well defined (modp)). One checks that
B is a ring if and only ifq(a,b) = 0 (mod p). The statement forn ≥ 1 is clear.

Note that the cubic ringsB betweenAn+1 and An may be mutually isomorphic. For
example, whenA = Z3, then the three cubic ringsB betweenA1 andA are abstractly
isomorphic.

PROPOSITION5.5
Let B be a ring such thatAn+1 ⊂ B ⊂ An. Then thep-depth ofB lies betweenn− 1
andn+2. If the p-depth ofB is n−1+ i , thenq(x, y) (mod p) has a zero of orderi .

Proof
We can find a good basis〈1, α, β〉 of A such that〈1, pnα, pn+1β〉 is a good basis of
B. If q(x, y) = ax3

+ bx2y+ cxy2
+ dy3 is the cubic form associated to the above

good basis forA, the cubic form associated to the above good basis forB is

apn−1x3
+ bpnx2y+ cpn+1xy2

+ dpn+2y3.

The first assertion now follows from the fact thatA has p-depth zero. Moreover, if the
form attached toB is divisible by pn−1+i , then(1,0) is a zero ofq(x, y) (mod p) of
orderi .

COROLLARY 5.6
If A/pA is a cubic field andB is a cubic ring such thatAn+1 ⊂ B ⊂ An, then the
p-depth ofB is n− 1.

Fix an arbitrary cubic ringA′ (not necessarily ofp-depth zero) and a binary cubic
form q′(x, y) in the GL2(Z)-orbit corresponding toA′. We conclude this section by
describing another way of parametrizing the cubic ringsB that contain or are con-
tained inA′ with index p.
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By base extension, the action of GL2(Z) on the binary cubic forms overZ gives
rise to a rational representation of GL2(Q) on theQ-vector space of binary cubic
forms overQ. Further, one has the analog of Proposition4.2 overQ, with the same
proof. Now we have the following.

PROPOSITION5.7
(i) Let S1 be the set of left cosetsGL2(Z)γ contained in

GL2(Z)
(

p
1

)
GL2(Z).

Then there is a natural bijection between{
GL2(Z)γ ∈ S1 : γ · q

′ has integer coefficients
}

and the set of cubic ringsB such thatB ⊂p A′.
(ii) Let S2 be the set of left cosetsGL2(Z)γ contained in

GL2(Z)
(

1
p−1

)
GL2(Z).

Then there is a natural bijection between the set{GL2(Z)γ ∈ S2 : γ ·

q′ has integer coefficients} and the set of cubic ringsB such thatA′ ⊂p B.

Proof
(i) Suppose that the binary cubic formq′ corresponds to the good basis{1, α, β} of
A′. Every

γ =

(
A B
C D

)
∈ GL2(Z)

(
p

1

)
GL2(Z)

determines a lattice

Lγ = 〈1, Aα + Bβ,Cα + Dβ〉 ⊂p A′.

The latticeLγ depends only on the left coset GL2(Z)γ , so that there is a bijection
betweenS1 and the set of latticesL ⊂p A′. The latticeLγ is a ring if and only
if q′(A, B) ≡ q′(C, D) ≡ 0 (mod p). On the other hand, a simple but somewhat
tedious calculation shows thatγ ·q′ has integer coefficients if and only ifq′(A, B) ≡
q′(C, D) ≡ 0 (mod p). Further, in this case the integral binary cubic formγ · q′

corresponds to the cubic ringLγ . This proves (i).
(ii) The proof is similar to that for (i); we omit the details.
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6. Quaternionic discrete series
We now consider the restriction of certain discrete series representation of the real Lie
groupG2(R) to the Heisenberg parabolic subgroup. Wallach has recently studied this
situation in a more general setting (see [W3]), and we simply state his results forG2

here.
The discrete seriesπk we consider here were discussed in [GW]. They are

parametrized by integersk ≥ 2 and have infinitesimal characterρ + (k − 2)β0, with
β0 the highest root. In this paperπk denotes the Casselman-Wallach globalization,
which is a smooth Fŕechet representation of moderate growth (cf. [C], [W2], [W1]).
The maximal compact subgroupK of G2(R) is SU4 = (SU2×SU2)/〈±1〉, with the
long root SU2 as the first factor. The representationπk is admissible for the long root
SU2, and its underlying Harish-Chandra module decomposes as aK -module:

(πk)K ∼=
⊕
n≥0

S2k+n(C2)⊗ Sn(S3C2).

The minimalK -type is the representation

S2k
⊗ S0 of (SU2×SU2)/〈±1〉,

of dimension 2k + 1. Finally, the subgroupK0 = U2 = (U1 × SU2)/〈±1〉 of K has
highest weight(det)k on the minimalK -type. Moreover, the representationsπk are
nongeneric: they have Gelfand-Kirillov dimension 5.

We also have the continuation of quaternionic discrete seriesπ0 andπ1 con-
structed in [GW]. They have the same properties as the representationsπk above,
although the infinitesimal charactersρ − β0 andρ − 2β0 are no longer regular. The
representationπ1 is a limit discrete series, andπ0 has a trivial minimalK -type. Both
are unipotent in the sense of D. Vogan [V].

Following the techniques in [GW, §6], one can show thatπk is a submodule of a
degenerateC∞-principal series representation IndG2(R)

P(R) λk, with λk a 1-dimensional
representation ofP(R)/U (R) ∼= GL2(R). Indeed, we have

λk = (sign)k · | det|−k−1,

where(sign) is the unique quadratic character of GL2(R). Here we recall that we have
chosen an isomorphismL ∼= GL2 so that the modulus character ofP is δP = det−3.

The real vector space Hom(U (R),R) is isomorphic to the group of characters
Hom(U (R), S1) under the map takingf to χ = e2π i f . This isomorphism takes the
lattice Hom(U (Z),Z) to the subgroup of charactersχ that are trivial onU (Z). This
subgroup is a representation ofL(Z), isomorphic to the action of GL2(Z) on the space
of binary cubic forms with integer coefficients.

The full character group is a representation ofL(R) ∼= GL2(R), isomorphic to
the representation on the space of binary cubic forms with real coefficients. We say
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a characterχ of U (R) is genericwhen the cubic formp(x, y) associated toχ has
discriminant1 6= 0. The generic characters break up into twoL(R)-orbits: those
with 1 > 0, corresponding to the real cubic algebraR3, and those with1 < 0,
corresponding to the cubic algebraR×C. A representativeχ for the orbit with1 > 0
is given byχ = e2π i f , where f : U (R)→ R is nonzero on the two short root spaces
gγ with mα(γ ) = 1, and zero on the two long root spaces withmα(γ ) = 1.

The following is Wallach’s result forG2.

PROPOSITION6.1
Letχ be a generic character ofU (R), and letk ≥ 0.

If 1(χ) < 0, then the complex vector space of continuous linear maps
HomU (R)(πk,C(χ)) is zero.

If 1(χ) > 0, then the complex vector space of continuous linear maps
HomU (R)(πk,C(χ)) is 1-dimensional, and it affords the representation(sign)k for
63 = Stab(χ) ⊂ GL2(R).

7. Modular forms on G2 of weight k
We fix a quaternionic discrete series representationπk of G2(R) with k ≥ 2, or a
continuation withk = 0 or 1. LetA be the space of automorphic forms onG2. More
precisely,A is the space of smooth functionsϕ on the adelic group

G2(A) = G2(R)× G2(Q̂)

which satisfy the following conditions:
(i) ϕ is left-invariant underG2(Q);
(ii) ϕ is right-invariant under some open compact subgroupK f of G2(Q̂);
(iii) ϕ is annihilated by an idealJ of finite codimension inZ(g), the center of the

universal enveloping algebra of the Lie algebrag of G2(R);
(iv) ϕ is of uniform moderate growth onG2(R) (cf. [BoJ], [W2, p. 252]).

Note that this definition ofA differs from that in much of the literature since we
are not assuming thatϕ is K -finite; instead, letAK be the subspace ofA consisting of
K -finite functions. As a result,A is a representation of the adelic groupG2(A). For
fixed K f and J, let A (J, K f ) be the subspace ofA consisting of those functions
ϕ for which conditions (ii) and (iii) are satisfied with respect to the givenJ and
K f . As shown in [W2], A (J, K f ) is a smooth Frechet representation ofG2(R) of
moderate growth. By a fundamental theorem of Harish-Chandra (cf. [BoJ, Th. 1.7]),
its underlying(g, K )-moduleA (J, K f )K is admissible and finitely generated. Thus,
A (J, K f ) is the Casselman-Wallach globalization ofA (J, K f )K by results of [C]
and [W1]. Let A0 ⊂ A be the subspace of cusp forms. We now give the following
definition.
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Definition
The space of modular forms of weightk and level 1 forG2 is the complex vector
space

Mk = HomG2(R)×G2(Ẑ)(πk ⊗ C,A ). (7.1)

The subspace of cusp forms is

M0
k = HomG2(R)×G2(Ẑ)(πk ⊗ C,A0). (7.2)

By the fundamental theorem of Harish-Chandra alluded to above,Mk is finite-
dimensional. Moreover, it affords a representation of the spherical Hecke algebra

H
(
G2(Q̂)//G2(Ẑ)

)
∼=

⊗̂
l

H
(
G2(Ql )//G2(Zl )

)
.

In Sections 9 and 10 we give some examples of elements ofMk, and in Section 15 we
study the action ofH (G2(Q̂)//G2(Ẑ)) on Mk in greater detail.

8. Fourier coefficients
In this section we define, for anyf ∈ Mk, a collection of Fourier coefficientscA( f ) ∈
C. The coefficients are indexed by those cubic ringsA with A⊗R = R3 and depend
linearly on f .

For vectorsv ∈ πk, we may view f (v) as a function on the double coset space

G2(Q)\G2(A)/G2(Ẑ),

which is identified with the single coset space

G2(Z)\G2(R)

by the strong approximation theoremG2(Q̂) = G2(Q) · G2(Ẑ). Letχ be a character
of U (R) which is trivial onU (Z), and define a continuous linear form onπk by the
integral

lχ (v) =
∫

U (Z)\U (R)
f (v)(u)χ(u)du. (8.1)

Heredu is a Haar measure on the unipotent groupU (R), and the quotientU (Z)\U (R)
is compact.

PROPOSITION8.2
The linear formlχ lies in the complex vector spaceHomU (R)(πk,C(χ)). If χ ′ = γ ·χ
with γ in L(Z), thenlχ ′ = γ · lχ .
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Proof
For g ∈ U (R) we must show thatlχ (gv) = χ(g)lχ (v). But f (gv) is the function on
G2(Z)\G2(R) defined by

f (gv)(h) = f (v)(hg).

Hence,

lχ (gv) =
∫

U (Z)\U (R)
f (gv)(u)χ(u)du

=

∫
U (Z)\U (R)

f (v)(ug)χ(u)du

=

∫
U (Z)\U (R)

f (v)(u′)χ(u′g−1)du′ (u′ = ug,du′ = du)

= χ(g)lχ (v),

as required. Now assume thatχ ′ = γ · χ with γ in L(Z), so that

χ ′(u) = χ
(
γ−1(u)

)
= χ(γ−1uγ ).

Then

lχ ′(v) =
∫

U (Z)\U (R)
f (v)(u)χ ′(u)du

=

∫
U (Z)\U (R)

f (v)(u)χ(γ−1uγ )du

=

∫
U (Z)\U (R)

f (v)(γu′γ−1)χ(u′)du′ (u′ = γ−1uγ,du′ = du)

=

∫
U (Z)\U (R)

f (γ−1v)(u′)χ(u′)du

= lχ (γ
−1v) = γ · lχ (v).

If 1(χ) < 0, lχ = 0 by Proposition6.1. If 1(χ) > 0, lχ lies in the 1-dimensional
complex vector space HomU (R)(πk,C(χ)). Fix a characterχ0 with 1(χ0) > 0,
and a basis vectorl0 of HomU (R)(πk,C(χ0)). Sinceχ is in the L(R)-orbit of χ0,
we may writeχ = g · χ0 with g ∈ L(R) well defined up to right multiplication
by 63 = Stab(χ0). If k is even, this finite group fixesl0. If k is odd,63 acts on
HomU (R)(πk,C(χ0)) by the sign character. In any case, the linear formλk(g) · (g · l0)
gives a well-defined basis element of HomU (R)(πk,C(χ)). Hence, we may write

lχ = cχ ( f ) · λk(g) · (g · l0) (8.3)

for some constantcχ ( f ).
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If the weightk is even, it follows by Proposition8.2 thatcχ ( f ) depends only on
the L(Z)-orbit of the characterχ . We have seen in Propositions3.4 and4.2 that the
L(Z)-orbits of suchχ ’s are indexed canonically by the cubic ringsA with disc(A) >
0, so thatA⊗R = R3. Hence, if the orbit ofχ corresponds toA, we writecA( f ) for
the constantscχ ( f ) in this orbit and callcA( f ) the Ath Fourier coefficient off .

Whenk is odd, it is no longer the case that the constantcχ ( f ) depends only on
the L(Z)-orbit of χ . Indeed, ifχ ′ = γ · χ , whereγ ∈ L(Z), an easy calculation
shows thatcχ ′( f ) = det(γ ) · cχ ( f ). As a consequence,cχ ( f ) depends not only on
the cubic ringA (which indexes the orbit ofχ ), but also on an orientation ofA, that is,
the choice of a basis elemente of

∧3 A. Hence, whenk is odd, we denote the Fourier
coefficients of f by cA,e( f ). SincecA,−e( f ) = −cA,e( f ), we abuse notation and
write cA( f ) for the pair of numbers±cA,e( f ). It is interesting to note that a similar
complication arises for the Siegel modular forms of odd weight.

If we replace the basisl0 by the basisl ′0 = αl0, then

cA( f ) = αc′A( f )

for all A. Also, it follows from definition that

cA(α f + βg) = αcA( f )+ βcA(g).

Whenk is odd, we havecA( f ) = 0 whenever the stabilizer ofχ in GL2(Z) contains
an involution, for example, whenA = Z+ B with B an order in a quadratic field.

Having defined the Fourier coefficientscA( f ) for modular formsf ∈ Mk, we can
ask a number of natural questions. The first question that suggests itself is whetherf
is determined by its Fourier coefficients. We can show that this is true for cusp forms.

PROPOSITION8.4
If f ∈ M0

k is a cusp form andcA( f ) = 0 for all A, then f = 0.

The proof of this proposition makes use of the other standard maximal parabolic
subgroupQ = M · N of G overZ. Hence, we begin by describing the structure ofQ
briefly. Its Levi factorM is isomorphic to GL2, and its unipotent radicalN is a 3-step
nilpotent group overZ:

N = N1 ⊃ N2 ⊃ N3 ⊃ {1}.

This filtration is the one introduced in Section 2 for a general maximal parabolic sub-
group. The centerN3 of N is 2-dimensional, and one can choose an isomorphism
M ∼= GL2 so that the action ofM on Hom(N3,Ga) is the standard representation
of GL2 twisted by the determinant character. Similarly,W1 ∼= N1/N2 is also 2-
dimensional, and the action ofM on Hom(W1,Z) is the standard representation of
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GL2. Note thatU ∩ N is the 4-dimensional commutator subgroup of the unipotent
radical of the Borel subgroupB = P ∩ Q. Moreover, we have the inclusions{

U2 ⊂ N3,

N2 ⊂ U ∩ N,

where we recall from Section 2 thatU2 = [U,U ] is the center of the unipotent radical
U of P.

Proof of Proposition 8.4
Take any nonzerov ∈ πk, and letϕ = f (v) ∈ A0. Using strong approximation, we
regardϕ as a function onG2(Z)\G2(R). Note thatϕ is a nongeneric cusp form and
that we need to show thatϕ = 0. We first note the following lemma.

LEMMA 8.5
The automorphic formϕ vanishes if and only if its constant term alongU2,

ϕU2(g) =
∫

U2(Z)\U2(R)
ϕ(ug)du, g ∈ G2(R),

vanishes as a function onG(R).

Proof
Clearly, if ϕ vanishes, so doesϕU2. To prove the converse, consider the Fourier ex-
pansion ofϕ along the compact abelian groupN3(Z)\N3(R),

ϕ(g) =
∑
ψ

ϕψ (g),

where the sum extends over the charactersψ ∈ Hom(N3(Z)\N3(R), S1), and

ϕψ (g) =
∫

N3(Z)\N3(R)
ϕ(ng) · ψ(n)dn.

If ϕU2 = 0, thenϕψ = 0 for anyψ that restricts to the trivial character on the subgroup
U2(R). But any other character ofN3(Z)\N3(R) is conjugate underM(Z) to aψ of
the above type. Hence,ϕψ = 0 for allψ , and the lemma is proved.

To prove Proposition8.4, it remains to show thatϕU2 = 0. For anyg ∈ G(R), the
function

u 7→ ϕU2(ug) for u ∈ U (R)
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descends to a function onV1(R), whereV1 ∼= U/U2. Considering the Fourier expan-
sion ofϕU2 along the compact abelian groupV1(Z)\V1(R), we have

ϕU2(g) =
∑
χ

ϕχ (g),

where the sum is over the charactersχ ∈ Hom(V1(Z)\V1(R), S1), and

ϕχ (g) =
∫

V1(Z)\V1(R)
ϕU2(vg) · χ(v)dv.

Proposition6.1implies thatϕχ = 0 for allχ satisfying1(χ) < 0, and by assumption,
ϕχ = 0 for thoseχ such that1(χ) > 0. Hence, to show thatϕU2 vanishes, it remains
to see thatϕχ = 0 for degenerateχ , that is, those for which1(χ) = 0.

We have yet to use the fact thatϕ is a nongeneric cusp form. This is equivalent to
the assertion that the constant termϕU∩N of ϕ alongU∩N vanishes identically. To see
this, consider the Fourier expansion ofϕU∩N alongUab

B = (U ∩ N)\UB, whereUB

is the unipotent radical of the Borel subgroupB. We deduce thatϕ is cuspidal if and
only if (ϕU∩N)ψ = 0 for any degenerate characterψ of Uab

B (Z)\U
ab
B (R) (i.e., those

ψ that restrict to the trivial character of the root subgroup corresponding to one of the
two simple roots). On the other hand,ϕ is nongeneric if and only if(ϕU∩N)ψ = 0
for any nondegenerate characterψ . Hence,ψ is a nongeneric cusp form if and only
if (ϕ)U∩N = 0.

We now claim that in factϕN2 is already identically zero. To see this, we consider
its Fourier expansion alongW1(Z)\W1(R), whereW1 ∼= N1/N2:

ϕN2(g) =
∑
φ

(ϕN2)φ(g).

The fact thatϕU∩N = 0 implies that(ϕN2)φ = 0 for anyφ that restricts to the trivial
character on the subgroupU (R) ∩ N(R). But any other character is conjugate under
M(Z) to aφ of the above type. Hence, we conclude thatϕN2 = 0. In particular, this
implies thatϕχ = 0 for any characterχ ∈ Hom(V1(Z)\V1(R), S1) which restricts to
the trivial character ofN2(R) ⊂ U (R).

Finally, we observe that any degenerate characterχ is conjugate underL(Z) to
a character that is trivial onN2(R), and henceϕχ = 0 for all χ . Proposition8.4 is
proved completely.

We conclude this section with another question: Are there bounds for the Fourier co-
efficients of f in terms of the discriminants of the cubic rings? Recall that the discrim-
inant disc(A) of a cubic ringA is as defined in Section4. The following proposition
gives the analog of the Hecke bound for cusp forms.
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PROPOSITION8.6
Let f ∈ M0

k be a cusp form. Then for any totally real cubic ringA,

|cA( f )| ≤ C f · |disc(A)|(k+1)/2

for some constantC f depending only onf .

Proof
Recall that the Fourier coefficientcA( f ) is defined by equation (8.3):

lχ = cA( f ) · λk(g) · (g · l0),

whereχ = g · χ0 is a character in the GL2(Z)-orbit corresponding toA. Assume
without loss of generality that1(χ0) = 1. (Here,1(χ0) is as defined in (4.5).) Then
we see that

|disc(A)| = | det(g)|2.

Pick anyv0 ∈ πk such thatl0(v0) = 1. Evaluating the above equation at the vector
g · v0, we obtain

|cA( f )| = |lχ (g · v0)| · | disc(A)|(k+1)/2.

On the other hand, asf is cuspidal,f (v0) is bounded as a function onG2(Z)\G2(R).
Since

lχ (g · v0) =

∫
U (Z)\U (R)

f (v0)(ug) · χ(u)du,

we conclude that|lχ (g · v0)| is bounded above by a constant independent ofA. The
proposition is proved.

9. Eisenstein series of weight2k ≥ 4
To show that the theory of Fourier coefficients developed above is nonempty, we give
some examples of modular forms of weightk and study their Fourier coefficients.
In this section we consider a natural family of Eisenstein seriesE2k of even weight
2k ≥ 4, and we show under some hypotheses that their Fourier coefficients are given
by

cA(E2k) = ζA(1− 2k)

for maximal cubic ringsA.
As we mentioned before, there is an embedding

i : π2k ↪→ IndG2(R)
P(R) λ2k,

which is well defined up to scaling. The characterλ2k is the archimedean component
of a global character

χk : P(A)→ C×,
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which is unramified at every finite place; indeed, one has

χk = |det|−2k−1.

We can thus consider the global induced representation

I (k) = IndG2(A)
P(A) χk =

⊗̂
v

Iv(k).

For a finite primel , let 0k,l be the unique vector inIl (k) which is fixed byG2(Zl ),
and which satisfies0k,l (1) = 1. Forϕ ∈ πk, set

ϕ̂ = i (ϕ)⊗
(⊗

l

0k,l

)
∈ I (k),

and form the Eisenstein series

E(ϕ̂, g) =
∑

γ∈P(Q)\G2(Q)
ϕ̂(γg) (9.1)

for g ∈ G2(R). This converges absolutely when 2k > 2, and defines an element ofA

which is right-invariant underG2(Ẑ). Thus, the map

E2k : ϕ 7→ E(ϕ̂, g)

defines a nonzero element ofM2k.
We now consider the Fourier coefficients ofE2k. Much computation has been

done by D. Jiang and S. Rallis [JR] in the adelic setting, and we begin by recalling
their results. Letχ be a character ofU (R)which is trivial onU (Z). By strong approx-
imation we can regardχ as a character ofU (A) which is trivial onU (Q) andU (Ẑ).
Consider the automorphic formE(g) = E(ϕ̂, g), defined by (9.1), for ϕ̂ ∈ I (k). We
then computelχ (ϕ) following the approach of [JR]:

lχ (ϕ) =
∫

U (Q)\U (A)
E(u) · χ(u)du

=

∫
U (Q)\U (A)

( ∑
γ∈P(Q)\G2(Q)

ϕ̂(γu)
)
· χ(u)du.

Now the double coset spaceP(Q)\G2(Q)/P(Q) has four representatives, say,
w0, w1, w2, w3, with

P(Q)w0P(Q) = P(Q)w0U (Q)

the openP-orbit. Hence,

lχ (ϕ) =
3∑

i=0

∫
U (Q)\U (A)

( ∑
γ∈P(Q)\P(Q)wi P(Q)

ϕ̂(γu)
)
· χ(u)du.
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Jiang and Rallis showed that the only nonzero term in the sum overwi is the term
corresponding tow0. Hence,

lχ (ϕ) =
∫

U (A)
ϕ̂(w0u) · χ(u)du

=

( ∫
U (R)

ϕ(w0u) · χ(u)du
)
·

(∏
p

∫
U (Qp)

0p(w0up) · χ(up)dup

)
,

an absolutely convergent Euler product. Now we have the following (see [JR, Th. 2]).

PROPOSITION9.2
Assume thatχ corresponds to a maximal cubic ringA. If A ⊗ Qp is one of the
following,

Qp ×Qp ×Qp,

Qp × K , whereK is the unramified quadratic extension ofQp and p 6= 2,

the unramified cubic extension ofQp with Qp containing all cube roots of unity,

then ∫
U (Qp)

0p(w0up) · χ(up)dup = cp · ζA⊗Zp(2k),

wherecp is an explicit universal constant independent ofA.

For the rest of the section, we assume that the formula in Proposition9.2 holds for
all finite primes and use this to compute the Fourier coefficientscA(E2k) of E2k for
maximalA. Hence, after a rescaling, we have

lχ (ϕ) = ζA(2k) ·
∫

U (R)
ϕ(w0u) · χ(u)du,

and it remains to examine the archimedean factor. The archimedean integral converges
for k ≥ 1, and the linear form

ϕ 7→

∫
U (R)

ϕ(w0u) · χ(u)du (9.3)

defines a nonzero element of HomU (R)(I∞(k),C(χ)). We expect but do not know that
its restriction to the submoduleπ2k is nonzero. However, it is not difficult to see that
the vanishing of this restriction for one suchχ with 1(χ) > 0 implies the vanishing
of the restriction for allχ ’s with 1(χ) > 0, in which casecA(E2k) is zero for allA.
Since we do not expect this to be the case, we make the further assumption that the
archimedean integral is nonzero when restricted toπ2k for some (and hence all)χ
with 1(χ) > 0.
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To compute the Fourier coefficient, we now fix aχ0 with 1(χ0) > 0, and a
nonzerol0 ∈ HomU (R)(π2k,C(χ0)). We pickχ0 to be the character corresponding to
p0 = (0,1,1,0), and we letl0 be the linear form

l0(ϕ) =
∫

U (R)
ϕ(w0u) · χ0(u)du. (9.4)

By our assumption, this defines a nonzero element of HomU (R)(π2k,C(χ0)). Now
take anyg ∈ GL2(R) such thatg · χ0 = χ . We have

(g · l0)(ϕ) =
∫

U (R)
ϕ(w0ug−1) · χ0(u)du

=

∫
U (R)

ϕ(w0g−1u′) · χ0(g−1u′g) · δP(g)
−1 du′ (with u′ = gug−1)

= δP(g)
−1
·

∫
U (R)

ϕ
(
(w0g−1w0)w0u′

)
· χ(u′)du′

= δP(g)
−1
· δP(g)

(2k+1)/3
· ζA(2k)−1

· lχ (ϕ).

Here the last equality follows becausew0g−1w0 ∈ GL2(R), andδP(w0g−1w0) =

δP(g).
Now the Fourier coefficientcχ is defined by the equality

lχ = cχ · δ
(2k+1)/3
P (g) · (g · l0).

By the above computation, we see that

cχ = ζA(2k) · δP(g) · δP(g)
−2(2k+1)/3

= ζA(2k) · | det(g)|4k−1

sinceδP = |det|−3. On the other hand,

|det(g)|2 = 1(χ) = disc(A).

Hence,
cχ = ζA(2k) · disc(A)(4k−1)/2,

which by the functional equation givesζA(1−2k) up to a universal scalar. Concluding,
under various local assumptions we have seen that, up to a universal scalar,

cA(E2k) = ζA(1− 2k). (9.5)

Hence, the Eisenstein seriesE2k are analogs of H. Cohen’s Eisenstein series of half-
integral weight (see [Co]). Observe that sinceζA(2k) is about the size of 1,cA(E2k)

grows like|disc(A)|2k−1/2, which violates the bound in Proposition8.6 satisfied by
cusp forms.
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Remarks.When 2k = 2, the series (9.1) may not converge. However, by the theory
of R. Langlands, the Eisenstein series can be meromorphically continued in the pa-
rameterk to the whole complex plane, providedϕ is K -finite. If ϕ is spherical, the
Eisenstein series does have a pole, and the residue atk = 1 is a constant function.
For ϕ ∈ π2, the corresponding Eisenstein series is holomorphic atk = 1 but the
mapE2 : π2→ A (G2) is notG2(A)-equivariant. One has only aG2(A)-equivariant
embeddingπ2 ↪→ A (G2)/(constant functions). This is the analog of the fact that the
classical Eisenstein seriesE2 for SL2(Z) is nonholomorphic.

10. Exceptional theta series of weight4
In this section we give examples of theta series of weight 4 onG2. Recall that if
(3,q) is an even unimodular lattice of rank 8k overZ and if we set

an(q) = #
{
x ∈ 3 : q(x) = 2n

}
,

then the function
f (z) =

∑
n≥0

an(q)e
2π inz

is a modular form on SL2(Z) of weight 4k. By the same token, by a theta series on
G2 we mean a modular formf whose Fourier coefficientscA( f ) count the number of
embeddings ofA into certain cubic structures overZ. This is an embedding problem
studied in [GG], and we begin by describing it in greater detail.

Let R be Coxeter’s order in theQ-algebra of Cayley’s octonions, and letJ be
the set of 3× 3 Hermitian matrices with coefficients inR. ThenJ is a freeZ-module
of rank 27, and the determinant map provides a natural cubic formNJ : J → Z.
Let X ∈ J be an element in the cone of positive definite matrices which satisfies
NJ(X) = 1. Then the triple(J, NJ, X) is a pointed cubic space overZ. An example
of such anX is the identity matricI . It was shown in [Gr1] that on varyingX ∈ J,
one gets precisely two isomorphism classes of pointed cubic spaces. Suppose that the
two classes are represented byJI = (J, NJ, I ) and JE = (J, NJ, E); we refer the
reader to [Gr1] for the definition of the elementE. These two spaces are isomorphic
overQ andZp for all p, but are globally inequivalent. The automorphism groupsGI

andGE of JI andJE are groups overZ in the sense of [Gr1]. They have isomorphic
generic fibersG, which are split of typeF4 overQp and are anisotropic overR.

Similarly, a cubic ringA gives rise to a pointed cubic space(A, NA,1), where
NA is the norm map ofA. The counting problem studied in [GG] is that of computing
the number

N(A) = 91 · N(A, I )+ 600· N(A, E),
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where {
N(A, I ) = #{A→ JI },

N(A, E) = #{A→ JE}.

We see that these numbers occur as the Fourier coefficients of modular forms of
weight 4 onG2. In fact, to be able to make such a precise statement is the initial
motivation for the developing of our theory.

The construction of these exceptional theta series exploits the fact thatG2 × G
is a dual reductive pair in the quaternionic formH of E8 overQ. The groupH has
Q-rank 4 and is split overQp for all p. Indeed, there exist integral modelsHI and
HE of H such that the embeddingG2× G ↪→ H extends to embeddings{

G2× GI ↪→ HI ,

G2× GE ↪→ HE

of group schemes overZ. The modelsHI andHE are also groups overZ, and, in par-
ticular,K I = HI (Ẑ) andKE = HE(Ẑ) are hyperspecial maximal compact subgroups
of H(Q̂).

Let5 =
⊗̂

v5v be the global minimal representation ofH(A). The local min-
imal representation5p of H(Qp) is unramified. Let0I (resp.,0E) be a nonzero
vector of

⊗̂
p5p fixed by the maximal compact subgroupK I (resp.,KE); these are

unique up to scaling. On the other hand, the representation5∞ of the real Lie group
H(R) has minimalK -type Sym8(C2) ⊗ C, where the maximal compact subgroup
of H(R) is K = (SU2×E7)/〈±1〉. In [HPS] the restriction of5∞ to the dual pair
G2(R)× G(R) was competely determined. In particular, it was shown that

5G(R)
∞
∼= π4

as a representation ofG2(R). Hence, we have aG2(R)-equivariant embedding

ι : π4 −→ 5∞,

well defined up to scaling.
In [Ga1] an embedding

2 : 5 −→ A (H)

of 5 into the space of automorphic forms onH was constructed. Now we can con-
struct two modular formsθI andθE of weight 4 as follows. Forv ∈ π4, we set{

θI (v) = the restriction of2(ι(v)⊗ 0I ) to G2,

θE(v) = the restriction of2(ι(v)⊗ 0E) to G2.

The following result shows thatθI andθE are exceptional theta series.
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PROPOSITION10.1
For any GorensteinA, {

cA(θI ) = N(A, JI ),

cA(θE) = N(A, JE).

Proof
In [Ga2, Th. 11.3] it was shown that there exists an integere≥ 1 such that the Fourier
coefficientscA(θI ) andcA(θE) are zero unlessA has content divisible bye; further,
if A = Z+ eA0 has content precisely equal toe (so thatA0 is Gorenstein), then{

cA(θI ) = N(A0, JI ),

cA(θE) = N(A0, JE).

Hence, it remains to show thate is equal to 1.
Consider the modular form

θ = 91 · θI + 600· θE.

If A = Z+eA0, thencA(θ) = N(A0) and it was shown in [GG, Th. 3] thatN(A0) =

c · ζA0(−3) for a nonzero constantc independent ofA0. In particular,cA(θ) 6= 0.
To show thate = 1, it suffices to show that, for some Gorenstein cubic ringA, the
Fourier coefficient ofθ at A is nonzero. It was shown in [Ga2, Th. 15.5] that (after a
suitable scaling)

θ = E4,

which is the analog of the classical Siegel formula. This implies thatθ is a Hecke
eigenform with some nonzero Fourier coefficients. On the other hand, Theorem16.12
(which is proved at the end of the present paper) shows that a Hecke eigenform with
a nonzero Fourier coefficient must have a nonzero Gorenstein coefficient. The propo-
sition is proved.

Remark
The proof of the proposition, together with [GG, Th. 3], implies that the Fourier co-
efficientcA(E4) is equal toζA(−3) for maximal A, that is, that (9.5) holds uncondi-
tionally whenk = 2.

The examples of modular forms we have given in this section and in Section 9 are
noncuspidal. The cuspidal support ofE2k andθ is the Borel subgroup, whereas that
of θ ′ = θI − θE should be the Heisenberg parabolicP. It would be nice to construct
some cusp forms and compute their Fourier coefficients. In particular, we conclude
this section with the following question.
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Question
What is the smallestk for which M0

k is nonzero?

To show the extent of our ignorance, we do not know of even a singlek for which M0
k

is nonzero.

11. Unramified Hecke algebra and Satake isomorphism
The remainder of the paper is devoted to the study of the action of Hecke operators
on Mk. We begin with some background on the spherical Hecke algebra, and for the
next few sections the setting is entirely local. LetG be a simple split algebraic group
of adjoint type over the ring of integersO of a local fieldF . We fix the uniformizing
element$ . Let T ⊂ B ⊂ G be a maximal torus, contained in a Borel subgroup,
defined overO. Define the characters and cocharacters ofT by{

X∗(T) = Hom(T,Gm),

X∗(T) = Hom(Gm, T).

These are free abelian of rankl = dim(T) and have pairing into Hom(Gm,Gm) = Z.
The choice ofB determines a set of positive roots8+ ⊂ X∗(T), and this determines
a positive Weyl chamberP+ in X∗(T) by

P+ =
{
λ ∈ X∗(T)

∣∣〈λ, α〉 ≥ 0 for all α ∈ 8+
}
.

Let Ĝ be the complex dual group ofG. This is a simply connected simple group
overC whose root system is dual toG. If we fix a maximal toruŝT ⊂ B̂ ⊂ Ĝ, then
we have isomorphisms {

X∗(T̂) = X∗(T),

X∗(T̂) = X∗(T),

which take the positive roots (coroots) corresponding toB̂ to the positive coroots
(roots) corresponding toB. Under these identifications the elements ofP+ index the
irreducible representations of̂G; λ ∈ P+ is the highest weight for̂B.

Let K = G(O), which is a hyperspecial maximal compact subgroup ofG =
G(F) containingT(O). By definition, the Hecke algebraH = H (G, K ) is the set
of all compactly supported,K -bi-invariant functionsf : G→ C, with multiplication
defined by convolution (using Haar measure onG giving K volume 1). Forλ in
X∗(T), the double cosetKλ($)K does not depend on the choice of uniformizing
element$ of F . The Cartan decomposition implies that the characteristic functions

cλ = char
(
Kλ($)K

)
, λ ∈ P+,

give a basis ofH overC.
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Let R(Ĝ) be the Grothendieck ring (overC) of finite-dimensional representations
of Ĝ. The Satake transform gives an isomorphism ofH andR(Ĝ). To describe it, we
start with the simplest case whenG = T . ThenX∗(T) = T/T(O), and the algebra
HT is simply the group algebra ofX∗(T). SinceX∗(T) is isomorphic toX∗(T̂), we
have

HT ∼= R(T̂).

In general, letN be the unipotent radical ofB, defined overO. Let dn be the
unique Haar measure onN such that the volume ofN(O) is one. Letδ be the modular
function onT , so that

d(tnt−1) = |δ(t)| · dn.

For f in H =H (G, K ), define the Satake transform

S= SG/T :H →HT

by the integral

S( f )(t) = |δ(t)|1/2
∫

N
f (tn)dn.

The image is precisely the ring of Weyl group invariants in the group algebra ofX∗(T)
(see [Gr2, Prop. 3.6]). Since the ringR(Ĝ) is isomorphic toC[X∗(T)]W, the Satake
transform gives an isomorphism ofC-algebras

S :H ∼= R(Ĝ).

Matrices for this isomorphism, using the standard basescλ of H andχλ of R(Ĝ)
(the character of the irreducible representation with highest weightλ), are described
in [Gr2]; their entries involve Kazhdan-Lusztig polynomials.

More generally, ifP = LU is a parabolic subgroup ofG with T ⊂ L andB ⊂ P,
we can define a relative Satake transform

SG/L :H →HL

by the integral

SG/L( f )(l ) = |δP(l )|
1/2
∫

U
f (lu)du,

where|δP| : L → R×+ is the modular function forL. Via the Satake isomorphisms{
H ∼= R(Ĝ),

HL ∼= R(L̂),

the relative Satake transformSG/L corresponds to the restriction of representations
from Ĝ to L̂. In particular, it is injective and its image lies in the subalgebra ofR(L̂)
consisting of elements invariant underWĜ/L̂ = WG/L = NG(L)/L. After reviewing
the classical example ofG = GL2 in the next section, we work out a less familiar
example in Section13, whereG = G2, P is the Heisenberg parabolic, andL = GL2.
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12. The Hecke algebra ofGL2

In this section, letG = GL2. The Hecke algebraH of G overQp is well known. We
review the basic facts in a manner suitable for later use in this paper. A good reference
is [Se1, Chap. VII].

The dual group̂G is isomorphic to GL2(C). Letχ be the character of the standard
representation, and letχ∗ be the character of the dual representation. Letπ =

∧2
χ

be the determinant character ofχ , and letπ∗ be the inverse of the determinant. Then
we have an isomorphism ofC-algebras

R(Ĝ) ∼= C[χ, π, π∗]/(π · π∗ = 1).

Some further relations are {
χ∗ = χ · π∗,

χ = χ∗ · π.

The outer involutionA 7→ t A−1 of GL2(C) induces an involutionτ of R(Ĝ) with
τ(χ) = χ∗ andτ(π) = π∗.

In the Satake isomorphismS : H ∼= R(Ĝ), we find the following formulas for
the generators (see [Gr2, §5]):

S
(

charK
( p

1

)
K
)
= p1/2

· χ,

S
(

charK
( p

p
)
K
)
= π,

S
(

charK
( p−1

p−1

)
K
)
= π∗.

Putϕ = p1/2
· χ so that

S
(
charK

( p
1

)
K
)
= ϕ.

Let ϕ∗ = τ(ϕ) = p1/2
· χ∗. Sinceϕ∗ = ϕ · π∗, we have

S

(
charK

(
1

p−1

)
K

)
= ϕ∗.

Let L be the set of all lattices in the standard representationQ2
p of G =

GL2(Qp). SinceG acts transitively onL , and K = GL2(Zp) is the stabilizer of
the latticeZ2

p, we haveL ∼= G/K . The Hecke algebra acts on functionsf : L → C
as follows (see [Se1, p. 98]):

ϕ ◦ f (3) =
∑

p3⊂3′⊂3 f (3′),

ϕ∗ ◦ f (3) =
∑
3⊂3′⊂p−13 f (3′),

π ◦ f (3) = f (p3),

π∗ ◦ f (3) = f
( 1

p3
)
.

(12.1)
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The first sum above is taken over thep+1 lattices properly included in3 and properly
containingp3, and the second sum is similarly defined. Finally, a short calculation
gives the formula

(ϕ · ϕ∗) ◦ f (3) =
∑

p3⊂3′⊂p−13

f (3′)+ p+ 1.

Here, the sum is taken over thep2
+ p lattices3′ betweenp3 and p−13, with

3′/p3 ∼= Z/p2. Indeed, we have

S

(
charK

(
p

p−1

)
K

)
= ϕ · ϕ∗ − (p+ 1) ∈ R(Ĝ).

To compute the action of Hecke operators on the Fourier coefficientsan( f ) of
a holomorphic formf of weight 2k for SL2(Z), we need the decomposition of the
double coset

GL2(Zp)

(
p

1

)
GL2(Zp)

into single cosets. An argument with elementary divisors (see [Se1, pp. 99–100])
gives

GL2(Zp)

(
p

1

)
GL2(Zp) =

(
1 0
0 p

)
GL2(Zp) ∪

p−1⋃
j=0

(
p j
0 1

)
GL2(Zp)

(12.2)
as a union ofp+1 right GL2(Zp)-cosets. From this it follows (see [Se1, p. 100]) that
the Fourier coefficients ofTp| f with Tp = p−1ϕ are given by

an(Tp| f ) = anp( f )+ p2k−1an/p( f ) (12.3)

with an/p = 0 unlessn ≡ 0 (mod p).

13. The Hecke algebra ofG2

We now letG = G2. Let P be the Heisenberg parabolic subgroup with Levi factor
L ∼= GL2. The two root spaces in the Lie algebra ofL correspond to the short roots
{α′,−α′} for G.

The dual group̂G is isomorphic toG2(C), and its representation ringR(Ĝ) is
isomorphic to the polynomial ringC[χ1, χ2], whereχ1 is the character of the 7-
dimensional representation andχ2 is the character of the 14-dimensional adjoint rep-
resentation. Some useful identities inR(Ĝ) are (see [Gr2, p. 234])

∧2
χ1 = χ1+ χ2,∧3
χ1 = χ

2
1 − χ2,∧7−n

χ1 =
∧n

χ1.
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The highest weightλ1 of χ1 is identified with a dominant coroot forG. Sinceλ1

is a short coroot,λ1 = β
∨ with β = 2α + 3α′ the (long) highest root. Similarly, the

highest weightλ2 for χ2 is a dominant long coroot, soλ2 = γ
∨ with γ = α + 2α′.

See Figure 1 for a root diagram.

β = λV
1

γ = λV
1

α′

α

Figure 1

The Levi factorL̂ in the dual paraboliĉP is isomorphic to GL2(C). Its Lie al-
gebra has root spaces corresponding to the long coroots{α′

∨
,−α′

∨
}. Consulting the

root diagram and using the notation of the previous section, we find the following
restriction formulas from̂G to L̂:{

Res(χ1) = π + χ + 1+ χ∗ + π∗,

Res(χ2) = Res(χ1)+ π · χ + χ · χ
∗
+ π∗ · χ∗ − 1.

The image of restriction lies in the subring ofτ -invariants ofR(L̂).
To study the Satake transform forG overQp, put{

ϕ1 = p3χ1,

ϕ2 = p5χ2

in R(Ĝ). This is analogous to our normalizationϕ = p1/2χ in the previous section.
Then the calculations in [Gr2, §5] give the formulas{

ϕ1 = S(Kλ1(p)K )+ 1,

ϕ2− ϕ1 = S(Kλ2(p)K )+ p4

in R(Ĝ), whereK = G(Zp) ⊂ G = G2(Qp).
We are now interested in obtaining the decomposition ofKλi (p)K into single

K -cosets of the formulK , with u in U = U (Qp) the unipotent radical ofP, andl in
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L = L(Qp) ∼= GL2(Qp) its Levi factor. This is analogous to the decomposition of

GL2(Zp)

(
p

1

)
GL2(Zp)

obtained in (12.2) and is needed for the computation of the action of Hecke operators
on modular forms. To accomplish this, we use the relative Satake transform and the
following observation.

PROPOSITION13.1
Fix t in G andl in L. Letc[t] in H (G, K ) be the characteristic function of the double
cosetK t K . Then

SG/L(c[t])(l )

= |δP(l )|
1/2
· #
{
distinct cosets of the formulK in K t K with u ∈ U

}
.

Proof
Since, by definition,

SG/L(c[t])(l ) = |δP(l )|
1/2
·

∫
U

c[t](lu)du,

where
∫

U (Zp)
du= 1, we have

SG/L(c[t])(l ) · |δP(l )|
−1/2

= #
{
distinct cosets of the formlvU (Zp) in lU ∩ Kt K , with v ∈ U

}
.

SinceU (Zp) = U ∩ K , the right-hand side is equal to #{cosets of the formlvK
in Kt K }. SinceL normalizesU , puttingu = lvl−1, this is equal to #{cosets of the
form ulK in Kt}, as required.

Since we have a commutative diagram ofC-algebra homomorphisms

H (G)
SG
−−−−→ R(Ĝ)

SG/L

y yRes

H (L) −−−−→
SL

R(L̂)

we can computeSG/L from our results onSG and SL and from the restriction of
representations from̂G to L̂.
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Consider first the double cosetKλ1(p)K . We have seen thatSG(c[λ1(p)]) =
p3χ1− 1. Hence,

Res
(
SG(c[λ1(p)])

)
= p3(π + χ + χ∗ + π∗)+ (p3

− 1)

in R(L̂). But, by results in Section12,
p1/2χ = SL

(
c
[ p

1

])
,

p1/2χ∗ = SL
(
c
[ 1

p−1

])
,

π = SL
(
c
[ p

p
])
,

π∗ = SL
(
c
[ p−1

p−1

])
.

(13.2)

We conclude that

SG/L
(
c[λ1(p)]

)
(l ) =


p3 if l ≡

( p
p
)

or
( p−1

p−1

)
,

p5/2 if l ≡
( p

1

)
or
( 1

p−1

)
,

p3
− 1 if l ≡ 1,

0 otherwise.

Here we have writtenl ≡ t ∈ GL2(Qp) to meanl ∈ GL2(Zp) · t ·GL2(Zp).
On the other hand, we have chosen the isomorphismL ∼= GL2 so thatδP(l ) =

det(l )−3. Hence,
|δP(l )|

1/2
= p(3/2)·ordp(det(l )).

From this and our determination ofSG/L(c[λ1(p)]) above, we obtain the following.

COROLLARY 13.3
In the decomposition ofKλ1(p)K, the number of distinct cosets of the formulK is
given by 

1 with l ≡
( p

p
)
,

p(p+ 1) with l ≡
( p

1

)
,

p4(p+ 1) with l ≡
( 1

p−1

)
,

p6 with l ≡
( p−1

p−1

)
,

p3
− 1 with l ≡ 1,

0 otherwise.

In particular, we see that the total number of distinct singleK -cosets inKλ1(p)K is
p6
+ p5

+ p4
+ p3

+ p2
+ p, in agreement with [Gr2, p. 235]. To obtain an explicit

decomposition, it remains to determine the elementsu in ulK . This is carried out in
the next section (Section 14).
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Remarks.For a fixed

l ≡

(
p

1

)
, respectively,l ≡

(
1

p−1

)
,

Proposition13.1and the ensuing computations actually show that there are precisely
p (resp.,p4) single cosets of the formulK in Kλ1(p)K . Since each of the double
cosets

GL2(Zp)

(
p

1

)
GL2(Zp) and GL2(Zp)

(
p

1

)
GL2(Zp)

containsp+1 single cosets, andulK = u′l ′K implies thatl GL2(Zp) = l ′GL2(Zp),
this explains the numbers obtained in the second and third cases of Corollary13.3.

In the remainder of this section, we determine thel ’s that enter in the decomposition
of Kλ2(p)K into singleK -cosets. Here we have (see [Gr2, p. 231])

SG
(
c[λ2(p)]

)
= p5χ2− p3χ1− p4,

so that

Res
(
SG(c[λ2(p)])

)
= p5(π · χ + (χ · χ∗)0+ π∗ · χ∗)
+ (p5

− p3)(π + χ + χ∗ + π∗)+ (p5
− p3)

with (χ ·χ∗)0 = χ ·χ∗−(p+ 1)/p in R(L̂). But by (13.2), as well as by the formulas
p1/2π · χ = SL

(
c
[

p2

p

])
,

p1/2π∗ · χ∗ = SL
(
c
[ p−1

p−2

])
,

p(χ · χ∗)0 = SL
(
c
[ p

p−1

])
,

we obtain the following.

COROLLARY 13.4
In the decomposition ofKλ2(p)K, the number of distinct cosets of the formulK is
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given by 

1 · (p+ 1) with l ≡
(

p2

p

)
,

p4(p2
+ p) with l ≡

( p
p−1

)
,

p9(p+ 1) with l ≡
( p−1

p−2

)
,

(p3
− p)(p+ 1) with l ≡

( p
1

)
,

(p6
− p4)(p+ 1) with l ≡

( 1
p−1

)
,

p2
− 1 with l ≡

( p
p
)
,

p8
− p6 with l ≡

( p−1

p−1

)
,

p5
− p3 with l ≡ 1,

0 otherwise.

In particular, we obtainp10
+ p9

+ p8
+ p7

+ p6
+ p5 single cosets in all.

14. Single coset decompositions
We now study the unipotent elementsu that occur in the single cosetsulK ⊂

Kλi (p)K . SinceulK = lu′K with u = lu′l−1, andu′ is well defined up to right
multiplication byK ∩U = U (Zp), we see thatu is well defined up to right multipli-
cation bylU (Zp)l−1.

Recall that for each rootγ of T , we have the root group isomorphismxγ : Ga→

Uγ over Zp as well as the corootγ ∨ = hγ : Gm → T . Indeed,γ determines an
embedding SL2 ↪→ G overZp such that

xγ (t) =
(

1 t
0 1

)
,

x−γ (t) =
(

cc1 0
t 1

)
,

hγ (λ) =
( ccλ 0

0 λ−1

)
.

We need to use the identity

hγ (p)x−γ (vp)xγ (−t/p) ∈ K (14.1)

for any rootγ , wherev andt arep-adic integers withvt ≡ 1 (mod p). Indeed, in the
associated SL2, this is the matrix product(

p 0
0 p−1

)(
1 0
vp 1

)(
1 −

t
p

0 1

)
=

(
p −t
v 1−vt

p

)
which lies in SL2(Zp) ⊂ K .

The corootshγ give us elements

hγ (p) =

(
pa

pb

)
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in L ∼= GL2, which we can identify by{
〈γ ∨, β〉 = −a− b,

〈γ ∨, α′〉 = a− b,

whereα′ is the basic short root andβ is the highest root. See Figure 2 for a coroot
diagram.

(α + α′)V

βV
= λ1

λ2 = (α + 2α′)V

αV (α + 3α′)V

α′V

Figure 2

We now begin by constructing the single cosetsulK in the double coset
Kλ1(p)K .

PROPOSITION14.2
If l lies in the double coset of either(

p
p

)
,

(
p

1

)
,

(
1

p−1

)
, or

(
p−1

p−1

)
in L ∼= GL2, and u lies in U (Zp), thenulK is contained in theK-double coset
of λ1(p) in G. For each suchl , the representativesu of the distinct right cosets
of U (Zp) ∩ lU (Zp)l−1 in U (Zp) give the distinct right cosets of the formulK in
Kλ1(p)K.

Proof
We have 

( p
p
)
= −β∨(p),( p

1

)
= −α∨(p),( 1

p−1

)
= (α + 3α′)∨(p),( p−1

p−1

)
= β∨(p) = λ1(p).
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Since these cocharacters are in the Weyl group orbit ofλ1 and since representatives
for the Weyl group elements can be taken inNG(T)(Zp) ⊂ K , we see thatKlK =
Kλ1(p)K for l in the four double cosets of GL2 listed in the proposition. Hence,
ulK is contained inKλ1(p)K for anyu ∈ U (Zp). Moreover, foru andu′ in U (Zp),
ulK = u′lK if and only if u−1u′ lies inU (Zp) ∩ lU (Zp)l−1. The index of the latter
subgroup inU (Zp) is 

1 if l ≡
( p

p
)
,

p if l ≡
( p

1

)
,

p4 if l ≡
( cc1

p−1

)
,

p6 if l ≡
( p−1

p−1

)
.

By Corollary13.3and the remark following it, this is equal to the number of single
cosets of the formulK contained inKλ1(p)K . Hence, by takingu to be distinct right
coset representatives ofU (Zp)∩ lU (Zp)l−1 in U (Zp), we obtain all such cosets, and
the proposition is proved.

Let U∗ ⊃p U (Zp) be the group obtained fromU (Zp) by adjoining the central ele-
mentsxβ(t/p) in U with t ∈ Zp.

LEMMA 14.3
If u lies inU∗ r U (Zp), thenuK is contained inKλ1(p)K.

Proof
We may assume thatu = xβ(t/p) with t a unit inZp. Find v in Zp such thatvt ≡
1 (mod p). Then by (14.1) we see thatu lies in theK -double coset ofhβ(p) = λ1(p),
as claimed.

In fact, we can improve the above result slightly and obtain all single cosetsuK (i.e.,
with l ≡ 1) contained inKλ1(p)K . Recall the filtration

U (Zp) ⊃ U2(Zp) ⊃ {1}

of U (Zp) discussed in §§1 and 2, with

U2(Zp) ∼= Uβ(Zp) ∼= Zp

and
U (Zp)/U2(Zp) = V1(Zp)

free of rank 4 overZp. Let

m⊂
1

p
V1(Zp)/V1(Zp)
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be a line stable under a Borel subgroup ofL(Z/pZ) = GL2(Z/pZ); we call such a
line m a singular line. In the notation of §3, we havem = W1 = θ(l ). Let V1(m) be
the correspondingZp-module between(1/p)V1(Zp) and V1(Zp), and letU (m) be
the subgroup ofU with {

U (m) ∩U2 =
1
pU2(Zp),

U (m)/U (m) ∩U2 = V1(m).
(14.4)

ThenU (m) containsU (Zp) with index p2, and thep + 1 subgroupsU (m) ⊂ U
intersect in the groupU∗.

PROPOSITION14.5
If u lies in U (m) r U (Zp), thenuK is contained inKλ1(p)K. The representatives
u of the p2

− 1 nontrivial cosets ofU (Zp) in U (m) give distinct single cosetsuK.
As we vary the linem in (1/p)V1(Zp)/V1(Zp), we obtain thep3

− 1 distinct single
cosets withl ≡ 1.

Proof
If u ∈ U∗ r U (Zp), we have seen in Lemma14.3thatuK ⊂ Kλ1(p)K . Hence, it
remains to consider thoseu ∈ U (m) r U∗. Since the variousU (m)’s are conjugate
underL(Zp), we may assume without loss of generality thatm is given by(1/p)eα,
whereα is the long basic root. Indeed, this is the highest weight vector for the Borel
subgroup ofL with root space−α′. ThenU (m) is generated byU∗ andxα(t/p) with
t in Zp. Sinceα∨ is conjugated toβ∨ = λ1 by an element of the Weyl group, Lemma
14.3shows thatxα(t/p) lies in Kλ1(p)K whenevert is a unit inZp. A commutation
calculation inU then yields

U (Zp)xα(t/p)K =
⋃

a (mod p)

xβ(a/p)xα(t/p)K ,

which completes the proof thatuK lies in the double coset ofλ1(p) for all u in
U (m)r U (Zp).

Each of thep+ 1 linesm givesp2
− 1 distinct single cosets, but thep− 1 single

cosets withu ∈ U∗ r U (Zp) are obtained with multiplicityp+ 1. Hence, there are
(p+ 1)(p2

− 1) − p(p− 1) = p3
− 1 distinct single cosets in all. Comparing with

Corollary13.3, we see that we have obtained all the single cosets of the formuK in
Kλ1(p)K .

We now construct the single cosetsulK contained inKλ2(p)K .
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PROPOSITION14.6
If l lies in the double coset of either(

p2

p

)
,

(
p

p−1

)
, or

(
p−1

p−2

)
in L ∼= GL2, andu lies inU (Zp), thenulK is contained inKλ2(p)K. For each such
l , the representativesu of the distinct right cosets ofU (Zp) ∩ lU (Zp)l−1 in U (Zp)

give the distinct right cosets of the formulK contained inKλ2(p)K.

Proof
This proof is similar to that of Proposition14.2. We have

(
p2

p

)
= −(α + α′)∨(p),( p

p−1

)
= α′

∨
(p),( p−1

p−2

)
= −(α + 2α′)∨(p) = −λ2(p).

Since these cocharacters are in the same Weyl group orbit asλ2, we haveulK con-
tained inKλ2(p)K for all u ∈ U (Zp).

Again, we compute the index ofU (Zp) ∩ lU (Zp)l−1 in U (Zp) to be
1 if l ≡

(
p2

p

)
,

p4 if l ≡
( p

p−1

)
,

p9 if l ≡
( p−1

p−2

)
.

By Corollary 13.4, this is the total number of single cosets of the formulK in
Kλ2(p)K , and thus the proposition is proved.

Next, we determine the single cosets inKλ2(p)K , with

l ≡

(
p

p

)
,

(
p

1

)
,

(
1

p−1

)
,

(
p−1

p−1

)
in L ∼= GL2. This is more involved and requires greater care. The following lemma is
the main technical tool.

LEMMA 14.7
Letγ andγ ′ be a pair of long roots forming a60◦ angle. Lett be a unit inZp. Then

K xγ (t/p)hγ ′(p)K = Kλ2(p)K = K xγ (−t/p2)h−γ ′(p)K .
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Proof
Let v be a unit inZp such thatvt ≡ 1 (mod p). Then

K xγ (t/p)hγ ′(p)K = K xγ (t/p)hγ ′(p)x−γ (−p2v)K

= K xγ (t/p)x−γ (−pv)hγ ′(p)K = K hγ (p)hγ ′(p)K ,

where the last equality follows by formula (14.1). Sinceγ andγ ′ form a 60◦ angle,
δ = (1/3)(γ + γ ′) is a short root. Sincehγ (p)hγ ′(p) = hδ(p), andδ∨ is conjugated
to λ2, the first identity holds. To prove the second identity, note that inverse mapping
preservesK -double cosets. Thus,(

xγ (t/p)hγ ′(p)
)−1
= h−γ ′(p)xγ (−t/p) = xγ (−t/p2)h−γ ′(p)

is in Kλ2(p)K . The lemma is proved.

The following lemma can easily be checked; we omit the proof.

LEMMA 14.8
Let l = hγ (p), whereγ is a long root different fromα and−α. Let t be a unit inZp,
and set {

u = xα(t/p) if 〈α, γ ∨〉 = 1,

u = xα(t/p2) if 〈α, γ ∨〉 = −1.

Then the index ofU (Zp) ∩ ulU (Zp)l−1u−1 in U (Zp) is
1 if l =

( p
p
)
= −β∨(p),

p if l =
(

1
p
)
= −(α + 3α′)∨(p),

p4 if l =
( 1

p−1

)
= (α + 3α′)∨(p),

p6 if l =
( p−1

p−1

)
= β∨(p).

To describe the single cosets, we use the exponential map in a special case. A nonzero
elementw in V1 is called singular if the line throughw is singular. Assume now that
w is singular, contained inV1(Zp), but not contained inpV1(Zp). Using the cubic
mapθ , one can check that each suchw is conjugated underL(Zp) ∼= GL2(Zp) to eα.
In particular, since it is true foreα,{

ad2
w(g(Zp)) ⊂ 2 · g(Zp),

ad3
w = 0,

whereadw denotes the adjoint action on the Lie algebrag. Thus, the exponential map

exp(tw) = 1+ tadw + t2ad2
w

2
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is defined overZp, and exp(tw) is in K if and only if t is in Zp.

PROPOSITION14.9
Letw be a singular element inV1(Zp), not contained inpV1(Zp).

If

l ≡

(
p−1

p−1

)
,

put u = exp(w/p). ThenulK is contained inKλ2(p)K. The familyU (Zp)ulK
consists ofp6 disjoint single cosets.

If

l ≡

(
p

p

)
,

put u = exp(w/p2). ThenulK is contained inKλ2(p)K. The familyU (Zp)ulK =
ulK consists of one single coset.

Proof
Sincew is L(Zp) ∼= GL2(Zp) conjugated toeα, we may assume thatw = eα, where
α is the long basic root. ThenulK is in Kλ2(p)K by Lemma14.7, where we take{

γ = α,

γ ′ = β.

Finally, the statements concerning the number of single cosets inU (Zp)ulK follow
from Lemma14.8.

In both cases the familyU (Zp)ulK depends on the choice ofw modulo pV1(Zp).
Since there arep + 1 singular lines inV1(Fp), each containingp − 1 nontrivial
elements, we see that the total number of single cosets of the formulK given by
Proposition14.9is p2

− 1 if l ≡
( p

p
)
,

p8
− p6 if l ≡

( p−1

p−1

)
.

By Corollary 13.4, this is equal to the number of single cosets of the formulK con-
tained inKλ2(p)K . In particular, we have obtained all such cosets.

PROPOSITION14.10
Let t be a unit inZp.

If

l ≡

(
p

1

)
,
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putu = xβ(t/p). ThenulK is contained inKλ2(p)K. The familyU (Zp)ulK consists
of p single cosets.

If

l ≡
(

1
p−1

)
,

put u = xβ(t/p2). ThenulK is contained inKλ2(p)K. The familyU (Zp)ulK con-
sists ofp4 single cosets.

Proof
If we set {

γ = β,

γ ′ = α + 3α′

in Lemma14.7, then we see immediately thatulK is in Kλ2(p)K . Furthermore, since
u is in the center ofU , the number of singleK -cosets inU (Zp)ulK is equal to the
index ofU (Zp) ∩ lU (Zp)l−1 in U (Zp) which is given in Proposition14.2.

In both cases the familyU (Zp)ulK depends on the choice oft modulo pZp. As t
runs through thep− 1 nontrivial classes modulopZp, we see that the total number
of single cosets of the formulK constructed in Proposition14.10is{

p2
− p if l ≡

( p
1

)
,

p5
− p4 if l ≡

( 1
p−1

)
.

This is not yet equal to the number of single cosets of the formulK contained in
Kλ2(p)K , which is p3

− p and p6
− p4, respectively. The remaining single cosets

are constructed in Proposition14.12. To do so, we need the following lemma charac-
terizing singleL(Zp) ∼= GL2(Zp) cosets in terms of the action onV1.

LEMMA 14.11
(i) If

l ≡

(
p

1

)
,

then there is unique singular lineml in V1(Fp) such that

l · pV1(Zp)+ V1(Zp) = V1(ml ).

Furthermore, the set of allt ≡ l such thatt · pV1(Zp)+ V1(Zp) = V1(ml ) is
a single rightGL2(Zp)-coset.

(ii) If

l ≡

(
1

p−1

)
,
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then there is unique singular lineml in V1(Fp) such that

l · V1(Zp)+ V1(Zp) = V1(ml ).

Furthermore, the set of allt ≡ l such thatt · V1(Zp)+ V1(Zp) = V1(ml ) is a
single rightGL2(Zp)-coset.

PROPOSITION14.12
Letw be a singular element inV1(Zp). Assume that the reduction ofw modulop is
not contained inml .

If

l ≡

(
p

1

)
,

put u = exp(w/p). ThenulK is in Kλ2(p)K. The familyU (Zp)ulK consists ofp
single cosets.

If

l ≡

(
1

p−1

)
,

putu = exp(w/p2). ThenulK is in Kλ2(p)K. The familyU (Zp)ulK consists ofp4

single cosets.

Proof
Recall that GL2(Zp) acts transitively on the set of singular elements inV1(Zp), with
nontrivial reduction modulop. Thus, we may assume thatw = eα. The stabilizer of
w acts transitively on singular lines inV1(Zp) not containingeα. In particular, we can
assume thatml is given byeα+3α′ . Putting{

γ = α,

γ ′ = −α − 3α′

in Lemma14.7, we see immediately thatulK is contained inKλ2(p)K . The number
of single cosets inU (Zp)ulK is p and p4, respectively, by Lemma14.8.

In both cases the familyU (Zp)ulK depends on the choice ofw modulo pV1(Zp).
Since there arep singular lines inV1(Fp) different fromml and each containsp− 1
nontrivial elements, we see that the total number of single cosets of the formulK
given by Proposition14.12is{

p3
− p2 if l ≡

( p
1

)
,

p6
− p5 if l ≡

( 1
p−1

)
.
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These cosets, together with the cosets given in Proposition14.10, give all single
cosets of the formulK contained inKλ2(p)K , by Corollary13.4.

It remains to deal withl ≡ 1. We have two families of single cosets. The first
one is analogous to the family of single cosets constructed in Proposition14.5for the
double cosetKλ1(p)K . Let

n ⊂
1

p
V1(Zp)/V1(Zp)

be a plane stable under a Borel subgroup ofL(Z/pZ) = GL2(Z/pZ); we call
such a plane a singular plane. LetV1(n) be the correspondingZp-module between
(1/p)V1(Zp) andV1(Zp), and letU (n) be the subgroup ofU with{

U (n) ∩U2 =
1
pU2(Zp),

U (n)/U (n) ∩U2 = V1(n).
(14.13)

Let m be the unique singular line contained inn. ThenU (n) containsU (m) with
index p.

PROPOSITION14.14
If u lies inU (n)rU (m), thenuK is contained inKλ2(p)K. The representativesu of
the p3

− p2 nontrivial cosets ofU (Zp) in U (n)rU (m) give distinct single cosetsuK.
As we vary the planen in (1/p)V1(Zp)/V1(Zp), we obtainp4

− p2 distinct single
cosets withl ≡ 1.

Proof
We may assume, without loss of generality, thatn is given by (1/p)eα+2α′ and
(1/p)eα+3α′ . Note that the unique singular linem in n is given by(1/p)eα+3α′ . Thus,
we can assume that

u = xα+2α′(t/p)xα+3α′(a/p)x2α+3α′(b/p),

wheret is some unit inZp anda andb are inZp. Assume first thatb = 0. Then
formula (14.1) implies that

KuK = K hα+2α′(p)x−α−2α′(vp)xα+3α′(a/p)K

for some unitv in Zp. The Chevalley commutation relations show that the commuta-
tor of x−α−2α′(vp) andxα+3α′(a/p) is in K . Sincex−α−2α′(vp) is also inK , we see
that the above double coset is in fact equal to

K hα+2α′(p)xα+3α′(a/p)K = K xα+3α′(p
3a)hα+2α′(p)K = K hα+2α′(p)K .
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Since(α+2α′)∨ is conjugated toλ2 by an element of the Weyl group, we have shown
thatu lies in Kλ2(p)K if b = 0. Next, assume thata is a unit andb is any element in
Zp. Thenxα(b/a) is in K , and the commutator withxα+3α′(a/p) givesx2α+3α′(b/p)
(or x2α+3α′(−b/p)). Note that the long basic rootα is perpendicular to the short root
α+2α′. In particular,xα(b/a) commutes withxα+2α′(t/p). Thus (ignoring the sign),

K xα(b/a)xα+2α′(t/p)xα+3α′(a/p)xα(−b/a)K

= K xα+2α′(t/p)xα+3α′(a/p)x2α+3α′(b/p)K ,

and we have shown thatu lies in Kλ2(p)K if b ∈ pZp or if a is a unit. Since the
reflection aboutα fixesα+2α′ and switchesα+3α′ and 2α+3α′, it follows thatu is in
Kλ2(p)K if a ∈ pZp or if b is a unit, as well. Combining the two, we have completed
the proof thatuK lies in the double coset ofλ2(p) for all u in U (n)r U (m).

Each of thep+ 1 singular planesn gives p3
− p2 distinct single cosets. Hence

there are(p+ 1)(p3
− p2) = p4

− p2 distinct single cosets in all.

PROPOSITION14.15
Let (m,m′) be an ordered pair of distinct singular lines inV1(Qp), such thatm ∩
V1(Zp) andm′ ∩ V1(Zp) give distinct singular lines on reduction modulop. Letw
andw′ be in m ∩ V1(Zp) and m′ ∩ V1(Zp), respectively, but not inpV1(Zp). Let
u = exp(w/p)exp(w′/p). Then the familyU (Zp)uK is in Kλ2(p)K and consists
of p single cosets. The familyU (Zp)uK depends on the choice ofw andw′ modulo
pV1(Zp). As we vary thep(p+ 1) ordered pairs of distinct singular lines inV1(Fp),
we havep5

− p4
− p3

+ p2 distinct single cosets in all.

Proof
SinceL(Zp) ∼= GL2(Zp) acts transitively on the set of ordered pairs of distinct sin-
gular lines inV1(Fp), we may assume thatm is given byeα andm′ by eα+3α′ . Thus,
we may takeu = xα(t/p)xα+3α′(t ′/p), wheret and t ′ are units inZp. Note thatα
andα + 3α′ are long roots. Let SL3 ⊂ G2 be the Chevalley subgroup generated by
the long root subgroups. Then it is not difficult to check that

SL3(Zp)u SL3(Zp) = SL3(Zp)λ2(p)SL3(Zp),

so thatu lies in Kλ2(p)K . Finally, a commutation calculation inU gives

U (Zp)xα(t/p)xα+3α′(t
′/p)K =

⋃
a (mod p)

xβ(a/p)xα(t/p)xα+3α′(t
′/p)K ,

a disjoint union ofp single cosets.
Next, using the commutation relations inU , it is easy to see that these are disjoint

families, as we run through ordered pairs of distinct singular lines inV1(Fp). As each
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line containsp−1 nontrivial elements, we see that we have constructedp(p+1)(p−
1)2p = p5

− p4
− p3

+ p2 single cosets of the formuK in all.

Combining the last two propositions, we see that we have constructedp5
− p3 single

cosets. By Corollary13.4, these are all the single cosets of the formuK in Kλ2(p)K .

15. Action of Hecke operators on Fourier coefficients
Now we return to the global situation, and we letG be the Chevalley group of typeG2

overZ. Let t be an element ofG(Qp), and letK = G(Zp). Once we have determined
the decomposition ofKt K =

⋃
ti K into right cosets, we can define a Hecke operator

t on the spaceA (G)K of automorphic forms onG(A) fixed by K by the formula

t |F(g) =
∑

i

F(gti ).

Here theti are viewed as elements ofG(A), which are equal to 1 at all placesv 6= p.
This action satisfies

(t1 · t2)|F = t1|(t2|F).

Using strong approximation, we may view an automorphic formF onG(A) fixed
by G(Ẑ) as a functionF∞ on G(Z)\G(R), given by

F∞(g∞) = F(g∞,1,1, . . .).

In terms of the functionF∞, the action of the Hecke operatort looks a bit different.
By strong approximation again, we may find an elements in G(Q) which satisfies{

sl is in G(Zl ) if l 6= p,

spK = t K in G(Qp).
(15.1)

Similarly, we can find elementssi that approximateti in the above sense. The elements
s andsi are unique up to right multiplication byG(Z), and viewing them inG(R),
we obtain a decomposition

G(Z)sG(Z) =
⋃

si G(Z). (15.2)

We then have the formula

t |F∞(g∞) =
∑

i

F∞(s
−1
i g∞)

for the action of the Hecke operatort on F∞ : G(Z)\G(R)→ C. Indeed, there is no
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loss of generality in takingt andti to be thep-adic components ofs andsi . Then

t |F∞(g∞) = t |F(g∞,1,1, . . .)

=

∑
i

F(g∞,1,1, . . . , (si )p, . . .)

=

∑
i

F(s−1
i · (g∞,1,1, . . . , (si )p, . . .)

(sinceF is left G(Q)-invariant)

=

∑
i

F(s−1
i · g∞,1,1, . . .) (sincesi ∈ G(Zl ) for all l 6= p)

=

∑
i

F∞(s
−1
i g∞).

Now let f : πk ⊗ C → A (G) be a modular form of weightk, so that the
image of f is contained in the subspace ofA (G) fixed by G(Ẑ). For v ∈ πk, let
F = f (v) ∈ A (G), which we henceforth regard as a function onG(Z)\G(R) by
restriction. We can now define an action of the Hecke operatort ∈ G(Qp) on f by

(t | f )(v) = t |F : G(Z)\G(R) −→ C.

If χ is a character ofU (R) trivial on U (Z), then we have defined the Fourier coef-
ficient cχ (t | f ). Our goal is to expresscχ (t | f ) in terms of the Fourier coefficients of
f .

Let s andsi ∈ G(Q) be related tot andti ∈ G(Qp) as in (15.1), so that we have
a decomposition

G(Z)sG(Z) =
⋃

i

si G(Z).

It is now convenient to group the singleG(Z)-cosets according to theU (Z)-orbits in
which they lie, whereU (Z) acts by left multiplication onG(Z)sG(Z)/G(Z). Since
G(Q) = P(Q) · G(Z) by a result of Borel, we first write

G(Z)sG(Z) =
⋃

i

U (Z)pi G(Z) =
⋃

i

Oi ,

where pi = ui l i , with ui ∈ U (Q) and l i ∈ L(Q). EachOi = U (Z)pi G(Z) can
further be decomposed into the union ofU2(Z)-orbits:

Oi =
⋃

j

U2(Z)pi j G(Z) =
⋃

j

Oi j ,

where pi j = v j pi with v j ∈ U (Z). Finally, we write eachOi j as a union of single
G(Z)-cosets

Oi j =
⋃
k

zk pi j G(Z)
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with zk ∈ U2(Z). EachOi j /G(Z) is thus a homogeneous space forU2(Z), and the
stabilizer ofpi j G(Z) is U2(Z) ∩ l i U2(Z)l−1

i . In particular, the number

mi = #
{
singleG(Z)-cosets inOi j

}
= #U2(Z)/U2(Z) ∩ l i U2(Z)l−1

i

depends only oni and not onj .
We are now ready to compute the Fourier coefficientcχ (t | f ). Consider first the

constant term oft |F alongU2. Foru ∈ U (R), we have

(t |F)U2(u) =
∫

U2(Z)\U2(R)
(t |F)(zu)dz

=

∑
i, j

∫
U2(Z)\U2(R)

∑
k

F(p−1
i j z−1

k zu)dz

=

∑
i, j

I i j .

Consider the Fourier expansion ofF alongU2:

F(g) =
∑
ψ

Fψ (g), g ∈ G(R),

whereψ runs through the characters ofU2(R) trivial on U2(Z) and

Fψ (g) =
∫

U2(Z)\U2(R)
F(zg) · ψ(z)dz.

Then for fixedi, j ,

I i j =

∫
U2(Z)\U2(R)

∑
k

∑
ψ

ψ(p−1
i j zpi j )ψ(p

−1
i j z−1

k pi j )Fψ (p
−1
i j u)dz

=

∫
U2(Z)\U2(R)

∑
ψ

(pi j · ψ)(z)Fψ (p
−1
i j u) ·

(∑
k

(pi j · ψ)(zk)
)

dz.

Since ∑
k

(pi j · ψ)(zk) =

{
mi if pi j · ψ is trivial onU2(Z),
0 otherwise,

we deduce that
I i j = mi · FU2(p

−1
i j u),

and hence,
(t |F)U2(u) =

∑
i, j

mi · FU2(p
−1
i j u).
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We can now regardFU2 and (t |F)U2 as functions onL(R) · V1(R) ∼=
P(R)/U2(R). Then we have the Fourier expansion

FU2(g) =
∑
ψ

FU2,ψ (g), g ∈ L(R) · V1(R),

whereψ runs through the characters ofV1(R) trivial on V1(Z). Hence,

(t |F)χ (1) =
∫

V1(Z)\V1(R)
(t |F)U2(v) · χ(v)dv

=

∑
i

mi ·

∫
V1(Z)\V1(R)

∑
j

FU2(p
−1
i v−1

j v) · χ(v)dv

=

∑
i

mi ·

∫
V1(Z)\V1(R)

∑
j

∑
ψ

(l i · ψ)(v
−1
j ) · (l i · ψ)(v)

· FU2,ψ (p
−1
i ) · χ(v)dv

=

∑
i

mi ·

∫
V1(Z)\V1(R)

∑
ψ

FU2,ψ (p
−1
i ) · (l i · ψ)(v) · χ(v)

·

(∑
j

(l i · ψ)(v
−1
j )
)

dv.

Since

∑
j

(l i · ψ)(v
−1
j ) =

{
#V1(Z)/(V1(Z) ∩ l i V1(Z)l−1

i ) if l i · ψ is trivial on V1(Z),
0 otherwise,

and
ni = mi · #V1(Z)/

(
V1(Z) ∩ l i V1(Z)l−1

i

)
is the number of singleG(Z)-cosets inU (Z)pi G(Z), we deduce that

(t |F)χ (1) =
∑

i

ni · Fl−1
i χ

(l−1
i ) · χ(u−1

i ), (15.3)

whereFl−1
i χ

is equal to zero unlessl−1
i · χ is trivial onU (Z).

To relate these computations to the notion of Fourier coefficients defined in Sec-
tion 8, let us fix a characterχ0 of U (R) with 1(χ0) > 0, and a basis elementl0 in
HomU (R)(πk,C(χ0)). Choose anyg ∈ L(R) such thatχ = g · χ0. If l f,χ denotes the
linear functional onπk defined by

l f,χ : v 7→ f (v)χ (1) =
∫

U (Z)\U (R)
f (v)(u) · χ(u)du,
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then recall from (8.3) thatcχ ( f ) is defined by

l f,χ = cχ ( f ) ·
(
λk(g) · gl0

)
.

Now consider the linear functional

L i : v 7→ f (v)l−1
i χ

(l−1
i ),

which is an element of HomU (R)(πk,C(χ)). A simple calculation shows that

L i = cl−1
i χ

( f ) · λk(l i )
−1
·
(
λk(g) · gl0

)
. (15.4)

From (15.3) and (15.4), we deduce that

l t | f,χ =
(∑

i

ni · λk(l i )
−1
· χ(ui )

−1
· cl−1

i χ
( f )

)
·
(
λk(g) · gl0

)
,

and thus, we have the following.

PROPOSITION15.5
Suppose that

G(Z)sG(Z) =
⋃

i

U (Z)ui l i G(Z)

with ui ∈ U (Q) andl i ∈ L(Q). Then

cχ (t | f ) =
∑

i

ni · λk(l i )
−1
· χ(ui )

−1
· cl−1

i χ
( f ),

where
ni = #

{
singleG(Z)-cosets inU (Z)ui l i G(Z)

}
,

andcl−1
i χ

( f ) is equal to zero unlessl−1
i χ is trivial on U (Z).

Now fix a primep, and consider the local Hecke algebraHp at p. As we mentioned
before,

Hp ∼= R(Ĝ) ∼= C[χ1, χ2]

asC-algebras, withχ1 andχ2 the two fundamental representations of the complex Lie
groupĜ = G2(C). In the remainder of this section, we use Proposition15.5and the
results of Section 14 to obtain explicit formulas for the action of the Hecke operators
χ1 andχ2 on the Fourier coefficients of modular forms inMk.

Let A be a cubic ring withp-depth zero, corresponding to a characterχ . Set

Ai = Z+ pi A, which hasp-depthi and corresponds to the characterχi =
( pi

pi

)
·χ .

Let f be a modular form of weightk, and letci ( f ) be the Fourier coefficient off
corresponding toAi . To avoid issues about orientation, we assume for simplicity that
the weightk is even. Then we have the following.
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PROPOSITION15.6
Let f be a modular form of even weightk, and letAi be the chain of cubic rings as
above. Ifi ≥ 1, then

ci (χ1| f ) = p2k−1ci−1( f )+ pk−1
∑

Ai⊂B⊂Ai−1

cB( f )+ ci ( f )

+ p−k
∑

Ai+1⊂B⊂Ai

cB( f )+ p1−2kci+1( f ),

where the inclusions of rings are proper. Ifi = 0, then

c0(χ1| f ) = pk−1
∑

A⊂pB

cB( f )+ p−1(nA − 1)c0( f )

+ p−k
∑

A1⊂B⊂A

cB( f )+ p1−2kc1( f ),

wherenA is the number of ringsB such thatA1 ⊂ B ⊂ A.

Proof
As we have noted before,

χ1| f =
1

p3

(
c[λ1(p)]| f + f

)
.

In Propositions 14.2 and 14.5, we have determined the decomposition of
G(Zp)λ1(p)G(Zp) into singleG(Zp)-cosets. Since the single coset representatives
obtained there lie inG(Z[1/p]), they serve as representatives for the singleG(Z)-
cosets inG(Z)λ1(p)G(Z) in view of (15.1) and (15.2). Moreover, the proofs of the
propositions furnish us with a decomposition

G(Z)λ1(p)G(Z) =
⋃

i

U (Z)ui l i G(Z)

and provide us with the numberni of single G(Z)-cosets in eachU (Z)ui l i G(Z).
Indeed, the representatives for the(U (Z),G(Z))-cosets inG(Z)λ1(p)G(Z) can be
taken to be
•

( p
p
)
;

• a setS2 of representatives for thep+ 1 single cosets in
GL2(Z)

( p
1

)
GL2(Z);

• a setS1 of representatives for thep+ 1 single cosets in
GL2(Z)

( 1
p−1

)
GL2(Z);

•
( p−1

p−1

)
;

• a setS∗ of representatives for thep− 1 nontrivial cosets ofU (Z) in U∗;



160 GAN, GROSS, and SAVIN

• for each of thep + 1 singular linesm ⊂ (1/p)V1(Z)/V1(Z), a setSm of
representatives for thep− 1 nontrivial cosets ofU∗ in U (m).

Here the groupsU∗ andU (m) overZ are defined analogously as the corresponding
groups overZp introduced before Lemma14.3and in (14.4).

From this and Proposition15.5, we deduce that fori ≥ 1,

ci (t | f ) = p2k−1ci−1( f )+ pk−1
∑
l∈S2

cl−1χi
( f )+ ci ( f )

+ p−k
∑
l∈S1

cl−1χi
( f )+ p1−2kci+1( f ).

It remains to see that there are bijections{
cubic ringsAi ⊂ B ⊂ Ai−1

}
←→

{
l ∈ S2 : l

−1χi is trivial onU (Z)
}

and {
cubic ringsAi+1 ⊂ B ⊂ Ai

}
←→

{
l ∈ S1 : l

−1χi is trivial onU (Z)
}
.

In view of the correspondence between binary cubic forms overZ and the characters
of U (R) which are trivial onU (Z), the required bijections follow from Proposition
5.7.

Wheni = 0, the only added subtlety is in the determination of the coefficient

1

p3

(
1+ #S∗ + p

∑
m

∑
u∈Sm

χ(u)
)

of cA( f ). Regardingχ as a character onU (m)/U∗, we see that∑
u∈Sm

χ(u) =

{
−1 if the restriction ofχ to U (m) is nontrivial,

p− 1 otherwise.

On the other hand, ifm corresponds to the linel = (x0 : y0) in P1(Fp), andχ
corresponds to the binary cubic formq(x, y), then the triviality of the restriction of
χ on U (m) is equivalent toq(x0, y0) = 0 (mod p). Hence, by Proposition5.4, the
number ofm for which χ is trivial on U (m) is equal to the number of ringsB such
that A1 ⊂ B ⊂ A, and the proposition is proved.

COROLLARY 15.7
Assume thatA/pA is a field. Then

cA(χ1| f ) = −
1

p
cA( f )+ p1−2kcA1( f ).

Furthermore, for every cubic ringB such thatA2 ⊂ B ⊂ A1,

cB(χ1| f ) = pk−1cA1( f )+ p−kcA2( f )+ p1−2kcB1( f ).
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Proof
This follows from the Proposition 15.6 and Corollary5.6.

Similarly, using Propositions14.6, 14.9, 14.10, 14.12, 14.14, and14.15, we can com-
puteci (χ2| f ) in terms of the Fourier coefficients off . We omit the proof and simply
state the result.

PROPOSITION15.8
If i ≥ 2, then

ci (χ2| f ) = ci (χ1| f )+ p3k−2
∑

Ai−1⊂B⊂Ai−2

cB( f )+ p−1
∑

Ai+1⊂C⊂Ai−1

cC( f )

+ p−1ci ( f )+ p1−3k
∑

Ai+2⊂B⊂Ai+1

cB( f ).

Here eachC is a ring such thatC/Ai+1 ∼= Z/p2Z.

Wheni = 0 or 1, the formulas expressingci (χ2| f ) in terms of the Fourier coefficients
of f are more complicated. We highlight only the case whenA/pA is a field.

COROLLARY 15.9
Assume thatA/pA is a field. Then

c0(χ2| f ) =
( 1

p +
1
p2

)
c0( f )− p−2kc1( f )+ p1−3k∑

A2⊂B⊂A1
cB( f ),

c1(χ2| f ) = −p2k−2c0( f )+
(
1+ 1

p

)
c1( f )+ p1−2kc2( f )

+
∑

A3⊂B⊂A2
p1−3kcB( f ).

Proof
The formula forc1(χ2| f ) follows from Proposition15.5and the results of the pre-
vious section, as soon as we show that there are no ringsA2 ⊂ C ⊂ A such that
C/A2 ∼= Z/p2Z. Let B = C ∩ A1. ThenA2 ⊂ B ⊂ A1 andB is contained inC with
index p. By Corollary5.6, C must beA1. This is a contradition. Similar, even easier,
considerations can be used to deal withcA(χ2| f ). The corollary is proved.

16. Gorenstein coefficients
Let f ∈ Mk be a nonzero eigenform for the spherical Hecke algebra. In this section
we show that the Fourier coefficientcA( f ) is nonzero for some Gorenstein ringA. To-
gether with Proposition8.4, this implies that if f is a nonzero cuspidal Hecke eigen-
form, then f is completely determined by its Hecke eigenvalues and its Gorenstein
coefficients. This is the analog of the classical result that iff (z) =

∑
n≥1 an( f )e2π inz
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is a nonzero cuspidal Hecke eigenform, thena1( f ) 6= 0. The proof of this statement is
based on the formulas for the action of Hecke operators onan( f ). Indeed, the formula
for each local operatorTp is

an(Tp| f ) = an/p( f )+ p−kapn( f ),

which shows that the coefficentsan( f ) can be recovered froma1( f ) and the Hecke
eigenvalues. Our proof is based on the same idea, exploiting the formulas for the
Hecke operatorsχ1 andχ2 obtained in Section 15.

Let A be a totally real cubic ring, so that the cubic algebraE = A⊗ Q is étale.
For every prime integerp, we define an equivalence relation between cubic rings inE
as follows:A ∼p B if the intersection ofA andB is contained in bothA andB with
index a power ofp. This is equivalent to saying thatA⊗ Zl = B⊗ Zl as subrings of
E ⊗ Ql for all l 6= p. We stress that∼p is not an equivalence relation on the set of
isomorphism classes of cubic rings; in particular, it is possible forB1 andB2 ⊂ E to
be abstractly isomorphic as cubic rings but nonequivalent under∼p. For example, if
A = Z3, andl is a prime different fromp, then the three cubic rings betweenA and
Z+ l A are abstractly isomorphic but nonequivalent under∼p.

PROPOSITION16.1
If the Fourier coefficients off vanish for all rings ofp-depth less than or equal to1
in a∼p equivalence class, then they vanish for all rings in the∼p equivalence class.

Proof
The proof is by induction on the depth. Assume that we have proved the vanishing
for all rings of p-depth less than or equal toi (with i ≥ 1). Let Ai+1 = Z + pi+1A
be a ring ofp-depthi + 1. Acting by the Hecke operatorχ1 on cAi ( f ) and using the
induction assumption, we obtain

0= pk−1
∑

Ai⊂B⊂Ai−1

cB( f )+ p−k
∑

Ai+1⊂B⊂Ai

cB( f )+ p1−2kcAi+1( f ).

Thus, to show thatcAi+1( f ) = 0 we need to show that the first two summands on the
right-hand side are zero. Vanishing of the first sum is proved in the following lemma.

LEMMA 16.2
Assume that Fourier coefficients off vanish for all rings ofp-depth less than or equal
to i in the∼p class ofA. Then ∑

Ai⊂B⊂Ai−1

cB( f ) = 0.
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Proof
Sincei ≥ 1, the ringAi−1 exists. Acting by the Hecke operatorχ1 oncAi−1 and using
the assumption of the lemma, it follows that

0= pk−1
∑

Ai−1⊂B⊂Ai−2

cB( f )+ p−k
∑

Ai⊂B⊂Ai−1

cB( f ).

By Proposition 5.5, thep-depth of eachB in the first sum lies betweeni − 3 andi . In
particular,cB( f ) = 0 by the assumption of the lemma. The lemma follows.

It remains to show vanishing of the second sum. This is much harder, however, and is
accomplished in the following lemma.

LEMMA 16.3
Assume that Fourier coefficents off vanish for all rings ofp-depth less than or equal
to i in the∼p class ofA. Then ∑

Ai+1⊂B⊂Ai

cB( f ) = 0.

Proof
The idea this time is to use the operatorχ2 on cAi−1. After taking into account the
induction assumption, we obtain

0= p−1
∑

Ai⊂C⊂Ai−2

cC( f )+ p1−3k
∑

Ai+1⊂B⊂Ai

cB( f ),

where, as usual, the first sum is taken over allC such thatC/Ai is cyclic of orderp2.
Obviously, to prove the lemma, we need to show that the first summand is zero. By
intersecting eachC with Ai−1, the first summand can be rewritten as∑

Ai⊂C⊂Ai−2

cC( f ) =
∑

Ai⊂B⊂Ai−1

∑
B⊂pC

cC( f )− ni cAi−1( f ),

whereni is the number of cubic rings betweenAi andAi−1. Moreover,cAi−1( f ) = 0
by the induction assumption, so it remains to show that the double sum on the right-
hand side is zero. By Proposition 5.5, thep-depth of eachB betweenAi and Ai−1

lies betweeni −2 andi +1. Next, assume thatB has positivep-depth. Then, the ring
B−1 such thatB = Z+ pB−1 exists and hasp-depth at mosti . Applying the Hecke
operatorχ1 to cB−1( f ) and using the induction assumption, it follows that

0= pk−1
∑

B−1⊂pC

cC( f )+ p−k
∑

C⊂pB−1

cC( f )+ p1−2kcB( f ).
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We claim that the first sum on the right-hand side is zero. By Proposition 5.5, any
ring C containingB−1 with index p hasp-depth less than or equal toi + 1. It can be
i + 1 only whenB−1 hasp-depthi . In that case we can apply Lemma16.2to B−1 to
show that the sum is zero. Otherwise, each individual termcC( f ) is zero. In any case,
the claim follows.

In the second sum we can replaceC ⊂p B−1 by B ⊂p C since the ringsC
contained inB−1 with index p are precisely the rings containingB with index p.
Summing the above equation over allB betweenAi andAi−1 such thatp-depth ofB
is positive, we obtain

0= p−k
∑

Ai⊂B+⊂Ai−1

∑
B+⊂pC

cC( f )+ p1−2k
∑

Ai⊂B+⊂Ai−1

cB+( f ),

where the subscript+ denotes that the sum is taken over ringsB with positive p-
depth. However, ifB hasp-depth zero, andB ⊂p C, thenC hasp-depth less then or
equal to 1. Thus,cB( f ) = cC( f ) = 0 by the assumption of the proposition, and this
implies that we can remove the subscript+ in the previous equation. Now, since the
second sum is zero by Lemma16.2, the first sum has to be zero as well. The lemma
follows.

We have thus completed the proof of Proposition16.1.

We now show that the vanishing of the Fourier coefficents off for all rings of p-depth
zero in a given∼p-class implies vanishing of all Fourier coefficents in the∼p-class.
In view of Proposition16.1, it suffices to show thatcA1( f ) = 0 for all cubic ringsA
of p-depth zero in the given∼p equivalence class. The idea is similar to the one used
in the proof of Proposition16.1. The necessary modifications of the proof are based
on the following proposition.

PROPOSITION16.4
Each∼p equivalence class of cubic rings contains a unique maximal elementAmax.

Proof
We defineAmax in A⊗ Q by specifying its localizations inA⊗ Ql for all primesl .
For l not equal top, we insist that the localization be equal toA⊗ Zl for any ring
A in the equivalence class. Forl = p, we insist that the localization be equal to the
integral closure ofZp in A⊗Qp. SinceA⊗Qp is étale overQp, the integral closure
is free of rank 3 overZp and is maximal for this property. The above construction
shows thatAmax is the unique ring in the∼p equivalence class which minimizes the
power of p in the discriminant and thus that it is the unique maximal element in the
∼p equivalence class ofA.
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Let f ∈ Mk be a Hecke eigenform. We now show that the vanishing of the Fourier
coefficients off for all rings of p-depth zero in a given equivalence class implies the
vanishing of all coefficients in the class. We first show the following.

PROPOSITION16.5
Let A be a p-depth zero ring in the∼p equivalence class ofAmax. If the Fourier
coefficients off for all rings of p-depth zero in the equivalence class ofAmax vanish,
thencAi ( f ) = 0 for i = 1,2.

Proof
The idea is to prove this statement forA = Amax and then use induction on the index
of A in Amax. Since the arguments are repetitive, we do the proof forA = Amax and
the induction step at the same time.

LEMMA 16.6
Let B be a ring containingA with index p or contained inA with index p. Then
cB( f ) = 0.

Proof
If A = Amax, then there are no rings containing it, and every ringB betweenA and
A1 has depth zero. Otherwise,B−1 would exist and would containAmax with index
p, which is a contradiction.

Induction step.A ring B containingA with index p can havep-depth 1. In that case,
B = Z + pB0, whereB0 hasp-depth zero. Since the index ofB0 in Amax is smaller
than the index ofA, the induction hypothesis implies thatcB( f ) = 0. Similarly, any
ring B betweenA1 and A has p-depth at most 2. Hence, eitherB has p-depth zero
andcB( f ) = 0 by the assumption, orB = Z + pi B0 for some 1≤ i ≤ 2, in which
casecB( f ) = 0 by the induction assumption since the index ofB0 in Amax is less
than that ofA.

Now Proposition15.6(acting by the Hecke operatorχ1 on cA( f )) and Lemma16.6
imply that

cA1( f ) = 0. (16.7)

LEMMA 16.8
We have ∑

A1⊂C

cC( f ) = 0,

where the sum is taken over all ringsC such thatC/A1 = Z/p2Z.
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Proof
SinceA/A1 = (Z/pZ)2, C is not contained inA. Thus, if A = Amax, there are no
such ringsC.

Induction step.Let B = A∩ C. ThenA1 ⊂ B ⊂ A. By Proposition5.5, the p-depth
of B is at most 2. SinceB ⊂p C, the p-depth ofC could be at most 3, which happens
only if B hasp-depth 2. Thus, ifB hasp-depth less than 2, thenC hasp-depth less
than 3, and the induction hypothesis implies thatcC( f ) = 0, just as in Lemma16.6.
Now assume thatB has p-depth 2. Then the ringB−1 exists, and we can apply the
operatorχ1 to cB−1( f ). By the induction hypothesis, the formula reduces to

pk−1
∑

B−1⊂pC

cC( f )+ p−k
∑

B⊂pC

cC( f ) = 0.

The ringsC in the first sum havep-depths less than 3. Therefore, the coefficients
cC( f ) vanish by the induction hypothesis, again just as in Lemma16.6. The second
sum therefore also vanishes, and the lemma follows. (The sum also includes the term
cA( f ), which is zero.)

LEMMA 16.9
We have ∑

A2⊂B⊂A1

cB( f ) = 0.

Proof
Consider the action of the Hecke operatorχ2 on cA( f ). Using the formula given in
Proposition15.5, one obtains the desired result from (16.7), Lemma16.6, and Lemma
16.8.

Now Proposition15.6(acting by the Hecke operatorχ1 on cA1( f )) and Lemma16.9
imply that

cA2( f ) = 0. (16.10)

In view of (16.7) and (16.10), Proposition16.5is proved completely.

Moreover, Propositions16.5and16.1imply the following corollary.

COROLLARY 16.11
If the Fourier coefficents off vanish for all rings ofp-depth zero in a∼p equivalence
class, then they vanish for all rings in the∼p equivalence class.
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We are now ready to prove that cuspidal Hecke eigenforms are determined by their
Gorenstein coefficients and Hecke eigenvalues.

THEOREM 16.12
Let f be a Hecke eigenform. IfcA( f ) = 0 for all Gorenstein ringsA, then all the
Fourier coefficients off vanish. In particular, if f is a nonzero cuspidal Hecke eigen-
form, thenf has a nonzero Gorenstein coefficient.

Proof
Suppose that there exists a totally real cubic ringA such thatcA( f ) 6= 0. Let E =
A⊗Q which is a cubićetale algebra overQ.

Pick an ordering of primesp1, p2, . . . , and letXk be the set of cubic rings in
E with trivial pl -depth for alll > k. Clearly, X0 is the set of all Gorenstein rings
in E, and every cubic ring inE is contained in someXk for a sufficiently largek.
Furthermore,Xk is a union of∼pk conjugacy classes, and the set of all elements in
Xk of pk-depth zero is preciselyXk−1. Using induction onk, Corollary16.11implies
that the Fourier coefficients off vanish for all cubic rings inE. This is a contradiction,
and the first statement of the theorem is proved. The second statement follows from
this and Proposition8.4.

Acknowledgment.We wish to thank Nolan Wallach for keeping us informed of his
work.
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[BoT] A. BOREL andJ. TITS, Groupes ŕeductifs, Inst. HauteśEtudes Sci. Publ. Math.27
(1965), 55 – 150.MR 34:7527 107
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