DUKE MATHEMATICAL JOURNAL
Vol. 115, No. 1,0 2002

FOURIER COEFFICIENTS OF MODULAR FORMS
ON G»

WEE TECK GAN, BENEDICT GROSS, and GORDAN SAVIN

Abstract
We develop a theory of Fourier coefficients for modular forms on the split exception
group G, overQ.
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Introduction
One of the most surprising aspects of the classical theory of modular fbronsthe
group Slx(Z) is the wealth of information carried by the Fourier coefficieay6f)
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for n > 0. The Fourier coefficients of Eisenstein series were calculated by E. Hecl
and C. Siegel and are instrumental in the study of zeta functions at negative intege
The Fourier coefficients of theta series have been studied since the work of C. Jacc
they give many deep results on Euclidean lattices, such as the unicity of the Lee
lattice. Finally, the action of Hecke operators on Fourier coefficients goes back
L. Mordell and allows one to show that the Mellin transform of an eigenform is at
L-function with Euler product. For an introduction to these basic results, the read
can consult$e] or [R].

Siegel developed a theory of Fourier coefficier)s f ) for holomorphic formsf
on the symplectic group Sp(Z). Here the coefficients, for forms of even weight, are
indexed by positive semidefinite, integral even quadratic spdogfsankg. There is
an analogous theory for holomorphic forms on tube domains, where the Fourier co
ficients are indexed by orbits on integral elements in the corresponding homogene
cone.

On the other hand, one has a less refined notion of Fourier coefficients for
general automorphic fornf on a general reductive group. Given any parabolic
subgroupP = M - N of G and a unitary character of N(A) trivial on N(Q), the
xth Fourier coefficient off is the function onG(A) given by

f, (Q) =/ f(ng) - x(n)dn.
N(@)\N(A)

This notion of Fourier coefficients is useful for many purposes, such as the definitic
of cusp forms, but sincd, are functions rather than numbers, it is often difficult
to extract arithmetic information from them. For arithmetic applications it is thus
desirable to have a refined theory of Fourier coefficients analogous to that for t
holomorphic forms discussed above.

In this paper we develop such a theory of Fourier coefficients for certain moc
ular forms on the exceptional Chevalley gro@(Z). Here the symmetric space
X = G2(R)/ SO4 does not have an invariant complex structure; there are thus r
holomorphic modular forms. The real components of the automorphic represen
tions we consider are in the quaternionic discrete series (3&4)[ For forms of
even weight, we show that the Fourier coefficierits f ) are indexed by totally real
cubic ringsA: commutative rings with unit, which are free of rank 3 oZeand such
that theR-algebraA ® R is isomorphic tdR3.

The definition of the Fourier coefficients requires some background on tt
Heisenberg parabolic subgrotip c Go; this is provided in the first three sections.
We then determine the orbits of the Levi factor Bfwhich is isomorphic to G,
on the space of binary cubic forms. These orbits correspond to cubic rings, and |
orbits of primitive forms (namely, those for which the greatest common denominat
(gcd) of the coefficients is equal to 1) correspond to the Gorenstein cubic rings ov
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7. We then combine our results on orbits with a recent result of N. Wallatj,[on

the uniqueness of certain linear forms on quaternionic discrete series representati
of G2(R), to give a definition oEa(f) in Section 8. Once the coefficients have been
defined, it is natural to ask if the Fourier coefficienjg f) determine the formf.
Unlike the case of modular forms on 81Z), this is not automatic, but we show in
Section 8 that it is the case ffis a cusp form.

As an illustration of the theory, we calculate the Fourier coefficients for Eisen
stein series (Section 9) and analogs of theta series (Section 10). There is a nat
family of Eisenstein serieEyk (of even weight R) which was first investigated by
D. Jiang and S. RallisJH. Assuming an extension of their local results, we show
that for a maximal cubic ringd, the Ath Fourier coefficient of the Eisenstein series
Eok is the nonzero rational numbeg (1 — 2k). The analogs of theta series are con-
structed via the dual pair correspondence arising from the restriction of the minim
representation of the quaternionic form of the exceptional giegifsee [5al]). The
Ath Fourier coefficients of the analogs of theta series count embeddings of th& ring
into integral exceptional Jordan algebras, just as the coefficients of Siegel theta se
count embeddings of quadratic spaces &er

The rest of the paper studies the action of spherical Hecke operators on Foul
coefficients. We give some background on the general theory in Section 11 and tt
work out in Section 13 the relative Satake transform wer- G, andL = GL»
is the Levi factor of the Heisenberg parabolic subgréupJsing this transform, we
determine the action of the two generators of the spherical Hecke algepenahe
Fourier coefficients. This involves the determination of single coset representativ
for the double cosets corresponding to the two generators, and the computations
carried out in Section 14. The resulting formulas in Section 15 are analogs of tl
well-known formula

2k—1

an(Tp| f) = anp(f) + p="an/p(f)

for the action of the Hecke operat®p on the Fourier coefficients of a holomorphic
modular formf of weight Z on SLy(Z). Finally, we show in the last section that if

f is a Hecke eigenform, then the primitive coefficients (i.e. those at Gorenstein cut
rings) and the Hecke eigenvalues determine the rest of the coefficients andfhi@nce

f is a cusp form). This is the analog of the classical result thatig a holomorphic
cuspidal Hecke eigenform on $(Z), then f is determined by, (f) and its Hecke
eigenvalues.

1. Maximal parabolic subgroups

We begin by reviewing some material on maximal parabolic subgroups in simp
algebraic groups (cfHo], [BoT], [SA). Let G be a simple algebraic group of adjoint
type over an algebraically closed fidtdLet g = Lie(G), and letT ¢ B ¢ G be a
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maximal torus, contained in a Borel subgroup. kebe the set of simple roots far
determined byB.

The maximal parabolic subgroug® of G which containB are associated to
simple rootse. If & = A — {a}, andWj is the subgroup of the Weyl group &
generated by the simple reflectionsinthenP = (J,,c\y, BwB. There is a unique
Levi factorL of P which containsT; it has Lie algebra

LieL) =LieM & ( D o).
mg (8)=0

wherem, (8) is the multiplicity of« in the roots, andgg is the one-dimensional root
space corresponding g The unipotent radicdl of P has Lie algebra

V=LeWU) = P o
mg (8)>0

The center ol., which is isomorphic tds,, acts orvV and gives a grading d&fvector
spaces

V = @Vn, (1.2)
n>1
My (B)=n

Each subspac¥, is a linear representation &f, and the following proposition de-
scribes its structure.

PROPOSITIONL.2
The representatiol, of L is nonzero whed < n is less than or equal to the multi-
plicity of « in the highest roofp. In this case, the representatidfy is indecompos-
able.

If the characteristicp of k is 2 or 3, and there are two rootg; and 2 which
satisfy

My (B1) = M (B2) =N,
181117 = p - lIB2I1,
thenV, has a unique irreduciblé_-submodule, generated by the short root spaces

and the quotient module (which is generated by the long root spaces) is irreducib
In all other cases, wheW, # 0O, the representatioW,, of L is irreducible.

Proof
This is a consequence of the results AB[], which show that the restriction &fy,
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to the normalizer of a maximal torus in has at most two irreducible constituents,
corresponding to the different lengths of rogtsvith m, (8) = n. The submodule is
then determined using a Chevalley basig.of O

Now let Bg be the highest root. I6 is not of typeA, there is a unique simple roat
with (8;, ) = 1. Furthermorey has multiplicity 2 inp and is a long root, provided
thatG is not of typeC. The associated maximal parabolic subgréug G is called
the Heisenberg parabolic, and the Lie alge¥raf U has a 2-step gradation

V =V & Vs,

(2.3)
Vo = gg,-

The Lie bracket gives an alternating form ¥, with values inV», and hence gives

anL-linear map
2

f: AVi— Va (1.4)

PROPOSITIONL.5
If the characteristicp of k is 2 and if G is of typeC, then f = 0 and the Lie algebra
V is abelian. In all other cased, # 0.

Assume thaf # 0. If V; is an irreducibleL-module, then the alternating forrin
is nondegenerate, and is the center o¥. If V; contains a nontrivialL-submodule
VlshO”, then this is the radical of the alternating forin andvfho”ea V5 is the center
of V.

Proof
When chatk) = 2 andG is of typeC, all roots inV; are short, and the Chevalley
relations show that = 0. In all other cases; anda’ = By — « are long roots iV
with f(x A a’) = [a, a'] # 0.

If f #£ 0, the radical is arL-submodule ofV; and hence is zero whev is
irreducible. WherV; is reducible, we can use the bracket law on a Chevalley basis t
determine the radical of, and a direct computation proves the proposition. O

2. The unipotent radical
We now use some results of M. Demazuee pp. 438 —440] and J.-P. Seri@d1, pp.
530-531] to convert our knowledge of the Lie algebra= Lie(U) = @,,.4 Vn tO
information on the unipotent radictll of P. -
The unipotent group) has a canonical filtration bly-stable, characteristic sub-
groups
U=U;DUxD--- DUy D {1},
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whereU; is the product of all root subgroups$s with m,(8) > i. Note that in D]
our subgroupJ; is denotedJ;_1, so that) = Ug. We have

Lie(Uj) = @vn.

n>i

Demazure proved that the successive quotigntd); 1 are vector groups ovérand
that theL-action on them i&-linear. Finally, he proved that these representations o
L are isomorphic to the representationd.ofn thek-vector spaces

Lie(Uj/Uit1) = V.

Hence, the results of the previous section show that they are indecompkHable
modules.
The commutator gives a map

Ui xUj = Uiyj.
Projecting to the quotient; j /Uj +j+1, we get an_-bilinear form
Ui/Uit1 x Uj/Ujt1 = Uiyj/Uigjta.

Results of Serre on the canonical exponential show that this form can be identifi
with the Lie brackeV; x Vj — Viyj. Indeed, ifk has characteristic zero (or char-
acteristicp > h, the Coxeter number dB), there is an isomorphism of unipotent
groups

exp: Lie(U) — U,

where the group structure &h = Lie(U) is given by the Campbell-Baker-Hausdorff
formula (seelB, Chap. Il, 86])

1 1 1
v—l—Hw=v+w+5[v,w]+1—2[0,[v,w]]—|—1—2[w,[w,v]]+-~~.

The identity of the group Li&J) is v = 0, and the inverse of is —v. The iso-
morphism exp is characterized by the fact that its derivative is the identity map c
Lie(U). Moreover, exp id_-equivariant, and the above shows that it can be define
over Q. The exponential induces an isomorphism of subgroupdJ.ie— U;, and
the isomorphism

exp: Vi — Uj/Uin1

overQ has no denominators. It thus gives an isomorphism of these vector groups o
7 and hence gives a canonidalisomorphism in all characteristics. Further, since

U+Hw+H (_v)+H (_w)z[vvw]—i_"'?
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we see that the commutator map on the graded quotients is indeed the Lie brac
map
Vi x Vj — Vigj.
In the case of the Heisenberg parabdlicwe have filtration
U =U; DUz =Ug, D {1}.

Translating the results of Propositiarb, we have the following.

COROLLARY 2.1

If chark) = 2andG is of typeCy+1, thenL = G Sp,, andU is abelian of dimension
2n+ 1. In all other cases the commutator subgroupois U,, andU2? = U /(U, U)

is isomorphic toV; as anL-module. When thit-module is irreducible (e.g., when
chark) # 2, 3), the center olJ is isomorphic tdJ,.

3. The Heisenberg parabolic inG»

We specialize the results of Sections 1 and 2 to the g@up G, and the Heisenberg
parabolicP. If the simple roots of5 areA = {«, o’} with « long, thenP is associated
to o and the Levi factot of P is isomorphic to Gk, with simple roote’. We have
four root spaces contributing ¥,

{o, 0 + 0,00 +2d, o + 3},
and a single root space
Bo=2a + 3’

contributing toVa.

The pairing
2

ﬂAWeW

is nondegenerate, and is irreducible, provided chék) £ 3. If the characteristic of
kis 3, then thd_—submodule\/fhortis spanned by the two root spaces

(@ +a, a+ 20}

and this submodule is the radical of the nonzero paifintn all casesp2P = Vv is
a 4-dimensional representationlof

PROPOSITION3.1
The representatio. on the spacéHom(U, G5) is isomorphic to the twisted repre-
sentation ofGL, on the space of binary cubic forms

pP(X, y) = ax + bx?y + cxy? + dy?
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A B
J/=<C D)EGLz

1
- pX,y) = — - p(Ax+ Cy, Bx+ Dy).
Y- P(X,Y) dety) p( y Y)

overk, where

acts by the formula

Proof

Since HomU, Ga) = HomU2P, G,), the representation &f on the character group
is isomorphic toV;". This is indecomposable, and when alkar# 3, it is in fact
irreducible. Our identification of the unique submodule shows that (dorft,) =
SB(k?) as representations € = SL,. Since the center df acts by a fundamental
character oV, and hence oWV;*, we may choose an isomorphidm= GL, so that

the central element
A O
0O A

acts by multiplication byA. This gives the result. O

Remarks.

0] The twisted representation of Glon the space of binary cubic forms is faith-
ful, whereas the usual action has kerngl

(ii) Under the choice of the isomorphism= GL in the above proof, the modu-
lus characteép of P is given by

sp(g) =detg)™® forge L.

Here is another way to see that linear forms\arcorrespond to binary cubic forms
p(x, y). Define the cubic mapping : k* — V1 ® det by the formula

0(X. y) = X%, + X°Yeyia + XY €ut20 + Yyt (3.2)
Here(ey, €y+a’> Bx+20/» €x+3x) IS @ Chevalley basis, normalized by
[eClla eﬂ(] = eOl—l—O[/v
[eoz/, eaJra/] = 2ea+20(/,
[y, Eyy20'] = 364 3ar-

A short computation shows that one can choose an isomorphisfiGL, so thaty
is L-equivariant. Hence, linear forngson V; give cubic formsp o 6(x, y) onk?.
A Borel subgroup oL stabilizes a unique complete flag

OcWicWocW3CcW;=V;



FOURIER COEFFICIENTS OF MODULAR FORMS ONB, 113

with dimW, = i. It also stabilizes a unique lidein the standard representatikfi
The lineW; is equal tod(1); more generally, we have the following.

PROPOSITION3.3
A linear form p vanishes on the subspa¥¢ if and only if the corresponding cubic
form p o 6 onk? vanishes to order greater than or equaliton the linel .

Proof

It suffices to check this for the Borel subgroBpof upper triangular matrices which
stabilizes the liné = ((x, 0)) since all the Borel subgroups are conjugate. The com:
plete flag inV* stabilized byB is given by

0c (3 c (x3 x%y) c (x5, x%y, xy?) C Vj.

Hence, the linear formp vanishing or\W; are those of the forrax3 + bx?y + cxy?,
which vanish to order greater than or equal to 1.0rhe p vanishing on\, are those

of the formax® + bx?y, and these cubic forms vanish to order greater than or equal t
2 onl. Finally, the p vanishing oMz have the formax2 and vanish to order greater
than or equal to 3 oh O

We now consideG = G2 as a Chevalley group ovéf, with Heisenberg parabolic
P = L - U. The Levi factor is now isomorphic to the group scheme @GlerZ, and
V1 andV; are freeZ-modules (of ranks 4 and 1) on whithacts. By our results over
fields, the brackef : A?Vy — Vs is surjective[U, U] = Ug,, and HomU, Ga)
is isomorphic to the fre&-module HoniVi, Gg) = Hom(U (Z), Z). We have shown
the following (cf. [Sp, pp. 160—161]).

PROPOSITION3.4
The representation df (Z) on the modulélom(U (Z), Z) is isomorphic to the twisted
representation of5L»(Z) on the space of binary cubic forms ovér

Thus, the set of (Z)-orbits on HongU (Z), Z) is in canonical bijection with the set
of GL2(Z)-orbits on the space of binary cubic forms. In the next section we identif
these orbits with the isomorphism classes of ridgsf rank 3 overZ.

4. Binary cubic forms and cubic rings
We recall that the twisted action of

A B
y=<C D)GGLz(Z)
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on the element
p(x, y) = ax® + bx%y + cxy? + dy*

in the space of binary cubic forms with integer coefficients is given by

v P(XY) = - p(AX + Cy, Bx + Dy). (4.1)

det(y)

As remarked earlier, this twisted action is faithful. In this section we parametrize tt
GL2(Z)-orbits.

We say that a commutative, associative rla@with unit 1) is acubic ringif Ais
a freeZ-module of rank 3.

PROPOSITION4.2

There is a bijection, given below, between the seGab(Z)-orbits on the space of
binary cubic forms with integer coefficients and the set of isomorphism classes
cubic ringsA.

Proof
If Ais a cubicring, choose abasts=Z-1+7Z-a+7Z- 8 overZ. By adding integers
to o andg, we may arrange that the product

aff =n

lies in Z. Call this agood basidor A (cf. [DF, pp. 103—105]). We first establish a
bijection between cubic rings with a good basis (up to isomorphism) and binary cuk
forms.

A cubic ring with a good basis is determined up to isomorphism by the product

af =n,
oa? =m+ ba — ag, (4.3)
B2 =1 +da — ¢,

with a, b, c, d, |, m, nin Z. SinceA is associative,we have

o’ p=a-ap,
a-BZ=ap-B.
Writing these out, we find that
n = —ad,
m = —ac, (4.4)
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but that the integer&, b, c, d) are arbitrary. ToA with the good basi¢l, «, 8), we
associate the binary cubic forpix, y) = ax® +bx?y + cxy? + dy?, and to the form
p, we associate the cubic ring with multiplication given By3 and ¢.4). This is the
first bijection.

Now consider the operation where a good badisy, 8) of A is replaced by
another good basid, o', B’). Write

8)6)-(;)

A B
V=<C D ) € GL2(2),
andu andv integers determined by (and the fact that’8’ = n’ is an integer). After
some calculation, best suppressed here, we find that the form

< C B
O > o

with

p/(x, y) — a/X3 + b’x2y+ c/xyz + d/y3

associated tgl, ’, 8’) is equal toy - p. This completes the proof of the proposition.
O

As an example, the orbit gf = (0, 0, 0, 0) gives the cubic ring
A =Zla, B1/ (o, B, aB),
and the orbit ofp = (1, 0, 0, 0) gives the cubic ring

A= Zla]/ ().

RemarksP. Deligne has observed that the bijection of orbits and rings established
Propositiord4.2 holds over any base scherBeThere is an equivalence of categories
between the following two kinds of objects, with morphisms being the isomorphism:
(@) avector bundl&/ of rank 2 withp in Syn?(V) ® /\2(V)—1;
(b)  avector bundléA of rank 3 with a (commutative) algebra structure.

The key point is that we are not looking at the action of(@). on binary cu-
bic forms (i.e., on elements of SytV)) where the subgroups in the center acts
trivially, but at the twisted action on Sy?m\/) ® /\Z(V)*l, which is faithful.

The invariants and covariants of the fonx, y), studied in the nineteenth century
by G. Eisenstein, C. Hermite, and others (d8E,[p. 167]), can all be given in terms
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of the cubic ringA (see the recent articléiM]). For example, the discriminamt of
p(x, y), defined by

A = b%c? + 18abcd — 4ac® — 4db® — 27a%d?, (4.5)

is equal to the discriminant ok overZ. Indeed, if Tr: A — Z is the trace form, we
have
Tr() Tr(e) Tr(B)
diso(A/Z) = det( Tr(w) Tr(@® Tr(ep) )
Tr(B) Tr(ep) Tr(p

for anyZ-basis(1, «, 8) of A. Using a good basis, we find

Tr(1) = 3,
Tr(a) = b,
Tr(B) = —c,

Tr(e?) = b? — 2ac,
Tr(B%) = c2 — 2bd,
Tr(ep) = —3ad.

From this we obtain the identity di6&/Z) = A.
Eisenstein defined a quadratic covarianpgX, y):

q(x, y) = (b? — 3ac)x? + (bc — 9ad)xy + (c? — 3bd)y?. (4.6)
We have
disaq) = —3A,

andq is positive definite whem\ > 0. If p(x, y) is associated té\ with a good basis

(1, o, B), and we write

Tr
y:xa—i-yﬂ:—éy)—i-)/o

with yp € (1/3) - A of trace zero, then we have

3
ax. y) = S Tro). (47
Similarly, Hermite defined a cubic covariant p¢x, y):
n(x, y) = (2b> — 9abc+ 27a%d)x® (4.8)
+ (3b%c — 9ac? + 27abd)x?y

+ (—3bc? + 180%d — 27acd)xy?
+ (—=2¢% + 9bcd — 27ad?)y®,
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with
A(n) =3%. AS.

With the above notation, we have the formula
n(x,y) = 27- N(yp). (4.9)
The relation between the covariants (of degree 6),
2 2 _ 3

follows from the formula for the discriminant o4 in terms of the coefficients of its
characteristic polynomial.

5. Primitivity and Gorenstein cubic rings

One invariant of the Gi(Z)-orbit of p(x, y) is the contene > 0 of the form p,
defined as the nonnegative generator of the ideak Zb + Zc + Zd of Z. We say
that p(x, y) is primitiveif e = 1. Every nonzero fornp may be written uniquely as

p=e-po (5.1)

with e > 1 the content of, and pp primitive. If the cubic ringA corresponds to the
GL2(Z)-orbit of p(x, y), then we also say that has conteneé.

We say that the cubic ring is Gorenstein if thenodule HongA, Z) is projective.
For example, ifA = Z[y] is generated by a single element, it is Gorenstein. Indeec
Hom(A,Z) = A- f is free, with basis given by the map

f(1) =0,
f(y) =0,
f(y?) =1

PROPOSITIONS.2
The formp(x, y) is primitive if and only if the associated cubic rifgis Gorenstein.
If p=e- powithe> 1,thenA=7 + eAy.

Before proving this result, we give a useful description of the fundiir, y)|, using
the rank 2Z-moduleA/Z.

LEMMA 5.3
The elemeny = ma + ng (modZ) in A/Z generates a subring of finite index &
if and only if p(m, n) = 0. In this case|p(m, n)| is the index ofZ[y ] in A.
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Proof
Since
y? = mPa? 4+ 2mmuB + n?B2 + k(ma + nB) +1,

wherek andl are integers, we have

y2 = (bm? + dn? + kmyer + (—an? — cn? + kn)B

in A/Z.
The index ofZ[y] in Ais finite if and only if the matrix

Mo (™ bn? + dn? + km
“\n —am?-cn?+kn

has nonzero determinant, in which case the indekdst(M)|. Since detM) =
—p(m, n), the lemma is proved. O

Proof of Propositiorb.2
Letl be a prime number, and p& = A ® Z;. We show thap(x, y) # 0 (modl) is
equivalent to the fact that Hof , 7)) is a freeA-module.

If p(x,y) =0 (modl), then the ring

A/IA = Z/1Z]a, B1/(a?, B2, ap)

is not Gorenstein ove£/|Z. Indeed, it is a local ring with maximal ideal = («, 8).
Sincem? = 0, the kernel ofn on A/I A has dimension 2, bus/m has dimension 1.

Now assume thap(x, y) # 0 (modl). Sincep has at most three distinct roots
(modl), we can findlm, n) € le such thatp(m, n) is a unit inZ;, unlesd = 2 and
p(X, y) is equivalent to the form2y — xy? overZ. In the latter casef, = Z3, and
Hom(Ag, Zp) = Ay by the trace form. So we may assume tpam, n) is a unit in
7Z,. By Lemma5.3, Al = Z[y] with y = ma + nS. Hence, HonA, 7)) is a free
module by the remarks preceding PropositioA This proves the first assertion in
Proposition5.2.

If (1, ag, Bo) is a good basis foAg, with form po(X, y), then(1, « = exg, 8 =
€Bo) is a good basis foA = Z + eAy. The associated form ip = e - pp by the
formulas in(4.3). This proves the second asssertion of Proposki@n O

For our calculations with Hecke operators in Sectiénwe need a local variant of the
contente. We say that thep-depth of A is n if e s divisible by p" and not byp™+?.
Assume, for the rest of the section, that fhelepth of A is zero. LetA, = Z + p"A
which hasp-depthn, and letq(x, y) be a binary cubic form in the orbit corresponding
to A. For alln > 0, the abelian groug\n/ An+1 is isomorphic to(Z/ pZ)?, so there
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are(p + 1) free abelian groupB with A,;1 € B C A,. How many of these lattices
are cubic rings?

PROPOSITION5.4
There is one-to-one correspondence between the solutioggcof) = 0 (mod p)
and the cubic ring8 with A; ¢ B C A

If n > 1, any latticeB with An+1 C B C Ap is a cubic ring.

Proof

Let (1, o, B) be the good basis foA corresponding to the cubic foronx, y). Any
lattice B betweenA; and A is spanned by 1pa, pg, and an additional element
aa + bg for some integera andb (which are well defined (mog)). One checks that
B is aring if and only ifg(a, b) = 0 (mod p). The statement fan > 1is clear. ©

Note that the cubic ring® betweenA,,1 and A, may be mutually isomorphic. For
example, wherA = Z3, then the three cubic ringd betweenA; and A are abstractly
isomorphic.

PROPOSITION5S.5
Let B be aring such tha\,1 C B C As. Then thep-depth ofB lies betweem — 1
andn + 2. If the p-depth ofBisn — 1+, thenq(x, y) (mod p has a zero of order.

Proof

We can find a good basig, «, ) of A such that(1, p"a, p"+18) is a good basis of
B. If q(x, y) = ax® + bx?y 4 cxy? + dy? is the cubic form associated to the above
good basis forA, the cubic form associated to the above good basi8fisr

apn—1X3 + bp”x2y+ Cpn+le2 + dpn+2y3_

The first assertion now follows from the fact trahas p-depth zero. Moreover, if the
form attached ta is divisible by p"~1*! then(1, 0) is a zero ofy(x, y) (mod p) of
orderi. O

COROLLARY 5.6
If A/pAis a cubic field andB is a cubic ring such tha\,+1 € B C Ay, then the
p-depth ofB isn — 1.

Fix an arbitrary cubic ringA’ (not necessarily op-depth zero) and a binary cubic
form q'(x, y) in the GLy(Z)-orbit corresponding t&\'. We conclude this section by
describing another way of parametrizing the cubic riythat contain or are con-
tained inA’ with index p.



120 GAN, GROSS, and SAVIN

By base extension, the action of &) on the binary cubic forms ovét gives
rise to a rational representation of &IQ) on theQ-vector space of binary cubic
forms overQ. Further, one has the analog of Propositiof over Q, with the same
proof. Now we have the following.

PROPOSITIONS.7
0] Let S be the set of left cose@GL2(Z)y contained in

GL2(Z)< P . )GLZ(Z).

Then there is a natural bijection between
{GL2(Z)y € S : v - d' has integer coefficients

and the set of cubic ringB such thatB cp A'.
(ii) Let S be the set of left cose@GL2(Z)y contained in

1
GL2(Z) < p_l ) GL2(7Z).

Then there is a natural bijection between the §8l2(Z)y € & : y -
g’ has integer coefficientand the set of cubic ringB such thatA’ C, B.

Proof
(i) Suppose that the binary cubic forgi corresponds to the good ba$ls «, 8} of

A'. Every
A B
y=( A ) GGLz(Z)( - )GL2<Z)

determines a lattice
L, = (1, Ax + BB, Ca + DB) Cp A'.

The latticeL,, depends only on the left coset &IZ)y, so that there is a bijection
betweenS; and the set of latticek C A'. The latticel, is a ring if and only
if (A, B) = q'(C, D) = 0 (mod p). On the other hand, a simple but somewhat
tedious calculation shows that q’ has integer coefficients if and onlyqf(A, B) =
g’(C, D) = 0 (mod p). Further, in this case the integral binary cubic foym q’
corresponds to the cubic rirlg, . This proves (i).

(i) The proof is similar to that for (i); we omit the details. O
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6. Quaternionic discrete series
We now consider the restriction of certain discrete series representation of the real
groupG2(R) to the Heisenberg parabolic subgroup. Wallach has recently studied tf
situation in a more general setting (s&¢d]), and we simply state his results f@r,
here.

The discrete seriegsk we consider here were discussed BVY]. They are
parametrized by integeks> 2 and have infinitesimal character (k — 2) 8o, with
Bo the highest root. In this papeti denotes the Casselman-Wallach globalization,
which is a smooth Fachet representation of moderate growth (€1, [W2], [W1]).
The maximal compact subgrowp of Go(R) is SUy = (SUx x SUp)/(£1), with the
long root SUY as the first factor. The representatianis admissible for the long root
SUp, and its underlying Harish-Chandra module decomposedasrmdule:

Mok = P () ® SA(SC).

n>0

The minimalK -type is the representation
K@ of (SUp x SUp)/(+1),

of dimension R + 1. Finally, the subgroug = Uz = (U1 x SUy)/(£1) of K has
highest weightdet on the minimalK -type. Moreover, the representatiomg are
nongeneric: they have Gelfand-Kirillov dimension 5.

We also have the continuation of quaternionic discrete sejeand 1 con-
structed in GW)]. They have the same properties as the representatiprdove,
although the infinitesimal charactess— 8o andp — 28o are no longer regular. The
representatiotr; is a limit discrete series, anh has a trivial minimakK -type. Both
are unipotent in the sense of D. Vogari [

Following the techniques i\, §6], one can show that is a submodule of a
degenerat€>°-principal series representation &@%) Ak, With Ak a 1-dimensional
representation oP (R)/U (R) = GL2(R). Indeed, we have

Ak = (sign - | det| ™1,

where(sign) is the unique quadratic character of £R). Here we recall that we have
chosen an isomorphisin = GL; so that the modulus character®fis p = det 3.

The real vector space Haid (R), R) is isomorphic to the group of characters
Hom(U (R), S') under the map takind to x = ™. This isomorphism takes the
lattice HomU (Z), Z) to the subgroup of charactegsthat are trivial onJ (Z). This
subgroup is a representationlofZ), isomorphic to the action of GI(Z) on the space
of binary cubic forms with integer coefficients.

The full character group is a representation,gR) = GL,(R), isomorphic to
the representation on the space of binary cubic forms with real coefficients. We s
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a charactery of U (R) is genericwhen the cubic fornp(x, y) associated t¢; has
discriminantA # 0. The generic characters break up into tlvR)-orbits: those
with A > 0, corresponding to the real cubic alget®3, and those withA < 0,
corresponding to the cubic algetiRac C. A representativg for the orbit withA > 0
is given byy = €"if wheref : U(R) — R is nonzero on the two short root spaces
g, with my(y) = 1, and zero on the two long root spaces with(y) = 1.

The following is Wallach’s result foG..

PROPOSITIONG.1
Let x be a generic character &f (R), and letk > 0.

If A(x) < 0, then the complex vector space of continuous linear map:
Homy ) (7mk, C(x)) is zero.

If A(x) > 0, then the complex vector space of continuous linear map:
Homy ) (7rk, C(x)) is 1-dimensional, and it affords the representati(sign)k for
Y3 = Stal{y) c GL2(R).

7. Modular forms on G2 of weight k

We fix a quaternionic discrete series representatipof Go(R) with k > 2, or a
continuation withk = 0 or 1. Let</ be the space of automorphic forms @a. More
precisely,o is the space of smooth functiopson the adelic group

Ga(A) = G2(R) x G2(Q)

which satisfy the following conditions:
0] ¢ is left-invariant undeG,(Q);
(ii) @ is right-invariant under some open compact subgridypof G2(Q);
(i) ¢ is annihilated by an ideal of finite codimension irZ(g), the center of the
universal enveloping algebra of the Lie algebraf G2(R);

(iv) ¢ is of uniform moderate growth 082 (R) (cf. [BoJ, [W2, p. 252]).

Note that this definition of7 differs from that in much of the literature since we
are not assuming thatis K -finite; instead, lekzk be the subspace of consisting of
K -finite functions. As a resulty/ is a representation of the adelic groGp(A). For
fixed Kt and J, let o/ (J, Kt) be the subspace a¥ consisting of those functions
¢ for which conditions (ii) and (iii) are satisfied with respect to the givkemand
K¢. As shown in V2], &/ (J, K¢) is a smooth Frechet representation@f(R) of
moderate growth. By a fundamental theorem of Harish-ChandraBcf], [Th. 1.7]),
its underlying(g, K)-moduless (J, K 1)k is admissible and finitely generated. Thus,
o/ (J, K¢) is the Casselman-Wallach globalization@f(J, Kt )k by results of {]
and W1]. Let @ C o be the subspace of cusp forms. We now give the following
definition.



FOURIER COEFFICIENTS OF MODULAR FORMS ONB, 123

Definition
The space of modular forms of weigktand level 1 forG; is the complex vector
space

My = Homg, ) G,@) (7k ® C, ). (7.1)

The subspace of cusp forms is
M = Homg, @) 6,@) (k ® C. ). (7.2)

By the fundamental theorem of Harish-Chandra alluded to abblge,s finite-
dimensional. Moreover, it affords a representation of the spherical Hecke algebra

#(G2@//Go@)) = R)#(Ga(@)//Go(@)).
|

In Sections 9 and 10 we give some examples of elemerigpénd in Section 15 we
study the action of7’(G2(Q)//G2(Z)) on M in greater detail.

8. Fourier coefficients
In this section we define, for anfy € My, a collection of Fourier coefficienta(f) €
C. The coefficients are indexed by those cubic ridgsith A® R = R3 and depend
linearly on f.

For vectors € mrx, we may viewf (v) as a function on the double coset space

G2(Q)\G2(4)/G2(2),
which is identified with the single coset space
G2(Z)\G2(R)

by the strong approximation theoreﬁy(@) = G2(Q) - Gz(i). Let x be a character
of U (R) which is trivial onU (Z), and define a continuous linear form ap by the
integral

Iy (v) = / f (v)(U)x (u) du. (8.1)
U@)\U®R)

Hereduis a Haar measure on the unipotent grolgR), and the quotiert (Z)\U (R)
is compact.

PROPOSITIONS.2
The linear form, lies in the complex vector spat®my ) (k. C(x)). If x' =y - x
with y in L(Z), thenl,, =y -1,.
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Proof
Forg € U(R) we must show thdt, (gv) = x(9)l, (v). But f(gv) is the function on
G2(Z)\G2(R) defined by

f(gu)(h) = f(v)(hg).

Hence,
|y (gv) = / f (gu) (W)X @) du
U (Z)\U (R)
_ / f () (UQ) X (W) du
U (Z)\U (R)

= / fW)xWwgHdu (U =ug du =du
U@)\U R)
= X (@ly (),
as required. Now assume thdt= y - x with y in L(Z), so that
X' = x(y~tWw) = x(r uy).
Then
[, (v) =/ f(v)(Wx'(u)du
U (@Z)\U (R)
= / f () (W x (y~tuy)du
U(@Z)\U R)

=/ f) Uy HyW)du W =y tuy,du = du
U@N\U®)

- / (1o)X @) du
U@\U®)
=|X(y_lv)=y~|x(v). O

If A(x) < 0,1, = 0 by Propositiors.L If A(x) > 0,1, lies in the 1-dimensional
complex vector space Haigr) (rk, C(x)). Fix a charactergo with A(xo) > O,
and a basis vectdp of Homy ) (k. C(x0)). Sincey is in the L(R)-orbit of xo,
we may writey = g - xo with g € L(R) well defined up to right multiplication
by X3 = Stal{xo). If k is even, this finite group fixek. If k is odd, X3 acts on
Homy ) (7, C(x0)) by the sign character. In any case, the linear fapto) - (9-lo)
gives a well-defined basis element of Hom, (7x, C(x)). Hence, we may write

Iy = ¢ (f)- k(@) - (9 lo) (8.3)

for some constart, (f).
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If the weightk is even, it follows by Propositiofi.2 thatc, (f) depends only on
the L (Z)-orbit of the characteg. We have seen in Propositiofist and4.2 that the
L (Z)-orbits of suchy’s are indexed canonically by the cubic ringswvith disq(A) >
0, so thatA ® R = R3. Hence, if the orbit of¢ corresponds td\, we writeca( f) for
the constants, (f) in this orbit and calca(f) the Ath Fourier coefficient off .

Whenk is odd, it is no longer the case that the constgsitf ) depends only on
the L(Z)-orbit of x. Indeed, ifx’ = y - x, wherey € L(Z), an easy calculation
shows that,/(f) = det(y) - ¢, (f). As a consequence, (f) depends not only on
the cubic ringA (which indexes the orbit gf ), but also on an orientation &, that is,
the choice of a basis elemenof /\3 A. Hence, wherk is odd, we denote the Fourier
coefficients off by cae(f). Sinceca _e(f) = —cae(f), we abuse notation and
write ca(f) for the pair of numbers-ca o(f). It is interesting to note that a similar
complication arises for the Siegel modular forms of odd weight.

If we replace the basig by the basi$, = alo, then

ca(f) = acy(f)

for all A. Also, it follows from definition that

calaf + Bg) = aca(f) + Bca(Q9).

Whenk is odd, we havea(f) = 0 whenever the stabilizer ¢f in GL»(Z) contains

an involution, for example, wheA = Z + B with B an order in a quadratic field.
Having defined the Fourier coefficiers( f ) for modular formsf € My, we can

ask a number of natural questions. The first question that suggests itself is whethe

is determined by its Fourier coefficients. We can show that this is true for cusp form

PROPOSITIONS.4
If f e MI? is a cusp form anda(f) = Oforall A, thenf =0.

The proof of this proposition makes use of the other standard maximal parabo
subgroupQ = M - N of G overZ. Hence, we begin by describing the structureof
briefly. Its Levi factorM is isomorphic to Gk, and its unipotent radical is a 3-step
nilpotent group ovez.:

N = N1 D N2 D N3 D {1}.

This filtration is the one introduced in Section 2 for a general maximal parabolic sul
group. The centeNs of N is 2-dimensional, and one can choose an isomorphisn
M = GL; so that the action oM on Hom(N3, G3) is the standard representation
of GL, twisted by the determinant character. Similaly; = N;/N> is also 2-
dimensional, and the action &1 on HomW;, Z) is the standard representation of
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GLy. Note thatU N N is the 4-dimensional commutator subgroup of the unipoten
radical of the Borel subgroup = P N Q. Moreover, we have the inclusions

U> C Ng,
N> c UNN,

where we recall from Section 2 thdp = [U, U] is the center of the unipotent radical
U of P.

Proof of Proposition 8.4

Take any nonzero € ny, and letp = f(v) € o%. Using strong approximation, we
regarde as a function orG,(Z)\G2(R). Note thaty is a nongeneric cusp form and
that we need to show that= 0. We first note the following lemma.

LEMMA 8.5
The automorphic fornp vanishes if and only if its constant term alodg,

w00 = | pUGdu, g e Ga(R),
U2(Z)\U2(R)
vanishes as a function da(R).
Proof

Clearly, if ¢ vanishes, so doegy,. To prove the converse, consider the Fourier ex-
pansion ofp along the compact abelian grot{a(Z)\ N3(R),

0@ = oy(Q),
v

where the sum extends over the characters Hom(N3z(Z)\N3(R), S!), and
vy (9) = / p(ng) - Y (n)dn.
N3(Z)\N3(R)

If pu, = 0, thenpy, = O for anyy that restricts to the trivial character on the subgroup
Uz(R). But any other character M3(Z)\ N3(R) is conjugate undeM (Z) to ay of
the above type. Hence,, = O for all ¢, and the lemma is proved. O

To prove Propositior8.4, it remains to show thapy, = 0. For anyg € G(R), the
function
ur ¢u,(ug) for ueUR)
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descends to a function on (R), whereV,; = U /U,. Considering the Fourier expan-
sion of gy, along the compact abelian groM(Z)\ V1(R), we have

9U,(9) = Y 9y (Q),
X

where the sum is over the charactgre Hom(V1(Z)\V1(R), SY), and
0@ = [ Pu,(09) - X ) dv.
Vi(Z)\V1(R)

Propositior6.1implies thakp, = O for all x satisfyingA(x) < 0, and by assumption,
¢, = 0 for thosex such thatA(x) > 0. Hence, to show thaty, vanishes, it remains
to see thap, = O for degeneratg, that is, those for whictA(x) = 0.

We have yet to use the fact thais a nongeneric cusp form. This is equivalent to
the assertion that the constant tespohn of ¢ alongu NN vanishes identically. To see
this, consider the Fourier expansiong@fnn alongugb = (U N N)\Ug, whereUg
is the unipotent radical of the Borel subgroBpWe deduce thap is cuspidal if and
only if (punn)y = O for any degenerate characigrof Ugb(Z)\Ugb(R) (i.e., those
Y that restrict to the trivial character of the root subgroup corresponding to one of tt
two simple roots). On the other hanglis nongeneric if and only ifpunn)y = 0
for any nondegenerate characterHence,y is a nongeneric cusp form if and only
if (p)unn = 0.

We now claim that in facpn, is already identically zero. To see this, we consider
its Fourier expansion alond/1 (Z)\W1(R), whereW; = N1/Na2:

Ny (@) = D (9N,)p(9)-
¢

The fact thatpynn = 0 implies that(¢n,)s = 0 for any¢ that restricts to the trivial
character on the subgrolp(R) N N(R). But any other character is conjugate under
M (Z) to a¢ of the above type. Hence, we conclude thgf = 0. In particular, this
implies thaty, = 0 for any charactex € Hom(V1(Z)\V1(R), S which restricts to
the trivial character oN>(R) C U (R).

Finally, we observe that any degenerate charggtar conjugate undek (Z) to
a character that is trivial olN>(R), and hencep, = O for all x. Proposition8.4 is
proved completely. O

We conclude this section with another question: Are there bounds for the Fourier ¢
efficients of f in terms of the discriminants of the cubic rings? Recall that the discrim
inant dis¢A) of a cubic ringA is as defined in Sectiofi The following proposition
gives the analog of the Hecke bound for cusp forms.
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PROPOSITIONS.6
Letf e ME be a cusp form. Then for any totally real cubic rifg

lca(f)| < Ct - | diso A)|+D/2

for some constan€ s depending only orf.

Proof
Recall that the Fourier coefficieni( ) is defined by equatiorB(3):

ly = ca(f) - k(@) - (9-lo),

wherexy = g - xo is a character in the Gl(Z)-orbit corresponding tcA. Assume
without loss of generality thak (xg) = 1. (Here,A(xo) is as defined in4.5).) Then
we see that

| diso(A)| = | det(@)|*.

Pick anyvg € mx such thalp(vg) = 1. Evaluating the above equation at the vector
g - vo, We obtain
lca( )] = 1,(g - vo)| - | disa(A)|KFTD/2,

On the other hand, akis cuspidal,f (vg) is bounded as a function @ (Z)\G2(R).
Since

1, (9 - vo) =[ f (o) (ug) - x(u) du,
U (Z)\U (R)

we conclude thali, (g - vo)| is bounded above by a constant independeri.ofhe
proposition is proved. O

9. Eisenstein series of weighzk > 4
To show that the theory of Fourier coefficients developed above is nonempty, we gi
some examples of modular forms of weighfand study their Fourier coefficients.
In this section we consider a natural family of Eisenstein sefigsof even weight
2k > 4, and we show under some hypotheses that their Fourier coefficients are gi
by
ca(BEax) = ¢a(l - 2k)

for maximal cubic ringgA.

As we mentioned before, there is an embedding

- G2(R
| @ 7Tk — Indpﬁﬂ(@) A2k,
which is well defined up to scaling. The charactgg is the archimedean component
of a global character
xk: P(A) — C~,
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which is unramified at every finite place; indeed, one has
Xk = |det|=% 1,

We can thus consider the global induced representation
| (k) = IndP2) i = ®|,,(k).
v

For a finite primd, let I'k | be the unique vector i (k) which is fixed byG2(Z),
and which satisfieFy | (1) = 1. Forg € my, set

p=i@e(@ra)el®,
I
and form the Eisenstein series
E@.9= Y  ¢(9 9.1)

y€P(Q\G2(Q)

for g € G2(R). This converges absolutely whek 2 2, and defines an element.of
which is right-invariant undeG2(Z). Thus, the map

Eox : ¢ — E(9,0)

defines a nonzero element M.

We now consider the Fourier coefficients Bfx. Much computation has been
done by D. Jiang and S. RalliSH] in the adelic setting, and we begin by recalling
their results. Lej be a character df (R) which is trivial onU (Z). By strong approx-
imation we can regargl as a character df (A) which is trivial onU (Q) andU (Z).
Consider the automorphic fora(g) = E(¢, g), defined by 9.1), for ¢ € | (k). We
then computé, (¢) following the approach ofJR]:

|X((p)=/ E(u) - x(u)du
U@\U(A)

= Lo (X d0w) x@au
V@U@ *) cp)\G2(@)

Now the double coset space(Q)\G2(Q)/P(Q) has four representatives, say,
wo, w1, w2, w3, With

P(QuwoP(Q) = P(QwoU (Q)
the openP-orbit. Hence,

i (p) = Z/ > @(yu))-mdu.

(@)\U(A> yeP@)\PQui P(@Q)
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Jiang and Rallis showed that the only nonzero term in the sumwyves the term
corresponding tavg. Hence,

I () =/ @(wou) - x(u)du
U(A)

B (/U(]R) AL -mdu) ' (E[/U(Qp) I'p(woup) - X(up)dup>,

an absolutely convergent Euler product. Now we have the following (g&&h. 2]).

PROPOSITION9.2
Assume thaty corresponds to a maximal cubic ring. If A ® Q, is one of the
following,

Qp X Qp X Qp,
Qp x K, whereK is the unramified quadratic extension @f, and p # 2,
the unramified cubic extension @fp with Q containing all cube roots of unity,

then
/ I'p(woUp) - x(Up)dup = Cp - §A®Zp(2k),
U(@Qp)

wherecy, is an explicit universal constant independentof

For the rest of the section, we assume that the formula in PropoSitiamolds for
all finite primes and use this to compute the Fourier coefficient&€ok) of Exk for
maximal A. Hence, after a rescaling, we have

Iy (9) = ¢a(2K) / @ (wou) - x (u) du,
U(R)

and it remains to examine the archimedean factor. The archimedean integral convel
for k > 1, and the linear form

¢ @ (wou) - x (u) du (9.3)
U(®R)
defines a nonzero element of Hom®) (1 (K), C(x)). We expect but do not know that
its restriction to the submoduley is nonzero. However, it is not difficult to see that
the vanishing of this restriction for one sughwith A(x) > 0 implies the vanishing
of the restriction for ally’s with A(x) > 0, in which casea(Ex) is zero for allA.
Since we do not expect this to be the case, we make the further assumption that
archimedean integral is nonzero when restrictegt4pfor some (and hence all)
with A(x) > 0.
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To compute the Fourier coefficient, we now fixyg with A(xo) > 0, and a
nonzerdg € Homy ) (r2x, C(x0)). We pick xo to be the character corresponding to
po = (0, 1, 1, 0), and we letg be the linear form

lo(p) = / @(wou) - xo(u) du. (9.4)
U)

By our assumption, this defines a nonzero element of f@ptmok, C(xo0)). Now
take anyg € GL2(R) such thalg - xo = x. We have

(9-lo)(p) = / @(woug™) - xo(u) du
U(R)
= /U (R)cﬂ(wog_lu/)'xo(g‘lu’g) 8p(g)tdu  (withu’ = gug™?)

=5p(g)~t- f ¢ ((wog two)wol') - x (W) du’
U (R)
= 8p(9) L 8p(@) VB ca@) 1, ().

Here the last equality follows becausgglwg € GLo(R), andsp(wog twg) =

3p(9).
Now the Fourier coefficient, is defined by the equality

e =c, -85 (g) - (g 10).
By the above computation, we see that
Cy = EA(2K) - 8p(Q) - 8p(9) 2 HFD/3 = ¢a(2K) - | detg)|
sincesp = | det| 3. On the other hand,
| det(@)” = A(x) = disa(A).

Hence,
¢y = ¢a(2k) - diso(A)K-D/2,

which by the functional equation giveg(1—2k) up to a universal scalar. Concluding,
under various local assumptions we have seen that, up to a universal scalar,

ca(Exx) = ¢a(1— 2K). (9.5)

Hence, the Eisenstein seriEsk are analogs of H. Cohen'’s Eisenstein series of half-
integral weight (see(0]). Observe that sincea(2k) is about the size of Iga(Exx)
grows like| diso A)|%~1/2, which violates the bound in Propositiéné satisfied by
cusp forms.
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RemarksWhen X = 2, the seriesq.1) may not converge. However, by the theory
of R. Langlands, the Eisenstein series can be meromorphically continued in the |
rameterk to the whole complex plane, providedis K -finite. If ¢ is spherical, the
Eisenstein series does have a pole, and the residke=afl is a constant function.
For ¢ € m», the corresponding Eisenstein series is holomorphic at 1 but the
mapE; : 72 — &/ (Gy) is notG2(A)-equivariant. One has only@;(A)-equivariant
embeddingr; — &/ (G2)/(constant functions This is the analog of the fact that the
classical Eisenstein seri&s for SLp(Z) is nonholomorphic.

10. Exceptional theta series of weigh#
In this section we give examples of theta series of weight 45gnRecall that if
(A, g) is an even unimodular lattice of rank 8verZ and if we set

an(q) = #{x € A : q(x) = 2n},

then the function
f(2) =) an(@)e”"
n>0

is a modular form on Si(7Z) of weight &. By the same token, by a theta series on
G2 we mean a modular forrh whose Fourier coefficientsy( f) count the number of
embeddings of into certain cubic structures ovér This is an embedding problem
studied in [5G], and we begin by describing it in greater detail.

Let R be Coxeter’s order in th@-algebra of Cayley’s octonions, and létbe
the set of 3x 3 Hermitian matrices with coefficients R. ThenJ is a freeZ-module
of rank 27, and the determinant map provides a natural cubic fé¢fm J — Z.
Let X € J be an element in the cone of positive definite matrices which satisfie
N3 (X) = 1. Then the triplgJ, N3, X) is a pointed cubic space ov&r An example
of such anX is the identity matrid . It was shown in (5r1] that on varyingX € J,
one gets precisely two isomorphism classes of pointed cubic spaces. Suppose tha
two classes are represented hy= (J, N3, |) andJg = (J, N3, E); we refer the
reader to (5r1] for the definition of the elemert. These two spaces are isomorphic
overQ andZp, for all p, but are globally inequivalent. The automorphism groGps
andGg of J; and Jg are groups ove¥ in the sense ofrl]. They have isomorphic
generic fiberss, which are split of typeé4 overQp and are anisotropic ové.

Similarly, a cubic ringA gives rise to a pointed cubic spac&, Na, 1), where
Na is the norm map ofA. The counting problem studied iG[5] is that of computing
the number

N(A) =91- N(A, 1) +600- N(A, E),
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where
N(A, ) =#A— Ji},

N(A, E) = #{A — Jel.

We see that these numbers occur as the Fourier coefficients of modular forms
weight 4 onGs. In fact, to be able to make such a precise statement is the initi
motivation for the developing of our theory.

The construction of these exceptional theta series exploits the fadbthatG
is a dual reductive pair in the quaternionic fotihof Eg over Q. The groupH has
Q-rank 4 and is split ove@,, for all p. Indeed, there exist integral modets and
He of H such that the embeddir@,; x G <— H extends to embeddings

G2 x G| — H,,
G2 x GE — HEg

of group schemes ovéh. The modelsH; andHg are also groups ovéf, and, in par-
ticular,K; = H (Z) andKg = HE(Z) are hyperspecial maximal compact subgroups
of H(Q).

LetIl = @vl'[v be the global minimal representation ldf(A). The local min-
imal representatiodl, of H(Qp) is unramified. Letl"; (resp.,I'e) be a nonzero
vector ofé§p1'lp fixed by the maximal compact subgro#p (resp.,Kg); these are
unigue up to scaling. On the other hand, the representatigrof the real Lie group
H(R) has minimalK -type Syn¥(C?) ® C, where the maximal compact subgroup
of HR) is K = (SU; xE7)/(£1). In [HP the restriction ofl1, to the dual pair
G2(R) x G(R) was competely determined. In particular, it was shown that

né® =,
as a representation &> (R). Hence, we have &, (RR)-equivariant embedding
Ly —> Mg,

well defined up to scaling.
In [Gal an embedding
O: I — (H)

of IT into the space of automorphic forms éhwas constructed. Now we can con-
struct two modular form8, and6g of weight 4 as follows. Fov € 74, we set

01 (v) = the restriction o (1(v) ® ') to Go,
0e (v) = the restriction o® (1(v) ® I'e) to Go».

The following result shows th&§j and6g are exceptional theta series.
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PROPOSITION10.1
For any GorensteirA,

{cA(en = N(A, J),

Ca(Pe) = N(A, Jg).

Proof
In[Ga2 Th. 11.3] it was shown that there exists an integjer 1 such that the Fourier
coefficientsca(0)) andca(0g) are zero unlesé has content divisible bg; further,
if A= 7Z + ey has content precisely equalédqso thatAg is Gorenstein), then

ca(@1) = N(Aog, J1),
ca(®e) = N(Ao, Jg).

Hence, it remains to show thais equal to 1.
Consider the modular form

6 =91.6, +600- Og.

If A=Z+ehy, thenca(®) = N(Ag) and it was shown inGG, Th. 3] thatN(Ag) =
C - {a,(—3) for a nonzero constartindependent ofA. In particular,ca(9) # O.
To show thate = 1, it suffices to show that, for some Gorenstein cubic ghe
Fourier coefficient ob at A is nonzero. It was shown irfa2, Th. 15.5] that (after a
suitable scaling)

0 = Ey,

which is the analog of the classical Siegel formula. This implies éhiasta Hecke
eigenform with some nonzero Fourier coefficients. On the other hand, Théérém
(which is proved at the end of the present paper) shows that a Hecke eigenform w
a nonzero Fourier coefficient must have a nonzero Gorenstein coefficient. The pro
sition is proved. O

Remark

The proof of the proposition, together wit ({5, Th. 3], implies that the Fourier co-
efficientca(Ey) is equal toza(—3) for maximal A, that is, that 9.5) holds uncondi-
tionally whenk = 2.

The examples of modular forms we have given in this section and in Section 9 &
noncuspidal. The cuspidal supportBfx andé is the Borel subgroup, whereas that
of 9’ = 0, — 0 should be the Heisenberg parabdhclt would be nice to construct
some cusp forms and compute their Fourier coefficients. In particular, we conclu
this section with the following question.
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Question
What is the smalledt for which ME is nonzero?

To show the extent of our ignorance, we do not know of even a skifglewhich M2
is nonzero.

11. Unramified Hecke algebra and Satake isomorphism

The remainder of the paper is devoted to the study of the action of Hecke operat:
on Mg. We begin with some background on the spherical Hecke algebra, and for t
next few sections the setting is entirely local. K&be a simple split algebraic group
of adjoint type over the ring of integers of a local fieldF. We fix the uniformizing
elementw. Let T ¢ B C G be a maximal torus, contained in a Borel subgroup,
defined ovew . Define the characters and cocharacter§ bfy

X*(T) = Hom(T, Gp),
X« (T) = Hom(Gp, T).

These are free abelian of rahk= dim(T) and have pairing into Hotr 1, Gi) = Z.
The choice ofB determines a set of positive roaks™ ¢ X*(T), and this determines
a positive Weyl chambeP™ in X, (T) by

PT ={x e Xi,(M|(r, @) = 0foralla € d*}.

Let G be the complex dual group @. This is a simply connected simple group
over C whose root system is dual ®. If we fix a maximal torusT c B ¢ G, then
we have isomorphisms

X*(T) = Xu(T),
X.(T) = X*(T),

which take the positive roots (coroots) correspondindBtto the positive coroots
(roots) corresponding tB. Under these identifications the elementsdf index the
irreducible representations & A € P+ is the highest weight foB.

Let K = G(©), which is a hyperspecial maximal compact subgroufiso&
G(F) containingT (©). By definition, the Hecke algebr#” = 7 (G, K) is the set
of all compactly supported -bi-invariant functionsf : G — C, with multiplication
defined by convolution (using Haar measure ®rgiving K volume 1). Forx in
X4 (T), the double cosek A(z)K does not depend on the choice of uniformizing
elemento of F. The Cartan decomposition implies that the characteristic functions

¢, = char(KA(@)K), »e PT,

give a basis of# overC.
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Let R(G) be the Grothendieck ring (ovél) of finite-dimensional representations
of G. The Satake transform gives an isomorphism6fand R(@). To describe it, we
start with the simplest case whéh= T. ThenX,(T) = T/T (&), and the algebra
4% is simply the group algebra of,.(T). SinceX,(T) is isomorphic toX*(T), we
have

74 = R(T).

In general, letN be the unipotent radical d8, defined overs. Let dn be the
unigue Haar measure ¢ such that the volume dfl (©) is one. Let be the modular
function onT, so that

dant™) = 5t) - dn.

For f in 27 = J7(G, K), define the Satake transform
S=&7:H — AT
by the integral
S(f)(t) = |8(t)|1/2/ f (tn) dn.
The image is precisely the ring of Weyl groupl;linvariants in the group algebfa@r)

(see [5r2, Prop. 3.6]). Since the rinB(G) is isomorphic toC[X,(T)]W, the Satake
transform gives an isomorphism @falgebras

S: # = R(G).

Matrices for this isomorphism, using the standard basesf . and x; of R(G)
(the character of the irreducible representation with highest weigtare described
in [GrZ]; their entries involve Kazhdan-Lusztig polynomials.

More generally, if°P = LU is a parabolic subgroup & with T c L andB c P,
we can define a relative Satake transform

S/ H — A
by the integral
S (H) = |8p<l)|1/2fu fduydy,
where|sp| : L — R is the modular function fot.. Via the Satake isomorphisms
{% ~ RG),
A = R(D),

the relative Satake transfor@;,. corresponds to the restriction of representations
fromGtoL. In particular, it is injective and its image lies in the subalgebr&(ﬁ)
consisting of elements invariant undel@/f = Wg,L = Ng(L)/L. After reviewing
the classical example @@ = GL, in the next section, we work out a less familiar
example in Section3, whereG = G, P is the Heisenberg parabolic, ahd= GL,.
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12. The Hecke algebra ofGL>
In this section, leG = GL,. The Hecke algebra#” of G overQp is well known. We
review the basic facts in a manner suitable for later use in this paper. A good referer
is [Sel, Chap. VII].

The dual grou;ﬁ is isomorphic to Gk(C). Let x be the character of the standard
representation, and lgt* be the character of the dual representation.siet /\2 X
be the determinant characterpf and letz* be the inverse of the determinant. Then
we have an isomorphism @f-algebras

R(G) = Cly, 7w, 7*]/(x - 7* = 1).

Some further relations are

X=x*-m.
The outer involutionA — 'A~1 of GL,(C) induces an involution of R(@) with
T(x) = x*andt(wr) = 7 *.
In the Satake isomorphisi@: 27 = R(G), we find the following formulas for
the generators (se&[2, §85]):

S(chark (P [)K) = pY/2 . x,
S(charK (P p)K) ==,
S(chark (P o1)K) =%,

el

Puty = p'/2. x so that
S(chark (P ;) K) = ¢.

Letp* = t(p) = p¥?- x*. Sincep* = ¢ - 7*, we have

S(charK ( - = ) K) ="

Let .# be the set of all lattices in the standard representa@@nof G =
GL2(Qp). SinceG acts transitively onZ, andK = GL2(Zp) is the stabilizer of
the IatticeZ%, we have? = G/K. The Hecke algebra acts on functiohs . — C
as follows (see$el, p. 98)):

po f(A) = ZpACA’CA f(A),
p*o f(A) = ZACA/Cp_lA f(A),
7o f(A) = f(pA),

7*o f(A) = f(%A).

(12.1)
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The first sum above is taken over the-1 lattices properly included in and properly
containingpA, and the second sum is similarly defined. Finally, a short calculatiol
gives the formula

@-Hof(A)= > f(A)+p+L1
pACA’Cp~lA

Here, the sum is taken over th# + p lattices A’ betweenpA and p~1A, with
A'/pA = 7,/ p?. Indeed, we have

S(CharK( P p- > K) =¢-¢*—(p+1e R(é).

To compute the action of Hecke operators on the Fourier coefficggrits) of
a holomorphic formf of weight X for SL>(Z), we need the decomposition of the
double coset

GLz(Zp)( P . )GLz(Zp)

into single cosets. An argument with elementary divisors (&, [pp. 99-100])
gives

10 b
GLZ(Zp)< P . )GLZ(Zp) — ( - )GLZ(ZP) ulJ ( 8 ‘1 >GL2(Zp)
j=0

(12.2)
as a union ofp + 1 right GLy(Zp)-cosets. From this it follows (se€¢1, p. 100]) that
the Fourier coefficients ofp| f with Tp = p~Ly are given by

*ag () (12.3)

an(Tpl ) = anp(f) + p
with an/p = 0 unlesan = 0 (mod p).

13. The Hecke algebra ofG,

We now letG = G». Let P be the Heisenberg parabolic subgroup with Levi factor
L = GL,. The two root spaces in the Lie algebralotorrespond to the short roots
{o/, —a} for G.

The dual groug3 is isomorphic t0G»(C), and its representation ring(G) is
isomorphic to the polynomial rin@’[x1, x2], where x1 is the character of the 7-
dimensional representation aggdis the character of the 14-dimensional adjoint rep-
resentation. Some useful identitiesR(G) are (see®r2, p. 234])

A2 x1 = x1+ x2,
3
AN x1=x2 - x2,

A=A
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The highest weight1 of x1 is identified with a dominant coroot f@. Sincei
is a short corooty; = B8Y with 8 = 2« + 3’ the (long) highest root. Similarly, the
highest weight., for x» is a dominant long coroot, S = y¥ with y = a + 2.
See Figure 1 for a root diagram.

Figure 1

The Levi factorL in the dual parabolid3 is isomorphic to Gk(C). Its Lie al-
gebra has root spaces corresponding to the long cofebts—a’"'}. Consulting the
root diagram and using the notation of the previous section, we find the followin
restriction formulas fronG to L:

Regx1) =7+ x +1+ x*+ 7%,
Regy2) =Resx) +7-x +x -x"+n* x* -1

The image of restriction lies in the subringoinvariants ofR(E).
To study the Satake transform fGroverQy, put

Q1= p3X1,
@2 = DSXz

in R(G). This is analogous to our normalizatign= p/2x in the previous section.
Then the calculations irdr2, 85] give the formulas

{wl = S(KA(p)K) + 1,
92 — 91 = S(Kr2(p)K) + p*
in R(G), whereK = G(Zp) C G = G2(Qp).

We are now interested in obtaining the decompositioikKaf (p)K into single
K-cosets of the formul K, with u in U = U (Qp) the unipotent radical o, andl in
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L = L(Qp) = GL2(Qyp) its Levi factor. This is analogous to the decomposition of

GLz(Zp)( P 1>GL2(Zp)

obtained in (2.2 and is needed for the computation of the action of Hecke operatol
on modular forms. To accomplish this, we use the relative Satake transform and
following observation.

PROPOSITION13.1
Fixtin Gandl in L. Letc[t] in 2#Z (G, K) be the characteristic function of the double
cosetKtK. Then

Se/L(c[th ()
= |8p(1)|*/2 - #{distinct cosets of the forml K in KtK withu € U}.

Proof
Since, by definition,

So,L(clth() = |6p<l)|1/2-/uc[t]<lu>du,

where z, du=1,we have

Se/Lclth®) - 18p )|~ 2
= #{distinct cosets of the forvU (Zp) in lU N KtK, withv e U }

SinceU (Zp) = U N K, the right-hand side is equal tdgbsets of the formvK
in KtK}. SinceL normalizesU, puttingu = vl 1, this is equal to cosets of the
formulK in Kt}, as required. O

Since we have a commutative diagram®algebra homomorphisms

H(G) —2 R©G)

SG/Ll lRes

(L R(C
()T (L)

we can computeSs,. from our results onSs and § and from the restriction of
representations fror@ to L.
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Consider first the double cos#tr1(p)K. We have seen thag(c[r1(p)]) =
p3x1 — 1. Hence,

Res(Se(cru(p)D) = PP + x + x* + 7% + (P> — 1)
in R(L). But, by results in Sectioh?,
p2x = S(c[” ),
1/2X>i< — S_(C
r =Sl
m* =S (cf & p—l])'

—
[N
-DI
5N
—
~—

(13.2)

We conclude that

. 1
p3 ifl=(Pp)or(" ).

5/2 €l (P 1
SG/L(C[M(ID)])(U = p3 I.fl N ( 1) or( p‘l)’
p°—1 ifl =1,
0 otherwise.

Here we have writteh=t € GL2(Qp) to mean € GLo(Zp) -t - GL2(Zp).
On the other hand, we have chosen the isomorphists GL, so thatsp(l) =
det(l)~3. Hence,

From this and our determination &, (c[A1(p)]) above, we obtain the following.
COROLLARY 13.3

In the decomposition d 11(p)K, the number of distinct cosets of the foukK is
given by

1 withl = (P ),
p(p+1 withl = ("),
p*(p+1) withl = (l 1),
p® with| = (»° 4 )
p3—1 with| = 1,

0 otherwise.

In particular, we see that the total number of distinct sirigteosets inK A1 (p)K is
p® + p° + p* + p® + p? + p, in agreement withGr2, p. 235]. To obtain an explicit
decomposition, it remains to determine the elementsul K. This is carried out in
the next section (Section 14).
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RemarksFor a fixed

=(P - _(1
| = < 1 ) respectively,| = < p-1 )

Propositionl3.1and the ensuing computations actually show that there are precise
p (resp.,p*) single cosets of the formlK in Ki1(p)K. Since each of the double
cosets

GLz(Zp)( P 1>GL2(Zp) and GLg(Zp)< P l)GLz(Zp)

containsp + 1 single cosets, and K = u'l’K implies that GL2(Zp) =" GL2(Zp),
this explains the numbers obtained in the second and third cases of Cotdllary

In the remainder of this section, we determineltbehat enter in the decomposition
of Ki2(p)K into singleK -cosets. Here we have (seerp, p. 231])

Ss(clra(p)l) = pPx2 — PP — P,
so that

Res(Ss(cla(p)]) = p°(m - x + (x - xMo+ 7" - x¥)
+(P° = PO+ x + x*+ )+ (p° - pd)
with (x - x*o = x-x*—(p+ 1)/pin R(L). But by (13.2), as well as by the formulas
pY2r - x = S.(c[ P p7]1),
pl/zn* Xt = S—(C[ P p—z])’
PO - x%o=S.(c[ o1]);

we obtain the following.

COROLLARY 13.4
In the decomposition df 12(p)K, the number of distinct cosets of the foukK is
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given by

1-(p+1) with| = (7)),
PP’ + p) withl = (7 1),
P°(p+1) withl = (),
(PP - p(p+D  withl = (),
(P = pHp+1) withl = (* 1),
(

p
p?—1 withl = (P p),
. -1
p8 — pb with| = (P pfl),
p® — pd withl = 1,
0 otherwise.

In particular, we obtainp'® + p® + p® + p’ + p® + p° single cosets in all.

14. Single coset decompositions
We now study the unipotent elemenitsthat occur in the single cosetdK C
Kxi (p)K. SinceulK = Iu’K with u = Iu’l=1, andu’ is well defined up to right
multiplication byK NU = U (Zp), we see thati is well defined up to right multipli-
cation bylU (Zp)l ~1.

Recall that for each rogt of T, we have the root group isomorphisg : Ga —
U, overZp as well as the coroot” = h, : G — T. Indeed,y determines an
embedding Sk — G overZp such that

Xy () = (51):
Xy = (¢ D),
hy () = (&, %).

We need to use the identity

hy(p)xfy(vp)xy (-t/p) e K (14.1)

for any rooty, wherev andt are p-adic integers withvt = 1 (mod p). Indeed, in the
associated S, this is the matrix product

(225002 )

which lies in Sl(Zp) C K.
The coroots,, give us elements

a
hy(p):( i p° )
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in L = GL», which we can identify by

<y\/’ :B> = _a_b’
(yV,a'y =a-—Dh,

wherea’ is the basic short root angl is the highest root. See Figure 2 for a coroot
diagram.

(@+a)V A2 = (@ + 22"V

BY =1
o (a—|—3oz/)v
7 W

Figure 2

<

We now begin by constructing the single cosel¥ in the double coset
Kri(pK.

PROPOSITION14.2
If | lies in the double coset of either

(pp>’ (pl)’ (1p‘1)’ . (p_l p‘l)

in L = GLp, andu lies in U(Zp), thenulK is contained in theK-double coset
of A1(p) in G. For each sucH, the representatives of the distinct right cosets
of U(Zp) NIV (Zp)l_l in U (Zp) give the distinct right cosets of the formK in
Kri(pK.

Proof
We have

(

(

(7 p1) = (@+3)Y(p),
(P o) =BY(P) =1(p).
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Since these cocharacters are in the Weyl group orbit Gfnd since representatives
for the Weyl group elements can be takerNa(T)(Zp) C K, we see thaKIK =
KA1(p)K for | in the four double cosets of Gllisted in the proposition. Hence,
ulK is contained irkK x1(p)K for anyu € U (Zp). Moreover, foru andu’ in U (Zp),
ulK = UK if and only if u=u’ lies inU (Z) N1U (Zp)l ~1. The index of the latter
subgroup inJ (Zp) is

. —1
p6 if| = (p p‘l)'
By Corollary 13.3and the remark following it, this is equal to the number of single
cosets of the fornul K contained irK A1(p)K . Hence, by takingi to be distinct right
coset representatives 0f(Zp) NIU (Zp)! “linu (Zp), we obtain all such cosets, and
the proposition is proved. O

LetU* Dy U(Zp) be the group obtained frotd (Zp) by adjoining the central ele-
mentsxg(t/p) inU witht € Zp.

LEMMA 14.3
If uliesinU* \ U (Zp), thenuK is contained inK11(p)K.

Proof

We may assume that = Xg(t/p) with t a unit inZp. Findv in Zp such thatt =
1 (mod p). Then by (4.1) we see that lies in theK -double coset ofig(p) = A1(p),
as claimed. O

In fact, we can improve the above result slightly and obtain all single casés.e.,
with | = 1) contained irkK A1(p)K. Recall the filtration

U(Zp) > Ua(Zp) D {1}
of U(Zp) discussed in 881 and 2, with

Ua(Zp) = Ug(Zp) = Zp

and
u (Zp)/UZ(Zp) = Vl(Zp)

free of rank 4 ovefZ. Let

1
mcC Evl(zp)/vl(zp)
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be a line stable under a Borel subgroup.g?/pZ) = GL2(Z/pZ); we call such a
line m asingular line In the notation of 83, we hava = Wy = 6(l). Let Vi(m) be
the correspondind.p-module betweeril/ p)Vi(Zp) and Vi(Zp), and letU (m) be
the subgroup o) with

Um) NUz = 1U(Zp),
(m) NUz = 5U2(Zp) (14.4)
U(m)/U(m) NUz = Vi(m).
ThenU (m) containsU (Zp) with index p2, and thep + 1 subgroupdJ (m) c U
intersect in the group *.

PROPOSITION14.5

If ulies inU(m) \ U(Zp), thenuK is contained inK11(p)K. The representatives
u of the p2 — 1 nontrivial cosets ofJ (Zp) in U(m) give distinct single cosetsK.
As we vary the linen in (1/p)V1(Zp)/V1(Zp), we obtain thep® — 1 distinct single
cosets with = 1.

Proof

If u e U* N U(Zp), we have seen in Lemnial.3thatuK C Kii(p)K. Hence, it
remains to consider thogee U (m) ~. U*. Since the variout) (m)’s are conjugate
underL (Zp), we may assume without loss of generality thais given by(1/p)e,,
whereq is the long basic root. Indeed, this is the highest weight vector for the Bore
subgroup ol with root space-a’. ThenU (m) is generated by * andx, (t/ p) with
tinZp. Sincex" is conjugated t@" = 11 by an element of the Weyl group, Lemma
14.3shows thak, (t/p) lies in Ki1(p)K whenevet is a unit inZp. A commutation
calculation inU then yields

UZpxt/PK =[] xs@/pxt/pK,
a (mod p)

which completes the proof thatK lies in the double coset of1(p) for all u in
U(m) \ U (Zp).

Each of thep + 1 linesm gives p? — 1 distinct single cosets, but the— 1 single
cosets withu € U* \ U (Zp) are obtained with multiplicityp 4+ 1. Hence, there are
(p+ 1(p?>—1) — p(p— 1) = p® — 1 distinct single cosets in all. Comparing with
Corollary 13.3 we see that we have obtained all the single cosets of the did¢rn
Kxi(p)K. O

We now construct the single cosetik contained inK A2(p)K.
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PROPOSITION14.6
If | lies in the double coset of either

(pzp)’ (pp1>’ . <p1 pz)

in L = GLp, andu liesinU (Zp), thenul K is contained inK 12(p)K. For each such
I, the representatives of the distinct right cosets & (Z,) N I1U (Zp)l‘l in U (Zp)
give the distinct right cosets of the fouhK contained inK A2(p)K.

Proof
This proof is similar to that of Propositiot1.2. We have

(P ) =—(@+a)"(p),
(" p1)=e"(P).
(P 2) =—(@+2)"(p) = —22(p).

Since these cocharacters are in the same Weyl group orbit, age haveulK con-
tained inKA2(p)K forallu € U (Zp).
Again, we compute the index &f(Zp) N1U (Zp)l ~1in U (Zp) to be
q 2
1 if | = (p p)’
pt ifl=(" ).
. —1
p? ifl=(" p*Z)'
By Corollary 13.4, this is the total number of single cosets of the fouhK in

KX2(p)K, and thus the proposition is proved. O

Next, we determine the single cosetKin,(p)K, with

=7 0) (P ) () (7 )

in L = GL». This is more involved and requires greater care. The following lemmai
the main technical tool.

LEMMA 14.7
Lety andy’ be a pair of long roots forming 80° angle. Lett be a unitinZp. Then

KX, (t/ph, (PK = Kia(p)K = Kx, (—t/pHh_, (p)K.
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Proof
Letv be a unitinZp such thawt = 1 (mod p). Then

KX, (t/p)hy (DK = KX, (t/p)hy (p)x_y, (—p?v)K
= KX, (t/p)X—y (= pv)h, (p)K = Kh, (ph, (p)K,
where the last equality follows by formula4.1). Sincey andy’ form a 60 angle,
8§ = (1/3)(y + y/) is a short root. Sinch, (p)h,/(p) = hs(p), ands" is conjugated
to A2, the first identity holds. To prove the second identity, note that inverse mappir
preserves -double cosets. Thus,

(X, (t/P)h, () ~* = h_ (P)Xy (=t/P) = X, (—t/pDh_,(p)

isin Ki2(p)K. The lemma is proved. O
The following lemma can easily be checked; we omit the proof.

LEMMA 14.8
Letl = h, (p), wherey is a long root different fronar and —«. Lett be a unitinZp,
and set

u=x(t/p) if(a,y")=1,
U=Xe(t/p?) if (o, y") =—1
Then the index dff (Zp) NulU (Zp)l ~lu=tin U(Zy) is

1 ifl=(Pp)=-BYp.
pifl=(1p)=—(@+3)(p),
pt ifl = (1_%71) = (a + 3)V(P).
P (

Pl =(P L) =8"(P.

To describe the single cosets, we use the exponential map in a special case. A non
elementw in V; is called singular if the line througi is singular. Assume now that
w is singular, contained iV1(Zp), but not contained irpVi(Zp). Using the cubic
mapé, one can check that each suslis conjugated unddr(Zp) = GLo(Zp) to &,.

In particular, since it is true fog,,

ad2(g(Zp)) C 2 9(Zp),
ad® =0,

wheread,, denotes the adjoint action on the Lie algefprdhus, the exponential map

2
a
exp(tw) = 1+ tad, + tz%ﬂ
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is defined ovelZp, and exgtw) is in K if and only ift is in Z.

PROPOSITION14.9
Letw be a singular element iN1(Zp), not contained inpVy(Zyp).

If
-1
|E(p _1)
p

putu = exp(w/p). ThenulK is contained inKix(p)K. The familyU (Zp)ulK
consists ofp® disjoint single cosets.

| -(",)

putu = exp(w/p?). ThenulK is contained inK x>(p)K . The familyU (ZpulK =
ulK consists of one single coset.

Proof
Sincew is L(Zp) = GL2(Zp) conjugated te,, we may assume that = &,, where
« is the long basic root. Tham K is in KAi2(p)K by Lemmal4.7, where we take

vy =q

v =8
Finally, the statements concerning the number of single cosétgZip)ulK follow
from Lemmal4.8 O

In both cases the family (Zp)ulK depends on the choice of modulo pVi(Zp).
Since there areg + 1 singular lines inV1(Fp), each containingp — 1 nontrivial
elements, we see that the total number of single cosets of the fbikmgiven by
Propositionl4.9is

p2—1 ifl=(Pp),
i =il
pd—pb ifl=(P p_1).
By Corollary 13.4, this is equal to the number of single cosets of the fdincon-
tained inK A2(p)K. In particular, we have obtained all such cosets.

PROPOSITION14.10
Lett be a unitinZy.
If
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putu = Xg(t/p). ThenulK is contained irK A2(p) K. The familyJ (Zp)ulK consists
of p single cosets.
_ (1
= ( P‘1>’

If
putu = xﬁ(t/pz). ThenulK is contained inK A2(p)K. The familyU (Zp)ulK con-
sists ofp? single cosets.

Proof
If we set

y =8,
y/ -« + Sa/
in Lemmal4.7, then we see immediately thaitK is in KA2(p)K. Furthermore, since

u is in the center otJ, the number of singld -cosets inU (Zp)ulK is equal to the
index ofU (Zp) N1U (Zp)! “1inu (Zp) which is given in Proposition4.2. O

In both cases the family (Zp)ulK depends on the choice bfmodulo pZp. As t
runs through thep — 1 nontrivial classes modulpZ,, we see that the total number
of single cosets of the forml K constructed in Propositioh4.10is

p?—p ifl=(P)),

pP—p* ifl=(" )
This is not yet equal to the number of single cosets of the falk contained in
Kx2(p)K, which is p> — p and p® — p*, respectively. The remaining single cosets
are constructed in Propositidral.12 To do so, we need the following lemma charac-
terizing singleL (Zp) = GL2(Zp) cosets in terms of the action &f.

LEMMA 14.11

0] If
1=( P
= 1)
then there is unique singular limey in V1(IFp) such that
|- pVi(Zp) + V1i(Zp) = Va(my).

Furthermore, the set of atl= | such thatt - pVi(Zp) + V1(Zp) = Vi(m)) is
a single rightGL2(Zp)-coset.
(ii) If
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then there is unique singular lingy in V1(Fp) such that
|- V1(Zp) + V1(Zp) = Va(m).

Furthermore, the set of atl= | such that - V1(Zp) + V1(Zp) = V1i(m)) is a
single rightGL2(Zp)-coset.

PROPOSITION14.12
Letw be a singular element iNy(Zp). Assume that the reduction of modulop is
not contained irm,.
1=( P
= 1)

If
putu = exp(w/p). ThenulK is in Kiz(p)K. The familyU (Zp)ulK consists ofp

single cosets.
(7 )
= ol

If
putu = exp(w/p?). ThenulK is in Ki2(p)K. The familyU (Z)ulK consists ofp*
single cosets.

Proof

Recall that Gk(Zp) acts transitively on the set of singular element¥{Z,), with
nontrivial reduction modul@. Thus, we may assume that= e,. The stabilizer of
w acts transitively on singular lines Wy (Zp) not containings, . In particular, we can
assume thaty is given bye, ,3,. Putting

vy =q
)//=—C¥—30l/

in Lemmal4.7, we see immediately that K is contained irkK 12(p)K. The number
of single cosets itJ (Zp)ulK is p and p?, respectively, by Lemma4.& O

In both cases the family (Zp)ulK depends on the choice of modulo pVi(Zp).
Since there ar@ singular lines invy(IFp) different fromm, and each containg — 1
nontrivial elements, we see that the total number of single cosets of theuld¢m
given by Propositiori4.12is

pd — p? iflz(fl),
po—p> ifl=( -y
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These cosets, together with the cosets given in Propositiaif) give all single
cosets of the fornul K contained inK A2(p)K, by Corollary13.4

It remains to deal with = 1. We have two families of single cosets. The first
one is analogous to the family of single cosets constructed in Propositiéfor the
double coseK 11 (p)K. Let

1
nc Bvl(Zp)/Vl(Zp)

be a plane stable under a Borel subgroupL@¥/pZ) = GL(Z/pZ); we call
such a plane a singular plane. [\¥{(n) be the corresponding,-module between
(1/p)Vi(Zp) andV1(Zp), and letU (n) be the subgroup df with

U NUz = $U2(Zp),

(14.13)
U(n)/U M) NUz = V().

Let m be the unique singular line containednn ThenU (n) containsU (m) with
index p.

PROPOSITION14.14

If uliesinU (n) ~ U(m), thenuK is contained irK 12(p)K. The representativasof

the p®— p? nontrivial cosets ot) (Zp) inU (n) ~\.U (m) give distinct single cosetsK.

As we vary the plana in (1/p)V1(Zp)/Vi(Zp), we obtainp* — p? distinct single
cosets with = 1.

Proof

We may assume, without loss of generality, thats given by (1/p)e,+2 and
(1/p)ey+3.- Note that the unique singular limein n is given by(1/ p)ey 13- Thus,
we can assume that

U = Xg420/ (t/ P)Xa430 (8/ P)X20 432/ (0/ P),

wheret is some unit inZp anda andb are inZp. Assume first thab = 0. Then
formula (14.1) implies that

KUK = Khy 24/ (P)X—g—20" (VP) Xy+ 307 (@/ P)K

for some unitv in Z,. The Chevalley commutation relations show that the commuta
tor of X_y 24/ (vP) aNdXy13,(8/P) is in K. Sincex_,_2,(vp) is also inK, we see
that the above double coset is in fact equal to

KMot 20' (P)Xe 1307 (@/ P K = KXyt 30 (PP Nyt 20 (DK = Khyp2a (K.
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Since(a +2a’)Y is conjugated ta., by an element of the Weyl group, we have shown
thatu lies in KA2(p)K if b = 0. Next, assume thatis a unit ando is any element in
Zp. Thenx,(b/a) is in K, and the commutator witky 13, (a/ p) giveSXay 43, (b/ P)

(or x24134/(—b/P)). Note that the long basic roatis perpendicular to the short root
a+2d’. In particularx, (b/a) commutes withx, ; 2,/ (t/ p). Thus (ignoring the sign),

KXo (B/@)Xg 420/ (t/ P)Xa430 (@) P)Xo (—b/@)K
= KXg+20' 1/ P)Xg+30’ (@/ P)X2q 130 (B/ P K,

and we have shown thatlies in Kix(p)K if b € pZp or if a is a unit. Since the
reflection abou fixesa+2a” and switches +3a’ and 2x+3¢/, it follows thatu is in
Ki2(p)K if a € pZp orif bis a unit, as well. Combining the two, we have completed
the proof thau K lies in the double coset éf>2(p) for all uin U (n) ~ U (m).

Each of thep + 1 singular planes gives p® — p? distinct single cosets. Hence
there argp + 1)(p® — p?) = p* — p? distinct single cosets in all. O

PROPOSITION14.15

Let (m, m’) be an ordered pair of distinct singular lines M (Qp), such thatm N
V1(Zp) andm’ N V1(Zp) give distinct singular lines on reduction moduto Let w
and w’ be inmnN Vi(Zp) andm’ N Vi(Zp), respectively, but not ipVi(Zp). Let
u = exp(w/p) exp(w’/p). Then the familyd (Zp)uK is in Ki2(p)K and consists
of p single cosets. The family (Zp)uK depends on the choice afandw’ modulo
pVi(Zp). As we vary thep(p + 1) ordered pairs of distinct singular lines i (F ),
we havep® — p* — p® + p? distinct single cosets in all.

Proof

Sincel (Zp) = GL2(Zp) acts transitively on the set of ordered pairs of distinct sin-
gular lines inVy(Fp), we may assume that is given bye, andm'’ by e, 3,. Thus,

we may takeu = X, (t/p)Xqo+3 (t'/p), wheret andt’ are units inZp. Note thato
anda + 3’ are long roots. Let Si.C G, be the Chevalley subgroup generated by
the long root subgroups. Then it is not difficult to check that

SL3(Zp)u SL3(Zp) = SLa(Zp)r2(p) SL3(Zp),
so thatu lies in KA2(p) K. Finally, a commutation calculation ld gives

U(Zp)Xat/PXasza @ /DK =[] Xp(@/P)Xa(t/P)Xaya '/ PK,
a (mod p)

a disjoint union ofp single cosets.
Next, using the commutation relationslin it is easy to see that these are disjoint
families, as we run through ordered pairs of distinct singular liné4 (i’ p). As each
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line containsp— 1 nontrivial elements, we see that we have construptedt 1) (p—
1)2p = p°® — p* — p® + p? single cosets of the formK in all. O

Combining the last two propositions, we see that we have constrpétedp® single
cosets. By Corollary 3.4, these are all the single cosets of the fark in Ki2(p)K.

15. Action of Hecke operators on Fourier coefficients

Now we return to the global situation, and we@be the Chevalley group of typge,
overZ. Lett be an element d&(Qp), and letk = G(Zp). Once we have determined
the decomposition ik tK = Jt; K into right cosets, we can define a Hecke operator
t on the space? (G)X of automorphic forms oG (A) fixed by K by the formula

tIF(@) = _F(gt).
i

Here thet; are viewed as elements Gf(A), which are equal to 1 at all places# p.
This action satisfies

(ta - ) |F = ta|(t2| F).

Using strong approximation, we may view an automorphic féron G(A) fixed
by G(Z) as a functionFo, on G(Z)\G(R), given by

In terms of the functiorF.,, the action of the Hecke operatblooks a bit different.
By strong approximation again, we may find an elensintG (Q) which satisfies

gisinG(Z) ifl #p,

_ (15.1)
spK = tK in G(Qp).

Similarly, we can find elemenss that approximatg in the above sense. The elements
s ands are unigue up to right multiplication b§(Z), and viewing them irG(R),
we obtain a decomposition

G(2)sG(z) = | JsG(@). (15.2)
We then have the formula

t“:oo(goo) = Z Foo(ﬁilgoo)
i

for the action of the Hecke operatbon F, : G(Z)\G(R) — C. Indeed, there is no
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loss of generality in taking andt; to be thep-adic components af ands . Then

=Y F@xo L1....(8)p--)

=Y F§ " (G011 ....(S)p.--2)

(sinceF is left G(Q)-invariant)
=Y F(§ ' 0o L1..) (sinces e G(z)foralll # p)
i

= Z Foo(S 000)-

Now let f : nx ® C — &/(G) be a modular form of weighk, so that the
image of f is contained in the subspace .of(G) fixed by G(i). Forv € my, let
F = f(v) € &(G), which we henceforth regard as a function @)\ G(R) by
restriction. We can now define an action of the Hecke opetatoG(Qp) on f by

1)) = t|F : G(Z)\G[R) —> C.

If x is a character o) (R) trivial on U (Z), then we have defined the Fourier coef-
ficientc, (t| ). Our goal is to express, (t| f) in terms of the Fourier coefficients of
f.
Letsands € G(Q) be related td andt; € G(Qp) as in (L5.1), so that we have
a decomposition
G(Z)sG(Z) = | JsG(®).
i

It is now convenient to group the singl&Z)-cosets according to tHe (Z)-orbits in
which they lie, wherdJ (Z) acts by left multiplication orG(Z)sG(Z)/G(Z). Since
G(Q) = P(Q) - G(Z) by a result of Borel, we first write

G@sG@) = Ju@pc@ = e,

wherepi = ujlj, with ui € U(Q) andl; € L(Q). Eachg; = U(Z)piG(Z) can
further be decomposed into the unionf(Z)-orbits:
o = U2 pG@) = 3,

j j
wherepij = vjp; with v; € U(Z). Finally, we write eachyjj as a union of single
G(Z)-cosets

Oij = UZkIOij G(2)

K
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with z¢ € Ux(Z). Eachdijj /G(Z) is thus a homogeneous space f(Z), and the
stabilizer of pjj G(Z) is U2(Z) N; UZ(Z)Ii_l. In particular, the number

m; = #{singleG(Z)-cosets inij } = #Uz(Z)/U2(Z) N IiUZ(Z)Ifl

depends only onand not on;.
We are now ready to compute the Fourier coefficgt| f). Consider first the
constant term of| F alongU,. Foru € U (R), we have

(tIF)u, W) =/ (t|F)(zuydz
Ua(Z)\U2(R)

:Z/ ZF(pﬁlzlzlzu)dz
i,j UZ(Z)\UZ(R) %
= Z lij .
i
Consider the Fourier expansion BbfalongU:
F(@ =) Fy(@. geGM®),
14
whereyr runs through the charactersd$(R) trivial on U2(Z) and

Fw(g)=/ F(zg -y (2dz
U2(Z)\U2(R)

Then for fixedi, |,

j /LJZ(Z)\UZ(R)ZI(:%:IP(DU ij)l/f(p” z " pij) l//(p” u)dz
- ij - Fy(p:lu) - - q
/Uz(Z)\Uz(R)Xw:(pJ VI@Fy (7w <§k :(IOJ 1ﬁ)(Zk)) z

Since
m; if pij - ¥ is trivial onUx(Z),
(o @y ={ P

” 0] otherwise,

we deduce that
lij = mi - Fu,(pjjtu),
and hence,
(tIF)u, W) =Y mi - Fu,(pjtu).
i
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We can now regardFy, and (t|F)y, as functions onL(R) - Vi(R) =
P(R)/U2(R). Then we have the Fourier expansion

Fu,(@ =) Fu,p(@, gel®)-Vi(R),

whereyr runs through the characters\¢f(R) trivial on V1(Z). Hence,

(tIF)X(l)=/ (t|F)u,(v) - x(v) dv
V1(Z)\V1(R)
= m; - F . d
iZ | /vl(Z)\vmmZ (R0 X @ do
=Sm - i - )@Y - i - ¥)()
Xi: ' /\/1<Z>\v1<R>X,:Z' '

- Fu,y (p7H - () dv

=Zmi'/ ZFUW(IO. ) - (i - ¥)() - x(v)
i

Vi(Z)\V1(R) v
(Xa-werh)d
j
Since

o WV1(Z)/(VUZ) NiVA@)TY if 1 -y s trivial on Vo (Z2),
D i) h = .
otherwise,

and
ni = mi - #V(Z)/(Va(Z) N Va(@)1Y)

is the number of singl&(Z)-cosets irlJ (Z) pi G(Z), we deduce that

)@ =D m - Foa (75 x @, (15.3)
i

whereF,. -1, is equal to zero unIeS;s - x is trivial onU (Z).

To relate these computations to the notion of Fourier coefficients defined in Se
tion 8, let us fix a characteyp of U (R) with A(xg) > 0, and a basis elemeht in
Homy &) (k. C(x0)). Choose ang € L(R) such thaty = g- xo. If I 1, denotes the
linear functional onrk defined by

Lty :v> fF()y (D) =/ f(v)(u) - x (u)du,
U@N\U®R)
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then recall from §.3) thatc, (f) is defined by

Ity =y (f) - (Ak(Q) - glo).
Now consider the linear functional
Li v f(v)liflx(liil),

which is an element of Hogyr) (77, C(x)). A simple calculation shows that
Li = g1, (1) - k(D)™ (1k(@) - glo)- (15.4)
From (15.3 and (L5.4), we deduce that

it = (DM a7t G, (D) - (@) - glo),
i
and thus, we have the following.

PROPOSITION15.5
Suppose that
G(2)sG(z) = |_JU (2)uili G(Z)
i

withu; € U(Q) andl; € L(Q). Then
Cx(tlf) =D m (D™ x W)™ g, (),
i

where
n; = #{singleG(Z)-cosets it (Z)u;li G(Z)},

and G-1, () is equal to zero unleslslx is trivial on U (Z).

Now fix a primep, and consider the local Hecke algeb¥, at p. As we mentioned
before,
Hp = R(G) = Clxa, x2]

asC-algebras, withy1 andy» the two fundamental representations of the complex Lie
group@ = G2(0©). In the remainder of this section, we use Proposiiiérband the
results of Section 14 to obtain explicit formulas for the action of the Hecke operato
x1 and x» on the Fourier coefficients of modular forms|ify.

Let A be a cubic ring withp-depth zero, corresponding to a charagterSet
Ai = Z+ p' A, which hasp-depthi and corresponds to the character= ( P . ) x.
Let f be a modular form of weight, and letc; (f) be the Fourier coefficient of
corresponding t@&\ . To avoid issues about orientation, we assume for simplicity tha
the weightk is even. Then we have the following.
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PROPOSITION15.6
Let f be a modular form of even weigktand letA; be the chain of cubic rings as
above. Ifi > 1, then

GOalf)=p* e ah+pt Y ca(fHh+a(h)
AiCBCA_1
+p* Y es(h)+ ptFaa(h),
Ai;+1CBCA;

where the inclusions of rings are properi I 0, then

co(xal ) = Pt D~ ca(f) + ptna— Deo(f)
ACpB

+p7* Y ca(f)+ ptHey(h),
Ai1CBCA

wherena is the number of ring8 such thatA; C B C A.

Proof
As we have noted before,

1
xalf = E(C[M(p)]lf + ).

In Propositions 14.2 and 14.5 we have determined the decomposition of
G(Zp)r1(p)G(Zp) into singleG(Zp)-cosets. Since the single coset representative:
obtained there lie irG(Z[1/p]), they serve as representatives for the sing(&.)-
cosets inG(Z)A1(p)G(Z) in view of (15.1) and (L5.2). Moreover, the proofs of the
propositions furnish us with a decomposition

G(Z)r(P)G(Z) = | JU @il G(Z)
i
and provide us with the numbex;, of single G(Z)-cosets in eacltd (Z)uil; G(Z).

Indeed, the representatives for thg(Z), G(Z))-cosets inG(Z)A1(p)G(Z) can be
taken to be

* ("p);
. a setS of representatives for the + 1 single cosets in
GL2(Z)( ") GL2(2);
. a setS; of representatives for the + 1 single cosets in
GLa(Z)(* y1) GLa(2);
=il
* (P p—l);

. a setS* of representatives for the — 1 nontrivial cosets o) (Z) in U*;
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. for each of thep + 1 singular linesm c (1/p)V1(Z)/V1(Z), a setSy of
representatives for the — 1 nontrivial cosets o) * in U (m).
Here the group®)* andU (m) overZ are defined analogously as the corresponding
groups ovetZp introduced before Lemma4.3and in (14.4).
From this and Proposition5.5 we deduce that far> 1,

Gt )= p* o2 (H) + P gory (F) +ai(h)
1eS
+ P G () + pt e a( ).
leS
It remains to see that there are bijections

{cubic ringsAi € B € Ai_1} «— {l € S : 17 is trivial onU (Z)}
and
{cubicringsAi;1 CBC A} «— {l € S I =1 is trivial onU(Z)}.

In view of the correspondence between binary cubic forms Bwand the characters
of U (R) which are trivial onU (Z), the required bijections follow from Proposition
5.7.

Wheni = 0, the only added subtlety is in the determination of the coefficient

é(u#s* +pY > X(u))

m ueSy
of ca(f). Regardingy as a character dd (m)/U*, we see that

Z W {—1 if the restriction ofy to U (m) is nontrivial,
X =
1

Ues, otherwise.

On the other hand, ifn corresponds to the line = (Xp : yo) in IP’l(]Fp), and x
corresponds to the binary cubic fompix, y), then the triviality of the restriction of
x onU(m) is equivalent tay(xp, Yo) = 0 (mod p). Hence, by Propositiof.4, the
number ofm for which x is trivial on U (m) is equal to the number of ring3 such
that A1 ¢ B C A, and the proposition is proved. O

COROLLARY 15.7
Assume thafA/pAis afield. Then

1
calxlf) = ——pCA(f) + pt e, ().

Furthermore, for every cubic rin® such thatA, C B C Aq,

ca(xal F) = P lea, () 4+ p¥ea, (1) + ptcg, ().
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Proof
This follows from the Proposition 15.6 and Corollgry. O

Similarly, using Proposition$4.6 14.9 14.1Q 14.12 14.14 and14.15 we can com-
putec; (x2| f) in terms of the Fourier coefficients df. We omit the proof and simply
state the result.

PROPOSITION15.8
Ifi > 2, then

GOl =6aCalH+p*? Y  cwH+pt Y o cch)
Ai_1CBCA 2 Ai11CCCA1
+plaH+p* > ca(h).

Ai2CBCA 11

Here eachC is a ring such thaC/ A 11 = Z/ p?Z.

Wheni = 0 or 1, the formulas expressiieg x2| f ) in terms of the Fourier coefficients
of f are more complicated. We highlight only the case wiAg¢p A is a field.

COROLLARY 15.9
Assume thaf/pAis afield. Then

co(xal f) = ( + gz)co(f) = p~2ca(F) + P * X p,cpen, Ca(F).
c1xal ) = —p*Zeo(F) + (1 + §)ea(H) + prZea(f)

+ 2 AscBCA, pl=3Kcg(f).

Proof

The formula forcy(x2| f) follows from Propositionl5.5and the results of the pre-
vious section, as soon as we show that there are no #ags C C A such that
C/A2 = 7/p?Z.LetB = CN A;. ThenA; c B ¢ A; andB is contained irC with
index p. By Corollary5.6, C must beA;. This is a contradition. Similar, even easier,
considerations can be used to deal vaiffix2| f). The corollary is proved. O

16. Gorenstein coefficients

Let f € Mg be a nonzero eigenform for the spherical Hecke algebra. In this sectic
we show that the Fourier coefficiert ( f) is nonzero for some Gorenstein ridg To-
gether with Propositio.4, this implies that iff is a nonzero cuspidal Hecke eigen-
form, then f is completely determined by its Hecke eigenvalues and its Gorenste
coefficients. This is the analog of the classical result thati) = anl an(f)e?rinz
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is a nonzero cuspidal Hecke eigenform, tiaeaf ) £ 0. The proof of this statement is
based on the formulas for the action of Hecke operatog, 0f). Indeed, the formula
for each local operatofp, is

an(Tp| f) = an/p(f) + p~¥apn(f),

which shows that the coefficeraig( f) can be recovered fromy (f) and the Hecke
eigenvalues. Our proof is based on the same idea, exploiting the formulas for t
Hecke operatorgs and 2 obtained in Section 15.

Let A be a totally real cubic ring, so that the cubic algeBra= A ® Q is étale.
For every prime integep, we define an equivalence relation between cubic rings in
as follows:A ~, B if the intersection ofA and B is contained in botlA and B with
index a power ofp. This is equivalent to saying th&® Z; = B ® 7Z; as subrings of
E® Q foralll # p. We stress that- is not an equivalence relation on the set of
isomorphism classes of cubic rings; in particular, it is possibléBfoandB, C E to
be abstractly isomorphic as cubic rings but nonequivalent ungeFor example, if
A = 72, andl is a prime different fronp, then the three cubic rings betweérand
Z + | A are abstractly isomorphic but nonequivalent undgr

PROPOSITION16.1
If the Fourier coefficients of vanish for all rings ofp-depth less than or equal tb
in a~p equivalence class, then they vanish for all rings intheequivalence class.

Proof

The proof is by induction on the depth. Assume that we have proved the vanishi
for all rings of p-depth less than or equal iqwith i > 1). Let A1 = Z + p' 1A

be a ring ofp-depthi + 1. Acting by the Hecke operatgn oncp, () and using the
induction assumption, we obtain

0=pt Y ceH+p™ > ca(f)+pHea,(h).

AiCBCA_1 Ai+1CBCA

Thus, to show thata,, (f) = 0 we need to show that the first two summands on the
right-hand side are zero. Vanishing of the first sum is proved in the following lemm:

LEMMA 16.2
Assume that Fourier coefficients bivanish for all rings ofp-depth less than or equal
toi in the~ class ofA. Then

> ces(f)=o0.

AiCBCA -1
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Proof
Sincei > 1, the ringAj_1 exists. Acting by the Hecke operatgt onca,_, and using
the assumption of the lemma, it follows that

0=pt > caH+p* Y ca(h.

A_1CBCA 2 AiCBCA_1

By Proposition 5.5, the-depth of eactB in the first sum lies betwedn- 3 andi. In
particular,cg(f) = 0 by the assumption of the lemma. The lemma follows. ©

It remains to show vanishing of the second sum. This is much harder, however, anc
accomplished in the following lemma.

LEMMA 16.3
Assume that Fourier coefficents bivanish for all rings ofp-depth less than or equal
toi in the~ class ofA. Then

Z ce(f) = 0.

Ai;11CBCA;

Proof
The idea this time is to use the operajgron ca,_,. After taking into account the
induction assumption, we obtain

0=p! Z ce(f) + pt=3¢ Z ce(f),

ACCCA_» Ai1CBCA

where, as usual, the first sum is taken oveCa#luch thatC/ A is cyclic of orderpz.
Obviously, to prove the lemma, we need to show that the first summand is zero. |
intersecting eacl with A;_1, the first summand can be rewritten as

o ceh= Y ) ce(f)—nica, (),

AicCcA_» A CBCA_1 BCpC

wheren; is the number of cubic rings betweén and Aj _1. Moreovercy, ,(f) =0

by the induction assumption, so it remains to show that the double sum on the rig|
hand side is zero. By Proposition 5.5, thedepth of eactB betweenA; and Aj _1

lies between — 2 andi 4+ 1. Next, assume tha& has positivep-depth. Then, the ring
B_; such thatB = Z + pB_; exists and hag-depth at most. Applying the Hecke
operatorys to cg_, () and using the induction assumption, it follows that

0=p" > cc(hHh+p™ Y cc(f)+pHea(h).
B_1cpC CcpBa
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We claim that the first sum on the right-hand side is zero. By Proposition 5.5, ar
ring C containingB_1 with index p hasp-depth less than or equaliter 1. It can be
i + 1 only whenB_1 hasp-depthi. In that case we can apply Lemmé&.2to B_; to
show that the sum is zero. Otherwise, each individual &f0f ) is zero. In any case,
the claim follows.

In the second sum we can replaCeC, B_; by B Cp C since the ringC
contained inB_1 with index p are precisely the rings containirig) with index p.
Summing the above equation over BlbetweenA; and A _1 such thatp-depth ofB
is positive, we obtain

0=p* > Y chH+pt* Y ce(h),

ACByCA 1By CpC AiCByCA_1

where the subscript denotes that the sum is taken over rirgjsvith positive p-
depth. However, iB hasp-depth zero, an® Cp C, thenC hasp-depth less then or
equal to 1. Thusgg(f) = cc(f) = 0 by the assumption of the proposition, and this
implies that we can remove the subscrpin the previous equation. Now, since the
second sum is zero by Lemmi&.2, the first sum has to be zero as well. The lemma
follows. ]

We have thus completed the proof of Propositi@nl. O

We now show that the vanishing of the Fourier coefficentt fidr all rings of p-depth
zero in a given~p-class implies vanishing of all Fourier coefficents in thg-class.

In view of Propositionl6.1, it suffices to show thata, (f) = O for all cubic ringsA

of p-depth zero in the givery, equivalence class. The idea is similar to the one usec
in the proof of Propositiori6.1. The necessary modifications of the proof are basec
on the following proposition.

PROPOSITION16.4
Each~ equivalence class of cubic rings contains a unique maximal elefMggt

Proof

We defineAmax in A ® Q by specifying its localizations i\ ® Q) for all primesl.
Forl not equal top, we insist that the localization be equal Ao® 7, for any ring

A in the equivalence class. Fbe= p, we insist that the localization be equal to the
integral closure oZp in A® Qp. SinceA® Qp, is étale overQp, the integral closure

is free of rank 3 ovefZ, and is maximal for this property. The above construction
shows thatAmax is the unique ring in the-, equivalence class which minimizes the
power of p in the discriminant and thus that it is the unique maximal element in th
~p equivalence class ok. O
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Let f € Mg be a Hecke eigenform. We now show that the vanishing of the Fourie
coefficients off for all rings of p-depth zero in a given equivalence class implies the
vanishing of all coefficients in the class. We first show the following.

PROPOSITION16.5

Let A be a p-depth zero ring in the~, equivalence class oAmax. If the Fourier
coefficients off for all rings of p-depth zero in the equivalence classffax vanish,
thencp, (f) =0fori =1, 2

Proof

The idea is to prove this statement far= Amnax and then use induction on the index
of Ain Amax Since the arguments are repetitive, we do the proo”fes Amaxand
the induction step at the same time.

LEMMA 16.6
Let B be a ring containingA with index p or contained inA with index p. Then
CB(f) =0.

Proof

If A = Amax then there are no rings containing it, and every mBhgetweenA and
A1 has depth zero. OtherwisB,_1 would exist and would contaif\nax with index
p, which is a contradiction.

Induction stepA ring B containingA with index p can havep-depth 1. In that case,
B = Z + pBy, whereBp hasp-depth zero. Since the index 8f in Anaxis smaller
than the index ofA, the induction hypothesis implies that (f) = 0. Similarly, any
ring B betweenA; and A has p-depth at most 2. Hence, eithBrhas p-depth zero
andcg(f) = 0 by the assumption, 8 = Z + pi Bg for some 1< i < 2, in which
casecg(f) = 0 by the induction assumption since the indexBafin Amax is less
than that ofA. O

Now Propositionl5.6 (acting by the Hecke operatgr onca(f)) and Lemmal6.6
imply that
ca (f) =0. (16.7)

LEMMA 16.8
We have

Y cc(f)=0,

Ai1cC

where the sum is taken over all ringssuch thatC/A; = Z/ p?Z.
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Proof
SinceA/A1 = (Z/ pZ)z, C is not contained inA. Thus, if A = Amax there are no
such ringsC.

Induction stepLet B = ANC. ThenA; C B C A. By Propositions.5, the p-depth
of B is at most 2. Sinc® Cp C, the p-depth ofC could be at most 3, which happens
only if B hasp-depth 2. Thus, iB hasp-depth less than 2, thed has p-depth less
than 3, and the induction hypothesis implies thatf) = 0, just as in Lemmad6.a
Now assume thaB has p-depth 2. Then the rin@_1 exists, and we can apply the
operatoryz to cg_, (). By the induction hypothesis, the formula reduces to

Pt Y ceh+p* Y () =0

B_1CpC BcpC

The ringsC in the first sum havep-depths less than 3. Therefore, the coefficients
cc (f) vanish by the induction hypothesis, again just as in Lemmé& The second
sum therefore also vanishes, and the lemma follows. (The sum also includes the te
ca(f), which is zero.) O

LEMMA 16.9
We have

> cs(f)=0.

ArCBCA;

Proof

Consider the action of the Hecke operagaron ca( ). Using the formula given in
Propositionl5.5 one obtains the desired result frofi(7), Lemmal6.6 and Lemma
16.8 O

Now Propositionl 5.6 (acting by the Hecke operatgt onca, (f)) and Lemmal6.9
imply that
ca,(f) =0. (16.10)

In view of (16.7) and (L6.10, Propositionl6.5is proved completely. O
Moreover, Proposition$6.5and16.1limply the following corollary.
COROLLARY 16.11

If the Fourier coefficents of vanish for all rings ofp-depth zero in a-, equivalence
class, then they vanish for all rings in the, equivalence class.
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We are now ready to prove that cuspidal Hecke eigenforms are determined by th
Gorenstein coefficients and Hecke eigenvalues.

THEOREM 16.12

Let f be a Hecke eigenform. €a(f) = O for all Gorenstein ringsA, then all the
Fourier coefficients of vanish. In particular, iff is a nonzero cuspidal Hecke eigen-
form, thenf has a nonzero Gorenstein coefficient.

Proof
Suppose that there exists a totally real cubic rkaguch thatca(f) # 0. LetE =
A ® Q which is a cubicttale algebra ove).

Pick an ordering of primegs, pz, ..., and letXx be the set of cubic rings in
E with trivial p-depth for alll > k. Clearly, Xg is the set of all Gorenstein rings
in E, and every cubic ring irE is contained in som&y for a sufficiently largek.
Furthermore X is a union of~p, conjugacy classes, and the set of all elements ir
Xk of pk-depth zero is preciselfk—1. Using induction ork, Corollary16.11limplies
that the Fourier coefficients df vanish for all cubic rings irE. This is a contradiction,
and the first statement of the theorem is proved. The second statement follows fr
this and PropositioB.4. O

Acknowledgmentie wish to thank Nolan Wallach for keeping us informed of his
work.
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