On the density of discriminants of cubic fields. II

By H. Davenport, F.R.S. and H. Heilbronn, F.R.S. \dagger
\dagger Department of Mathematics, University of Toronto, Canada

(Received 13 August 1970)

Abstract

An asymptotic formula is proved for the number of cubic fields of discriminant \mathfrak{D} in $0<\mathrm{D}<X$; and in $-X<\mathfrak{D}<0$.

1. Introduction

Let $N_{3}(\xi, \eta)$ denote the number of cubic fields K with discriminant \mathfrak{b}_{K} satisfying $\xi<\mathfrak{D}_{K}<\eta$, where a triplet of conjugate fields is counted once only. The main purpose of this paper is to prove

Theorem 1.

$$
\begin{array}{llll}
X^{-1} N_{3}(0, X) \rightarrow(12 \zeta(3))^{-1} & \text { as } & X \rightarrow \infty, \\
X^{-1} N_{3}(-X, 0) \rightarrow(4 \zeta(3))^{-1} & \text { as } & X \rightarrow \infty .
\end{array}
$$

In a previous paper (Davenport \& Heilbronn 1969) we proved the weaker result that the upper and lower limits are finite and positive. This proof is a refinement of our previous method. We showed then that there exists a discriminant-preserving 1-1 relation between cubic fields and a subset U of the classes of irreducible primitive cubic binary forms $F(x, y)$ with coefficients in \boldsymbol{Z}. In this paper U will be determined explicitly by congruence conditions on the coefficients of F. Using an easy generalization of Davenport's earlier results on the class-number of binary cubic forms (Davenport 1951 a, b) we obtain an estimate of the cardinality of U, and thus theorem 1.

As a by-product, two further results will be obtained. Let K_{6} be the sextic normal extension of the non-cyclic cubic field K, and let p be a rational prime unramified in K (and hence in K_{6}). Then the Frobenius-Artin symbol $\left\{\left(K_{6} / Q\right) / p\right\}$ is defined as a conjugacy class of the S_{3}, its values being I or $A_{3}-I$ or $S_{3}-A_{3}$, where I is the identity class of S_{3}. Then it is a consequence of the FrobeniusChebotarev density theorem that for fixed K and varying p (unramified in K) the values $I, A_{3}-I, S_{3}-A_{3}$ occur with relative frequency $1: 2: 3$. We shall prove

Theorem 2. Let p be a fixed prime, and let K run through the cubic non-cyclic fields in which p does not ramify, the fields being ordered by the size of the discriminants. Then the Frobenius-Artin symbol $\left\{\left(K_{6} / Q\right) / p\right\}$ takes the values $I, A_{3}-I$, $S_{3}-A_{3}$ with relative frequency $1: 2: 3$.

Actually we shall do a little more. We shall also determine for each p the density of cubic fields K in which p is totally ramified, and the density of fields K in which p is partially ramified.

Another application of the method of this paper deals with the 3 -class-number of quadratic fields. Let $h_{3}^{*}\left(\Lambda_{2}\right)$ be the number of those ideal classes in the quadratic field of discriminant Δ_{2} whose cube is the unit class. We shall prove

Theorem 3.

$$
\begin{aligned}
& \sum_{0<\Delta_{2}<X} h_{3}^{*}\left(\Delta_{2}\right) \sim \frac{4}{3} \sum_{0<\Delta_{2}<X} 1 \text { as } X \rightarrow \infty, \\
& \sum_{-X<\Delta_{2}<0} h_{3}^{*}\left(\Delta_{2}\right) \sim 2 \sum_{-X<\Delta_{2}<0} 1 \text { as } X \rightarrow \infty .
\end{aligned}
$$

This theorem suggests the possibility that the relative density of positive and negative discriminants Δ_{2} for which the congruence $h_{3}^{*}\left(\Delta_{2}\right) \equiv 0\left(\bmod 3^{n}\right)$ holds, is $3^{-2 n}$ and $3^{1-2 n}$ respectively for $n>0$. But at the moment there does not seem to be any hope of proving results of this nature.

2. Notation and definitions

Small roman letters are reserved for rational integers, p is always a positive prime.
Φ is the set of all irreducible primitive binary cubic forms

$$
F(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}
$$

of discriminant

$$
D=b^{2} c^{2}+18 a b c d-27 a^{2} d^{2}-4 b^{3} d-4 c^{3} a .
$$

The letters a, b, c, d and D will always be reserved for the coefficients and discriminant of the form F.

Two forms $F(x, y)$ and $F^{\prime}\left(x^{\prime}, y^{\prime}\right)$ are called equivalent, or integrally equivalent, if there exists a unimodular 2 by 2 matrix M of determinant ± 1 such that the substitution $\left(x^{\prime}, y^{\prime}\right)=M(x, y)$ transforms F^{\prime} into F. For quadratic forms we retain the classical definition of equivalence, which requires that $\operatorname{det}(M)=1$.
Two forms $F(x, y)$ and $F^{\prime}\left(x^{\prime}, y^{\prime}\right)$ in Φ are called rationally equivalent if there exists a non-singular 2 by 2 matrix M over \boldsymbol{Z} such that the substitution $\left(x^{\prime}, y^{\prime}\right)=M(x, y)$ transforms F^{\prime} into δF, where $\delta \neq 0$ is rational. This definition will only be used in $\S 6$.
The congruence $F_{1}(x, y) \equiv F_{2}(x, y)(\operatorname{Mod} m)$ will denote that each coefficient of F_{1} is congruent $(\bmod m)$ to the corresponding coefficient of F_{2}, whereas

$$
F_{1}(x, y) \equiv F_{2}(x, y)(\bmod m)
$$

will imply only that for each pair $x, y \in \boldsymbol{Z}$ the forms assume values congruent to each other $(\bmod m)$.

Now we define the symbol (F, p) for $F \in \Phi$. We put

$$
(F, p)=(111) \quad \text { if } \quad F \equiv \lambda_{1}(x, y) \lambda_{2}(x, y) \lambda_{3}(x, y) \quad(\operatorname{Mod} p),
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are linear forms $\bmod p$, no two of which have a constant quotient.

$$
(F, p)=(12) \quad \text { if } \quad F(x, y) \equiv \lambda(x, y) \kappa(x, y) \quad(\operatorname{Mod} p),
$$

where $\lambda(x, y)$ is a linear form and $\kappa(x, y)$ is a quadratic form which is irreducible $\operatorname{Mod} p$.

$$
(F, p)=(3) \quad \text { if } \quad F(x, y) \equiv \kappa(x, y) \quad(\operatorname{Mod} p),
$$

where $\kappa(x, y)$ is irreducible $\operatorname{Mod} p$.

$$
(F, p)=\left(1^{3}\right) \quad \text { if } \quad F(x, y) \equiv \alpha \lambda^{3}(x, y) \quad(\operatorname{Mod} p),
$$

where $\lambda(x, y)$ is a linear form, and α a constant $\bmod p$.

$$
(F, p)=\left(1^{2} 1\right) \quad \text { if } \quad F(x, y) \equiv \lambda_{1}^{2}(x, y) \lambda_{2}(x, y) \quad(\operatorname{Mod} p),
$$

where $\lambda_{1}(x, y)$ and $\lambda_{2}(x, y)$ are linear forms with a non-constant quotient.
If F_{1} and F_{2} are either equivalent or congruent $(\operatorname{Mod} p)$ clearly $\left(F_{1}, p\right)=\left(F_{2}, p\right)$. Note also that $p \mid D$ if and only if $(F, p)=\left(1^{3}\right)$ or $(F, p)=\left(1^{2} 1\right)$; further that $(F, p)=\left(1^{3}\right)$ implies $p^{2} \mid D$. By $T_{p}(111), T_{p}(12)$, etc., we denote the set of $F \in \Phi$ for which $(F, p)=(111),(F, p)=(12)$, etc. (Clearly each set T_{p} consists of classes of equivalent forms.) We define W_{p} by the relation

$$
F \in W_{p} \Leftrightarrow D \equiv 0 \quad\left(\bmod p^{2}\right) .
$$

Next we define for each p subsets V_{p} and U_{p} of $\Phi . F \in V_{2}$ if $D \equiv 1(\bmod 4)$ or if $D \equiv 8$ or $12(\bmod 16) . F \in V_{p}$ for $p \neq 2$ if $F \notin W_{p} . F \in U_{p}$ if $F \in V_{p}$ or if $(F, p)=\left(1^{3}\right)$ and if the congruence $F(x, y) \equiv e p\left(\bmod p^{2}\right)$ has a solution for some $e \neq 0(\bmod p)$. Finally we put

$$
V=\bigcap_{p} V_{p}, \quad U=\underset{p}{\bigcap_{p}} U_{p} .
$$

Clearly all the sets V_{p}, U_{p}, V and U consist of complete classes of equivalent forms.

By the letter K we denote a cubic number field, by \mathfrak{d}_{K} the discriminant of K. If $\alpha \in K$, we denote by $\operatorname{Nm}(\alpha), \operatorname{tr}(\alpha), \mathfrak{D}(\alpha)$ the norm, trace and discriminant of α taken in K over \boldsymbol{Q}.

Let S be a subset of Φ consisting of complete equivalence classes. Then we denote by $N(\xi, \eta ; S)$ the number of classes in S whose forms have a discriminant D with $\xi<D<\eta$.

Let $\Delta_{2} \in \boldsymbol{Z}, \Delta_{2} \equiv 0$ or $1(\bmod 4), \Delta_{2}$ not a square. Then $h_{3}^{*}\left(\Delta_{2}\right)$ denotes the number of those classes of primitive quadratic form of discriminant Δ_{2} whose cube is the unit class. If Δ_{2} is a field discriminant, this definition agrees with the definition given in the introduction.
$\tau(n)$ denotes the number of positive divisors of n.
Constants implied in the symbol O are independent of all parameters.

3. Local densities

In this section we consider forms $F \in \Phi$ over the residue class ring $\bmod p^{r}$ for $r=1$ and $r=2$. Naturally, we neglect irreducibility over Q. The number of such forms is $p^{4 r}\left(1-p^{-4}\right)$. Let S be a set of forms in Φ. We denote by $A\left(S ; p^{r}\right)$ the number of residue classes $\bmod p^{r}$ occupied by forms in S, divided by $p^{4 r}\left(1-p^{-4}\right)$.

Lemma 1. For $r=1$ and $r=2$

$$
\begin{aligned}
A\left(T_{p}(111) ; p^{r}\right) & =\frac{1}{6} p(p-1)\left(p^{2}+1\right)^{-1}, \\
A\left(T_{p}(12) ; p^{r}\right) & =\frac{1}{2} p(p-1)\left(p^{2}+1\right)^{-1}, \\
A\left(T_{p}(3) ; p^{r}\right) & =\frac{1}{3} p(p-1)\left(p^{2}+1\right)^{-1}, \\
A\left(T_{p}\left(1^{3}\right) ; p^{r}\right) & =\left(p^{2}+1\right)^{-1}, \\
A\left(T_{p}\left(1^{2} 1\right) ; p^{r}\right) & =p\left(p^{2}+1\right)^{-1} .
\end{aligned}
$$

Proof. As the definition of (F, p) depends only on the residue-class of $F(\operatorname{Mod} p)$, it suffices to prove the lemma for $r=1$. Call a form normalized if the highest nonvanishing coefficient equals 1 . It is well known that the number of normalized homogeneous polynomials in x and y irreducible $\operatorname{Mod} p$ of degree 1, 2 and 3 equals $p+1, \frac{1}{2} p(p-1)$ and $\frac{1}{3} p(p-1)(p+1)$ respectively. The lemma now follows by an elementary counting process.

Definition (only used in this section). $S_{1}=S_{1, p}$ denotes the set of forms $F \in \Phi$ satisfying

$$
a \not \equiv 0(\bmod p), \quad b \equiv c \equiv 0(\bmod p), \quad d \equiv 0\left(\bmod p^{2}\right) .
$$

$S_{2}=S_{2, p}$ denotes the set of forms $F \in \Phi$ satisfying

$$
b \equiv 0(\bmod p), \quad a \equiv c \equiv 0(\bmod p), \quad d \equiv 0\left(\bmod p^{2}\right) .
$$

Σ_{1} and Σ_{2} denote the set of forms in Φ which are equivalent to at least one F in S_{1} and S_{2} respectively.

Note that $F \in \Sigma_{1} \Rightarrow(F, p)=\left(1^{3}\right)$ and $F \in \Sigma_{2} \Rightarrow(F, p)=\left(1^{2} 1\right)$.
Lemma 2.

$$
\begin{aligned}
& A\left(\Sigma_{1} ; p^{2}\right)=p^{-1}\left(p^{2}+1\right)^{-2} \\
& A\left(\Sigma_{2} ; p^{2}\right)=\left(p^{2}+1\right)^{-2}
\end{aligned}
$$

Proof. It is clear that

$$
A\left(S_{1} ; p^{2}\right)=A\left(S_{2} ; p^{2}\right)=p^{-1}(p+1)^{-1}\left(p^{2}+1\right)^{-1}
$$

Let $\left(\begin{array}{ll}k & l \\ m & n\end{array}\right)$ be a linear substitution $\bmod p^{2}$ of determinant ± 1. Then if $F \in S_{1}$,

$$
F(k x+l y, m x+n y) \equiv a(k x+l y)^{3} \quad(\operatorname{Mod} p) ;
$$

so this form lies in S_{1} only if $l \equiv 0(\bmod p)$. Conversely, if $l \equiv 0(\bmod p)$,

$$
F(k x+l y, m x+n y) \equiv a(k x+l y)^{3}+c k x(m x+n y)^{2}+b(k x)^{2}(m x+n y) \quad\left(\operatorname{Mod} p^{2}\right)
$$

and the form lies in S_{1}. The unimodular substitutions $\bmod p^{2}$ with $l \equiv 0(\bmod p)$ form a subgroup of index $p+1$ of the group of all unimodular substitutions $\bmod p^{2}$. Hence

$$
A\left(\Sigma_{1} ; p^{2}\right)=(p+1) A\left(S_{1} ; p^{2}\right)=p^{-1}\left(p^{2}+1\right)^{-1}
$$

Similarly, if $F \in S_{2}$,

$$
\begin{aligned}
F(k x+l y, m x+n y) & \equiv b(k x+l y)^{2}(m x+n y) \\
& \equiv b k^{2} m x^{3}+b k(2 l m+k n) x^{2} y+b l(l m+2 k n) x y^{2}+b l^{2} n y^{3} \\
& \equiv a^{\prime} x^{3}+b^{\prime} x^{2} y+c^{\prime} x y^{2}+d^{\prime} y^{3} \quad(\operatorname{Mod} p) \quad \text { say. }
\end{aligned}
$$

Assume this form lies in S_{2}. Then $p \nmid b^{\prime}$, hence $p \nmid k$. As $p \mid a^{\prime}, p \nmid b$, we have $p \mid m$. As $p \nmid b^{\prime}, p \mid m$, we have $p \nmid n$. As $p \mid d^{\prime}, p \nmid b n$, we have $p \mid l$.

Conversely, if $l \equiv m \equiv 0(\bmod p)$,

$$
\begin{aligned}
F(k x+l y, m x+n y) \equiv & a k^{3} x^{3}+b(k x+l y)^{2}(m x+n y)+c k n^{2} x y^{2}+d n^{3} y^{3} \\
\equiv & \left(a k^{3}+b k^{2} m\right) x^{3}+b\left(k^{2} n+2 k l m\right) x^{2} y \\
& +\left(b\left(2 k l n+l^{2} m\right)+c k n^{2}\right) x y^{2}+\left(b l^{2} n+d n^{3}\right) y^{3} \quad\left(\operatorname{Mod} p^{2}\right) .
\end{aligned}
$$

Thus this form belongs to S_{2}. The unimodular matrices with $l \equiv m \equiv 0(\bmod p)$ form a subgroup of index $p(p+1)$ in the group of all unimodular matrices $\bmod p^{2}$. Hence

$$
A\left(\Sigma_{2} ; p^{2}\right)=p(p+1) A\left(S_{2} ; p^{2}\right)=\left(p^{2}+1\right)^{-2} .
$$

Lemma 3. $\Phi=V_{p} \cup T_{p}\left(1^{3}\right) \cup \Sigma_{2}$ for all p, and no two sets on the right have an element in common.

Proof. It is clear that each F with $(F, p) \neq\left(1^{2} 1\right)$ belongs to one and only one of these sets. Hence we need only prove the lemma for $F \in T\left(1^{2} 1\right)$. Such F may be assumed to have coefficients a, b, c, d such that

$$
a \equiv c \equiv d \equiv 0(\bmod p), \quad b \equiv 0(\bmod p) .
$$

Then

$$
D \equiv-4 b^{3} d \quad\left(\bmod p^{2}\right) .
$$

Thus for $p \neq 2, D \equiv 0\left(\bmod p^{2}\right)$ if and only if $d \equiv 0\left(\bmod p^{2}\right)$. This shows that every form of $T_{p}\left(1^{2} 1\right)$ lies either in V_{p} or in Σ_{2}.

For $p=2$ we have

$$
D \equiv b^{2} c^{2}-4 b^{3} d \equiv 4\left(\left(\frac{1}{2} c\right)^{2}-b d\right) \quad(\bmod 16) .
$$

Thus $d \equiv 0(\bmod 4)$ if and only if $D \equiv 0$ or $4(\bmod 16)$. This proves the lemma.
Lemma 4. $A\left(V_{p} ; p^{2}\right)=\left(p^{2}-1\right)\left(p^{2}+1\right)^{-1}$ for all p.
Proof. By lemma 3

$$
1=A\left(V_{p} ; p^{2}\right)+A\left(T_{p}\left(1^{3}\right) ; p^{2}\right)+A\left(\Sigma_{2} ; p^{2}\right) .
$$

By lemmas 1 and 2

$$
A\left(T_{p}\left(1^{3}\right) ; p^{2}\right)=\left(p^{2}+1\right)^{-1}, \quad A\left(\Sigma_{2} ; p^{2}\right)=\left(p^{2}+1\right)^{-1},
$$

and the result follows.
Lemma 5. $A\left(U_{p} ; p^{2}\right)=\left(p^{3}-1\right) p^{-1}\left(p^{2}+1\right)^{-1}$ for all p.
Proof. It follows from the definition of U_{p} that

$$
T_{p}\left(1^{3}\right)=\left(T_{p}\left(1^{3}\right) \cap U_{p}\right) \cup \Sigma_{1}, \quad U_{p}=V_{p} \cup\left(T_{p}\left(1^{3}\right) \cap U_{p}\right) .
$$

As $\Sigma_{1} \cap U_{p}$ is empty, we have

$$
\begin{aligned}
& U_{p} \cup \Sigma_{1}=V_{p} \cup T_{p}\left(1^{3}\right) \\
& A\left(U_{p} ; p^{2}\right)=A\left(V_{p} ; p^{2}\right)+A\left(T_{p}\left(1^{3}\right) ; p\right)-A\left(\Sigma_{1} ; p^{2}\right) \\
& =\left(p^{2}-1\right)\left(p^{2}+1\right)^{-1}+\left(p^{2}+1\right)^{-2}-p^{-1}\left(p^{2}+1\right)^{-1}
\end{aligned}
$$

by lemmas 4,1 and 2 . Hence the assertion follows.

Lemma 6. If $(F, p)=\left(1^{3}\right), p \neq 3$ then $F \in U_{p}$ if and only if $D \neq 0\left(\bmod p^{3}\right)$. If $(F, 3)=\left(1^{3}\right), F \in U_{3}$, then $D \neq 0(\bmod 729)$.

Proof. Assume $a \not \equiv 0(\bmod p), b \equiv c \equiv d \equiv 0(\bmod p)$. Then for $p \neq 3$

$$
D \equiv-27 a^{2} d^{2} \quad\left(\bmod p^{3}\right) .
$$

Hence $D \equiv 0\left(\bmod p^{3}\right)$ if and only if $d \equiv 0\left(\bmod p^{2}\right)$.
For $p=3$, put $b=3 \beta, c=3 \gamma, d=3 \delta$, so that $3 \nmid \delta$. Then

$$
D=81 \beta^{2} \gamma^{2}+486 a \beta \gamma \delta-243 a^{2} \delta^{2}-324 \beta^{3} \delta-108 \gamma^{3} a .
$$

If $3 \nmid \gamma, \quad D \equiv-108 \gamma^{3} a \quad(\bmod 81)$.

$$
\text { If } 3 \mid \gamma, \quad D \equiv-81 \delta\left(3 a^{2} \delta-4 \beta^{3}\right) \quad(\bmod 729) .
$$

Hence in either case $D \neq 0(\bmod 729)$.

4. An autiliary proposition

In order to apply a simple sieve method later, we require
Proposition 1. $N\left(-X, X ; W_{p}\right)=O\left(x p^{-2}\right)$ as $X \rightarrow \infty$.
We first prove
Lemma 7.

$$
\sum_{\left|\Delta_{2}\right|<X} h_{3}^{*}\left(\Lambda_{2}\right)=O(X) \text { as } X \rightarrow \infty,
$$

where Δ_{2} runs through the discriminants of quadratic fields.
Proof. This lemma follows from our old theorem

$$
N_{3}(-X, X)=O(X) \text { as } \quad X \rightarrow \infty
$$

(Davenport \& Heilbronn 1969) as theorem 3 will follow from theorem 1. (See §7.)
We now introduce the Hessian $H(x, y)$ of a given cubic form $F(x, y) . H$ is defined by the relation

$$
H(x, y)=-\frac{1}{4}\left(F_{x x} F_{y y}-F_{x y}^{2}\right),
$$

where the lower indices denote partial derivatives. It is well known that $H(x, y)$ is a covariant of $F(x, y)$ with respect to linear substitutions of determinant 1 . A simple calculation gives

$$
\begin{aligned}
H(x, y) & =(b x+c y)^{2}-(3 a x+b y)(c x+3 d y) \\
& =P x^{2}+Q x y+R y^{2}, \quad \text { say },
\end{aligned}
$$

where $P=b^{2}-3 a c, Q=b c-9 a d, R=c^{2}-3 b d$. An easy calculation shows the discriminant Δ of H is given by

$$
\Delta=Q^{2}-4 P R=-3 D .
$$

The class of H is uniquely determined by the class of F, but the converse is not necessarily true. The formula for Δ shows H is reducible if and only if $-3 D$ is a square. H is primitive if and only if for all primes $p(F, p) \neq\left(1^{3}\right)$. So we put

$$
M=(P, Q, R), \quad P=M P_{1}, \quad Q=M Q_{1}, \quad R=M R_{1},
$$

$$
H_{1}(x, y)=P_{1} x^{2}+Q_{1} x y+R_{1} y^{2},
$$

and this quadratic form has discriminant

$$
\Delta_{1}=Q_{1}^{2}-4 P_{1} R_{1}=M^{-2} \Delta=-3 M^{-2} D .
$$

The explicit definition of $H(x, y)$ leads immediately to the identities

$$
\begin{aligned}
H_{1}(b,-3 a) & =M P_{1}^{2}, \\
H_{1}(c,-b) & =M P_{1} R_{1}, \\
H_{1}(3 d,-c) & =M R_{1}^{2} .
\end{aligned}
$$

Lemma 8. Let $k>0, M>0, M \in \boldsymbol{Z}$. Let $B=B(k, M)$ denote the number of classes of forms in Φ with Hessian $H(x, y)=M(k x+l y) y$, where $0 \leqslant l<k,(l, k)=1$. Then

$$
B \leqslant 2 k \tau(M) .
$$

Moreover, if p is a prime such that $p \mid k, p^{2} \nmid M$, then

$$
B \leqslant 6 k p^{-1} \tau(M) .
$$

Proof. Let F be a form in Φ with Hessian

$$
H(x, y)=M(k x+l y) y=M H_{1}(x, y), \quad \text { say } .
$$

We may assume that $a>0$. The equations

$$
\begin{aligned}
H_{1}(b,-3 a) & =(k b-3 a l)(-3 a)=M P_{1}^{2}=0, \\
H_{1}(c,-b) & =(k c-b l)(-b)=M P_{1} R_{1}=0
\end{aligned}
$$

yield $b=3 k^{-1} l a$ and, if $l \neq 0, c=3 k^{-2} l^{2} a$. If $l=0$, the third equation

$$
H_{1}(3 d,-c)=(3 k d-c l)(-c)=M R_{1}^{2}=M l^{2}
$$

yields $c=0$ because $d \neq 0$. Hence F has the form

$$
F(x, y)=a\left(x+k^{-1} l y\right)^{3} \pm(9 a)^{-1} M k y^{3},
$$

the last coefficient being determined by the value of

$$
D=-\frac{1}{3} M^{2} k^{2}=-27 a^{2}\left((9 a)^{-1} M k\right)^{2} .
$$

As the coefficients of F are integers, we obtain the congruences

$$
3 a l^{2} \equiv 0\left(\bmod k^{2}\right), \quad 9 a^{2} l^{3} \pm M k^{4} \equiv 0\left(\bmod 9 a k^{3}\right) .
$$

If $k=1$, the second congruence shows that $a \mid M$, so that we have $\tau(M)$ choices for a and one choice for l which proves our result.

If $k>1$, the first congruence shows that $k^{2} \mid 3 a$, so we can put $3 a=s k^{2}$. The second congruence now reads

$$
s^{2} l^{3} \pm M \equiv 0 \quad(\bmod 3 s k) .
$$

This implies that $s \mid M$ and we can find at most $\tau(M)$ values of a and at most k values of l. This proves our first result for $k>1$.

Now assume the existence of p with $p \mid k, p^{2} \nmid M$. Then $p \nmid s$ and the congruence

$$
s^{2} l^{3} \pm M \equiv 0 \quad(\bmod p)
$$

has at most six solutions mod p. Hence the original congruence has at most $6 k p^{-1}$ solutions in $0<l<k$. This proves the last assertion of the lemma.

Lemma 9. If $M>0$ and $H_{1}(x, y)$ are given, and if Δ_{1} is not a square, then there are at most $18 \tau(M)$ classes of irreducible primitive cubic forms with Hessian equivalent to $\mathrm{MH}_{1}(x, y)$.

Proof. As $H_{1}(x, y)$ is primitive we may assume that P_{1} is a prime. Assume first that $\Delta_{1}<0$. Then

$$
H_{1}(b,-3 a)=M P_{1}^{2}
$$

Hence by the theory of definite primitive quadratic forms, the number of representations of $M P_{1}^{2}$ is at most $6 \tau\left(M P_{1}^{2}\right) \leqslant 18 \tau(M)$.

Thus there are at most $18 \tau(M)$ choices for a, b. As a, b, P_{1}, Q_{1} determine c and d uniquely (since $a \neq 0$), the lemma follows for $\Delta<0$.

For a positive Δ the situation is not so simple, as the form $H_{1}(x, y)$ has a cyclic infinite group of automorphs.

We write $H(x, y)$ in the form

$$
H(x, y)=M H_{1}(x, y)=M P_{1}(x+\theta y)\left(x+\theta^{\prime} y\right)
$$

where

$$
\theta=\left(2 P_{1}\right)^{-1}\left(Q_{1}+\sqrt{ } \Delta_{1}\right), \theta^{\prime}=\left(2 P_{1}\right)^{-1}\left(Q_{1}-\sqrt{ } \Delta_{1}\right) .
$$

If $H(x, y)$ is the Hessian of $F(x, y)$, we have

$$
3\left(\theta-\theta^{\prime}\right) F(x, y)=\left(b-3 a \theta^{\prime}\right)(x+\theta y)^{3}-(b-3 a \theta)\left(x+\theta^{\prime} y\right)^{3} .
$$

Let $\epsilon>1$ be the smallest unit in $Q\left(\sqrt{ } \Delta_{1}\right)$ which can be written in the form

$$
\epsilon=\frac{1}{2}\left(e_{1}+e_{2} \sqrt{ } \Delta_{1}\right) .
$$

The non-trivial automorphs of $H(x, y)$ are then generated by the substitution S

Hence

$$
\begin{aligned}
x^{*}+\theta y^{*} & =\epsilon(x+\theta y), \\
x^{*}+\theta^{\prime} y^{*} & =\epsilon^{-1}\left(x+\theta^{\prime} y\right) \\
b^{*}-3 a^{*} \theta & =\epsilon^{3}(b-3 a \theta), \\
b^{*}-3 a^{*} \theta^{\prime} & =\epsilon^{-3}\left(b-3 a \theta^{\prime}\right) .
\end{aligned}
$$

This shows that if the x, y space is transformed by S, the $b,-3 a$ space is transformed by S^{3}. Thus we need only count solutions of

$$
H_{1}(b,-3 a)=M P_{1}^{2}
$$

subject to equivalence by $S^{3 n}$, as two solutions which differ only by $S^{3 n}$ lead to equivalent forms F. The number of solutions not equivalent by S^{n} are at most $2 \tau\left(M P_{1}^{2}\right)$, hence the number of solutions not equivalent by $S^{3 n}$ is at most $6 \tau\left(M P_{1}^{2}\right) \leqslant 18 \tau(M)$, as P_{1} may be assumed to be a prime.

Lemma 10. Let $M>0$ and $\Delta_{1} \equiv 0$ or $1(\bmod 4)$ be elements of $\boldsymbol{Z}, \Delta_{1}$ not a square. Then there exist at most $3 \tau(M) h_{3}^{*}\left(\Delta_{1}\right)$ classes of primitive quadratic forms

$$
H_{1}(x, y)=P_{1} x^{2}+Q_{1} x y+R_{1} y^{2} \quad \text { with } \quad Q_{1}^{2}-4 P_{1} R_{1}=\Delta_{1},
$$

such that $M H_{1}$ is the Hessian of a form $F \in \Phi$.

Proof. Let $F(x, y)$ be a form in Φ with Hessian $M H_{1}(x, y)$. Then we have

$$
P_{1} b^{2}-3 Q_{1} b a+9 R_{1} a^{2}=M P_{1}^{2} .
$$

Without loss of generality we may assume that P_{1} is a prime.
We now consider classes of equivalent primitive quadratic forms of discriminant Δ_{1}. Let η be the class of H_{1} and let μ_{1}, \ldots, μ_{t} be the classes which represent M. It follows from the theory of composition of quadratic forms that $1 \leqslant t \leqslant \tau(M)$. Hence there exists at least one s in $1 \leqslant s \leqslant t$ such that at least one of the following three relations holds:

$$
\eta=\mu_{s} \quad \text { or } \quad \eta=\mu_{s} \eta^{2} \quad \text { or } \eta=\mu_{s} \eta^{-2} .
$$

The number of such η is at most

$$
t\left(2+h_{3}^{*}\left(\Delta_{1}\right)\right) \leqslant \tau(M)\left(2+h_{3}^{*}\left(\Delta_{1}\right)\right) \leqslant 3 \tau(M) h_{3}^{*}\left(\Delta_{1}\right) .
$$

Proof of proposition 1. We first deal with those classes for which $-3 D$ is a square. We have to find an upper bound for the sum

$$
\sum_{\substack{M k<(3 X)) \\ p \mid M k k}} B(k, M)=\sum_{M k<\left\langle(3 X)^{ \pm} p^{-1}\right.} B(k, p M)+\sum_{\substack{M k<(3 X))^{1} p^{-1} \\ p \nmid M}} B(p k, M) .
$$

To the first sum we apply the first estimate in lemma 8 , to the second sum the second estimate. Then our bound is

$$
\begin{aligned}
& \leqslant \sum_{k M<(3 X))^{2} p^{-1}}(2 k \tau(p M)+6 k \tau(M)) \\
& \leqslant 10 \sum_{M<(3 X))^{\frac{1}{2}-1}} \tau(M) \sum_{k<(3 X)^{\frac{1}{2} p^{-1} M^{-1}}} k \\
& \leqslant 10(3 X) p^{-2} \sum_{M=1}^{\infty} \tau(M) M^{-2} \\
& =O\left(X p^{-2}\right) .
\end{aligned}
$$

Now we have to count those classes for which $-3 D$ is not a square and the Hessian is irreducible. That means, by virtue of lemma 9 and lemma 10 we have to find an upper bound for the sum

$$
\underset{\substack{\left|M^{2}, A_{1}\right| \leq 3 X \\ p^{*} \mid M^{2} L_{1}}}{ } 54 \tau^{2}(M) h_{3}^{*}\left(U_{1}\right),
$$

where Δ_{1} is restricted to discriminants of quadratic forms. Each such Δ_{1} can be factorized uniquely in the form $\Delta_{1}=L^{2} \Delta_{2}$, where $L>0, L \in \boldsymbol{Z}$ and Δ_{2} is discriminant of a quadratic field. For $p=2$ the proposition follows from Davenport's theorem, so we may assume $p \neq 2$. Hence $p^{2} \nmid \Delta_{2}$, and $p^{2} \mid M^{2} \Delta_{1}$ implies $p \mid M L$.

To express $h_{3}^{*}\left(\Delta_{1}\right)$ by $h_{3}^{*}\left(\Delta_{2}\right)$ exactly is difficult; it is however well known that

$$
h_{3}^{*}\left(\Delta_{1}\right) \mid 3^{n} h_{3}^{*}\left(\Delta_{2}\right),
$$

where n denotes the number of distinct prime divisors of L. Hence

$$
h_{3}^{*}\left(\Delta_{1}\right) \leqslant \tau^{2}(L) h_{3}^{*}\left(\Delta_{2}\right) .
$$

Substituting this in our formula for the upper bound we obtain

$$
54 \underset{\left|M^{2} L_{p}^{2} A_{1}\right| \leq 3 L}{ } \tau^{2 \mid M L} \tau^{2}(M) \tau^{2}(L) h_{3}^{*}\left(\Delta_{2}\right) .
$$

By virtue of lemma 7 this is majorized by

$$
O(X) \sum_{\substack{M=1 \\ p \backslash M L}}^{\infty} \sum_{L=1}^{\infty} \tau^{2}(M) \tau^{2}(L) M^{-2} L^{-2}=O\left(X p^{-2}\right) .
$$

5. Global densities

The starting-point of this section is the
Theorem (Davenport 195I a, b)

$$
\begin{aligned}
N(0, X ; \Phi) & =\frac{5}{4} \pi^{-2} X+O\left(X^{\frac{115}{18}}\right), \\
N(-X, 0 ; \Phi) & =\frac{15}{4} \pi^{-2} X+O\left(X^{\frac{15}{15}}\right) .
\end{aligned}
$$

Actually we require a refinement of this theorem. Let $m \geqslant 1$ and S_{m} be a set of forms in ϕ which are defined by conditions on the residue classes of $a, b, c, d(\bmod m)$. Moreover let S_{m} be a union of equivalence classes of Φ. Then

$$
\begin{aligned}
\lim _{X \rightarrow \infty} X^{-1} N\left(0, X ; S_{m}\right) & =\frac{5}{4} \pi^{-2} A\left(S_{m} ; m\right) \\
\lim _{X \rightarrow \infty} X^{-1} N\left(-X, 0 ; S_{m}\right) & =\frac{15}{4} \pi^{-2} A\left(S_{m} ; m\right) .
\end{aligned}
$$

This extension is proved in exactly the same way as the original theorem. It does not hold uniformly in m.

Let Y be a large integer in Z, and let

$$
P_{Y}=\prod_{p<Y} p
$$

Then as $X \rightarrow \infty$, for fixed Y,

$$
\begin{aligned}
& X^{-1} N\left(X, 0 ; \bigcap_{p<Y} U_{p}\right) \rightarrow \frac{5}{4} \pi^{-2} A\left(\bigcap_{p<Y} U_{p} ; P_{Y}^{2}\right) \\
& \quad=\frac{5}{4} \pi^{-2} \prod_{p<Y} A\left(U_{p} ; p^{2}\right) \\
& \quad=\frac{5}{4} \pi^{-2} \prod_{p<Y}\left(p^{3}-1\right) p^{-1}\left(p^{2}+1\right)^{-1}
\end{aligned}
$$

by lemma 5 . Thus

$$
\limsup _{X \rightarrow \infty} X^{-1} N(X, 0 ; U) \leqslant \frac{5}{4} \pi^{-2} \prod_{p<Y}\left(p^{3}-1\right) p^{-1}\left(p^{2}+1\right)^{-1} .
$$

As this is true for all $Y>0$, we may replace the product by the infinite product over all primes. This gives

$$
\begin{aligned}
\lim _{X \rightarrow \infty} \sup X^{-1} N(X, 0 ; U) \leqslant & \frac{5}{4} \pi^{-2} \prod_{p}\left(1-p^{-3}\right)\left(1+p^{-2}\right)^{-1} \\
& =\frac{5}{4} \pi^{-2} \zeta(3)^{-1} \zeta(2)^{-1} \zeta(4)=\frac{5}{4} \pi^{-2} \zeta(3)^{-1}\left(6 \pi^{-2}\right)\left(\pi^{4} / 90\right) \\
& =(12 \zeta(3))^{-1}
\end{aligned}
$$

To obtain a lower bound for $N(0, X ; U)$ we observe that

$$
\bigcap_{p<Y} U_{p} \subset\left(U \cup \bigcup_{p \geqslant Y} W_{p}\right) .
$$

Hence, using proposition 1,

$$
\begin{gathered}
\frac{5}{4} \pi^{-2} \prod_{p<Y}\left(p^{3}-1\right) p^{-1}\left(p^{2}+1\right)^{-1} \leqslant \liminf _{X \rightarrow \infty}\left(X^{-1} N(0, X ; U)+X^{-1} \sum_{p \geqslant Y} N\left(0, X ; W_{p}\right)\right) \\
\leqslant \liminf _{X \rightarrow \infty}\left(X^{-1} N(0, X ; U)\right)+O \sum_{p \geqslant Y} p^{-2} .
\end{gathered}
$$

Letting Y tend to infinity, this gives

$$
\liminf _{X \rightarrow \infty} X^{-1} N(0, X ; U) \geqslant \frac{5}{4} \pi^{-2} \prod_{p}\left(p^{3}-1\right) p^{-1}\left(p^{2}+1\right)^{-1}=(12 \zeta(3))^{-1} .
$$

The same argument works for negative discriminants. We have thus proved
Proposition 2.

$$
\begin{aligned}
\lim _{X \rightarrow \infty} X^{-1} N(0, X ; U) & =(12 \zeta(3))^{-1} \\
\lim _{X \rightarrow \infty} X^{-1} N(-X, 0 ; U) & =(4 \zeta(3))^{-1}
\end{aligned}
$$

Applying the same argument to V instead of U, we note that the relation

$$
\bigcap_{p<Y} V_{p} \subset\left(V \cup \underset{p \geqslant Y}{\bigcup} W_{p}\right)
$$

still holds. Also by lemma 4

$$
\begin{gathered}
A\left(V_{p} ; p^{2}\right)=\left(p^{2}-1\right)\left(p^{2}+1\right)^{-1}, \\
\frac{5}{4} \pi^{-2} \prod_{p}\left(1-p^{-2}\right)\left(1+p^{-2}\right)^{-1}= \\
=\frac{5}{4} \pi^{-2} \zeta(4) \zeta(2)^{-2} \\
\\
=\frac{5}{4} \pi^{-2}\left(\pi^{4} / 90\right)\left(36 / \pi^{4}\right)=\frac{1}{2} \pi^{-2} .
\end{gathered}
$$

This gives
Proposition 3.

$$
\begin{aligned}
\lim _{X \rightarrow \infty} X^{-1} N(0, X ; V) & =\left(2 \pi^{2}\right)^{-1} \\
\lim _{X \rightarrow \infty} X^{-1} N(-X, 0 ; V) & =3\left(2 \pi^{2}\right)^{-1}
\end{aligned}
$$

6. The fundamental mapping

Let K be a cubic field over Q. In our previous paper we attached to each K a binary cubic form in the following way. Let $1, \omega, \nu$ be an integral basis of K. Put

$$
F_{K}(x, y)=\mathfrak{D}_{K^{-\frac{1}{2}}} \mathfrak{D}^{\frac{1}{2}}(\omega x+\nu y),
$$

where \mathfrak{D}_{K} denotes the absolute discriminant of K. We proved
(1) $F_{K} \in \Phi$.
(2) F_{K} is uniquely determined by K apart from equivalence.
(3) If K^{\prime} is conjugate to $K, F_{K^{\prime}}$ is equivalent to F_{K}.
(4) $D\left(F_{K}\right)=\mathfrak{b}_{K}$.
(5) If K_{1} is not conjugate to K, then $F_{K_{1}}$ is not even rationally equivalent to F_{K}.

Lemma 11. The rational prime p factorizes in K according to the following table:

$$
\begin{array}{lll}
(p)=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{p}_{3} & \text { if } & \left(F_{K}, p\right)=(111), \\
(p)=\mathfrak{p}_{1} \mathfrak{p}_{2} & \text { if } & \left(F_{K}, p\right)=(12), \\
(p)=(p) & \text { if } & \left(F_{K}, p\right)=(3), \\
(p)=\mathfrak{p}^{3} & \text { if } & \left(F_{K}, p\right)=\left(1^{3}\right), \\
(p)=\mathfrak{p}_{1}^{2} \mathfrak{p}_{2} & \text { if } & \left(F_{K}, p\right)=\left(1^{2} 1\right) .
\end{array}
$$

Proof. Assume first that a, the coefficient of x^{3} in F_{K}, is not divisible by p. Consider the polynomial

$$
f(x)=x^{3}+b x^{2}+a c x+a^{2} d .
$$

This polynomial is irreducible over Q, and has a zero in K. Its discriminant equals $a^{2} \boldsymbol{\delta}_{K}$. Hence, by the Kummer-Dedekind theorem, $f(x)$ factorizes $\operatorname{Mod} p$ in the same way as p factorizes in K. As $f(x)$ factorizes $\operatorname{Mod} p$ in the same way as $F_{K}(x, y)$, our lemma is proved.
It remains to deal with the case that $p \mid a$ for all forms equivalent to F_{K}. This happens only if $p^{2} \mathfrak{D}_{K} \mid \mathfrak{D}(\alpha)$ for all integers α in K, i.e. if p is a 'non-essential divisor' of the discriminant of K. It is well known that this case arises only if $p=2$, $\mathfrak{D}_{K} \equiv 1(\bmod 2)$ and 2 factorizes completely in K. Then $a \equiv d \equiv 0(\bmod 2)$, $D \equiv 1(\bmod 2)$, hence $b \equiv c \equiv 1(\bmod 2) ; \quad F_{K}(x, y) \equiv x y(x+y)(\operatorname{Mod} 2)$, i.e. $(F, 2) \equiv(111)$. This observation completes the proof of the lemma.

Lemma 12. $F_{K} \in U$.
Proof. We state a few well-known facts on cubic fields (Hasse 1930). If K is cyclic, the discriminant \mathfrak{D}_{K} of K has the form $\mathfrak{D}_{K}=f^{2}$; if K is not cyclic, \mathfrak{D}_{K} has the form $\delta_{K}=\Delta_{2} f^{2}$, where Δ_{2} is the discriminant of a quadratic field. In both cases $p^{2} \nmid f$ if $p \neq 3$; and $\left(\Delta_{2}, f\right)=1$ or 3 . Further $p^{2} \nmid \Delta_{2}$ if $p \neq 2$. A prime p ramifies completely in K if and only if $p \mid f$.
We want to show that $F_{K} \in U_{p}$ for all p. If $p^{2} \nmid \mathrm{D}_{K}$, this follows at once from the definition of U_{p}. Hence we may assume that $\grave{D}_{K} \equiv 0\left(\bmod p^{2}\right)$.
If $p>3$, the last congruence implies $p \mid f$, and p ramifies completely in K, so that by lemma $11\left(F_{K}, p\right)=\left(1^{3}\right)$. As $p^{3} \nmid \mathfrak{D}_{K}$, it follows from lemma 6 that $F_{K} \in U_{p}$.

If $p=2$, we have either $4 \mid \Delta_{2}$ or $2 \mid f$. If $4 \mid \Delta_{2}$, then $\Delta_{2} \equiv 8$ or $12(\bmod 16)$, $f^{2} \equiv 1(\bmod 8)$, hence $\mathfrak{D}_{K} \equiv 8$ or $12(\bmod 16), F_{K} \in V_{2} \subset U_{2}$. If $2 \mid f, 2$ ramifies completely in K, hence by lemma $11\left(F_{K}, 2\right)=\left(1^{3}\right)$. As $\mathfrak{D}_{K} \equiv 4(\bmod 8)$, it follows from lemma 6 that $F_{K} \in U_{2}$.

There remains only the case $p=3, f \equiv 0(\bmod 3)$. Let \mathfrak{p} denote the unique prime ideal in K which divides 3 . Because 3 is not a 'non-essential divisor' of the discriminant, there exists in K an integer α such that

$$
3 \mathrm{~d}_{K} \nmid \mathfrak{d}(\alpha) .
$$

Without loss of generality we may assume that $\alpha \equiv 0(\bmod \mathfrak{p})$, otherwise consider $\alpha-1$ or $\alpha+1$. Hence $\operatorname{tr}(\alpha) \equiv 0(\bmod 3)$. It is easy to verify the identity

$$
\mathfrak{D}\left(\alpha^{2}\right)=\mathfrak{D}(\alpha) \operatorname{Nm}^{2}(\operatorname{tr}(\alpha)-\alpha) .
$$

If $\alpha \neq 0\left(\bmod \mathfrak{p}^{2}\right)$, then

$$
\begin{gathered}
\operatorname{Nm}(\operatorname{tr}(\alpha)-\alpha) \equiv \pm 3(\bmod 9) \\
\mathfrak{D}\left(\alpha^{2}\right) \mathfrak{D}_{K}^{-1}=\mathfrak{D}(\alpha) \mathfrak{D}_{K}^{-1} \mathrm{Nm}^{2}(\operatorname{tr}(\alpha)-\alpha) \equiv \pm 9(\bmod 27)
\end{gathered}
$$

This means that $F_{K}(x, y)$ represents a number $\equiv \pm 3(\bmod 9)$, i.e. $F_{K}(x, y) \in U_{3}$.
If $\alpha \equiv 0\left(\bmod \mathfrak{p}^{2}\right)$, our identity gives

$$
\begin{gathered}
\mathfrak{D}\left(\frac{1}{3} \alpha^{2}\right)=3^{-6} \mathfrak{D}\left(\alpha^{2}\right)=3^{-6} \mathfrak{D}(\alpha) \operatorname{Nm}^{2}(\operatorname{tr}(\alpha)-\alpha), \\
\mathfrak{D}\left(\frac{1}{3} \alpha^{2}\right) \mathfrak{D}_{K}^{-1}=\mathfrak{D}(\alpha) \mathfrak{D}_{K}^{-1}\left\{3^{-3} \operatorname{Nm}(\operatorname{tr}(\alpha)-\alpha)\right\}^{2}
\end{gathered}
$$

and, since $\frac{1}{3} \alpha^{2}$ is an integer in K,

$$
3^{3} \mid \operatorname{Nm}(\operatorname{tr}(\alpha)-\alpha) .
$$

This implies that $3 \mid \alpha$, and therefore
which is a contradiction.

$$
\begin{gathered}
\mathfrak{D}\left(\frac{1}{3} \alpha\right)=3^{-6} \mathfrak{D}(\alpha) \equiv 0\left(\bmod \mathfrak{D}_{K}\right), \\
\mathfrak{D}(\alpha) \equiv 0\left(\bmod 3^{6} \mathfrak{D}_{K}\right)
\end{gathered}
$$

Lemma 13. Let F_{1} and F_{2} be two forms in U which are rationally equivalent. Then they are equivalent.

Proof. Rational equivalence between F_{1} and F_{2} means explicitly that

$$
\begin{gathered}
F_{1}\left(x_{1}, y_{1}\right)=\sigma F_{2}\left(x_{2}, y_{2}\right) \\
\left(x_{1}, y_{1}\right)=M\left(x_{2}, y_{2}\right)
\end{gathered}
$$

where $\sigma \neq 0$ is rational and M is a non-singular 2 by 2 matrix over \boldsymbol{Z}. If we replace F_{1} by an equivalent form, M will be multiplied by a unimodular matrix on the left. Similarly, replacing F_{2} by an equivalent form means multiplication of M with a unimodular matrix on the right.

Thus we may replace M by $M_{1} M M_{2}$, where M_{1} and M_{2} are unimodular. Elementary divisor theory tells us that we can choose M_{1} and M_{2} in such a way that

$$
M_{1} M M_{2}=\left(\begin{array}{ll}
m & 0 \\
0 & 1
\end{array}\right)
$$

where $m=|\operatorname{det}(M)|$. If $m=1$, our forms are equivalent.
Otherwise, there exists a prime $p \mid m$. Write $m=p^{l} m_{0}, \sigma=p^{k} \sigma_{0}$ so that $l \geqslant 1$, and m_{0}, σ_{0} are prime to p. Then our transformation takes the form

$$
F_{1}\left(p^{l} m_{0} x, y\right)=p^{k} \sigma_{0} F_{2}(x, y)
$$

Equating coefficients we obtain

$$
\begin{aligned}
& a_{1}=p^{k-3 l} \tau_{a} a_{2}, \\
& b_{1}=p^{k-2 l} \tau_{b} b_{2}, \\
& c_{1}=p^{k-l} \tau_{c} c_{2}, \\
& d_{1}=p^{k} \tau_{d} d_{2}
\end{aligned}
$$

where $\tau_{a}, \tau_{b}, \ldots$ are rationals prime to p.

If $k-l>0$, we have $p\left|c_{1}, p^{2}\right| d_{1}$. If $k-l \leqslant 0$, we have $p\left|b_{2}, p^{2}\right| a_{2}$. Because of symmetry, we may restrict ourselves to the first case, $p\left|c_{1}, p^{2}\right| d_{1}$ implies $p^{2} \mid D_{1}$. As $F_{1} \in U_{p}$, it follows that $\left(F_{1}, p\right)=\left(1^{3}\right)$, and therefore $p \mid b_{1}$. As $F_{1} \in U_{p}$ and $p^{2} \mid D_{1}$, the congruence

$$
F_{1}(x, y) \equiv e p\left(\bmod p^{2}\right)
$$

has a solution for some $e \equiv 0(\bmod p)$. As $b_{1} \equiv c_{1} \equiv d_{1} \equiv 0(\bmod p)$, it follows that $x \equiv 0(\bmod p)$. But this implies

$$
\begin{aligned}
F_{1}(x, y) & \equiv c_{1} x y^{2}+d_{1} y^{3} \equiv 0\left(\bmod p^{2}\right), \\
e & \equiv 0(\bmod p) .
\end{aligned}
$$

This contradiction completes the proof of the lemma.
Lemma 14. To every $F \in \Phi$ there belongs a cubic field K such that F and F_{K} are rationally equivalent.

Proof. Write F in the form

$$
F(x, y)=a(x-\lambda y)\left(x-\lambda^{\prime} y\right)\left(x-\lambda^{\prime \prime} y\right) .
$$

Then λ generates a cubic field K. We can write F_{K} in the form

$$
F_{K}(x, y)=a_{K}(x-\mu y)\left(x-\mu^{\prime} y\right)\left(x-\mu^{\prime \prime} y\right),
$$

where $\mu \in K$. If K is not cyclic, μ is unique, but if K is cyclic any of the three conjugates can be used. As λ and μ are irrationals in K, there exists a relation $k \lambda+l-m \mu \lambda-n \mu=0,(k, l, m, n)=1$, which is unique apart from a factor ± 1. Thus we have

$$
\mu=(k \lambda+l)(m \lambda+n)^{-1}
$$

and this also holds if we replace λ, μ by their two pairs of conjugates.
The transformation

$$
x^{*}=k x+l y, \quad y^{*}=m x+n y
$$

transforms the form $\quad F(x, y)=a(x-\lambda y)\left(x-\lambda^{\prime} y\right)\left(x-\lambda^{\prime \prime} y\right)$
into a form $\quad \rho\left(x^{*}-\mu y^{*}\right)\left(x^{*}-\mu^{\prime} y^{*}\right)\left(x^{*}-\mu^{\prime \prime} y^{*}\right)$,
which is a constant multiple of $F_{K}\left(x^{*}, y^{*}\right)$.
Proposition 4. There exists a 1-1 mapping Λ of triplets of conjugate cubic fields K onto the equivalence classes of U. And Λ preserves the discriminant.

Proof. The map A: $K \rightarrow F_{K}$ maps the triplets into classes of U by lemma 12. By lemmas 14 and 13 every class in U contains an F_{K}. And it was stated at the beginning of this section that distinct triplets are mapped into distinct classes of U, and that $D\left(F_{K}\right)=\mathfrak{b}_{K}$.
7. Proof of theorems 1, 2 and 3

Proof of theorem 1. It follows from proposition 4 that

$$
N_{3}(\xi, \eta)=N(\xi, \eta ; U) .
$$

This identity in conjunction with proposition 2 gives theorem 1.

Proof of theorem 2. Let p be a fixed prime. By virtue of lemma 11 the mapping considered in the preceding proof maps the classes of forms in $U \cap T_{p}(111)$; $U \cap T_{p}(3)$ and $U \cap T_{p}(12)$ into cubic fields in which p factorizes as $(p)=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{p}_{3}$, $(p)=(p),(p)=\mathfrak{p}_{1} \mathfrak{p}_{2}$ respectively.

It is easily seen that the relative density of our 3 classes in U equals

$$
A\left(T_{p}(111) ; p^{2}\right) A^{-1}\left(U_{p} ; p^{2}\right), \text { etc. }
$$

By lemmas 1 and 5 these three relative densities are

$$
\frac{1}{6}\left(1+p^{-1}+p^{-2}\right)^{-1}, \quad \frac{1}{3}\left(1+p^{-1}+p^{-2}\right)^{-1}, \quad \frac{1}{2}\left(1+p^{-1}+p^{-2}\right)^{-1}
$$

respectively.
As the cyclic cubic fields have relative density 0 , they may be ignored. For non-cyclic cubic fields it is well known that the three types of factorization correspond to the three values $I, A_{3}-I, S_{3}-A_{3}$ of the Frobenius-Artin symbol $\left\{\left(K_{6} / Q\right) / p\right\}$.

Proof of theorem 3. Let K be a cubic field in which no prime ramifies completely, so that K is automatically not cyclic. This means, in the notation used in the proof of lemma 12 , that $f=1$ and that $\mathfrak{D}_{K}=\Delta_{2}$, where Δ_{2} is discriminant of a quadratic field. For a given Δ_{2} the number of triplets of such cubic fields K equals (Hasse 1930)

$$
\frac{1}{2}\left(h_{3}^{*}\left(\Delta_{2}\right)-1\right) .
$$

On the other hand, the mapping Λ maps these triplets into the classes of V. Hence

$$
\frac{1}{2} \sum_{\xi<\Lambda_{2}<\eta}^{\sum}\left(h_{3}^{*}\left(\Delta_{2}\right)-1\right)=N(\xi, \eta ; V) .
$$

An easy calculation shows that, as $X \rightarrow \infty$,

$$
\begin{aligned}
& X^{-1} \sum_{0<\Delta_{<}<x} 1 \rightarrow 3 \pi^{-2}, \\
& X_{-1}^{-1} \sum_{-x<\Delta_{<}<0} 1 \rightarrow 3 \pi^{-2} .
\end{aligned}
$$

Hence by proposition 3

$$
\begin{aligned}
& \lim _{X \rightarrow \infty} X^{-1} \sum_{0<\Delta_{2}<x}\left(h_{3}^{*}\left(\Delta_{2}\right)-1\right)=\lim _{X \rightarrow \infty} 2 X^{-1} N(0, X ; V) \\
&=\pi^{-2}=\lim _{X \rightarrow \infty} X^{-1} \sum_{0<\Delta_{2}<X^{\frac{1}{3}}} ; \\
& \begin{aligned}
\lim _{X \rightarrow \infty} X^{-1} \sum_{-X<\Delta_{2}<0}\left(h_{3}^{*}\left(\Delta_{2}\right)-1\right) & =\lim _{X \rightarrow \infty} 2 X^{-1} N(-X, 0 ; V) \\
& =3 \pi^{-2}=\lim _{X \rightarrow \infty} X^{-1} \sum_{-X<\Delta_{2}<0} 1 .
\end{aligned}
\end{aligned}
$$

This completes the proof of our theorems.

References

Davenport, H. 195I a On the class-number of binary cubic forms (I). J. Lond. Math. Soc. 26, 183-192. (Corrigendum, ibidem 27, 512.)
Davenport, H. 1951 b On the class-number of binary cubic forms (II). J. Lond. Math. Soc. 26, 192-198.
Davenport, H. \& Heilbronn, H. 1969 On the density of discriminants of cubic fields. Bull. Lond. Math. Soc. 1 (1969), 345-348.
Hasse, H. 1930 Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage. Math. Z. 31, 565-582.

