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An asymptotic formula is proved for the number of cubic fields of discriminant b in
O<b<A;andin X <b<0

1. Introduction

Let N3£, y) denote the number of cubic fields K with discriminant bK satisfying
£ < bK <y, where a triplet of conjugate fields is counted once only. The main
purpose of this paper is to prove

Theorem 1

A W30, X)->(12£(3)) 1 as
X W3 —X, 0)-*»(4£(3))-1 as X-00.

In a previous paper (Davenport & Heilbronn 1969) we proved the weaker result
that the upper and lower limits are finite and positive. This proof is a refinement
of our previous method. We showed then that there exists a discriminant-pre-
serving 1-1 relation between cubic fields and a subset U of the classes of irreducible
primitive cubic binary forms F{x, y) with coefficients in Z. In this paper U will be
determined explicitly by congruence conditions on the coefficients of F. Using an
easy generalization of Davenport’s earlier results on the class-number of binary
cubic forms (Davenport 1951a, bve obtain an estimate of th
and thus theorem 1.

As a by-product, two further results will be obtained. Let K &be the sextic
normal extension of the lion-cyclic cubic field K, and let be a rational prime
unramified in kaad hence in Khen the F
is defined as a conjugacy class of the S3isv
where | is the identity class of S3. Then it is a consequence of the Frobenius-
Chebotarev density theorem that for fixed K and varying p (unramified in K)
the values I,A3—, S3—A3occur with relative frequency 1:2:3. We shal

Theorem 2. Let p he afixed prime, and let K run through the cubic non-cyclic
fields in which p does not ramify, the fields being ordered by the size of the discrimi-
nants. Then the Frobenius-Artin symbol takes the values I, A3—,
S3—A3with relative frequency 1:2:3.

Actually we shall do a little more. We shall also determine for each p the density
of cubic fields K in which pitotally ramified, and the density of fiel
p is partially ramified.
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Another application of the method of this paper deals with the 3-class-number
of quadratic fields. Let h* ( A2bethe number of those ideal class

field of discriminant A2whose cube is the unit class. We shall prove

Theorem 3. X hg(A2~§8 2 1 X->o00,
| <axx o<aXx
2 "Md2)~2 X X”7oo.
-VcrcO -Ac™cO

This theorem suggests the possibility that the relative density of positive and
negative discriminants A2 for which the congruence h*(A2 = 0(mod3n) holds, is
3 2nand 31 2nrespectively for n > 0. But at the moment there does not seem to be
any hope of proving results of this nature.

2. Notation and definitions
Small roman letters are reserved for rational integers, p is always a positive

prime.
0is the set of all irreducible primitive binary cubic forms
F(xy) = axst bxay +
of discriminant D = b2+ 18abed—27 —4 —4cA.

The letters a, b, ¢, d and D will always be reserved for the coefficients and
discriminant of the form F.

Two forms F(x, y) and F'(x', y*) are called equivalent, or integrally equivalent,
if there exists a unimodular 2 by 2 matrix M of determinant * 1 such that the
substitution (x',y") = M(x, y) transforms F' into F. For quadratic forms we
retain the classical definition of equivalence, which requires that det(ilf) = 1.

Two forms F(x,y) and F'(x",y') in O are called rationally equivalent if there
exists a non-singular 2 by 2 matrix M over Z such that the substitution
(x"y") = M(x, y) transforms F' into 8F, where 4=0 is rational. This definition
will only be used in §6.

The congruence FXX,Y) =F2(x, y) (Mod m) will denote that e:
is congruent (mod m) to the corresponding coefficient of F2, whereas

P4, y) =F2(x,y) (mod

will imply only that for each pair x,yeZ the forms assume values congruent to

each other (modm).
Now we define the symbol ( F,p)ér Fe0. We put

(F,p) = (111) if F =\ x(x,y)\Zx,y(Modp]
where A5 A2, A3are linear forms modp, no two of which have a constant quotient.

(F.p) = (12) if F(xy) = Axy)K(xy) (Modp),
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where A(@,y) is a linear form and k(x)y) is a quad
{F.p)= 3 if F{xy) =K(xy) (Mod"),
where «(x, y) is irreducible Modp.
(F,p) =(I3) if
where H(x,y) is a linear form, and a a constant modjo.
Crp) = (l21) if F(x,y) =A2 (x,(M

where \{x, y) and \<fx, y) are linear forms with a non-constant quotient.
If Fand F2are either equivalent or congruent (Modp) clearly (Fxp) = (F2p).

Note also that p\D if and only if ( By (13 o
(F,p)= (13 implies p 2AD.By 77(111), 27(12), etc., we denote the set of
which (F,p) = (111), ( F,p)F (12), etc. (Clearly each set
of equivalent forms.) We define Wpby the relation
FeWpo D =0 (mod_p2.

Next we define for each p subsets \p and of if = 1(mod4) orif
D =8 or 12 (mod 16). FeVor p#2 if Fe if ori
and if the congruence F(x,y) = ep (mod”*p2) has a solution for some ~ 0 (modp).
Finally we put V=0KpP=4d

Clearly all the sets \p, W, V and U consist of complete classes of equivalent
forms.

By the letter K we denote a cubic number field, by bK the discriminant of K.
If aKwe denote by Nm(a), tr(a), b(a) the norm, trace and discriminant of @
taken in K over Q.

Let Sk a subset of 0 consisting of complete equivalence classes. Then wwe
denote by N(£,y,S) the number of classes in S whose forms have a discriminant D
with £ < D <17

Let A2eZ, A2=0or 1 (mod4), A2not a square. Then denotes the numt
of those classes of primitive quadratic form of discriminant A2whose cube is the
unit class. If AZ a field discriminant, this definition agrees with the defi

given in the introduction.
r(n) denotes the number of positive divisors of n.
Constants implied in the symbol 0 are independent of all parameters.

3. Local densities

In this section we consider forms F e0 over the residue class ring mod  for
r= 1land r= 2. Naturally, we neglect irreducibility over Q. The number of
forms is p4r(1—p~4). Let Sbka set of forms in 0. We denote by A(
of residue classes modpr occupied by forms in S, divided by p 4(l —
26-2
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Lemma 1. For r=1and r=2
A(Tp(llym) = fep(p-D(p*+D-1,
A (Tp(12);pr)= %_1,
A(Tp(3);pr)=iP(p-1)(p2+l)
A(Tp(13);pr) = @
A(Tp( 120);prF p(p2+ 1)-1
Proof. As the definition of ( pllepends only on the residue-
it suffices to prove the lemma for r = 1 Call a form nor
vanishing coefficient equals 1. It is well known that the number of normalized
homogeneous polynomials in xand
p+1 Ip(P ~1) and zP(p—3) (P+1) respectively. T

elementary counting process.

Definition (only used in this section). Sx= Sx¥p denotes the set of forms Fe<I>

satisfying o
a=£ 0 (modp), b=c=0

Sz S2pdenotes the set of forms F EOQ satisfying
b~ 0(modp), a=c=0(modp), d=0(modp2.
and Z Xenote the set offorms in 0 which are equivalent to at least one F in  and
SZrespectively.
Note that FeZxx( F.,pF (13 and
A(Zx p 2= pl)-2,
A(Z2,p2 = (
Proof. It is clear that
A(SXP2 =A(S2;p2) = p-1Up + 1)-Lp2+ I)-

(k 1\ \be a linear substitution modp2of determinant + 1. Then if FeS

Let
F(kx+ ly, mx+ ny) = a(kx+ (Modp);

so this form lies in Sxonly if I =0(mc

FJex+ ly, mx + ny) = a(kx+ ly)3+ ckx(mx + ny)2+ (mx +

and the form lies in Sx The unimodular substitutions modp2with 1= 0 (modp)
form a subgroup of index p + lofthe group of all unimodular suk

Hence A(Zx,p2 = (p+ DA(SX:p2)
Similarly, if F82
F(kx + ly, mx +ny) = b(kx + ly)2(mx + ny)
bk2nmx3+ bk(2Im + kn) x% + bl(Im+ 2 xy
= a,Xx3+ b'x3/ + c'xy2+ d'yIModp) say.
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Assume this form lies in S2Then
As p\b',p\m, we have pn As p\d'p\br
Conversely, if I = m= 0 (mod™p),
HJcx + ly, rnx + ny) = akR+ b(kx+ ly)Amx + ny) + :
= ( k3
+( b(2kln+
Thus this form belongs to S2The unimodular matrices
form a subgroup of index p(p+ 1) in the group of all unimodular
HenCe A(Z2;p2 =p(p+1)A(SZp2= (p2;

Lemma 3. 0= W2/M13 U ZZXor all p, and no two
element in common.

Proof. It is clear that each F with ( F, b (
of these sets. Hence we need only prove the lemma for 1). Such F may be
assumed to have coefficients a, b, ¢, duch that

a=c= d = 0(rnodp),
Then D = —4bal (mod"?2).
Thus for p42, D =0(modp2) if and only if = 0 (modp
every form of Tp(21) lies either in \p or in

For p = 2we have

D = 622—463 = 4((]-c)2— (mod 16).
Thus d= 0 (mod 4) if and only if D= 0 or 4 (moc

Lemma 4. AMVpP = (p2—1) (p2+ 1

Proof. By lemma 3
1= A{Vp\p2+A{Tp{lz)-,p2+A{Z2,p2.
By lemmas 1 and 2
A{Tp{\))-,p2= (pt+I)-1, =N-1

and the result follows.

Lemma 5 A(Up;p2= (p2—) p~1p2+1)~1for

Proof. It follows from the definition of W that

TN = (2;(i3n Y)usv W =\pMlyi3n W).

As Zr Wis empty, we have
W \}Zx =\ \)TP®,

A(Up,p2) = AVp,p2+ A{Tp{l9)-p)-A{ZX
=(p2-1) (p 2+ -1+ (p2+ D1

by lemmas 4, 1and 2. Hence the assertion follows.
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Lemma 6. 1f( F.pE= (13, p+
(F, 3) = (13, F e, then D 0 (mod 729).

Proof. Assume a=£ 0 (modp), h =

D = —21ad (modp3).

Hence 2) = 0 (modp3) if and only if d = 0(modp2).

Lor p= 3,put 6 = 37 c= 3y, d = 3% so that 3”". Then

D =81/7%/2+ 486a/?y£-243«2%£2-324/?F-108y A.
1fSfy, D = —208y3 (mod 81).
If 3y, D = — SI8(3a&/?3 (mod 729).
Hence in either case D/ (mod 729).
4. An auxiliary proposition

In order to apply a simple sieve method later, we require

Proposition 1. N(—X,X; Wp) =

We first prove

Lemma 7. M FX h*(d2= O(X)

N

where A2Zuns through the discriminants of

Proof. This lemma follows from our old theorem

N3 -X,X) =0O(X) as X->o00

(Davenport & Heilbronn 1969) as theorem 3 will follow from theorem 1. (See 87.)

We now introduce the Hessian H(x,y) of a given cubic form H is

defined by the relation Hx>y)  _j(C ~ _jy,

where the lower indices denote partial derivatives. It is well known that H(x, y)
is a covariant of F(x,y) with respect to linear substitutions of determinant 1.
A simple calculation gives

H(x,y) = (bx+ cy)2—Sax + by) (cx+ 3
= Px2+ Qxy + By2 say,
where P = b2—Sac, Q= be—9 é
discriminant A of Higiven by
A =Q2-4PR =-3D
The class of H is uniquely determined by the class of F, but the converse is not

necessarily true. The formula for A shows H is reducible if and only if —SD is
a square. H is primitive if and only if for all primes p 4=(13). So we put

M = (P, @ P =MPX Q= MQV B = MRX
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H{xy) = Pi
and this quadratic form has discriminant
Ax= Q2-4P )
The explicit definition of H(x, y) leads immediately to the identities

Hxb, -3a) = MP\,

Hxgb ) =
Hx(3d,—¢) =
Lemma 8. Let ke M e, M el4 B
offorms in 0 with Hessian H(x,y) = M(kx +whe
B < 2kr
Moreover, ifp is aprime such that 2
B < Qkp~XT(M).
Proof. Let Fdba form in 0 with Hessian
H(x,yF M(kx+1ly)y = MHXX,y), say.
We may assume that a 8. The equations
Hfb, —3a) = (kb—3 alj—3a)
HxcH = (kc-bl)(-b)MPXRX= 0
yield b —3 khd, if I+=0, c = 3k~22. If = 0, the third equ
Hx(3d, -c)=@kd-cl)(-c)= = N
yields ¢ = 0 because d2=0. Hence F has the form
F(x,y) = a(x + k~xy)3% (9
the last coefficient being determined by the value of
D=-xtM X2 = -2la
As the coefficients of F are integers, we obtain the congruences
3 al2z= 0 (mod k2

If k= 1, the second congruence shows that a\M, so that we have t(M) choices
for a and one choice for | which proves our result.

If k > 1 the first congruence shows that k2\3a, so we can put 3a = sk2 Th
second congruence now reads

s4A3tM = 0 (mod 3s&).

This implies that s\M and we can find at most £(M) values ofa and at most k values
of I. This proves our first result for k>1
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Now assume the existence oipwithp\k, p2* T hen pl
sA3t
has at most six solutions modp. Hence the original congruence has at most
6kp~xsolutions in 0 < I < k.This proves the last assertion of the
Lemma 9. IfM % andHx(x, y) are given, and if Axis not a sque
are at most 18 titsses of irreducible primitive cubicforms with Hessian equivalent
to  MHXX,Y).
Proof. As Hx(x,y) is primitive we may assume that Pxis a prime. Assume first
that Ax 0. Then _33) = a

Hence by the theory of definite primitive quadratic forms, the number of repre-
sentations of MP\ is at most ér(JfP|) < 18r(df).
Thus there are at most 18r(JL) choices for a, b. As a, b, Px Qxdetermine ¢ and

d uniquely (since a+0), the lemma follows for < 0.
For a positive Athe situation is not so simple, as the form Hx(x, y) has
infinite group of automorphs.
We write H(x,y)in the form
H(x,y) =MHXX,y) =MPXX + By) (X + |
where 6 = (2PR~1(Qx+fAX, O =
If H(x, y) is the Hessian of F(x, y), we have
3 (6-6")YF(x,y)= ( b-3ad") {x
Let e > 1be the smallest unit in Q(“AX which can be written in the form

6 ~ Mei+ e2d” 1)
The non-trivial automorphs of H(x, y) are then generated by the substitution S
X* + 6y* = e(x + 6Y),
x* +d'y* = e~1(x-\-dY).
Hence b=3
b* —3 a*6'=e~3b—3
This shows that if the x, y space is transformed by S, the b, —3a space is trans-
formed by S3 Thus we need only count solutions of
Hx(b, - 33) MP2
subject to equivalence by S3n, as two solutions which differ only by S3nlead to
equivalent forms F. The number of solutions not equivalent by Sn are at most

2t(MP\), hence the number of solutions not equivalent by S3n is at most
Qe(MP\) ~ 18r(ilf), as Pxmay be assumed to be a prime.

Lemma 10. Let M ®and Ax=0
Then there exist at most 3 T(M)h*(AX)classes of primitive quadratic fo

HX(X,y) = Pxx2+ Qxxy+ Pxy2 with Q\—PXRX= Ax
such that MHXis the Hessian of aform Feo.
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Proof. Let F(x,y)ea form in & with HessianThen we have
Pxb2— 3Qxba+= MP\.

W ithout loss of generality we may assume that is a prime.
We now consider classes of equivalent primitive quadratic forms of discrimi-

nant Ax Let y be the class of Hxand let ji, ..., /q be the ¢
It follows from the theory of composition of quadratic forms that 1 < < t(M).
Hence there exists at least one s l<

three relations holds:
y=1/q or y—jis?2 or 7{=ysy~2

The number of such rj is at most
t(2 + h*(AxK r(M)(

Proof of "proposition 1. We first deal with those classes for which —3 is a square.
We have to find an upper bound for the sum

E B(k,M)= E B(lc,pM)+ E
Mk<(3X)i Mfc<(3X)ip-1
p\Mk viM
To the first sum we apply the first estimate in lemma 8, to the second sum the

second estimate. Then our bound is

< E (2kr(p+
kM<(SX)ip-1
<10 E e [
M <{SX)ip- 1&<(3X)ip-IM -1
< 10(3X)p-2E 2
M=1
= 0(Xp-2.

Now we have to count those classes for which —3 is not a square and the
Hessian is irreducible. That means, by virtue of lemma 9and lemma 10 we have
to find an upper bound for the sum

2 54tW Alizy,

'“&W'ifx
where Ajs restricted to discriminants of quadratic forms. Each such Axcan |
factorized uniquely in the form Ax=
nant of a quadratic field. For p = the propositior
theorem, so we may assume p £2. Hence p2AA 2 and p.
To express h*(Al) by tq2) exactly is difficult; it is howevel

h*(AX)\3""hnA2),
where n denotes the number of distinct prime divisors of L. Hence
ht(AX) < tlL
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Substituting this in our formula for the upper bound we obtain

54 £ 2.
\M2A 2A2<3X
p\ML

By virtue of lemma 7 this is majorized by

00

0(X)2 2 TXM)TAL)M-2~2= 0(Xp-2).
M=1 L=1

p\ML

5. Global densities
The starting-point of this section is the
Theorem (Davenport 1951a, b)
N(BO = fir
B 0) = "6t= Z + 0 (ZM).
Actually we require a refinement of this theorem. Let ~ 1and be a set of

forms in 0 which are defined by conditions on the residue classes ofa, b, ¢, d (mod m).
Moreover let Smbe a union of equivalence classes of 0. Then

lim X~W (0, X;Sm=£
X0

lim X~xN(—X,0;Sm) — ;m).

V —s00

This extension is proved in exactly the same way as the original theorem. It does
not hold uniformly in m.

Let Yda large integer in Z, and let
Then as X~ co, for fixed Y,
X~'N(X,0;n
p<Y p<yY

= f-n—~2n X(Uv'p2
p<yY

=in--2n (p3- 1)-1
<Y
by lemma 5. Thus ’
lim sup X~IN(X, 0;U) ~Mir-2n ( 3)p-1p2+ 1)-1.
X-+00 p<yY
As this is true for all Y &, we may replace the product by the |
over all primes. This gives
)!ingosup X~xN (X, 0; U fir-21f 1~P~2(1+p-2)-1
-> p
= f-n-VS)-1«2)-i £(4) = f(3)-" (6t 2) (tr</90)

= (12£(3))-".
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To obtain a lower bound for N(0,X ;U) we observe

n Up< {m

p<yY p>Y
Hence, using proposition 1,

iTT-2n (P 3-1)P "p2+ D) ~1<Inniiif(Z-W (0,Z;17) +-X-1 X N{0,X;Wp))
p<Y X

-+00 Y

N liminf(Z-W (0,Z; U)+0 S
A>0

Letting ¥eind to infinity, this gives
liminf X _1Vv(, X; U) ~ fir-2 fl ( 3—)_p_1("2+ 1) 1 = (12£(3))-1.
X-"co p

The same argument works for negative discriminants. We have thus proved
P ition 2. lim X _11V(0,X; 13) = (12£(3))-1,
roposition Jim X_ ( ) = (12£(3))
lim X~1X(—X, 0; U) = (47(3))"L
N ( ) = (47(3))

Applying the same argument to V instead of U, we note that the relation

nvp*(Vuu wo)
still holds. Also by lemma 4 " "
AVp-p) = (pZ-1)(p°+ 1)-1,
FIT2n (1-15“2) (I+15-2) -1 = fTT2Na )\2) -2
= | tt_2(t/90) (36/ttd) = |-te~2
This gives

P roposition 3.

lim X-W (0,X: F) = (2T)-1,
V—=m

lim X -W (-X ,0; V) = 32u-1

X ->00

6. The fundamental mapping

Let Kda cubic field over Q. In our previous paper we attached to each K
a binary cubic form in the following way. Let 1, be an integral basis of K.
Put FK{x,V) = & (gix+
where denotes the absolute discriminant of K. We proved

(1) FKe@.

(2) Fk is uniquely determined by K apart from equivalence.
) If K'is conjugate to K, FK>is equivalent to FK.
4) D(Fk = bK.

(5) If Ki isnot conjugate to K, then FKiis not even rationally equivalent to FK.
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Therational prime p factorizes in K according to the following table:

(p) = VPR if
(p)= bib2 if (FK,p) = (12),
(P)= _ of
() =p* if (.= (P),
ip) = plp2 if PIl).
Proof. Assume first that athe coefficient of xz in FK, is not c
sider the polynomial flx)= " 7. 97 W + bX2+ aC

This polynomial is irreducible over Q, and has a zero in K. Its discriminant equals
a2bK Hence, by the Kummer-Dedekind theorem, factorizes Modp in the same
way as p factorizes in K. As f(x) factorizes Modp in the same way as FK(x,y),
our lemma is proved.

It remains to deal with the case that p\a for all forms equivalent to FK. This
happens only ifp2bAlb(a) for all integers a in K, i.e. if isa ‘non-essential divisor’

of the discriminant of K.It is well known that this case arise
bAr=I(mod2) and 2 factorizes completely in K. Then u=d= 0(mod2),
D =1 (mod 2), hence b= c = 1(mod 2); FK{X y) xy(x+:

(F, 2) = (111). This observation completes the proof of the lemma.

Lemma 12. FKeTJ.

Proof. We state a few well-known facts on cubic fields (Hasse 1930). If K is
cyclic, the discriminant bK of K has the form b” =/2;if is not cyclic, b™ has
the form bK = Z2/ 2 where d 2is the discriminant of a quadratic field. In both cases
p2\f if p43; and (d2/) = 1 or 3. Further p2f if 4=2. A prime p ramifies
completely in A if and only if p\f.

We want to show that FKeUp for all p. If p2\ bK, this follows at once from the
definition of UWp. Hence we may assume that b~ = 0 (modp2).

If p 3 the last congruence implies p\f, and p ramifies completely in K, so
that by lemma 11 (FK,p) = (13). As pz\ b”, it follows from lemma 6 that FK eUp.

If p =2 we have either 4|42 or 2\f. If 4|42 then d2= 8 or 12 (mod 16),
/2= 1 (mod 8), hence bj* = 8 or 12 (mod 16), Fk e\2<= U2 If 2|/, 2 ramifies com-
pletely in K, hence by lemma 11 (FK,2) = (13). As b”" = 4 (mod 8), it follows
from lemma 6 that FKeU2

There remains only the casep = 3,/ = 0(mod 3). Let p denote the unique prime
ideal in K which divides 3. Because 3isnot a ‘non-essential divisor *ofthe discrimi-
nant, there exists in K an integer a such that

3b~ f b(a).
Without loss of generality we may assume that a = O(modp), otherwise con-
sider c—lor a+ 1. Hence tr (a) = O(mod3). It is easy to verify the identity

b(a2) = b(a) Nmtr (a) —a).
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If  a30(modp2), then
Nm(tr (@) —a) = +3 (mod9),
b(a2b”1=b@bANmM~ trrj-a) = +9 (mod 27).
This means that FK(x, y) represents a number = £ 3(mod 9), i.e. FK(x,y) e
Ifa = 0(modp2), our identity gives
b(-la2) = 3~6b(a2) = 3-6b(a) Nm2(tr (a) —a),
b(-Ja2 b~1= b(a) bAH3 3Nm(tr (a) —a)}2
and, since -|a2is an integer in K,
33INm(tr (a) —a).
This implies that 3|a, and therefore
b(-ja) = 3~6b(a) = O(modb*),
b(a) = 0 (mod 36bK)
which is a contradiction.
Lemma 13. Let Fland F2be twoforms in U which are rationally equivalent. Then
they are equivalent.
Proof. Rational equivalence between Fxand means explicitly that

(xxyx) = M{x2y2),

where t40is rational and M is a non-singular 2 by 2 matrix over Z. |1f we replac
Fxby an equivalent form, M will be multiplied by a unimodular matrix on the left.
Similarly, replacing F2by an equivalent form means multiplication of M with a
unimodular matrix on the right.

Thus we may replace M by MXMM?2, where Mx and M2 are unimodular. Ele-
mentary divisor theory tells us that we can choose Mxand M2in such a way that

MxMm2= A1 Q

where m = |det (M)\. If m = 1, our forms are equivalent.
Otherwise, there exists a prime p\m. Write m = pIm0, or = pka0 so that 1,
and m0,<0are prime to p. Then our transformation takes the form

FX(pim0x, y) = y)-
Equating coefficients we obtain

al=pk~3JTaa2
bx= p k~2rbb2,
Cx = p k-I1TccC2,
di = Pkrdd2,

where ra,rb, ... are rationals prime to p.
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If k— &, we have p\cx, P2dvif
symmetry, we may restrict ourselves to the first case, p2\dx implies p 2\Dv
As FleUp, it follows that {Fxp) = (13, and therefore As FxeUp and
the congyuence S y)\ 2 =ep (modp2)
has a solution for some e™0 (modp). As
x = 0(modp). But this implies
FX(X,y) = cxxy2+ dxg = 0 (mod|
e = 0(modp).

This contradiction completes the proof of the lemma.

Lemma 14. To every F e & there belongs a cubic field K such that F and are
rationally equivalent.
Proof. Write F in the form
F(x,y) = a(x- A - {x-
Then Agenerates a cubic field K. We can write FK in the form
FK{x.y)= aK (x—py)(x-p'y) {

where ye K. If A isnot cyclic, p is unique, but if K is cyclic any of the three con-
jugates can be used. As A and p are irrationals in K, there exists a relation

JA+ |—mpA—p = 0, ( k,lI,m,ny—1, which is unique apart from
Thus we have A= (fo+ J)(MA+ »)-°
and this also holds if we replace A pY their two pairs of

. n *
The transformation o = bt ly, y* = mx+ny

transforms the form  F(X,y) = a(x —Ay)(Xx—A'y) (Xx—A
into a form PO —py*) (X — ) ( *—p"y"),
which is a constant multiple of FK(x*,y*).
Proposition 4. There exists a 1-1 mapping A of triplets of conjugate cubic fields
K onto the equivalence classes of U. And A preserves the discriminant.

Proof. The map A: K-~Fk maps the triplets into classes of U by lemma 12. By
lemmas 14and 13every classin U contains an FK. And it was stated at the beginning
of this section that distinct triplets are mapped into distinct classes of U, and
that D(Fk) = bK.

7. Proof of theorems 1, 2 and 3
Proof of theorem 1. It follows from proposition 4 that

m>v) =MZ,[, u).
This identity in conjunction with proposition 2 gives theorem 1.
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Proof of theorem 2. Let pbe a fixed prime. By virtue of lemma 11 the mapping
considered in the preceding proof maps the classes of forms in 0" (111);
VNn~(3) and UN~,(12) into cubic fields in which p factorizes as (p) =

P = (), (P)= bib2respectively.
It is easily seen that the relative density of our 3 classes in U equals

A(Tp(Uiy,p*)A-"(Upptc.
By lemmas 1 and 5 these three relative densities are
i(l1+P_1+P-2)-1, Kl+p~+p-2-1 |(1+p-1+p~2)-1

respectively.

As the cyclic cubic fields have relative density 0, they may be ignored. For
non-cyclic cubic fields it is well known that the three types of factorization corre-
spond to the three values I, A3-1, S3 A3ofthe Frobenius-Artin symbol {(X&Q)/p}.

Proof of theorem 3. Let FT be a cubic field in which no prime ramifies completely,
so that K is automatically not cyclic. This means, in the notation used in the proof
of lemma 12, that/ = 1and that = A2 where zI2is discriminant of a quadratic
field. For a given the number of triplets of such cubic fields K equals (Hasse

193°) m e u-i).

On the other hand, the mapping A maps these triplets into the classes of V. Hence

iE,<ZA2<rj« (4,)-1)=N{(G,r,V).

An easy calculation shows that, as X ->00,
X-1 2 1-*32,
0
X-1 2 1 3ir-2.
_ X<
Hence by proposition 3
lim X"1 2 0%8 (48)- 1) = lim X; V)
X-+

0<A2<XXx->QO

=w2=1limX-1 2 h
X-+co Q<A2<X

lim X-12  (Af@la) - 1) = lim V)
-X<A2<0

X-+™™
= 3ir-2=lim X"1 2 1.
X-rco

This completes the proof of our theorems.
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