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Abstract

We consider families of quartic number fields whose normal closures over Q have Galois group isomor-
phic to D4, the symmetries of a square. To any such field L, one can associate the Artin conductor of the
corresponding 2-dimensional irreducible Galois representation with image D4. We determine the asymp-
totic number of such D4-quartic fields ordered by conductor, and compute the leading term explicitly as
a mass formula, verifying heuristics of Kedlaya and Wood. Additionally, we are able to impose any local
splitting conditions at any finite number of primes (sometimes, at an infinite number of primes), and as
a consequence, we also compute the asymptotic number of order 4 elements in class groups and narrow
class groups of quadratic fields ordered by discriminant.

Traditionally, there have been two approaches to counting quartic fields, using arithmetic invariant
theory in combination with geometry-of-number techniques, and applying Kummer theory together with
L-function methods. Both of these strategies fall short in the case of D4-quartic fields ordered by
conductor since counting quartic fields containing a quadratic subfield with large discriminant is difficult.
However, when ordering by conductor, we utilize additional algebraic structure arising from the outer
automorphism of D4 combined with both approaches mentioned above to obtain exact asymptotics.

1 Introduction

The main purpose of this article is to determine the asymptotic number of quartic dihedral fields with
bounded conductor. If L denotes a quartic field whose normal closure M over Q has Galois group Gal(M/Q)
isomorphic to the group of symmetries of a square, we refer to L as a D4-quartic field. Furthermore, there
is a unique (up to conjugacy) irreducible 2-dimensional Galois representation

ρM : Gal(Q/Q)→ GL2(C)

that factors through Gal(M/Q) ∼= D4. We define the conductor of L to be equal to the Artin conductor of
ρM (see [7, Pg. 158-159]).

Theorem 1. Let N
(r2)
D4

(X) denote the number of isomorphism classes of D4-quartic fields with 4− 2r2 real
embeddings and conductor bounded by X. Then

N
(0)
D4

(X) =
1

8
·
∏
p

(
1− 1

p2
− 2

p3
+

2

p4

)
·X logX +O(X log logX);

N
(1)
D4

(X) =
1

4
·
∏
p

(
1− 1

p2
− 2

p3
+

2

p4

)
·X logX +O(X log logX);

N
(2)
D4

(X) =
3

8
·
∏
p

(
1− 1

p2
− 2

p3
+

2

p4

)
·X logX +O(X log logX).

Understanding the distribution of number fields with fixed signature and Galois group is a fundamental
question in number theory with several significant applications. For example, the inverse Galois problem
follows from understanding the main terms for the asymptotic number of field extensions of each fixed degree
and Galois closure over a given base field. Furthermore, if the results are refined enough to determine the
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asymptotic number of field extensions satisfying certain local specifications, then another application of
counting number fields is towards understanding the distribution of torsion in class groups of number fields
of fixed degree, i.e., to proving cases of the Cohen-Lenstra heuristics [11] as well as the extensions given by
Gerth [17], Cohen-Martinet [12], and Malle [24].

There are heuristics (see Conjecture 1.2 of [8]) for the order of growth for the number of field extensions
of each fixed degree and Galois closure over a given base field when the extensions are bounded by their
(norms of the relative) discriminants, due to Linnik, Malle, and Türkelli. Linnik predicted that the number
NSn(X) of Sn-degree n number fields with discriminant bounded by X satisfies NSn(X) ∼ cnX, for some
constant cn as X → ∞. Additionally, the heuristics of Malle [23] imply that the proportion of degree-n
fields with Galois closure Sn amongst all degree-n fields is expected to be 100% only when n is a prime.
Cohen-Diaz y Diaz-Olivier [9] verified a case of the strong Malle conjecture in the quartic dihedral case by
proving that the number of D4-quartic fields with discriminant bounded by X is asymptotically equal to
cX, where c ≈ .052326.

Cohen-Diaz y Diaz-Olivier [9] prove their result by determining the asymptotic number of quadratic
extensions of quadratic fields ordered by discriminant, a 100% of which are D4-quartic fields. They show
that the number of totally real D4-quartic fields with absolute discriminant bounded by X is asymptotically
equal to cX, where

c =
3

π2
·

( ∑
[K:Q]=2

0<Disc(K)<∞

1

Disc(K)2
· L(1,K/Q)

L(2,K/Q)

)
. (1)

Our results imply that the number of totally real D4-quartic fields with conductor bounded by X is asymp-
totically equal to a similar sum:

N
(0)
D4

(X) ∼ 3

π2
·

( ∑
[K:Q]=2

0<Disc(K)≤X

1

Disc(K)
· L(1,K/Q)

L(2,K/Q)

)
·X. (2)

However, the methods to prove (1) and (2) vastly differ. When ordering by discriminant, only the summa-
tion terms in (1) indexed by quadratic fields K of small discriminant contribute to the main term of the
asymptotics. However, when ordering by conductor, quadratic fields K in every range of the discriminant
contribute to the main term. In particular, we must evaluate the contribution coming from quadratic ex-
tensions L of quadratic fields K where NmL/K(Disc(L/K)) is small relative to the discriminant of K. As a
consequence, the analytic methods used by [9] are insufficient in our case.

In addition to proving that (2) holds, we establish an explicit formula for the main term of the asymptotic:

Theorem 2. We have the following:∑
[K:Q]=2

0<Disc(K)≤X

1

Disc(K)
· L(1,K/Q)

L(2,K/Q)
∼ ζ(2)

2
·
∏
p

(
1− 1

p2
− 2

p3
+

2

p4

)
· log(X);

∑
[K:Q]=2

−X≤Disc(K)<0

1

|Disc(K)|
· L(1,K/Q)

L(2,K/Q)
∼ ζ(2)

2
·
∏
p

(
1− 1

p2
− 2

p3
+

2

p4

)
· log(X).

In conjunction with (2) (and the anologous statements for the non totally real splitting types), Theorem
2 implies Theorem 1. We are also able to determine refined asymptotics for families of D4-quartic fields with
certain prescribed local specifications, but to describe these results, we must first introduce some notation.

We say that Σ = (Σv)v is a collection of local specifications, if for each place v of Q, Σv contains pairs
(Lv,Kv) consisting of an étale algebra Lv of Qv of degree 4 along with a quadratic subalgebra Kv. We
say that such a collection Σ is acceptable if for all but finitely many primes p, the set Σp contains all pairs
(Lp,Kp) with conductor indivisible by p2. Here, the conductor C of such a pair is equal to

C(Lp,Kp) := Disc(Lp)/Disc(Kp),
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and we also let Cp denote the p-part of C. Such a collection Σ is said to be complete, if for each place v and
each splitting type ς, the set Σv contains either all or none of the pairs (Lv,Kv) having splitting type ς. If
L(Σ) denotes all D4-quartic fields L such that L⊗Qv ∈ Σv for all v, and ND4

(Σ, X) denotes the number of
isomorphism classes of D4-quartic fields in L(Σ) whose conductor is bounded by X, we then have:

Theorem 3. If Σ = (Σv)v is an acceptable and complete collection of local specifications such that Σ2

contains every degree 4 étale algebra of Q2 containing a quadratic subalgebra, then

ND4
(Σ, X) ∼ 1

2
·
( ∑

(L,K)∈Σ∞

1

# Aut(L,K)

)
·
∏
p

( ∑
(Lp,Kp)∈Σp

1

# Aut(Lp,Kp)
· 1

Cp(Lp,Kp)

)(
1− 1

p

)2

·X log(X),

where for all v, Aut(Lv,Kv) consists of the automorphisms of Lv which send Kv to itself.

In previous results of Gauss, Davenport-Heilbronn [14] and Bhargava [2, 4], the constant cn of the main
term of the asymptotic number of Sn-degree n number fields (for n ≤ 5) can also be explicitly given as a
mass formula, i.e., the constants cn take the form of an Euler product of local masses. In [3], Bhargava
predicted the constants cn for all n, explicitly describing them in terms of Euler products of local masses
derived from the heuristic assumption that the completions of Sn-degree n number fields at different places
behave independently of one another. The constant determined in Theorem 3 is completely analogous to
the constants cn,Σ predicted in Equation 4.2 of [3]. However, the analogous product of local masses for
D4-quartic fields ordered by discriminant is not equal to the constant c computed in [9]; in other words, the
analogue of Theorem 3 when ordering by discriminant is false!

The existence of mass formulae when ordering by invariants other than the discriminant has been studied
by Kedlaya [20], Wood [29], and Johnson [18], building on work of Mäki [22]. However, the question remains:

Question 4. Let G denote a finite group, and let C be a virtual conductor1 for G. A G-number field K
is a normal field extension of Q with Galois group Gal(K/Q) = G. Does the product of local C-masses for
the weighted number of G-étale algebras of Qp over all places p predict the asymptotic number of G-number
fields ordered by C?

This question for abelian G has been studied extensively by Wood in [31], in which a sufficient condition
for answering Question 4 in the affirmative is given for C. For non-abelian G, the only conductors C for which
both the main term and the constant have been explicitly obtained correspond to discriminant functions
(see [14, 2, 4, 6]). On the other hand, we show that the result of [9] in which D4-quartic fields are ordered
by their discriminants gives a negative answer to Question 4 (see Equation 11); however, Theorem 3 gives
an affirmative answer when ordering D4-fields by their (2-dimensional) conductors. Moreover, Theorem 3 is
the first non-abelian case that answers Question 4 for a conductor C that does not arise as a discriminant
function. Overall, the choice of invariant appears to be a subtle issue when determining asymptotics for
families of G-number fields.

Theorem 3 allows us to compute the asymptotic number of order 4 elements in class groups and narrow
class groups of quadratic fields ordered by discriminant. Such elements in the class groups of a quadratic
field K determine D4-quartic fields L whose normal closures over Q contain K as the fixed field of C4. We
obtain the following theorem by determining asymptotics for the acceptable collection of D4-quartic fields
that arise in this manner, even when we restrict the set of quadratic fields by imposing local specifications
at a finite set of primes. We remark that it is crucial for the below result that we order D4-quartic fields by
conductor and furthermore, that we can impose acceptable local specifications at infinitely many primes.

Theorem 5. For a quadratic field K, let Cl2k(K) (resp. Cl+2k(K)) denote the 2k-torsion subgroup in its

ideal class group Cl(K) (resp. narrow class group Cl+(K)). Let K denote a family of quadratic fields with
prescribed splitting types at a finite set S consisting of odd primes. We then have:

(a)
∑
K∈K

0<Disc(K)≤X

(# Cl4(K)−# Cl2(K)) ∼ 1

16
·
∏
p∈S

mCl(p) ·
∏
p

(
1 +

2

p

)(
1− 1

p

)2

·X log(X),

1A virtual conductor for G is the Artin conductor for a virtual character of G
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(b)
∑
K∈K

−X≤Disc(K)<0

(# Cl4(K)−# Cl2(K)) ∼ 1

4
·
∏
p∈S

mCl(p) ·
∏
p

(
1 +

2

p

)(
1− 1

p

)2

·X log(X), and

(c)
∑
K∈K

0<Disc(K)≤X

(# Cl+4 (K)−# Cl+2 (K)) ∼ 1

8
·
∏
p∈S

mCl(p) ·
∏
p

(
1 +

2

p

)(
1− 1

p

)2

·X log(X).

Here, mCl(p) is determined in terms of the prescribed splitting type for p ∈ S:

mCl(p) :=
2

p+ 2
if p ramifies, and mCl(p) :=

p

2p+ 2
otherwise.

The above result is a generalization of work of Fouvry-Klüners [16] that is derived from their own previous
results [15] completely verifying Gerth’s extension [17] of the Cohen-Lenstra heuristics to the 4-rank of the
narrow class group of quadratic fields. In [15], Fouvry-Klüners compute all moments for the 4-ranks of
narrow class groups of quadratic fields ordered by discriminant. In conjuction with those results, Theorem
5 gives evidence towards the belief that the 4-ranks and the sizes of 2-torsion subgroups in class groups and
narrow class groups of quadratic fields behave independently (see Remark 9.6).

As a byproduct of the methods used to obtain (2), we also prove a refinement of Theorem 2 that allows
for imposing local specifications at a finite number of primes.

Theorem 6. Let K denote a set of quadratic fields with prescribed splitting types at a finite set S of odd
primes. We then have:

(a)
∑
K∈K

0<Disc(K)≤X

1

Disc(K)
· L(1,K/Q)

L(2,K/Q)
∼ ζ(2)

2
·
∏
p∈S

m(p)

2p2 + 4p+ 4
·
∏
p

(
1− 1

p2
− 2

p3
+

2

p4

)
· log(X),

(b)
∑
K∈K

−X<Disc(K)≤0

1

|Disc(K)|
· L(1,K/Q)

L(2,K/Q)
∼ ζ(2)

2
·
∏
p∈S

m(p)

2p2 + 4p+ 4
·
∏
p

(
1− 1

p2
− 2

p3
+

2

p4

)
· log(X),

where m(p) is determined in terms of the prescribed splitting type for p ∈ S:

m(p) :=

 p2 + 2p+ 1 if p splits;
p2 + 1 if p is inert;
2(p+ 1) if p is ramified.

We next summarize the arguments for proving the main results. First, to establish Theorem 2, we use

the fact that for a quadratic field K, L(1,K/Q)
L(2,K/Q) can be written as a product of infinite sums simply using

Möbius inversion:
L(1,K/Q)

L(2,K/Q)
=
( ∞∑
n=1

χK(n)

n

)
·
( ∞∑
m=1

µ(m) · χK(m)

m2

)
, (3)

where χK is the quadratic character associated to K. The proof then relies on the following observation:
weighting this product by Disc(K)−1, the main contribution when summing over quadratic fields K with
bounded discriminant as in (2) comes from certain diagonal terms of the right hand side of (3), i.e., terms
where mn is a square. For each K, the sum of these diagonal terms is expressible as an Euler product (see
Equation 21), which then yields Theorem 2.

If we were to instead weight the product in (3) by Disc(K)−2 when summing over all quadratic fields K
as in (1), then the non-diagonal terms are no longer negligible. It is these terms that cause the constant c
to fail Question 4; in fact, we show that the sum over quadratic fields with discriminant bounded by X of
the diagonal terms in the right hand side of (3) weighted by Disc(K)−2 is asymptotically equal to

3 · 112

26 · 17
·
∏
p

(
1 +

1

p2
− 1

p3
− 1

p4

)
·X,
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which is equal to the mass formula predicted for the number of D4-quartic fields of bounded discriminant
(see Theorem 5.4).

Before discussing the proof of Theorem 1, we describe the differences in obtaining (2) and (1) as in
Corollary 1.2 of [9]. Because of the convergence of

∑
K Disc(K)−2 when K runs over all quadratic fields, the

main contribution to the sum in (1) comes from the terms indexed by K with Disc(K) < X1/2, i.e., quadratic
fields with small discriminant relative to X. However, this is not the case for the sum in (2); furthermore,
the combination of Kummer theory and L-function methods utilized in [9] to prove (1) can only be used to
determine the asymptotic number of D4-quartic fields with conductor bounded by X whose quadratic subfield
has small discriminant relative to X (see Theorem 4.3). Additionally, adapting the geometry-of-numbers
techniques of [2] in combination with Wood’s parametrization of quartic rings with a quadratic subring [30]
is also limited to counting D4-quartic fields whose quadratic subfields have small discriminant.

Nevertheless, we obtain Theorem 1 and subsequently (2) by employing algebraic properties of the con-
ductor C(L) of a D4-quartic field L, namely that it is invariant under the outer automorphism φ of D4. More
precisely, φ acts on the Galois group of the normal closure M over Q of L, and the fixed field of φ(Gal(M/L))
is another D4-quartic field φ(L) in M which is not isomorphic to L. The conductors of L and φ(L) coincide
(even though their discriminants do not). Moreover, we relate the discriminants of K and φ(K) using the
central inertia of L (see Definition 2.3). We prove (see Proposition 2.6)

|Disc(K)| > C(L)1/2 ⇒ |Disc(φ(K))| < C(φ(L))1/2,

and we use this phenomenon to obtain N
(r2)
D4

(X) from the asymptotic number of D4-quartic fields ordered
by conductor whose quadratic subfield has small discriminant by employing a simple sieve.

The proof of Theorem 1 does ultimately rely on both the analytic techniques of [9] used to count D4-
quartic fields by discriminant as well as the geometry-of-numbers methods used to count S4-fields as in
[2]. Either can be used to obtain asymptotics for D4-quartic fields of bounded conductor whose quadratic

subfield has small discriminant, but the sieve used to determine the asymptotics of N
(r2)
D4

(X) from counting
such D4-quartic fields requires two ingredients: first, uniform error estimates on the number of such D4-
quartic fields having large central inertia, and second, asymptotics for the number of such D4-quartic fields
with prescribed ramification conditions. We are able to obtain the former using analytic methods and the
latter using geometry-of-numbers techniques. This method of proof allows us to count D4-quartic fields
with prescribed splitting and ramification conditions yielding Theorems 3 and 5. Additionally, Theorem 3
in conjunction with Theorem 4.3 and p-adic density computations (see Proposition 6.7) implies Theorem 6.

The analytic methods used to prove (2) show up frequently when studying asymptotics for the number
of extensions of a family of number fields of fixed degree, including when determining Malle’s conjecture
for D4-octic fields ordered by discriminant, computing the asymptotic number of S3-fields ordered by the
radical of its discriminant, or calculating the asymptotic number of octic fields with Galois group equal
to the quaternion group ordered by its (2-dimensional) Artin conductor. Additionally, in order to attack
number field asymptotics for larger Galois groups as in the case of S6-sextic fields, utilizing algebraic inputs
such as an outer automorphism in order to transfer problems of great analytic difficulty to ones that can be
approached using standard methods will be crucial.

This paper is organized as follows. First, we summarize basic arithmetic properties of D4-quartic fields
and their invariants in Section 2, including a table of the splitting behavior of primes in D4-quartic fields
depending on their inertia and decomposition group. We explicitly relate the conductors and quadratic
discriminants of D4-quartic fields L and φ(L). Next in Section 3, we further develop the method of [3, 20, 29]
and simultaneously obtain heuristics for families of D4-quartic fields ordered in multiple different ways. We
begin counting D4-quartic fields with bounded invariants in Section 4. Using the analytic methods of [9],
we obtain asymptotics for the number of such fields with small quadratic discriminant in terms of a sum
of ratios of L-values. By isolating the diagonal terms, we prove Theorem 2 in Section 5. In Section 6, we
recall Wood’s parametrization of quartic rings with a quadratic subrings and adapt it to obtain a modified
parametrization of D4-quartic fields in terms of certain integral orbits of a coregular representation V for a
non-reductive group G. We study the p-adic properties of this representation, including those arising from
the outer automorphism φ. We then use geometry-of-numbers methods in Section 7 to count integral orbits
of G on V having bounded invariants. Using the results and methods from Sections 4, 6, and 7, we obtain
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crucial uniformity estimates in Section 8 that will be necessary to carry out the various requisite sieves.
Finally, in Section 9, we prove the main theorems by using the analytic results of Sections 4, 7, and 8, in
conjunction with the algebraic properties of the outer automorphism φ proved in Sections 2 and 6.

2 General properties of D4-quartic fields

Recall that D4 denotes the order-8 group of symmetries of a square, and a D4-quartic field is a degree-4
field extension of Q whose normal closure has Galois group D4 over Q. We let σ denote a 90◦-rotation of a
square and τ denote a reflection of a square so that

D4 =
〈
σ, τ | σ4 = 1, τ2 = 1, τ−1στ = σ3

〉
.

The group D4 has nontrivial center Z(D4) = {1, σ2}.

2.1 Automorphisms of D4 and the Galois theory of D4-quartics

We first describe important group-theoretic properties of D4 as well as their applications to D4-quartics via
Galois theory. Recall that the inner automorphism group D4/Z(D4) is isomorphic to the Klein four group
V4, but the full automorphism group is isomorphic to D4 (see pgs. 83–85 of [27]). The non-trivial outer
automorphism φ of D4 has order 4 and can be described explicitly by

φ(σ) = σ and φ(τ) = στ. (4)

Let L1 be a D4-quartic, and denote its normal closure by M so that Gal(M/Q) = D4. Below, we describe
a subfield diagram of M corresponding to the subgroup lattice of D4:

D4

〈τ, σ2〉 〈σ〉 〈στ, σ2〉

〈σ2〉〈τ〉 〈σ2τ〉 〈στ〉〈σ3τ〉

{1}

Q

K1 K K2

LL1 L′1 L2L′2

M

(5)

Here, a subgroup G of D4 and a subfield F of M in the same position are related by Gal(M/F ) = G. The
fields L′i are the (unique) Galois conjugates of Li for i = 1 or 2, and L is the unique quartic Galois subfield
of M . While L1 and L2 are not conjugate, the outer automorphism φ maps Gal(M/L1)→ Gal(M/L2) and
Gal(M/L′1)→ Gal(M/L′2). However, it sends Gal(M/L2)→ Gal(M/L′1) and Gal(M/L′2)→ Gal(M/L1). It
also interchanges Gal(M/K1) and Gal(M/K2) while leaving Gal(M/K) fixed.

Definition 2.1. If L1 is a D4-quartic with Galois closure M over Q, then we denote by φ(L1) the quartic
subfield of M fixed by φ(Gal(M/L1)). If K1 denotes the quadratic subfield of L1, then we denote by φ(K1)
the quadratic subfield of M fixed by φ(Gal(M/K1)).

In the notation of (5), we have φ(L1) = L2 and φ(K1) = K2.

2.2 Arithmetic of D4-quartics

We now describe the splitting behavior of primes in D4-octic fields M and their subfields.

6



Definition 2.2. If F is a number field, then the splitting type ςp(F ) at p of F satisfies

ςp(F ) = (fe11 fe22 . . .) ⇔ OF /pOF ∼= Fpf1 [t1]/(te11 )⊕ Fpf2 [t2]/(te2)⊕ . . .

Similarly, if R is a ring, then the splitting type ςp(R) at p is equal to (fe11 fe22 . . .) if and only if

R/pR ∼= Fpf1 [t1]/(te11 )⊕ Fpf2 [t2]/(te2)⊕ . . .

Let Dp denote the decomposition group of p in Gal(M/Q), and let Ip denote the inertia subgroup of Dp.
For an arbitrary prime p, we determine the splitting type of M and all of its subfields using the notation
described in (5) depending on the choices for Dp and Ip in the table below.

Ip Dp ςp(M) ςp(L1) ςp(K1) ςp(L2) ςp(K2) ςp(L) ςp(K)

{1} {1} (11111111) (1111) (11) (1111) (11) (1111) (11) U
n
ra

m
ifi

ed

L
a
ck

s
cen

tra
l

in
ertia

{1} 〈σ2〉 (2222) (22) (11) (22) (11) (1111) (11)
{1} 〈στ〉 (2222) (22) (2) (112) (11) (22) (2)
{1} 〈τ〉 (2222) (112) (11) (22) (2) (22) (2)
{1} 〈σ〉 (44) (4) (2) (4) (2) (22) (11)

〈τ〉 〈τ〉 (12121212) (1211) (11) (1212) (12) (1212) (12) T
a
m

e

〈τ〉 〈τ, σ2〉 (2222) (122) (11) (22) (12) (1212) (12)
〈στ〉 〈στ〉 (12121212) (1212) (12) (1211) (11) (1212) (12)
〈στ〉 〈στ, σ2〉 (2222) (22) (12) (122) (11) (1212) (12)

〈σ〉 〈σ〉 (1414) (14) (12) (14) (12) (1212) (11)

T
a
m

e

H
a
s

cen
tra

l
in

ertia

〈σ〉 D4 (24) (14) (12) (14) (12) (22) (2)
〈σ2〉 〈σ2〉 (12121212) (1212) (11) (1212) (11) (1111) (11)
〈σ2〉 〈τ, σ2〉 (2222) (1212) (11) (22) (2) (22) (2)
〈σ2〉 〈στ, σ2〉 (2222) (22) (2) (1212) (11) (22) (2)
〈σ2〉 〈σ〉 (2222) (22) (2) (22) (2) (22) (11)

〈τ, σ2〉 〈τ, σ2〉 (1414) (1212) (11) (14) (12) (1212) (12) W
ild〈στ, σ2〉 〈στ, σ2〉 (1414) (14) (12) (1212) (11) (1212) (12)

D4 D4 (18) (14) (12) (14) (12) (14) (12)

Table 1: Splitting type for a given decomposition and inertia group.

We briefly recall how to compute the above table.2 First, any subgroup can potentially be a decomposition
group Dp. However, since all decomposition groups are only defined upto conjugacy, in Table 1, we only
enumerate conjugacy classes of subgroups. On the other hand, the inertia group Ip must be a normal
subgroup of Dp such that Dp/Ip is cyclic of order prime to p. Moreover, if I ′p E Ip is the second ramification
group (which, by definition, is trivial if and only if the ramification is tame), then Ip/I

′
p must be a product

of cyclic groups of order p. When the Galois group is equal to D4, this allows us to fully enumerate the
possibilities for pairs Ip E Dp.

To compute the entries of Table 1, let K ′ ≤ L′ ≤M be a tower of number fields with M normal over K ′.
Let G = Gal(M/K ′) and let H = Gal(M/L′). Let p be a prime of K ′ and let Dp be a decomposition group
of p (defined up to conjugation) and let Ip E Dp be the corresponding inertia group. Then the primes above
p in L are in one-to-one correspondence with the orbits of Dp on H\G. For a given Dp-orbit, the ramification
index e of the prime it corresponds to is the size of an Ip-orbit therein and the inertia degree f is the number

2For more details, please see Wood’s “How to determine the splitting type of a prime,” available at https://math.berkeley.
edu/~mmwood/Splitting.pdf
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of such suborbits. (Note all such suborbits have the same size since Ip is normal in Dp.) To compute all the
values in Table 1, we have an example script available at https://github.com/khwilson/D4Counting.

In Table 1, the first group consists of unramified splitting types, the second and third groups consist of
tamely ramified splitting types, and the fourth group consists of wildly ramified splitting types. In particular,
the splitting type of an odd prime p must appear in the first three groups of Table 1. We distinguish between
the tamely ramified splitting types depending on whether the center 〈σ2〉 of D4 is contained in Ip.

Definition 2.3. We say that a D4-quartic L1 (or a pair (L1,K1) consisting of a D4-quartic L1 and
its quadratic subfield K1) has central inertia at p when Ip contains σ2 or equivalently, when the pair
(ςp(L1), ςp(K1)) is ((1212), (11)), ((22), (2)), or ((14), (12)).

Note that if M and K are as in (5), the extension M/K is ramified at a prime p if and only if (L1,K1)
has central inertia at p.

By analogy, we define splitting types at ∞. If K is any quadratic field and L is any quartic field, we
write

ς∞(K) :=

{
(11) if K ⊗ R = R2,

(2) if K ⊗ R = C;
ς∞(L) :=


(1111) if L⊗ R = R4,

(112) if L⊗ R = R2 ⊕ C,

(22) if L⊗ R = C2.

(6)

2.3 Invariants of D4-quartics

Next, we compare the Artin conductor of a D4-quartic L1 to the discriminant of L1 as well as the products
of the discriminants of certain subfields of the normal closure of L1. Additionally, we define two fundamental
invariants and a slightly refined conductor that partially recovers the splitting type of L1 at ∞.

If Gal(Q/Q) denotes the absolute Galois group of Q, and M is the normal closure of L1 as in (5), then
there is a (unique up to conjugacy) irreducible 2-dimensional Galois representation

ρM : Gal(Q/Q)→ GL2(C)

that factors through Gal(M/Q). It arises as the composition of Gal(Q/Q) � Gal(M/Q) and the unique
2-dimensional irreducible representation of D4

∼= Gal(M/Q). We let Cond(ρM ) denote the Artin conductor
of ρM . This invariant can be described in terms of the discriminant of the quadratic subfield K1 and
NmK1

(Disc(L1/K1)), the image under the norm map of K1 of the relative discriminant of L1 over K1:

Proposition 2.4. Let L1 denote a D4-quartic with normal closure M , and let K1 be its quadratic subfield.
We then have:

Cond(ρM ) = |Disc(K1) ·NmK1
(Disc(L1/K1))|.

Proof. The proposition will follow from the fact that the representation IndD4

〈τ〉 1 of D4 decomposes into a

direct sum of IndD4

〈τ,σ2〉 1 and the irreducible 2-dimensional representation of D4. To prove this fact, first

note that each coset of 〈τ〉 in D4 contains a unique power of σ, so we can represent IndD4

〈τ〉 in terms of the

basis
〈
[1], [σ], [σ2], [σ3]

〉
. We can then decompose IndD4

〈τ〉 1 = V1 ⊕ V2 where

V1 =
〈
[1] + [σ2], [σ] + [σ3]

〉
; V2 =

〈
[1]− [σ2], [σ]− [σ3]

〉
.

Since σ swaps the two basis elements of V1 while τ and σ2 act trivially, V1 can be identified with IndD4

〈τ,σ2〉 1.

Furthermore, one can see that V2 is irreducible, and it is well-known that there is a unique irreducible
2-dimensional representation of D4.

Now, if M is the normal closure of L1 as in (5) and ρ denotes the Galois representation constructed by
composing IndD4

〈τ〉 1 with Gal(Q/Q)� Gal(M/Q), then its Artin conductor satisfies

Cond(ρ) = |Disc(L1)|.

We can compute Cond(ρ) as a product of the conductors of its subrepresentations: the Galois representation
IndD4

〈τ,σ2〉 1 ◦
(
Gal(Q/Q)� Gal(M/Q)

)
has conductor Disc(K1), so we obtain

|Disc(L1)| = |Disc(K1)| · Cond(ρM ).
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The relative discriminant formula implies that |Disc(L1)| = Disc(K1)2 NmK1(Disc(L1/K1)), and so we
conclude the proposition.

Definition 2.5. The (signed) conductor C(L1) of a D4-quartic L1 whose quadratic subfield is denoted by
K1 is defined as

C(L1) :=
Disc(L1)

Disc(K1)
.

From the definition of the conductor and Proposition 2.4, it follows immediately that two D4-quartics L1

and L2 with the same normal closure M have the same conductor. Furthermore, if L1 has no central inertia,
then C(L1) = Disc(K1) · Disc(φ(K1)). More precisely, if L is a number field and p is a prime number, let
Discp(L) denote the p-part of the discriminant, and let Cp(L) be the p-part of the conductor. We then have:

Proposition 2.6. If L1 is a D4-quartic with quadratic subfield K1, then for all odd primes p:

Cp(L1) =

{
p2 ·Discp(K1) ·Discp(φ(K1)) if Ip = 〈σ2〉;
Discp(K1) ·Discp(φ(K1)) otherwise.

Proof. We refer to the notation described in (5), where φ(K1) = K2. Table 1 shows that if Ip 6= 〈σ2〉, then
Discp(K2) = NmK1

(Discp(L1/K1)). Thus, Cp(L1) = Discp(K1) ·Discp(K2). However, when Ip = 〈σ2〉, Table
1 implies that Discp(K1) = Discp(K2) = 1, but NmK1

(Discp(L1/K1)) = NmK2
(Discp(L2/K2)) = p2. Thus,

we have that Cp(L1) = p2 ·Discp(K1) ·Discp(K2).

We are now ready to define the two fundamental invariants of a D4-quartic.

Definition 2.7. If L1 is a D4-quartic with quadratic subfield K1, define the fundamental invariants of L1:

q(L1) :=
Disc(L1)

Disc(K1)2
and d(L1) := Disc(K1).

Remark 2.8. For a D4-quartic L1, there is a global restriction on the integers q(L1) and d(L1), namely
that they are each congruent to 0 or 1 mod 4. Both of these are due to (a generalization of) Stickelberger’s
Theorem, though we note that |q(L1)| = |NmK1(Disc(L1/K1))| requires carefully dealing with infinite places
of relative discriminants. See [25] for details.

Proposition 2.4 can be reformulated as

Cond(ρM ) = |q(L1) · d(L1)| = |q(L2) · d(L2)|

for a D4-quartic L1 and L2 = φ(L1) as in (5). Define

J(L1) :=
C(L1)

Disc(K1) ·Disc(φ(K1))
=

∣∣∣∣ q(L1)

d(φ(L1))

∣∣∣∣ , (7)

and for a prime p, let Jp(L1) denote the p-part of J(L1). Proposition 2.6 determines that for an odd prime
p, Jp(L1) is equal to p2 if and only if the inertia group Ip at p is equal to 〈σ2〉 ⊂ D4. Note that it is always
true that J(L1) = J(φ(L1)). Furthermore, it will not be necessary in what follows to compute J2; it will be
enough that J2 is absolutely bounded.

3 Heuristics for counting D4-quartics by conductor

In [3], Bhargava developed heuristics for the asymptotics of the number of Sn-fields of degree n ordered by
discriminant. The framework used to formulate these heuristics was expanded by Kedlaya [20] for families
of Galois representations ordered by their Artin conductor. Additionally, Wood [29] predicted asymptotics
(including mass formulae for the constants) for fixed-degree families of number fields whose normal closures
have a fixed Galois group when such fields are ordered by invariants including the conductor. In this section,
we adapt their heuristics to the family of D4-quartics ordered by our two fundamental invariants, q and
d (see Definition 2.7). We recover the predictions in [29] for the number of D4-quartics ordered either by
conductor or discriminant, and we additionally verify that the conjectured mass formula when ordering by
discriminant is not equal to the constant c determined by Cohen-Diaz y Diaz-Olivier in [9].
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3.1 The expected number of D4-quartics with fixed fundamental invariants

Let v be a place of Q, and let Kv ⊂ Lv be étale algebras of Qv of degrees 2 and 4, respectively. When
v corresponds to a finite prime p (resp. infinity), we say that such a pair (Lv,Kv) is compatible with a
pair of integers (q,d) if the p-parts (resp. signs) of NmKv (Disc(Lv/Kv)), the norm in Qv of the relative
discriminant of Lv over Kv, and Disc(Kv), the discriminant of Kv, agree with the p-parts (resp. signs) of q
and d, respectively. Note that when q > 0, d can be positive or negative; however, when q < 0, d must be
positive, otherwise no such compatible pairs (L∞,K∞) exist.

Given a place v of Q and integers q and d, let Σv(q,d) denote the set of pairs of Qv-algebras (Lv,Kv)
that are compatible with (q,d). Let the weighted local mass Ev(q,d) be defined by

Ev(q,d) :=
∑

(Lv,Kv)∈Σv(q,d)

1

# Aut(Lv,Kv)
,

where Aut(Lv,Kv) is the group of automorphisms of Lv that restrict to endomorphisms of the subalgebra
Kv. The following result evaluates Ev(q,d) for all places v.

Proposition 3.1. We have:

(1) If q and d are nonzero, then E∞(q,d) = 1/4 when at least one of q or d is positive.

(2) If v corresponds to an odd prime p, then Ep(q,d) is nonempty if and only if the p-parts of (q,d) are
one of (1, 1), (p, 1), (p2, 1), (1, p), or (p, p). In each case, we have Ep(q,d) = 1.

(3) The values of E2(q,d) are given below.

q d = 1 d = 22 d = 23

1 1 1 2
22 1 1 2
23 2 — —
24 2 2 4
25 2 4 8
26 4 — —

Table 2: The value of E2(q,d)

Proof. The proof is by direct computation. For p = ∞, the result is immediate. For p odd, we note that
as there is no wild ramification, the computation of q and d depend only on the Galois, decomposition, and
inertia groups of the component fields of Kv and Lv. However, it turns out this enumeration depends only
on whether p ≡ 1 (mod 4).

Explicitly, for odd primes p, Kummer theory implies that the quadratic extensions of a p-adic field K
are in one-to-one correspondence with the nontrivial square classes K×/(K×)2. Combined with Hensel’s
Lemma, we conclude that for each odd prime p, there are exactly three possible quadratic extensions of any
p-adic field K corresponding to adjoining the square root of u, π, and uπ, where u is a (lift of a) quadratic
nonresidue in OK and π is a uniformizer.

For odd primes, this implies that there are up to 3 × 3 = 9 possible quartic fields Lv which could be
extensions of Kv. However, many of these fields are actually isomorphic as fields over Qp. The number
of possible isomorphism classes (and their associated automorphisms, decomposition groups, and inertia
groups) turns out to only depend on the value of p mod 4.

Explicitly, the unramified quadratic extension K0 of Qp has three quadratic extensions, one of which

is Qp(
√
u′) where u′ is a quadratic nonresidue in K0 is unramified and has Galois group C4. Another is

Qp(
√
u,
√
p) if a C2

2 field with decomposition group equalt to the inertia group the group that fixes K0. The
final extension is Qp(

√
u′p) is ramified and has Galois group C4 and decomposition group equal to the inertia

group C2 ≤ C4.
This leaves 2×2 = 4 possible quartic extensions of Qp. Hensel’s Lemma directly implies that the possible

fields are given by Qp( 4
√
p), Qp( 4

√
4p), Qp( 4

√
−2p), and Qp( 4

√
−8p). If p ≡ 1 (mod 4) then x4 − 1 has four
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distinct roots in the residue field Fp of Zp and these are distinct fields, each with Galois group, decomposition
group, and inertia group C4. On the other hand, when p ≡ 3 (mod 4), x4 − 1 has two solutions, and none
of these fields are Galois and thus are D4 fields. The fields Qp( 4

√
x) and Qp( 4

√
−4x) are isomorphic. The

decomposition group is all of D4 and the inertia group the rotation subgroup 〈σ2〉.
At p = 2, the number of quartic extensions of Qp is much larger, and wild ramification makes the

computation of q and d much more complicated. However, a database of local fields, e.g., [21, 19], can be
used. The details of the computation can be found at http://github.com/khwilson/D4Counting.

The framework in [3, 29] depends on the basic heuristic assumption that for a family of number fields of
fixed degree and fixed associated Galois group, the completions at different places behave independently of
one another. This implies that the expected number of such number fields having given invariants is equal
to the infinite product over all places v of Q of the weighted number of local extensions of Qv that are
compatible with those invariants. More precisely:

Assumption 3.2. If E(q,d) denotes the expected number of isomorphism classes of D4-quartics with fun-
damental invariants equal to q and d, we assume

E(q,d) =
1

2
· E∞(q,d) ·

∏
p

Ep(q,d). (8)

The extra factor of 1
2 above arises from two issues: (1) there is a global restriction on the invariants q

and d (see Remark 2.8), which occurs 1
4 of the time, and is not taken into account by the local masses, and

(2) the product of the local masses Ev(q,d) determines the expected weighted number of D4-quartics with
invariants q and d, where a D4-quartic L is weighted by # Aut(L)−1 = 1

2 .

3.2 Predictions for the global distribution of D4-quartics using double Dirichlet
series

To determine the asymptotics of
∑
E(q,d), we study the behavior of the double Dirichlet series

ξ(s, t) :=
∑

d

∑
q

E(q,d)

|q|s|d|t
,

which converges absolutely for s, t > 1. Since there are three possible sign configurations for the pair of
integers (q,d), the archimedean contribution to ξ(s, t) is exactly 3/4. Additionally, 2·E(q,d) is multiplicative
with respect to both q and d, and so it follows from Proposition 3.1 that ξ(s, t) can be expressed as

ξ(s, t) =
3

8
·
∏
p

ξp(s, t),

where

ξp(s, t) =
(

1 +
1

ps
+

1

p2s
+

1

pt

(
1 +

1

ps

))
when p is odd, and

ξ2(s, t) =
(

1 +
1

22s
+

2

23s
+

2

24s
+

2

25s
+

4

26s
+

1

22t

(
1 +

1

22s
+

2

24s
+

4

25s

)
+

2

23t

(
1 +

1

22s
+

2

24s
+

4

25s

))
.

Define the correction factor at 2 to be

ξ̃2(s, t) := ξ2(s, t)/
(

1 +
1

2s
+

1

22s
+

1

2t

(
1 +

1

2s

))
.

We can rewrite ξ(s, t) as

ξ(s, t) =
3

8
· ξ̃2(s, t) ·

∏
p

(
1 +

1

ps
+

1

p2s
+

1

pt

(
1 +

1

ps

))
=

3

8
· ξ̃2(s, t) · ζ(s) · ζ(t) ·

∏
p

(1− p−2t − p−t−2s − p−3s + p−2t−2s + p−t−3s).
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Therefore, the function ξ(s, t) is holomorphic in the region t > 1
2 , s >

1
3 aside from poles at the lines s = 1

and t = 1.

3.3 Heuristics

We now consider families of D4-quartics under different orderings. If X and Y be positive real numbers
going to infinity, let Eq,d(X,Y ) denote the expected number of isomorphism classes of D4-quartics L such
that |q(L)| < X and |d(L)| < Y , i.e.

Eq,d(X,Y ) :=
∑
|q|<X
|d|<Y

E(q,d).

Then, by computing the residue of ξ(s, t) at (1, 1), we obtain the heuristic

Eq,d(X,Y ) ∼ 3

8
·
∏
p

(
1− 1

p2
− 2

p3
+

2

p4

)
·X · Y. (9)

Here, the correction factor ξ̃2(1, 1) = 1. Note that this heuristic only relies on the Assumption 3.2. If we
were to take (8) as a definition, then we have completely verified the main term (9), and we can additionally
obtain a power-saving.

Heuristics for the family of D4-quartics ordered by conductor

Next, we consider the family of D4-quartics ordered by conductor. Let EC(X) denote the expected number
of isomorphism classes of D4-quartics L such that |C(L)| < X. If we let E(C) denote the expected number
of D4-quartics with conductor C, then we have∑

C

E(C)

|C|s
= ξ(s, s)

since C(L) = q(L)d(L). The function ξ(s, s) has a double pole at 1 and, by computing its residue, we obtain

EC(X) ∼ 3

8
·
∏
p

(
1− 1

p2
− 2

p3
+

2

p4

)
·X log(X). (10)

The correction factor at 2 is again ξ̃2(1, 1) = 1.

Heuristics for the family of D4-quartics ordered by discriminant

Finally, we consider the family of D4-quartics ordered by discriminant. Let EDisc(X) denote the expected
number of isomorphism classes of D4-quartics L such that |Disc(L)| < X. If we let E(Disc) denote the
expected number of D4-quartics L with discriminant equal to Disc, then we have∑

Disc

E(Disc)

|Disc |s
= ξ(s, 2s)

since Disc(L) = q(L)d(L)2. The function ξ(s, 2s) has a simple pole at 1 and, by computing the residue, we
obtain

EDisc(X) ∼ 3 · 112

26 · 17
·
∏
p

(
1 +

1

p2
− 1

p3
− 1

p4

)
·X. (11)

In this case, the correction factor at 2 is ξ̃2(1, 2) = 112/(17 · 23).
Cohen-Diaz y Diaz-Olivier showed in Proposition 6.2 of [9] that the number of D4-quartics having dis-

criminant bounded by X is ∼ cX where c ≈ 0.052, whereas the constant on the right hand side of (11)
is ≈ 0.406. This implies that when ordering D4-quartics by discriminant, the completions of such fields at
different primes do not behave independently of one another in the sense of [3], and so Assumption 3.2 is
false.
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4 Counting D4-quartics using analytic methods

In this section, we obtain asymptotics for the number of D4-quartics, ordered by conductor, whose quadratic
subfield has small discriminant, following the methods of Cohen-Diaz y Diaz-Olivier [9] where similar asymp-
totics for the number of such D4-quartics ordered by discriminant are determined. By refining their argu-
ments, we are able to count D4-quartics of bounded conductor whose quadratic subfields have small discrim-
inant and satisfy a prescribed set of splitting conditions at a finite number of primes. We begin with a few
definitions before giving the precise statement of the main theorem of the section.

Definition 4.1. If K is a quadratic field and L is a quadratic extension of K, define the conductor of the
pair (L,K) as

C(L,K) :=
Disc(L)

Disc(K)
. (12)

If L is a D4-quartic and K denotes its (unique) quadratic subfield, then C(L,K) = C(L).

We refine the notion of a collection of local specifications described in the introduction. Let Σfull
v =

{(ςv(L), ςv(K))} be the set of all pairs consisting of a possible splitting type for a place v in a D4-quartic L
and a consistent splitting type at v for its quadratic subfield K. We refer to a collection Σ = (Σv)v as a set
of local specifications if for each v, Σv ⊆ Σfull

v .

Definition 4.2. A set of local specifications Σ = (Σv)v is stable if for every prime p and every quadratic
splitting type ς ′p (equal to either (11), (2), or (12)), the set Σp either contains all possible pairs (∗, ς ′p) or
none of them.

Additionally, we denote by L(Σ) the set ofD4-quartics L with quadratic subfieldK such that (ςv(L), ςv(K)) ∈
Σv for all v. Similarly, let K(Σ) denote the set of quadratic subfields of L(Σ). Note that when Σ is stable,
the set L(Σ) consists of all D4-quartics that are quadratic extensions of all the fields in K(Σ).

For a set of local specifications Σ, let NC(Σ;X,Y ) be the number of isomorphism classes of D4-quartics
L ∈ L(Σ) such that |C(L)| < X and |d(L)| < Y . Additionally, set NC(X,Y ) := NC(Σfull;X,Y ). In this
section, we compute asymptotics for NC(Σ;X,Xβ) when Σ is stable and β < 2/3. More precisely, our goal
is to prove the following theorem:

Theorem 4.3. Let Σ be a stable set of local specifications. Then, for every β < 2/3, we have

NC(Σ;X,Xβ) =
1

2ζ(2)
·

( ∑
K∈K(Σ)

|Disc(K)|<Xβ

L(1,K/Q)

L(2,K/Q)
· 2−r2(K)

|Disc(K)|

)
·X + oβ(X),

We do so by first demonstrating that the number of quadratic extensions of quadratic number fields
that are not D4-quartic fields is negligible, thus we can compute NC(Σ;X,Xβ) in terms of these towers of
quadratic extensions. In [9], the authors define a Dirichlet series for each quadratic field K whose residue at
s = 1 is shown to be equal to the number of quadratic extensions of K. We then carry out a smooth count
for the quartic fields in L(Σ) that are quadratic extensions of K and subsequently obtain the theorem by
summing over all K ∈ K(Σ).

4.1 Quadratic extensions of quadratic number fields

If L is a quadratic extension of a quadratic field K, then L is either a D4-quartic or it is Galois with
Gal(L/Q) = C4 or V4. In the following lemma, we prove a bound for the number of pairs (L,K) having
bounded conductor, where L is a Galois quartic field and K is a quadratic subfield of L having small
discriminant.

Lemma 4.4. Let β < 1 be fixed. The number of pairs of (L,K), where L is a Galois quartic field, K is a
quadratic subfield of L, the conductor C(L,K) < X, and |Disc(K)| < Xβ is bounded by Oε(X

(1+β)/2+ε).
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Proof. Let (L,K) be a pair satisfying the conditions of the lemma. By the relative discriminant formula, we
have

|Disc(L)| = |Disc(K) · C(L,K)| < X1+β .

It is known from §2.4 and §2.5 of [10] that the number of Galois quartic fields whose discriminant have
absolute value less than X is bounded by Oε(X

1/2+ε). The lemma follows immediately.

For stable Σ, we can thus prove Theorem 4.3 by counting the number of quadratic extensions over
quadratic fields in K(Σ) whose relative discriminants have bounded norm. To this end, we consider the
Dirichlet series ΦK,2(s) = ΦK,2(C2, s) defined in [9] for any number field K as

ΦK,2(s) :=
∑

[L:K]=2

1

NmK(Disc(L/K))s
.

It is proved in Theorem 1.1 of [9] that

ΦK,2(s) = −1 +
2−r2(K)

ζK(2s)
·
∑
c|2

NmK(2/c)

NmK(2/c)2s
·

∑
χ∈Cl(K,c2)∨

LK(s, χ),

where r2(K) denotes the number of pairs of complex embeddings of K, c runs over all integral ideals of
K dividing 2, χ runs over all quadratic characters of the ray class group modulo c2, and LK(s, χ) is the
L-function of K for χ. It is also proven in Corollary 1.2 of [9] that the rightmost pole of ΦK,2(s) is at s = 1
with residue given by

Ress=1 ΦK,2(s) =
2−r2(K)

ζ(2)
· L(1,K/Q)

L(2,K/Q)
. (13)

(Recall that ζK(s) = L(s,K/Q) · ζ(s).) We can then obtain “smooth counts” of the number of quadratic
extensions of quadratic fields K:

Lemma 4.5. Let ϕ be a smooth compactly supported function ϕ : R≥0 → R≥0. If K is quadratic, then∑
[L:K]=2

ϕ
( |Disc(K) ·NmK(Disc(L/K))|

X

)
= Vol(ϕ) · Ress=1 ΦK,2(s) · X

|Disc(K)|

+ Oε,ϕ(2ω(Disc(K))|Disc(K)|−1/4+εX1/2+ε),

where ω(d) denotes the number of prime divisors of d, and Vol(ϕ) denotes
∫
ϕ(t)dt.

Proof. Let ϕ̃ denote the Mellin transform of ϕ. By Mellin inversion, we see that the left hand side of the
above equation is equal to

1

2πi

∫
Re(s)=2

ϕ̃(s) · Xs

|Disc(K)|s
· ΦK,2(s) ds.

Shifting the line of integration to Re(s) = 1/2 + ε, we pick up the main term from the pole at 1 since
ϕ̃(1) = Vol(ϕ). The error term follows by using the convexity bound of Oε(|Disc(K)|1/4+ε) near s = 1/2 at
each of the O

(
2ω(Disc(K))

)
L-functions used to define ΦK,2(s).

The next lemma, whose proof is very similar to that of Lemma 4.5, gives a bound when imposing ramification
on the quadratic extensions of a fixed quadratic field K and will only be used in §8:

Lemma 4.6. If K is a quadratic field and f is a squarefree product of prime ideals in K, then the number
of quadratic extensions L over K such that NmK(Disc(L/K)) < X and every prime dividing f ramifies in L
is bounded by

Oε

(
L(1,K/Q)

Nm(f)
·X +

|Disc(K)|−1/4

Nm(f)1/2
·X1/2+ε

)
.
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Proof. We can (and do) assume that f is odd. Since an upper bound for the number of quadratic extensions
of K can be obtained with a smooth sum, we proceed as in the proof of Lemma 4.5. The only difference is
that we use, instead of ΦK,2(s), the Dirichlet series ΦK,2,f(s) corresponding to extensions L of K that are
ramified at every prime dividing f:

ΦK,2,f(s) :=
∑

[L:K]=2
L ramified at f

1

NmK(Disc(L/K))s

= −1 +
2−r2(K)

ζK(2s)
·
∑
c|2

NmK(c)2s−1 ·
∑

χ∈Cl(K,c2)∨

( ∑
a squarefree
(a,c)=1, f|a

χ(a)

NmK(a)s

)
,

where the notation is as in the definition of ΦK,2(s). Since the residue of ΦK,2,f(s) at 1, its rightmost pole,
is � L(1,K/Q)/Nm(f), the lemma follows from an argument identical to the proof of Lemma 4.5.

4.2 Proof of Theorem 4.3

We are now ready to prove the main result of this section. From Lemma 4.4, it follows that we may estimate
NC(Σ;X,Xβ) by counting quadratic extensions L of quadratic fields K. Let χ[0,1] denote the characteristic
function of [0, 1]. Then

NC(Σ;X,Xβ) =
1

2

∑
K∈K(Σ)

|Disc(K)|<Xβ

∑
[L:K]=2

χ[0,1]

( |Disc(K) ·NmK(Disc(L/K))|
X

)
. (14)

The factor of 1/2 in the right hand side of (14) is to account for the fact that a D4-quartics L and its
conjugate L′ both contribute to the inner sum, while the left hand side of (14) counts D4-quartics up to
conjugacy.

For ε > 0, choose ϕ± to be smooth compactly supported functions such that ϕ± − χ[0,1] takes values in
R± and such that Vol(ϕ±) = 1± ε. Lemma 4.5 together with (13) implies that

∑
K∈K(Σ)

|Disc(K)|<Xβ

∑
[L:K]=2

ϕ±
( |Disc(K) ·NmK(Disc(L/K))|

X

)
=

∑
K∈K(Σ)

|Disc(K)|<Xβ

1± ε
ζ(2)

· L(1,K/Q)

L(2,K/Q)
· 2−r2(K)

|Disc(K)|
·X

+ Oε

( ∑
K∈K(Σ)

|Disc(K)|<Xβ

|Disc(K)|− 1
4 +εX

1
2 +ε
)
.

In the above equation, the left hand side corresponding to ϕ+ (resp. ϕ−) is an upper bound (resp. lower

bound) for NC(Σ;X,Xβ). Meanwhile the error term on the right hand side is bounded by Oε(X
1
2 + 3β

4 +ε)
which, when β < 2/3, is bounded by o(X). Therefore, Theorem 4.3 follows by letting ε tend to 0. 2

Remark 4.7. We note that standard analytic methods (namely, Perron’s formula in conjunction with hybrid
(sub)convexity bounds on the growth of Hecke L-functions in the critical strip) yield a power saving in the
error bound in Theorem 4.3. However, we do not include the arguments since they will not be necessary for
the results of this paper.

5 Mass formulae for families of D4-quartics

We now turn to the proof of Theorem 2. In the previous section, the constant in the asymptotic number of
D4-quartics with bounded conductor whose quadratic subfield has small discriminant was determined as a
sum of L-values. In §5.1 and §5.2, we prove an identity relating the constant in Theorem 4.3 to an Euler
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product matching the predicted mass formula described in §3.3 by proving that the main contribution of the
sum in the right hand side of Theorem 4.3 comes from certain diagonal terms. Finally, in §5.3, we study the
family of D4-quartics ordered by discriminant, and we prove an interesting identity between the analogous
diagonal terms and the heuristic predicted by (11).

5.1 Isolating the diagonal terms in Theorem 4.3

We first prove a lemma that will be used in bounding the non-diagonal terms when we calculate the sum of
L-values that appear in Theorem 4.3 in terms of a weighted Möbius sum.

Lemma 5.1. For any ε > 0,

∑
0<D<X

D squarefree

1

D
·

( ∞∑
m=1

D
1
2
+ε∑

n=1
mn 6=�

µ(m)

m2n

(
D

mn

))
= Oε(1),

where
( ·
·
)

denotes the Legendre symbol.

Proof. The m-sum is absolutely convergent, so we will focus on the n and the D-sums. Interchanging the n
and D-sums yields ∑

0<D<X
D squarefree

1

D
·
∑

n<D
1
2
+ε

mn6=�

1

n

(
D

mn

)
=

∑
n<X

1
2
+ε

mn 6=�

1

n
·

∑
n

2
1+2ε<D<X
D squarefree

1

D

(
D

mn

)
. (15)

We will now apply a simple squarefree sieve to complete the D-sum and then use the Pólya-Vinogradov
inequality to finish the estimate. In particular, we can rewrite (15) as

∑
n<X

1
2
+ε

mn 6=�

1

n
·

( ∑
α<n

1
1+2ε

(
µ(α)

α2
·

∑
n

2
1+2ε≤α2d<X

1

d
·
(α2d

mn

))
+

∑
n

1
1+2ε≤α<X

1
2

(
µ(α)

α2
·

∑
n

2
1+2ε≤α2d<X

1

d
·
(α2d

mn

)))
.

Thus, (15) is bounded by

�
∑

n<X
1
2
+ε

mn6=�

1

n
·
( ∑
α<n

1
1+2ε

1

α2
·
∣∣∣ ∑
α−2n

2
1+2ε≤d<α−2X

1

d
·
(
α2d

mn

)∣∣∣ +
∑

n
1

1+2ε<α<X
1
2

1

α2
·
∣∣∣ ∑
d< X

α2

1

d
·
(
α2d

mn

)∣∣∣)

�
∑

n<X
1
2
+ε

mn6=�

m
1
2 log(n)

n
1
2 + 1

1+2ε

= Oε(m
1
2 ).

The last equality follows from the fact that for ε sufficiently small, 1
2 + 1

1+2ε >
3
2 −

1
1000 , so

∞∑
n=1

log(n)

n
1
2 + 1

1+2ε

= Oε(1).

The lemma then follows from the absolute convergence of
∑
m−

3
2 .

The next result is the key input in obtaining the mass formula. Using Lemma 5.1, we rewrite the sum of
L-values appearing in Theorem 4.3 in terms of a weighted Möbius sum that we will later show is equal to an
Euler product. When ordering D4-quartics by discriminant, there is no known analogue to Proposition 5.2.
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Proposition 5.2. We have:∑
[K:Q]=2

0<Disc(K)<X

L(1,K/Q)

L(2,K/Q)
· 1

|Disc(K)|
=

∑
[K:Q]=2

0<Disc(K)<X

1

|Disc(K)|
·

∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2
+ O(1);

∑
[K:Q]=2

−X<Disc(K)<0

L(1,K/Q)

L(2,K/Q)
· 1

|Disc(K)|
=

∑
[K:Q]=2

−X<Disc(K)<0

1

|Disc(K)|
·

∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2
+ O(1).

(16)

Proof. Let χK denote the quadratic character associated with K by class field theory so that we have

L(1,K/Q) =
∑∞
n=1

χK(n)
n . From the absolutely convergent Euler product, it is straightforward to see that

L(2,K/Q) > (ζ(4)/ζ(2))2 > 0, and hence 1/L(2,K/Q) is uniformly bounded independent of K. Using
partial summation and the Pólya-Vinogradov inequality, for any ε > 0 we get

1

L(2,K/Q)
·

∑
n>|Disc(K)|

1
2
+ε

χK(n)

n
= Oε

(
log(|Disc(K)|)
|Disc(K)|ε

)
.

Thus, we can conclude that

L(1,K/Q)

L(2,K/Q)
=

1

L(2,K/Q)
·
|Disc(K)|

1
2
+ε∑

n=1

χK(n)

n
+Oε

(
log(|Disc(K)|)
|Disc(K)|ε

)
. (17)

Using (17), the left hand sides of (16) are equal to

∑
[K:Q]=2

0<Disc(K)<X

1

|Disc(K)|
·

(
1

L(2,K/Q)
·

Disc(K)
1
2
+ε∑

n=1

χK(n)

n
+Oε

(
log(Disc(K))

Disc(K)ε

))
;

∑
[K:Q]=2

−X<Disc(K)<0

1

|Disc(K)|
·

(
1

L(2,K/Q)
·
|Disc(K)|

1
2
+ε∑

n=1

χK(n)

n
+Oε

(
log(|Disc(K)|)
|Disc(K)|ε

))
.

(18)

In either case, the sum of the Oε terms is itself Oε(1), and so we focus on the remaining term. Using the
absolute convergence of the Euler product of L(2,K/Q)−1, we have

1

L(2,K/Q)
·

(|Disc(K)|
1
2
+ε∑

n=1

χK(n)

n

)
=

( ∞∑
m=1

µ(m)χK(m)

m2

)
·

(|Disc(K)|
1
2
+ε∑

n=1

χK(n)

n

)
. (19)

The key observation we make is that the main contribution to the right hand side of (19) comes from the
“diagonal” terms, i.e., when mn is a square. By pulling out these terms, we may rewrite (19) as

∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2
+

|Disc(K)|
1
2
+ε∑

n=1

χK(n)

n
·
∞∑
m=1
mn6=�

µ(m)χK(m)

m2
. (20)

Substituting (20) back into (18) implies that the left hand sides of (16) are equal to

∑
[K:Q]=2

0<Disc(K)<X

1

Disc(K)
·

( ∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2
+

Disc(K)
1
2
+ε∑

n=1

∞∑
m=1
mn6=�

µ(m)χK(mn)

m2n

)
+Oε(1);

17



∑
[K:Q]=2

−X<Disc(K)<0

1

|Disc(K)|

( ∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2
+

|Disc(K)|
1
2
+ε∑

n=1

∞∑
m=1
mn6=�

µ(m)χK(mn)

m2n

)
+Oε(1).

By Lemma 5.1, ∑
[K:Q]=2

|Disc(K)|<X

1

|Disc(K)|
·
(|Disc(K)|

1
2
+ε∑

n=1

∞∑
m=1
mn 6=�

µ(m)χK(mn)

m2n

)
= Oε(1).

Noting that the remaining term does not depend on ε, we obtain the proposition.

5.2 Proof of Theorem 2

We now turn to the proof of Theorem 2. From the identity

∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2
=
ζ(2)

ζ(3)
·

∏
p|Disc(K)

1− 1
p2

1− 1
p3

, (21)

we immediately obtain:

∑
[K:Q]=2

0<Disc(K)<X

1

Disc(K)
·

∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2
=

ζ(2)

ζ(3)
·
( ∑

[K:Q]=2
0<Disc(K)<X

1

Disc(K)
·

∏
p|Disc(K)

1− 1
p2

1− 1
p3

)
;

∑
[K:Q]=2

−X<Disc(K)<0

1

|Disc(K)|
·

∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2
=
ζ(2)

ζ(3)
·
( ∑

[K:Q]=2
−X<Disc(K)<0

1

|Disc(K)|
·

∏
p|Disc(K)

1− 1
p2

1− 1
p3

)
.

(22)

Decomposing the right hand sides of (22) into sums over squarefree integers in a fixed congruence class
mod 4, we obtain that the left hand sides of (22) are equal to

ζ(2)

ζ(3)
·

( ∑
1<D<X
D≡1 mod 4
D squarefree

1

D
·
∏
p|D

1− 1
p2

1− 1
p3

+
∑

1<D<X
D≡3 mod 4
D squarefree

3

14D
·
∏
p|D

1− 1
p2

1− 1
p3

+
∑

1<D<X
D≡1 mod 2
D squarefree

3

28D
·
∏
p|D

1− 1
p2

1− 1
p3

)
;

ζ(2)

ζ(3)
·

( ∑
−X<D<−1
D≡1 mod 4
D squarefree

1

D
·
∏
p|D

1− 1
p2

1− 1
p3

+
∑

−X<D<−1
D≡3 mod 4
D squarefree

3

14D
·
∏
p|D

1− 1
p2

1− 1
p3

+
∑

−X<D<−1
D≡1 mod 2
D squarefree

3

28D
·
∏
p|D

1− 1
p2

1− 1
p3

)
.

(23)

Consider the limit

lim
X→∞

ζ(2)

ζ(3) log(X)
·

∑
1<D<X

D squarefree

1

D
·
∏
p|D

1− 1
p2

1− 1
p3

= lim
X→∞

ζ(2)

ζ(3) log(X)
·

∑
1<D<X

D squarefree

∏
p|D

1

p
·

1− 1
p2

1− 1
p3

. (24)

Using Perron’s formula, for <(σ) > 0, we can rewrite the right hand side of (24) as

lim
X→∞

ζ(2)

ζ(3) log(X)
· 1

2πi
·
∫
σ

(∏
p

(
1 +

1

ps+1
· 1− p−2

1− p−3

))
·Xs · ds

s
.

The Euler product, for σ > 0, is equal to∏
p

1 +
1

ps+1
· 1− p−2

1− p−3
= ζ(s+ 1) ·

∏
p

(
1 − 1

p2s+2
· 1− p−2

1− p−3
− 1

ps+3
· 1− p−1

1− p−3

)
.
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Note that ∏
p

1− 1

p2s+2
· 1− p−2

1− p−3
− 1

ps+3
· 1− p−1

1− p−3
=
∏
p

1 +O
( 1

p2s+2
+

1

ps+3

)
.

Hence, moving the σ contour to the left of <(σ) = 0 and using the Cauchy integral formula, we get3∫
σ

(∏
p

(
1 +

1

ps+1
· 1− p−2

1− p−3

))
·Xs · ds

s
= log(X) ·

∏
p

(
1− 1

p2
· 1− p−2

1− p−3
− 1

p3
· 1− p−1

1− p−3

)
+ o(log(X)). (25)

The main term in the right hand side of (25) simplifies to

ζ(2)ζ(3) log(X) ·
∏
p

(
1− 1

p2
− 2

p3
+

2

p4

)
This, in particular, shows that we can rewrite the limit in (24) as

lim
X→∞

ζ(2)

ζ(3) log(X)
·

∑
1<D<X

D squarefree

1

D
·
∏
p|D

1− 1
p2

1− 1
p3

= ζ(2) ·
∏
p

(
1− 1

p2
− 2

p3
+

2

p4
.
)

Carrying out the analogous computation for each term in both equations of (23) yields Theorem 2. 2

Theorems 2 and 4.3 immediately imply the following result.

Theorem 5.3. Let β < 2/3 be fixed. For the family of all D4-quartics,

NC(X,Xβ) =
3β

8
·
∏
p

(
1− 1

p2
− 2

p3
+

2

p4

)
·X log(X) +O(X).

It follows from the heuristics of §3.3 that the family of D4-quartics L satisfying |d(L)| ≤ |C(L)|2/3 satisfies
the mass formula (10) when such fields are ordered by their conductors. In §6-8, we prove a refinement of
Theorem 5.3 by adapting the arguments in [2] in conjunction with the analytic techniques used in Section 4.

5.3 Diagonal terms for the family of D4-quartics ordered by discriminant

We would like to conclude this section by considering asymptotics for the analogous “diagonal terms” that
arise when counting the number of D4-quartics having bounded discriminants. Let NDisc(X) denote the
number of isomorphism classes of D4-quartics L with |Disc(L)| < X. By Corollary 1.4 of [9] (or following
the proof of Theorem 4.3 with discriminant in place of conductor), we have

NDisc(X) =
X

2ζ(2)
·

∑
[K:Q]=2

|Disc(K)|<X

L(1,K/Q)

L(2,K/Q)
· 2−r2(K)

|Disc(K)|2
+ o(X). (26)

Applying the reasoning in the proof of Proposition 5.2, we obtain that combining Equation (19) and (26)
implies

NDisc(X) =
X

2ζ(2)
·

∑
[K:Q]=2

|Disc(K)|<X

( ∞∑
m=1

µ(m)χK(m)

m2

)
·
( ∞∑
n=1

χK(n)

n

)
· 2−r2(K)

|Disc(K)|2
+ o(X).

We replace the product of sums ( ∞∑
m=1

µ(m)χK(m)

m2

)
·
( ∞∑
n=1

χK(n)

n

)
,

with simply the “diagonal” terms (i.e., the terms where mn is a square).

3One can in fact obtain a better error term, but it is unnecessary for establishing the results of the current article.

19



Theorem 5.4. We have the following:

1

2ζ(2)
·

∑
[K:Q]=2

|Disc(K)|<X

2−r(K)

|Disc(K)|2
·
( ∑

0<a,b<∞
(Disc(K),ab)=1

µ(a)

a3b2

)
·X ∼ 3 · 112

26 · 17
·
∏
p

(
1 +

1

p2
− 1

p3
− 1

p4

)
·X. (27)

Proof. This follows from an argument analogous to the proof of Theorem 2.

The right hand side of (27) agrees exactly with the heuristic in (11)! The non-diagonal terms, as in §5.2,
again give an error term of O(X). In the case when D4-quartics were ordered by conductor, this error term
was negligible compared to the main term of � X logX. This time, however, the main term of � X does not
automatically dominate the error term. In fact, the comparison of the constant c ≈ 0.0523 from [9] and the
constant ≈ 0.406 on the right hand side of (27) implies that the non-diagonal terms do make a non-negligible
contribution.

6 Parameterizing D4-quartics via pairs of ternary quadratic forms

We next give a proof using geometry-of-numbers techniques in conjunction with arithmetic invariant theory
methods for determining asymptotics on the number of D4-quartics with |q| < X and |d| � X. We obtain
worse error estimates in this second proof, but we are able to prove more refined statements for a wider
class of collections of local specifications. We begin with a parametrization of D4-quartics via certain pairs
of ternary quadratic forms, following Bhargava [1] and Wood [30]. In §6.1, we describe the arithmetic
invariant theory for orbits of such pairs of ternary quadratic forms and compare it to the invariants defined
in Definitions 2.7 and 2.5 for the corresponding D4-quartics. We additionally define splitting types, and we
compute the p-adic densities for pairs of ternary quadratic forms corresponding to D4-quartics with fixed
splitting type at p. These results allow us to employ geometry-of-numbers methods carried out in Section 7
to count the relevant orbits parametrizing D4-quartics with |q| < X and |d| � X.

In [1], Bhargava proved that isomorphism classes of pairs (Q,C), where Q is a quartic ring and C is a
cubic resolvent ring of Q are in bijection with GL2(Z)× SL3(Z)-orbits on Z2 ⊗ Sym2(Z3), the space of pairs
of integral ternary quadratic forms. If Q is a maximal quartic ring, then it has a unique cubic resolvent ring,
so this bijection (when restricted to maximal rings) can be viewed as a parametrization of quartic fields.
We write a pair of ternary quadratic forms as a pair of symmetric 3 × 3 matrices (A,B) whose diagonal
entries are integers and nondiagonal entries are half-integers. The group GL2×SL3 acts on pairs of ternary
quadratic forms as follows:

(g2, g3) · (A,B) = (g3Ag
t
3, g3Bg

t
3) · gt2.

For quartic rings Q containing a quadratic subring, Wood [30] gives a more specialized bijection: For any
ring R, let V ′(R) ⊂ R2 ⊗ Sym2(R3) denote the space of pairs of ternary quadratic forms (A,B) satisfying

(A,B) =

0 0 0
0 a22

a23
2

0 a23
2 a33

 ,
b11

b12
2

b13
2

b12
2 b22

b23
2

b13
2

b23
2 b33

 ,

where a22, a23, a33, b11, b12, b22, b23, and b33 are elements of R with b11 6= 0. The subgroup G′(R) of
GL2(R)× SL3(R) consisting of elements (g2, g3) such that

g2 =

[
±1 0
∗ ±1

]
, and g3 =

±1 0 0
∗ ∗ ∗
∗ ∗ ∗

 ,
acts on V ′(R). Then the G′(Z)-orbits on V ′(Z) are in bijection with triples (Q,C, T ) consisting of a quartic
ring Q, a cubic resolvent C of Q, and a quadratic subring T ⊂ Q. More precisely:

Theorem 6.1 (Thm. 7.3.5 of [30]). For any principal ideal domain R of characteristic different from 2,
there is a bijection between G′(R)-equivalence classes of elements of V ′(R) with isomorphism classes of
triples (Q,C, T ) where
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• Q is a quartic ring over R,

• C is a cubic resolvent of Q with map ϕ : Q→ C, and

• T ⊂ Q is a primitive quadratic subalgebra such that ϕ(T ) 6= 0.

In order to obtain a parametrization of maximal orders in D4-quartics, we first make a few definitions.

Definition 6.2. An element of v ∈ V ′(Z) is generic if the quartic ring corresponding to v under Theorem
6.1 is a D4-quartic order, i.e., an order in a D4-quartic. Additionally, an element V ′(Z) is said to be maximal
if it corresponds to a maximal quartic ring. A collection of elements of V ′(Z) is said to be maximal or generic
if each element is the same.

Let (A,B) be an element of V ′(Z) and let Q be the quartic ring corresponding to it. It follows from
Lemma 22 of [1], that Q is nonmaximal at every prime dividing b11. Hence Q is maximal only when
b11 = ±1. Furthermore, by replacing (A,B) with (− Id, Id) · (A,B) = (−A,−B), if necessary, we may
assume that b11 = 1. We define V (Z) ⊂ V ′(Z) to be the subspace of pairs

(A,B) =

0 0 0
0 a22

a23
2

0 a23
2 a33

 ,
 1 b12

2
b13
2

b12
2 b22

b23
2

b13
2

b23
2 b33

 , (28)

and we define the subgroup G(Z) ⊂ G′(Z) to be the set of pairs (g2, g3) ∈ G′(Z) such that

g2 =

[
±1 0
∗ 1

]
, and g3 =

±1 0 0
∗ ∗ ∗
∗ ∗ ∗

 .
Moreover, for any ring R, we analogously define the space V (R) and the group G(R). We have the following
proposition:

Proposition 6.3. There is a bijection between (isomorphism classes of) D4-quartics and maximal generic
G(Z)-orbits on V (Z).

Proof. Recall that every D4 quartic field L has a unique maximal order and that maximal order has a unique
cubic resolvent ring as well as a unique primitive quadratic subalgebra. Thus, there is exactly one G′(Z) orbit
in V ′(Z) corresponding to L by Theorem 6.1 The above discussion shows that each generic, maximal G′(Z)
orbit in V ′(Z) contains an element of V (Z). Moreover, if (A′, B′) = (g2, g3) · (A,B) for some (A,B) ∈ V (Z)
and (g2, g3) ∈ G′(Z) then B′11 = g2,22 = 1 and thus (g2, g3) ∈ G(Z). Since we only make a claim about
maximal orders, this completes the proof.

6.1 Invariant theory

We next discuss the invariant theory for the action of G on V . The action of G(C) ∩ SL3(C) on V (C) turns
out to have ring of invariants freely generated by 3 elements. We can describe these invariants in terms of
the cubic resolvent of (A,B), i.e., the binary cubic form det(Ax + By). It is straightforward to check that
if (A,B) is as in (28), then the coefficient of x3 in det(Ax + By) is equal to zero. For a ring R, let U(R)
denote the subspace of space of binary cubic forms consisting of elements

f(x, y) = bx2y + cxy2 + dy3,

where b, c, and d are elements of R. Define N1 to be the group of lower triangular 2× 2-matrices with top
left entry ±1 and bottom right entry 1. Then N1 acts on U via the action

g · f(x, y) = f((x, y) · gt).

Additionally, if π : V (R) → U(R) denotes the resolvent map (A,B) 7→ 4 det(Ax + By), then for (g2, g3) ∈
G(R),

π((g2, g3) · (A,B)) = g2 · π(A,B).
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The coefficients b, c, and d of the binary cubic form π(A,B) are the invariants for the action of G(C)∩SL3(C)
on V (C). Therefore, the ring of invariants for the action of all of G(C) on V (C) is the same as the ring of
invariants for the action of N1(C) on U(C). The latter ring is freely generated by two elements d and q,
which can be associated to an element of V as follows:

Definition 6.4. If (A,B) ∈ V (R) has resolvent f(x, y) = bx2y + cxy2 + dy3, then

d(A,B) := d(f) := −b
q(A,B) := q(f) := c2 − 4bd.

Additionally, we set

C(A,B) := d(A,B) · q(A,B) and Disc(A,B) := d(A,B)2 · q(A,B).

We now relate the invariants d and q of an element (A,B) ∈ V (Z) with the invariants of the quartic ring
corresponding to the G(Z)-orbit of (A,B) in Theorem 6.1.

Proposition 6.5. Let (A,B) ∈ V (Z) be an element with nonzero invariants d(A,B) and q(A,B). Let
Q denote the quartic ring corresponding to (A,B) and let T be its quadratic subalgebra. Then we have
Disc(T ) = d(A,B) and NmT (Disc(Q/T )) = |q(A,B)|.

Proof. Let (A,B) be as in (28) with resolvent f(x, y) = bx2y + cxy2 + dy3, and assume that d(A,B) and
q(A,B) are nonzero. As described in Section 3 of [1], one can describe the multiplicative structure on a
(normal) Z-basis of Q using the matrix coefficients of (A,B). Indeed, if 〈1, α1, α2, α3〉 is a Z-basis for Q, we
can write its multiplication table as

αiαj = c0ij + c1ijα1 + c2ijα2 + c3ijα3,

where ckij ∈ Z for 1 ≤ i, j ≤ 3 and k ∈ {0, 1, 2, 3} are determined completely by aij and bij . Equations 20,

21, and 22 of [1] with a11 = a12 = a13 = 0 and b11 = 1 imply that c211 = c311 = 0. Additionally, we obtain
c011 = −a33a22 and c111 = a23, i.e.,

α2
1 = −a33a22 + a23α1,

and so Z[α1] = 〈1, α1〉 is a quadratic subalgebra of Q. By the description of T given in the proof of Corollary
7.2.2 of [30], we have that T = Z[α1], and

Disc(T ) = Disc(α1) = a2
23 − 4a33a22.

Using the resolvent map π(A,B) = 4 det(Ax+By) = bx2y + cxy2 + dy3, we deduce that

b = 4a22a33 − a2
23.

Thus, Disc(T ) = d(A,B), as necessary.
Furthermore, by Proposition 10 of [1] and since Disc(A,B) = Disc(π(A,B)), we have

Disc(Q) = Disc(A,B) = Disc(bx2y + cxy2 + dy3) = b2c2 − 4b3d.

The relative discriminant formula implies that |Disc(Q)| = |Disc(T )2 ·NmT (Disc(Q/T ))|, and so we conclude
that

NmT (Disc(Q/T )) =

∣∣∣∣ Disc(Q)

Disc(T )2

∣∣∣∣ = |c2 − 4bd|.

The proposition follows.

We slightly generalize the notion of conductor given in the introduction for étale quartic algebras over
R. For a pair (Q,T ), where Q is a étale quartic algebra over R and T is a primitive quadratic subalgebra
of Q, we set C(Q,T ) := Disc(Q)/Disc(T ). The following lemma will be useful in obtaining a bound on the
number of G(Z)-orbits that correspond to non-maximal D4-quartic orders in Section 8.
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Lemma 6.6. Let p be an odd prime. If (A,B) ∈ V (Zp) corresponds to a non-maximal quartic order
Q contained in a degree 4 étale extension Lp of Qp and a quartic subalgebra T contained in a quadratic
subextension Kp of Lp, then

p2 | C(A,B)

C(Lp,Kp)
.

Proof. Since the index of Q in the maximal order of L is a multiple of p, it follows that the discriminant
of (A,B) differs from the discriminant of L by a factor of at least p2. Since C(A,B) = Disc(A,B)/Disc(T )
and C(Lp,Kp) = Disc(Lp)/Disc(Kp), the lemma follows unless Disc(T )/Disc(Kp) is divisible by p, or
equivalently, unless T is not maximal in the ring of integers of Kp.

Assume that T is not maximal in the ring of integers of Kp, and thus has discriminant divisible by p2.
We know from Proposition 6.5 that −Disc(T ) is the discriminant of the quadratic form a22y

2 +a23yz+a33z
2

corresponding to A. Hence, either A is a multiple of p or, after a change of variables, we may assume that
p2 | a22 and p | a23. In the first case, the pair of rings (Q1, T1) corresponding to (A/p,B) ∈ V (Z) are
over-orders of Q and T such that p4 | C(Q,T )/C(Q1, T1). In the second case, the argument is similar: we
use the pair (A2, B2) obtained by multiplying the third row and column of A and B by p, and dividing A
by p2, which yield a pair (Q2, T2) of over-orders of (Q,T ) such that p2 | C(Q,T )/C(Q1, T1). The lemma
follows.

6.2 Splitting types of pairs of ternary quadratic forms

Let p be a fixed prime. We say that a pair (A,B) ∈ V (Fp) is nondegenerate if the zero sets in P2(Fp) of the
two ternary quadratic forms corresponding to A and B intersect at four points counted with multiplicity.
For nondegenerate elements (A,B) ∈ V (Fp) such that A is nonzero, we define the quartic splitting type at p
to be

ςp(A,B) = (fe11 fe22 · · · ),

where the fi’s are the degrees over Fp of the field of definition of these points, and the ei’s are their
multiplicities. Furthermore, recall that the top row and column of A is 0, and so in the notation of (28),
A corresponds to a quadratic form g(y, z) = a22y

2 + a23yz + a33z
2. We define the quadratic splitting type

ς ′p(A,B) of (A,B) to be (11) if g(x, y) has two distinct roots in P1(Fp), to be (2) if g(x, y) has a pair of
conjugate roots defined over a quadratic extension of Fp, and (12) if g(x, y) has a double root. We then say
that the pair (ςp(A,B), ς ′p(A,B)) is the splitting type of (A,B) at p.

If (A,B) is an element in V (Z) or V (Zp), we define the splitting type of (A,B) at p to be the splitting type
of the reduction modulo p of (A,B), assuming it is nondegenerate. Let Q be the quartic ring corresponding
to (A,B), and let T denote the quadratic subring of Q arising from Theorem 6.1. It follows from §4.1 of [1],
that the quartic splitting type of (A,B) is equal to the splitting type of Q. We have seen that the quadratic
subring T of Q corresponding to the pair (A,B) is the quadratic ring whose discriminant is the same as that
of the binary quadratic form corresponding to A. Hence, the quadratic splitting type of (A,B) is the same
as the splitting type of T .

Given a pair (Lp,Kp) of extensions of Qp, whose rings of integers correspond to a pair (A,B) ∈ V (Zp),
we define ςp(Lp,Kp) to equal the splitting type of (A,B). Additionally, there are four possible splitting types
ς = (ς∞, ς

′
∞) at ∞ for an element in V (R) having nonzero discriminant. The invariants (d, q) of an element

v ∈ V (R)(ς) are constrained in the following way:

ς = ((1111), (11)) ⇒ q > 0, d > 0;

ς = ((112), (11)) ⇒ q < 0, d > 0;

ς = ((22), (11)) ⇒ q > 0, d > 0;

ς = ((22), (2)) ⇒ q > 0, d < 0.

We denote the set of elements in V (R) having splitting type ς by V (R)(ς) and set V (Z)(ς) = V (Z)∩V (R)(ς).
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6.3 The density of maximal elements

For a prime p and splitting type (ςp, ς
′
p), let Tp(ςp, ς

′
p) denote the set of elements (A,B) ∈ V (Zp) whose

splitting type at p is (ςp, ς
′
p) and let Mp(ςp, ς

′
p) denote the set of elements (A,B) ∈ Tp(ςp, ς ′p) that correspond

to quartic rings under Theorem 6.1 that are maximal at p. Identifying V (Zp) ∼= Z8
p by regarding the non-

fixed entries of (28) as a vector, let µ denote the Haar measure normalized so that V (Zp) have volume 1.
We have the following result which computes the volumes of the sets Mp(ςp, ς

′
p).

Proposition 6.7. We have

µ(Mp((1111), (11))) = 1
8 (p− 1)3(p+ 1)/p4

µ(Mp((22), (11))) = 1
8 (p− 1)3(p+ 1)/p4

µ(Mp((22), (2))) = 1
4 (p− 1)3(p+ 1)/p4

µ(Mp((112), (11))) = 1
4 (p− 1)3(p+ 1)/p4

µ(Mp((4), (2))) = 1
4 (p− 1)3(p+ 1)/p4

µ(Mp((1
211), (11))) = 1

2 (p− 1)3(p+ 1)/p5

µ(Mp((1
22), (11))) = 1

2 (p− 1)3(p+ 1)/p5

µ(Mp((1
212), (12))) = 1

2 (p− 1)3(p+ 1)/p5

µ(Mp((2
2), (12))) = 1

2 (p− 1)3(p+ 1)/p5

µ(Mp((1
4), (12))) = (p− 1)3(p+ 1)/p6

µ(Mp((1
212), (11))) = 1

2 (p− 1)3(p+ 1)/p6

µ(Mp((2
2), (2))) = 1

2 (p− 1)3(p+ 1)/p6

Proof. First note that the splitting type of v ∈ V (Zp) depends only on the reduction of v modulo p. It follows
that the densities of the sets Tp(ςp, ς

′
p) can be computed by counting elements in V (Fp). The conditions that

ensure the maximality of v are listed in §4.2 of [1]. We prove Proposition 6.7 by computing the densities of
Tp(ςp, ς

′
p) and then, for each ςp, determining the probability that v ∈ Tp(ςp, ς ′p) is maximal.

Let (A,B) be an element of V (Zp) having quadratic splitting type (11). It follows that the quadratic
form corresponding to A has two distinct roots in P1(Fp). The number of possibilities for Ā, the reduction
of A modulo p, is thus equal to (p+ 1)p(p− 1)/2 giving a density of (p+ 1)p(p− 1)/(2p3) for the possibilities
of A. By a change of variables, we may assume that (A,B) is of the form

(Ā, B̄) =

 0 0 0
0 0 1/2
0 1/2 0

 ,
 1 0 0

0 s 0
0 0 t

 , (29)

when p is odd and

(Ā, B̄) =

 0 0 0
0 0 1/2
0 1/2 0

 ,
 1 α/2 β/2
α/2 s 0
β/2 0 t

 , (30)

when p = 2. The quartic splitting type of (A,B) then has six options: (1111), (112), (22), (1211), (122), and
(1212). When p is odd, this splitting type depends on whether s and t are residues modulo p, nonresidues
modulo p, or 0. Their relative densities can be computed directly. To obtain the splitting type (1111), both
s and t must be residues modulo p which occurs with relative density (p− 1)2/(4p2). It is a straightforward
computation to check that for p = 2, the relative density of elements with quartic splitting type (1111) is
again 1/16 = (p−1)2/(4p2). Multiplying with the density (p2−1)/(2p2) of split quadratic forms arising from
A yields the density of Tp((1111), (11)). Since every element with unramified splitting type is automatically
maximal, it follows that Tp((1111), (11)) = Mp((1111), (11)), yielding the first part of the proposition.

We now compute the density of Mp((1
212), (11)). Again, we may assume that (Ā, B̄) is of the form (29)

when p is odd and of the form (30) when p = 2. When p is odd, such a pair (A,B) has quartic splitting type
(1212) when s = t = 0, and when p = 2 such a form has splitting type (1212) when α = β = 0. The relative
density of such (A,B) is 1/p2, and we therefore see that the density of Tp((1

212), (11)) is 1
2 (p− 1)(p+ 1)/p4.

We now compute the probability that an element (A,B) ∈ Tp((1212), (11)) is maximal at p. Let (A,B) in
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Tp((1
212), (11)) be fixed. By a change of variables, we may assume (for both p odd and p = 2) that the

reduction of (A,B) modulo p is equal to

(Ā, B̄) =

 0 0 0
0 0 1/2
0 1/2 0

 ,
 1 0 0

0 0 0
0 0 0

 . (31)

From Lemma 23 of [1], it follows that (A,B) is maximal if and only if both b22 and b23 are not divisible by
p2. Hence the relative density of Mp((1

212), (11)) in Tp((1
212), (11)) is (1− 1/p)2. In conjunction with the

previously computed density of Tp((1
212), (11)), it follows that the density of Mp((1

212), (11)) is as stated
in the proposition. The computations of the densities of the Mp(ςp, ς

′
p) for other splitting types (ςp, ς

′
p) are

very similar to the above two computations and so we omit them.

Proposition 6.7 computes the p-adic splitting densities in V . However, it is possible to extract densities
that are more refined. From the splitting types with central inertia in Table 1, it is evident that the splitting
type of a D4-quartic L at a prime p is not enough to determine the decomposition groups of L at p. However,
if v ∈ V (Z) corresponds to OL, then the G(Zp)-orbit of v in V (Zp) determines OL⊗Zp, and hence determines
the decomposition groups of L at p. In the following lemma, we compute some of these more refined densities.

If p is an odd prime with splitting type ((1212), (11)) (resp. ((22), (2))) in a D4-quartic L with quadratic
subfield K, then there are two possibilities for the splitting type (ςp(φ(L)), ςp(φ(K))) of φ(L) at p (see

Definition 2.1), namely ((1111), (11)) (resp. ((22), (11))) or ((22), (2)). Let M
(11)
p (ςp, ς

′
p) (resp. M

(2)
p (ςp, ς

′
p))

denote the subset of elements (A,B) ∈ Mp(ςp, ς
′
p) corresponding to (Q,T ) under Theorem 6.1 such that

φ(Frac(T )) has splitting type (11) (resp. (2)) at p.

Lemma 6.8. Let p be an odd prime and let (ςp, ς
′
p) be one of ((1212), (11)) or ((22), (2)). Then with the

notation of the previous paragraph,

µ(M (2)
p (ςp, ς

′
p)) = µ(M (11)

p (ςp, ς
′
p)).

Proof. We prove the lemma only for the splitting type ((1212), (11)), since the proof is very similar for
((22), (2)). Let (A,B) ∈ V (Zp) be a maximal element, corresponding to a degree 4 étale Zp-algebra Q and a
quadratic subalgebra T , and let L (respectively, K) denote the fraction field of Q (respectively, T ). Assume
that the splitting type of (A,B) is ((1212), (11)), and let f(x, y) = 4 det(Ax+By) denote the cubic resolvent
polynomial of (A,B). Then the x3-coefficient of f is 0, and dividing f by y yields a binary quadratic form.
A direct computation, in conjunction with Propositions 2.6 and 6.5 imply that we have

Discp(f(x, y)/y)/p2 = Discp(φ(K)), (32)

where Discp means the p-part of the discriminant and hence, sign issues don’t arise. Since the two possible
decomposition groups for the splitting type ((1212), (11)) are determined by the splitting behaviour of p at
φ(K) (see Table 1), it follows that the relative densities of these decomposition groups can be computed
by computing the relative densities of the different possible splitting behaviours of p in the quadratic order
whose discriminant is Discp(f(x, y)/y)/p2.

Since p is odd, from the discussion surrounding (31), it follows that we may assume (A,B) satisfies

a11 = a12 = a13 = b12 = b13 = 0, b11 = 1, a23 ≡ 1 (mod p), a22 ≡ b22 ≡ b23 ≡ b33 ≡ 0 (mod p).

Consider the pair (A,B1), where the B1 is obtained from B by dividing the b22, b23, and b33 by p. Let f1

denote the cubic resolvent form of (A,B1). By a direct computation and applying (32), the discriminant
of f1(x, y)/y is exactly the same as the discriminant of φ(K). Hence the decomposition group of L is
determined by the splitting of p in f1(x, y)/y. Since (A,B) was assumed to be maximal, it follows that p
does not divide the discriminant of f1(x, y)/y, since, by Table 1, for the splitting types under consideration,
φ(K) is unramified at p. It is a direct computation to check that the density of elements (A,B1) such that
f1(x, y)/y has splitting type (11) (resp. (2)) is exactly 1/2, yielding the lemma.

Let Mp denote the set of elements (A,B) ∈ V (Zp) that are maximal at p, and let Up denote the set of
elements (A,B) inMp that do not have central inertia, i.e., the splitting type of any (A,B) ∈ Up at p is not
equal to ((14), (12)), ((1212), (11)), or ((22), (2)). Summing the values obtained in Proposition 6.7 we can
compute the density of Mp. To determine the density of Up, we add up the values of the first 9 rows.
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Theorem 6.9. We have

µ(Mp) =
(

1− 1

p2

)(
1− 1

p2
− 2

p3
+

2

p4

)
;

µ(Up) =
(

1− 1

p2

)(
1− 1

p

)2(
1 +

2

p

)
.

7 Counting D4-quartics using geometry-of-numbers methods

In the previous section, we defined an injective map from D4-quartics to G(Z)-orbits on V (Z) and determined
generators d and q for the ring of invariants for the action of G on V . In this section, our goal is to count
generic G(Z)-orbits on V (Z) having bounded invariants.

Recall that an element v ∈ V (Z) is said to be generic if v corresponds to an order in a D4-quartic, and
the subset of elements in V (Z) with infinite splitting type ς is denoted by by V (Z)(ς). For any G(Z)-invariant

set L ⊂ V (Z) and for any δ > 0, let N (δ)
q (L;X,Y ) denote the number of generic G(Z)-orbits v on L such

that X < |q(v)| ≤ (1 + δ)X and Y < |d(v)| ≤ (1 + δ)Y . Our goal in this section is to prove the following
theorem:

Theorem 7.1. Let X and Y be positive real numbers going to infinity such that Y (log Y )2 = o(X). Then
we have

N (δ)
q (V (Z)(ς);X,Y ) =

ζ(2)

2τς
δ2XY + oδ(XY ),

where τς = 8 when ς = ((1111), (11)) or ς = ((22), (11)) and τς = 4 otherwise.

To do so, we study the fundamental domain for the action of the non-reductive group G(Z) on V (R). We
then compute the volume of a cover of this fundamental set after cutting of the cusps in terms of an Euler
product of local densities.

7.1 Construction of fundamental domains

In this section, our goal is to construct a finite cover for a fundamental domain for the action of G(Z) on
V (R). As a first step, we describe the G(R)-orbits on V (R), and the sizes of the stabilizers in G(R) of
elements in each orbit. Before we do so, it will be convenient to introduce the following group and space:
For any ring R, let Vred(R) ⊂ V (R) consist of all pairs (A,B) of the form

(A,B) =

0 0 0
0 a22

a23
2

0 a23
2 a33

 ,
1 0 0

0 b22
b23
2

0 b23
2 b33

 . (33)

The subgroup Gred(R) of G(R) acts on Vred(R), where Gred(R) consists of elements (g2, g3) ∈ GL2(R) ×
SL3(R) such that

g2 =

[
±1 0
∗ 1

]
, and g3 =

±1 0 0
0 ∗ ∗
0 ∗ ∗

 . (34)

Proposition 7.2. The orbits for the action of G(R) on the set of elements in V (R) having nonzero invariants
q and d corresond to a pair of étale algebras (L∞,K∞) with splitting types and invariants as follows:

(1) When q > 0 and d > 0, there are two orbits, one with splitting type ((1111), (11)) and one with splitting
type ((22), (11));

(2) When q < 0 and d > 0, there is one orbit with splitting type ((112), (11));

(3) When q > 0 and d < 0, there is one orbit has splitting type ((22), (2)).

The respective sizes of the stabilizers in G(R) of elements in these orbits are 8 in the first case, and 4 in the
second and third cases, and we denote these stabilizer quantities by τς(L∞,K∞).
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Proof. We start with a few observations. First note that G(R)-orbits on V (R) having fixed invariants d and
q are in bijection with Gred(R)-orbits on Vred(R) having invariants q and d. This is because (A,B) ∈ V (R) is
G(R)-equivalent to some (Ared, Bred) ∈ Vred(R). Futhermore, if two elements in Vred(R) are G(R)-equivalent
via some g ∈ G(R), then g must in fact belong to Gred(R). This latter fact also implies that the stabilizer
in G(R) of any element in Vred(R) is contained in Gred(R). Also note that Gred(R)-orbits on Vred(R) having
nonzero invariants d and q are in bijection with Gred(R)-orbits on Vred(R) having invariants q/|q| and d/|d|.
Indeed, if (A,B) ∈ Vred(R) has invariants q and d, then dividing A by

√
|d| and dividing the lower 2 × 2-

submatrix of B by
√
|q|/|d| yields the necessary bijection. Moreover, a direct computation shows that the

stabilizers in Gred(R) of these two elements are the same. Therefore, it suffices to prove the proposition in
the case when q and d are ±1.

Consider the case q = d = 1. Let (A,B) ∈ Vred(R) have such invariants. By replacing (A,B) with a
Gred(R)-translate, we transform it as follows: first, we ensure that a22 = a33 = 0; next, we subtract an
appropriate multiple of A from B to ensure that its off-diagonal entries are 0; finally, we use an element
of SL2(R) ⊂ Gred(R) to ensure that |b22| = |b33|. From the fact that q = d = 1, it follows that we have
transformed (A,B) into the form  0

1
2

1
2

 ,
 1

±1
4 ±1

4

 ,
where b22 and b33 are either both positive or both negative. It is a direct computation to check that (A,B)
has splitting type ((22), (11)) in the former case and ((1111), (11)) in the latter case. Furthermore, the
stabilizer in Gred(R) of (A,B) in either case is seen to consist of the following eight elements.

1
1

,

1

1
1


,


−1

1

,

−1

1
−1


,


1

1

,

−1

1
1


,


−1

1

,

1

1
−1


,


1

1

,

1
−1
−1


,


−1

1

,

−1

−1
1


,


1

1

,

−1

−1
−1


,


−1

1

,

1

−1
1


.

This concludes the proof of the first item in Proposition 7.2. We omit the proofs of the other two items since
they are very similar.

Recall that the set of elements in V (R) with infinite splitting type ς is denoted by V (R)(ς). Given a
splitting type ς, let (Aς , Bς) ∈ V (R)(ς) ∩ Vred(R) be an element whose invariants have absolute value 1. By
multiplying Aς by

√
|d| and multiplying the bottom 2×2 submatrix of B by

√
|q|/|d|, we obtain an element

with invariants q and d, for any pair (q,d) ∈ R2 having the appropriate signs. We thus obtain the following
result which follows immediately from Proposition 7.2. Note that the set of such pairs (A,B) is bounded
(since q and d are) and semialgebraic (indeed, they are defined by linear conditions.)

Proposition 7.3. Fix an infinite splitting type ς. There exists a fundamental set R(ς) for the action of
G(R) on V (R)(ς) such that R(ς) contains one element (A,B) having invariants q and d for any (q,d) ∈ R2

having the appropriate signs. Moreover, R(ς) may be constructed so that the element (A,B) ∈ R(ς) having
invariants q and d is such that the coefficients of A are bounded by Oδ(|d|1/2) and the coefficients of B are
bounded by Oδ(|q|1/2|d|−1/2).

Let F be a fundamental domain for the action of G(Z) on G(R). We may assume that F is contained in
the Siegel domain S = S1S2, where

S1 =


[1

n 1

]
,

1
1
m3 1

1
t−1

t

1
cos θ sin θ
− sin θ cos θ

 : n,m3 ∈ [0, 1), t > 1
2

 ,

S2 =


[1

1

]
,

 1
m1 1
m2 1

 : m1,m2 ∈ [0, 1)

 .

(35)
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We have F = F2F1, where F1 ⊂ S1 and F2 = S2. From an argument identical to that in [5, §2.1], it follows
that F ·R(ς) is a cover of a fundamental domain for the action of G(Z) on V (R)(ς), where the G(Z)-orbit of
v is represented m(v) times. Here m(v) is given by

m(v) = # StabG(R)(v)/# StabG(Z)(v).

Every element in V (R) is fixed by the element (Id, g3) ∈ G(Z), where g3 is the diagonal 3 × 3 matrix
whose diagonal entries are 1, −1, and −1. Conversely, every nontrivial element γ ∈ G(Z) not equal to
(Id, g3) ∈ G(Z), acts nontrivially on V (R). Hence the set of points in V (R) fixed by γ has lower dimension
and thus has measure 0. Since there are only countable many elements in G(Z), it follows that the set of
elements in V (R) that have a stabilizer in G(Z) of size greater than 2 has measure 0. We thus obtain the
following theorem.

Theorem 7.4. The multiset F ·R(ς) is an (τς)/2-fold cover of a fundamental domain for the action of G(Z)
on V (R)(ς), where τς = 8 for ς = ((1111), (11)) or ((22), (11)) and τς = 4 for ς = ((112), (11)) or ((22), (2)).

7.2 Averaging and cutting off the cusp

Let L ⊂ V (R)(ς) be a G(Z)-invariant lattice, and denote the set of generic elements in L by Lgen. Given a
subset W of V (R) and a constant δ > 0, we denote the set of elements w ∈W with X ≤ |q(w)| < (1 + δ)X
and Y ≤ |d(w)| < (1 + δ)Y by WXY . Since the stabilizer in G(Z) of a generic element in V (Z) has size 2,
Theorem 7.4 implies that we have

N (δ)
q (L;X,Y ) =

2

τς
#{F · R(ς)

XY ∩ L
gen}, (36)

From Proposition 7.3, if follows that the coefficients aij and bij of any element (A,B) ∈ R(ς)
XY satisfy the

bounds
|aij | � Y 1/2; |bij | � X1/2/Y 1/2. (37)

We now pick the following bounded open nonempty subset G0 of Gred(R):

G0 :=


[1

n 1

]
,

1
a b
c d

 : n ∈ (0,
√
X
Y ),

[
a b
c d

]
∈ G1 ⊂ SL2(R)

 ,

where G1 is a bounded open nonempty SO2(R)-invariant subset of SL2(R). The reason for the choice of the

range of n is that the coefficients of every element in G0 ·R(ς)
XY satisfy the bounds (37). Write the fundamental

domain F in (36) as F2F1g. Using coordinates from (35), we write an element in F1 as (n,m3, t, θ). In these
coordinates,

dg = t−2dndm3d
×tdθ

is a Haar-measure on Gred(R). The proof of the following lemma follows the argument in the proof of [5,
Theorem 2.5].

Lemma 7.5. We have

N (δ)
q (L;X,Y ) =

2

τς Vol(G0)

∫
g∈F1

#{(F2gG0 · R(ς)
XY ∩ L

gen}dg.

Proof. For every g ∈ Gred(R), the set g ·R(ς) is a fundamental set for the action of G(R) on V (R)ς . Therefore,
averaging (36), with R(ς) replaced with g · R(ς), over g ∈ G0, we obtain

N (δ)
q (L;X,Y ) =

2

τς Vol(G0)

∫
g∈G0

#{F2F1g · R(ς)
XY ∩ L

gen}dg.
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Pick v ∈ Lgen, and let v0 ∈ R(ς) denote the unique element that is G(R)-equivalent to v. Since Gred(R) ·R(ς)

is contained in Vred(R), and there exists at most one element in F−1
2 , such that γ2 · v ∈ Vred(R), it follows

that the set Sv of elements γ ∈ Gred(R) such that γ · v0 ∈ F−1
2 v is finite. Therefore, we have∫

g∈G0

#{F2F1g · R(ς)
XY ∩ L

gen}dg =
∑

v∈Lgen

∑
γ∈Sv

Vol
(
{g ∈ G0 : γ ∈ F1g}

)
;∫

g∈F1

#{F2gG0 · R(ς)
XY ∩ L

gen}dg =
∑

v∈Lgen

∑
γ∈Sv

Vol
(
{g ∈ F1 : γ ∈ gG0}

)
.

Since we have

Vol
(
{g ∈ G0 : γ ∈ F1g}

)
= Vol(G0 ∩ F−1

1 γ) = Vol(γG−1
0 ∩ F1) = Vol

(
{g ∈ F1 : γ ∈ gG0}

)
,

the lemma follows.

In the next lemma we show that F2gG0 · R(ς)
XY has no integral generic points if t is too large.

Lemma 7.6. Suppose F2gG0 · R(ς)
XY ∩ V (Z)gen is nonempty for g = (n,m3, t, θ). Then t� Y 1/4.

Proof. Let (A,B) be an element of R(ς). Then we have |a22| � Y 1/2. Therefore, there exists a constant C
such that if t > CY 1/4, then |a22| < 1 for every (A,B) ∈ tθG0R(ς). The action of m3, n, and F2 does not

change the value of a22, and it follows that we have a22 = 0 for every (A,B) ∈ F2gG0 · R(ς)
XY ∩ V (Z). We

claim that such an (A,B) is not generic. Indeed, the the conic in P2 cut out by A consists of a pair of lines,
each of which is defined over Q. Therefore, the intersection points of the conics corresponding to A and B
are defined over a degree-2 extension of Q, and so (A,B) cannot correspond to a D4 field. The lemma thus
follows.

We let F ′ = F2F ′1 ⊂ F consist of all elements g2g1 with g2 ∈ F2 and g1 = (n,m3, t, θ), where t ≤ CY 1/4

for the C in the proof of the above lemma. For any lattice L of V (Z), define

N ∗q (L;X,Y ) :=
2

τς Vol(G0)

∫
g∈F ′1

#{(F2gG0 · R(ς)
XY ∩ L}dg. (38)

We use the following result of Davenport [13] to estimate N ∗q (L;X,Y ):

Proposition 7.7. Let R be a bounded, semi-algebraic multiset in Rn having maximum multiplicity m, and
that is defined by at most k polynomial inequalities each having degree at most `. Then the number of integral
lattice points (counted with multiplicity) contained in the region R is

Vol(R) +O(max{Vol(R̄), 1}),

where Vol(R̄) denotes the greatest d-dimensional volume of any projection of R onto a coordinate subspace
obtained by equating n−d coordinates to zero, where d takes all values from 1 to n−1. The implied constant
in the second summand depends only on n, m, k, and `.

In fact, the proof of the above proposition implies that we may replace Vol(R̄) by the maximum of the
d-dimensional volumes of the projections of any unipotent translate of R.

Now, for g ∈ F1, the set gG0 · R(ς)
XY is a bounded set contained in Vred(R). Hence, the b12- and b13-

coefficients of elements in F2gG0 · R(ς)
XY must lie in [0, 2). They can only be integral when they are 0 or 1.

Therefore, every integral point in F2gG0 · R(ς)
XY lies on one of four hyperplanes in V (R): the hyperplanes

corresponding to (b12, b13) = (0, 0), (0, 1), (1, 0), and (1, 1). Moreover, these hyperplanes are unipotent
translates of each other, in fact, by the elements in F2 with m1,m2 ∈ {0, 1/2}. It follows that the four
hyperplane sections have the same volume, and Proposition 7.7 applied to them yields the same error
estimates. Therefore, we have

N ∗q (L;X,Y ) =
8

τς Vol(G0)

∫
g∈F ′1

VolL(gG0 · R(ς)
XY )dg +O(E(X,Y )), (39)
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where VolL is computed with Euclidean measure normalized so that L has covolume 1, and

E(X,Y ) =
1

Vol(G0)

∫
g=(0,0,t,0)∈F ′1

MP(gG0 · R(ς)
XY )t−2d×t.

The quantity MP(g) denotes the maximal volume of the projections of gG0 · R(ς)
XY onto its coordinate-

hyperplanes. Every element (A,B) in R(ς) is such that the coefficients of A are bounded by Y 1/2 and the
coefficients of B are bounded by X1/2/Y 1/2. By construction of G0, the same is true for every element in
G0 · R(ς). Then the error integral is easily bounded: as long as Y � X, the maximum projection is on to
the coordinate subspace obtained by setting b22 to 0 since the ranges of the other coordinates are � 1 for
every value of g ∈ F ′1. Therefore, for g = (0, 0, t, 0), we have

MP(gG0 · R(ς)
XY )� t2Y 3/2X

Y
= t2XY 1/2.

We therefore have

E(X,Y )� 1

Vol(G0)

∫ Y 1/4

t=1

XY 1/2d×t� Y 3/2X1/2 log Y, (40)

since Vol(G0) is easily seen to be � X1/2/Y .
We next have the following bound on the number of non-generic G(Z)-orbits on V (Z).

Proposition 7.8. We have

1

Vol(G0)

∫
g∈F ′1

#{gG0 · R(ς)
XY ∩ V (Z)\V (Z)gen}dg = o(XY ).

Proof. If v ∈ V (Z) is not generic, then there exists unramified splitting types ς ′′ = (ς ′′p , ς
′′′
p )p for all primes

p such that (ςp(v), ς ′p(v)) 6= (ς ′′p , ς
′′′
p ) for all primes p. Given any unramified splitting type, there exists a

constant c < 1 such that the density of elements in V (Zp) that do not have splitting type (ς ′′p , ς
′′′
p ) is bounded

above by c. From (41), we therefore obtain for any fixed integer M :

1

Vol(G0)

∫
g∈F ′1

#{gG0 · R(ς)
XY ∩ V (Z)\V (Z)gen}dg �

Vol(G0 · R(ς)
XY )

Vol(G0)
·
∏
p<M

c(ς ′′p , ς
′′′
p ) + E(X,Y )

� XY ·
∏
p<M

c+X1/2Y 3/2 log Y,

where the second estimate follows since the ratios of volumes in the first line is � XY . Note that by
assumption, we have X1/2Y 3/2 log Y = o(XY ). Therefore, by letting M tend to infinity, we obtain the
result.

From (39), (40) and Proposition 7.8, we see that if X and Y go to infinity such that Y (log Y )2 = o(X),
then

N (δ)
q (L;X,Y ) =

8X−1/2Y

τς Vol(G1)
Vol(F1) VolL(G0 · R(ς)

XY ) + o(XY )

=
8

τς Vol(G0)
Vol(F1) VolL(G0 · R(ς)

XY ) + o(XY ).

(41)

To compute the volumes of G0 · R(ς)
XY , we have the following result, which follows immediately from a

Jacobian change of variables computation.

Proposition 7.9. Let dvi be the standard Euclidean measures on Vred(R), let dh denote the Haar-measure
on Gred(R) obtained from the N̄AN decomposition of SL2(R), and pick the measure dd dq on R(ς). We
have a natural map Gred(R)×R(ς) → Vred(R). Then the Jacobian change of variables is 1/16, i.e., for any
measurable function ϕ on Vred(R), we have∫

v∈Gred(R)·R(ς)

ϕ(v)dv =
1

16

∫
r∈R(ς)

∫
h∈Gred(R)

ϕ(g · r)dh dd(r) dq(r). (42)
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Therefore, we obtain the following theorem from which Theorem 7.1 follows immediately.

Theorem 7.10. Let L denote a finite union of G(Z)-invariant lattice in V (R)(ς). Then, for positive real
numbers X,Y going to infinity such that Y (log Y )2 = o(X), we have

N (δ)
q (L;X,Y ) =

ζ(2)

2τς
δ2XY

∏
p

Vol(Lp) + oδ(XY ),

where Lp denotes the closure of L in V (Zp), the volumes of sets in V (Zp) are taken with respect to the usual
Euclidean measure, and τς are as in Theorem 7.1.

Proof. The set R(ς)
XY contains exactly one point with invariants q and d, for every X ≤ q < (1 + δ)X and

Y ≤ d < (1 + δ)Y . Hence, the volume of R(ς)
XY is δ2XY The theorem now follows from (41) and Proposition

7.9 since the volume of F1 under the measure dh is ζ(2), and VolL differs from normal Euclidean measure
by a factor of

∏
p Vol(Lp).

8 Uniformity estimates and sieving to D4-quartics

In order to use our results from §4-5, and §6-7 to prove our main theorems, we will employ simple sieves.
In this section, we start by collecting the requisite tail estimates. First, we need a bound on the number of
D4-quartics having central inertia at some large prime, which is established in §8.1. On the other hand, we
obtain an estimate on the number of G(Z)-orbits on V (Z) that are non-maximal at some large prime in §8.2.
It is interesting to note that the results in §7 are not strong enough for these estimates, and so we employ
techniques from §4.

8.1 Bounding the number of D4-quartics with large central inertia

We start with a preliminary lemma bounding the number of D4-quartics with fixed conductor.

Lemma 8.1. For any positive integer N , the number of D4-quartics with conductor N is bounded by Oε(N
ε).

Proof. Let L be a D4-quartic with conductor N , and let K be the quadratic subfield of L. Then the
discriminant of K divides N . Hence the number of choices for K is bounded by twice the number of divisors
of N . Given a fixed quadratic field K whose discriminant D divides N , the number of D4-quartics of
conductor N whose quadratic subfield is K is bounded by 4 ·# Cl2(K) times the number of squarefree ideals
dividing 4N (see §3 of [9]). But 4 ·# Cl2(K)�ε D

ε and the number of divisors of 4N is �ε N
ε. Combining

these estimates yields the lemma.

Next, we prove the required estimate on D4-quartics having specified central inertia by combining the
previous lemma with Lemma 4.6.

Proposition 8.2. Let X and Y be integers such that X ≥ Y . Then the number of D4-quartics L such
that X ≤ q(L) < 2X, Y ≤ d(L) < 2Y , and L has central inertia every prime dividing a positive squarefree
integer n is bounded by Oε(XY/n

2−ε).

Proof. We consider two ranges of n. We fix a large positive real number M (any M > 16 will suffice). When
n ≥ X1/M , we have n ≥ (XY )1/2M . The number of possible conductors for a D4-quartics L satisfying
the conditions of the proposition is bounded by O(XY/n2), since the conductor is bounded by 4XY and
is divisible by n2. Hence, from Lemma 8.1, it follows that the number of such fields L is bounded by
Oε((XY )1+ε/n2) = Oε(XY/n

2−ε).
For n ≤ X1/M , we see from Lemma 4.6 that the number of D4-quartics satisfying the conditions of the

proposition and having splitting type ((1212), (11)) or ((22), (2)) at every prime dividing n is bounded by

O
( X

n2−ε ·
∑

[K:Q]=2
|Disc(K)|<Y

L(1,K/Q)
)
.
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By §3 of [28], the sum above is � Y and so the total displayed quantity is bounded by O(XY/n2−ε).
Similarly, the number of D4-quartics satisfying the conditions of the proposition and having splitting type
((14), (12)) at every prime dividing n is bounded by

O
( X

n1−ε ·
∑

[K:Q]=2
n|Disc(K)
|Disc(K)|<Y

L(1,K/Q)
)
.

If Y ≥ nM , the sum of L-values is bounded by O(Y/n) by arguments identical to those in §3 of [28], yielding
a total bound of O(XY/n2−ε). When instead Y < nM , the classical bound of Oε(Disc(K)ε) on L(1,K/Q)
yields the proposition.

8.2 Bounding the number of non-maximal G(Z)-orbits on V (Z)

For a fixed prime p, letWp denote the set of generic elements in V (Z) that correspond to nonmaximal orders
in D4-quartics. Our next goal is to prove a uniform tail estimate for the number of G(Z)-orbits onWp having
bounded invariants. We start with the following lemmas.

Lemma 8.3. The number of D4-quartics L with |q(L)| < X and |d(L)| < Y is bounded by O(XY ).

Proof. From Lemma 4.5, we see that for X ≥ Y (in fact for Y �ε X
3−ε), the number of D4-quartics with

invariants q and d less than X and Y , respectively, is bounded by

O
(
X ·

∑
|Disc(K)|<Y

L(1,K/Q)
)
,

which is O(XY ) by the results in §3 of [28].
When X < Y , we bound the number of D4-quartics L by instead bounding the number of fields φ(L) (see

Definition 2.1). To do so, it suffices to show that, when X < Y the number of fields L with X < q(L) < 2X
and Y < d(L) < 2Y is O(XY ) since

∑
2−m converges. But recall from (7) that J(L)d(φ(L)) = q(L). Then

under this assumption,

Y · J(L) < q(φ(L)) < 2Y · J(L)
X

J(L)
< d(φ(L)) <

2X

J(L)
.

By Proposition 8.2, since Y · J(L) ≥ Y > X ≥ X/J(L), we have that the number of such D4 quartics φ(L)
in this range with J(φ(L)) = J(L) = n is Oε(XY/n

2−ε), so it suffices to sum Oε(XY/n
2−ε) over all valid n.

Since
∑

1/n2−ε over integers n converges, thus completing the proof.

We now prove the following uniform bound on the number of G(Z)-orbits on Wp, the set of generic
elements in V (Z) that are not maximal at p.

Proposition 8.4. The number of G(Z)-orbits v on Wp with X ≤ q(v) < 2X and Y ≤ d(v) < 2Y is bounded
by Oε(XY/p

2−ε).

Proof. Note that since this is an asymptotic statement as p grows, we may assume that p is sufficiently large,
and in particular that p is odd. An element v ∈ Wp gives a quartic ring Q whose field of fractions L is a
D4-quartic. Let i(v) denote C(v)/C(L), the ratio of the conductors of v and L. From Lemma 6.6, it follows
that i(v) is divisible by p2. From Lemma 8.3, it follows that the number of possible fields L that occur this
way is bounded by O(XY/i(v)1−ε). Next, note that the index of Q in the ring of integers of L divides i(v).
The methods of [26] imply that the number of suborders of index k =

∏
peii of a maximal quartic ring is

bounded by

j(k) :=
∏

p
(2+ε)b ei4 c
i .

Once the order Q has been determined, there are O(1) choices for the quadratic subring T of Q corresponding
to v under Theorem 6.1. Finally, Corollary 4 of [1] asserts that the number of cubic resolvents of ring Q
is d(c), the sum of the divisors of the content c of Q. Furthermore, the content c of the quartic ring
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corresponding to v = (A,B) is equal to be the gcd of the coefficients of A (see §3.6 of [1]), which implies
that i(v) is a multiple of c4.

Therefore, it follows that the number of G(Z)-orbits on Wp satisfying the conditions of the proposition
is bounded by ∑

p2|m

∑
c4|m

∑
k|m

j(k)d(c)(X/m1−ε), (43)

where m runs over all integers divisible by p2. Using the multiplicativity of j and d, the expression (43) is
easily seen to be �ε X/p

2−ε and the proposition follows.

9 Proof of the main theorems

In this section, we conclude the proof of the generalization of Theorem 5.3 that allows for imposing certain
local specifications (see Theorem 9.3). First, we define p-adic densities and determine the number of étale
algebras along with their automorphism groups for each splitting type. As a byproduct of the two asymptotics
obtained for NC(Σ;X,X1/2) by Theorem 4.3 and in §9.2, we prove Theorem 6.

Theorems 1 and 3 are proved in §9.3. First, we obtain asymptotics for NC(Σ;X,Y ) when Y > X1/2 from
counting D4-quartics φ(L) with conductor bounded by X and small quadratic discriminant, where L ∈ L(Σ).
We then prove Theorem 3 after employing a bound that follows from the analytic methods in Section 4 and
5. Finally, in §9.4 we prove a refinement of Theorem 5, which follows from Theorem 3 in conjunction with
the p-adic volumes determined in Proposition 6.7.

9.1 Acceptable local specifications, densities, and automorphism groups

Recall that for a collection of local specifications Σ, L(Σ) is the set of D4-quartics L such that the pair
consisting of the splitting type of L and the splitting type of K, its quadratic subfield at a prime p (re-
spectively, at ∞) is contained in Σp for all p (respectively, in Σ∞). A set Σ of local specifications (and the
corresponding family L(Σ)) is said to be acceptable if for all but finitely many primes p, the set Σp contains
all unramified splitting types and tamely ramified splitting types without central inertia. (In the notation
of (5), Σp contains exactly the pairs (ςp(L1), ςp(K1)) contained in the first two groups in Table 1.)

Recall that for a prime p and a splitting type (ςp, ς
′
p), we computed the density µ(Mp(ςp, ς

′
p)) in Proposition

6.7. We define the density µ(Σp) to be the sum of the values of µ(Mp(ςp, ς
′
p)) over (ςp, ς

′
p) ∈ Σp, and define

the density of µ(Σ∞) to be the sum of 1
τς

over all ς ∈ Σ∞. The stabilizer quantities τς are defined in Theorem
7.1, and we list them below for convenience.

τς =

{
8 if ς = ((1111), (11)), ((22), (11));

4 if ς = ((112), (11)), ((22), (2)).
(44)

Furthermore, if ς(L) = ((1111), (11)), then L is a totally real field, and Aut(L∞,K∞) = Aut(R4,R2) = D4.
If ς(L) = ((22), (11)), then L is a CM field and Aut(L∞,K∞) = Aut(C2,R2) = D4. If ς(L) = ((112), (11)),
then L has exactly one complex embedding, and Aut(L∞,K∞) = Aut(R2 ⊕ C,R2) = V4. Finally, if ς(L) =
((22), (2)), then L is a totally complex field with imaginary quadratic subfield K, and Aut(L∞,K∞) =
Aut(C2,C) = V4. Overall, we have shown:

Lemma 9.1. For any quadratic extension L of a quadratic field K,

# Aut(L∞,K∞) = τς(L,K).

Next, we determine the automorphism groups of étale quartic algebras over Qp sending a quadratic
subalgebra to itself for odd primes p.

Lemma 9.2. Let p be an odd prime. The automorphism group of a pair (L,K), where K is a quadratic étale
algebra over Qp, and L is a quadratic étale algebra over K, is determined by the splitting type of (L,K), and
is listed in the following table:

33



ςp(L,K) # of Algebras Aut(L,K) C(L,K)

((11), (1111)) 1 D4 1

((11), (112)) 1 V4 1

((11), (22)) 1 D4 1

((2), (22)) 1 V4 1

((2), (4)) 1 C4 1

((11), (1211)) 2 V4 p

((11), (122)) 2 V4 p

((12), (1212)) 2 V4 p

((12), (22)) 2 V4 p

((11), (1212)) 2 D4 p2

((11), (1212′)) 1 V4 p2

((2), (22)) 1 V4 p2

((2), (22)) 1 C4 p2

((12), (14)) (0, 2) C2 p2

((12), (14)) (4, 0) C4 p2

Table 3: Automorphism groups for étale algebras over Qp

Above, when we write (a, b) for the number of (isomorphism classes of) étale algebras over Qp, the first
coordinate indicates the quantity for primes of the form 4k + 1 and the second coordinate for primes of
the form 4k + 3. Additionally, there are two distinct isomorphism classes of étale algebras with splitting
type (1212) : in the table, we distinguish them by letting (1212) refer to the sum of two isomorphic ramified
quadratic extensions of Qp and letting (1212′) refer to the sum of two non-isomorphic ramified quadratic
extensions of Qp.

Proof. The above lemma can be verified case by case using [21] in conjunction with the fact that determining
the possible étale algebras for a given splitting type depends only on the congruence class of p mod 4.

9.2 A refinement of Theorem 5.3 and the proof of Theorem 6

For positive real numbers X and Y , let N (δ)
q (Σ;X,Y ) be as in Section 7. We have the following theorem,

giving another proof that the heuristics of (9) holds for certain ranges of X and Y .

Theorem 9.3. Let Σ be an acceptable set of local specifications. For positive real numbers X and Y such
that Y (log Y )2 = o(X), we have

N (δ)
q (Σ;X,Y ) =

ζ(2)

2
· δ2 · µ(Σ∞) ·

∏
p

µ(Σp) ·XY + oδ(XY ).

Proof. By Proposition 6.3, it suffices to obtain asymptotics for the number of generic G(Z)-orbits (A,B)
on V (Z) such that (A,B) is maximal and the splitting type of (A,B) at each place belongs to Σ. The
number of generic G(Z)-orbits on V (Z) satisfying any finite set of congruence conditions has been estimated
in Theorem 7.10. Theorem 9.3 then follows from Theorem 7.10 and the uniformity estimates in Propositions
8.2 and 8.4 by means of a simple sieve. We omit the details since they are very similar to those in the proof
of Theorem 9.4.

As a consequence of the main terms obtained in Theorems 4.3 and 9.3, we may now prove Theorem 6.
It is interesting to note that the proof of Theorem 6 is much more involved than that of Theorem 2. In
particular, it is not obvious that the arguments in Section 5 can be refined to directly allow for imposing
acceptable sets of local specifications.
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Proof of Theorem 6. Let K denote the set of quadratic fields with prescribed splitting types ς ′p given at a

finite set S of odd primes p. Let (Σp)p denote sets, where for each p /∈ S, Σp = Σfull
p contains all possible

splitting types, and for p ∈ S, Σp = {(∗, ς ′p)} consists of all possible splitting types compatible with ς ′p. If we

let Σ
(a)
∞ = {((1111), (11)), ((112), (11)), ((22), (11))}, and Σ

(b)
∞ = {((22), (2))}, we can define Σ(∗) to be the

collection (Σp)p and Σ
(∗)
∞ for ∗ = a or b, which are both acceptable collections.

Recall that NC(Σ(∗);X,Xβ) counts the number of isomorphism classes of D4-quartics L ∈ L(Σ(∗)) such
that |C(L)| < X and |d(L)| < Xβ . As before, let r2(K) denote the number of pairs of complex embeddings
of K. From Theorem 4.3, we have for ∗ = a or b and β < 2/3,

NC(Σ(∗);X,Xβ) =
X

2ζ(2)
·

∑
K∈K(Σ(∗))

|Disc(K)|<Xβ

L(1,K/Q)

L(2,K/Q)
· 2−r2(K)

|Disc(K)|
+ oβ(X). (45)

On the other hand, we can also estimate NC(Σ(∗);X,Xβ) using Theorem 9.3 as follows. Consider the region

RX,β := {(d, q) ∈ R2 : |d · q| < X, |d| < Xβ}.

There exist regions R
(±)
X,β , that are disjoint unions of δ-adic rectangles, such that

R
(−)
X,β ⊂ RX,β ⊂ R

(+)
X,β

and such that
|Vol(RX,β)−Vol(R

(±)
X,β)| � δ ·X log(Xβ).

The volume of RX,β is X logXβ . Therefore, from Theorem 9.3, we see that for β < 1/2,

NC(Σ(∗);X,Xβ) =
ζ(2)

2
·X log(Xβ) · µ(Σ(∗)

∞ ) ·
∏
p

µ(Σp) + oδ(X log(Xβ)) +O(δX log(Xβ)). (46)

Equating the right hand sides of (45) and (46), dividing both sides by X log(Xβ), first letting Xβ tend to
infinity, and then finally letting δ tend to 0, we obtain:

1

2ζ(2)
·

∑
K∈K(Σ(∗))
|Disc(K)|<X

L(1,K/Q)

L(2,K/Q)
· 2−r2(K)

|Disc(K)|
∼ ζ(2)

2
· µ(Σ(∗)

∞ ) ·
∏
p

µ(Σp) · log(X) (47)

It is a direct computation to verify from (44) and the definitions of Σ
(∗)
∞ that 2r2(K) ·µ(Σ

(∗)
∞ ) is always equal

to 1
2 , independent of the choice of K ∈ K(Σ(∗)). Furthermore, the values of µ(Σp) =

∑
(ςp,ς′p)∈Σp

µ(Mp(ςp, ς
′
p))

can be computed from Proposition 6.7, and it then follows that the right hand sides of Theorem 6(a) and
(b) are asymptotically equal to

ζ(2)2

2
·
∏
p

µ(Σp) · log(X).

This concludes the proof of Theorem 6. 2

9.3 The proofs of Theorems 1 and 3

We next obtain asymptotics for N (δ)
q (Σ;X,Y ) when Y � X. Recall that the outer automorphism φ of D4

provides a non-isomorphic D4-quartic φ(L) for each D4-quartic L, and the fields L and φ(L) have the same
conductor but (possibly) different invariants. Proposition 2.6 can be used to compute the invariants of φ(L)
in terms of the invariants of L. Note that if d(L) > q(L), then d(φ(L)) < q(φ(L)). Hence, for a collection of
local specifications Σ, we may relate counts of D4-quartics with d > q to counts of D4-quartics with d < q.

Given an acceptable collection Σ, let φ(L(Σ)) denote the family defined by

φ(L(Σ)) := {φ(L) : L ∈ L(Σ)}
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There exists another acceptable collection φ(Σ) of local specifications such that φ(L(Σ)) = L(φ(Σ)). Further-
more, for every odd prime p, Table 1 in conjunction with Proposition 6.7 and Lemma 6.8 for an acceptable
collection Σ, we have µ(Σp) = µ(φ(Σp)). An acceptable family Σ is said to be very stable at 2 if the set
Σ2 either contains all splitting types with central inertia (pairs (ς2(L1), ς2(K1)) in the latter two groups of
Table 1) or it contains none of them. Our next result computes the number of D4-quartics in L(Σ) satisfying
X ≤ |q(L)| ≤ (1 + δ)X and Y ≤ |d(L)| < (1 + δ)Y when Y is much larger than X.

Theorem 9.4. Let Σ be an acceptable collection of local specifications that is very stable at 2. Let X and Y
be positive real numbers such that X(logX)2 = o(Y ). Then we have

N (δ)
q (Σ;X,Y ) =

ζ(2)

2
· δ2 · µ(Σ∞) ·

∏
p

µ(Σp) ·XY + o(XY ).

Proof. For a prime p and an integer a ≥ 1, let V(p, a) denote the set of D4-quartics L such that Jp(L) = pa.
Recall that J(L) is defined in (7), and an odd prime p | J(L) if only if p2 ‖ L if and only if L has splitting
type ((22), (2)), or ((1212), (11)). Let Vp denote the union of V(p, a) over all a ≥ 1, and for any integer n ≥ 1,
let L(Σ)(n) denote the set of fields L in L(Σ) such that J(L) = n. One can check that L(Σ)(n) is defined by
an acceptable collection Σ(n) of local specifications that is very stable at 2, i.e., L(Σ(n)) = L(Σ)(n). Using
(7) and the fact that J(L) = J(φ(L)), we have

N (δ)
q (Σ;X,Y ) =

∑
n≥1

N (δ)
q (Σ(n);X,Y )

=
∑
n≥1

N (δ)
q (φ(Σ(n));Y n,X/n).

For a fixed integer M , we use Theorem 9.3 to evaluate N (δ)
q (φ(Σ)(n);Y n,X/n) for n ≤ M and Proposition

8.2 to bound N (δ)
q (φ(Σ)(n);Y n,X/n) for n > M . Altogether, we obtain

N (δ)
q (Σ;X,Y ) ∼ ζ(2)

2
· δ2 · µ(φ(Σ)∞) ·

( M∑
n=1

∏
pa‖n

µ(φ(Σ)p ∩ V(p, a)) ·
∏
p-n

µ(φ(Σ)p\Vp)
)
·XY

up to an error of oδ,M (XY ) + Oε,δ(XY/M
1−ε), where we assume that a ≥ 1. Dividing by XY , letting X

and Y tend to infinity, and then letting M tend to infinity, we obtain

lim
M→∞

lim
X,Y→∞

N (δ)
q (Σ;X,Y )

δ2XY
=

ζ(2)

2
· µ(φ(Σ)∞) ·

∑
n≥1

(∏
pa‖n

µ(φ(Σ)p ∩ V(p, a)) ·
∏
p-n

µ(φ(Σ)p\Vp)
)

=
ζ(2)

2
· µ(φ(Σ)∞) ·

∑
n≥1

(∏
p

µ(φ(Σ)p\Vp) ·
∏
pa‖n

µ(φ(Σ)p ∩ V(p, a))

µ(φ(Σ)p\Vp)

)

=
ζ(2)

2
· µ(φ(Σ)∞) ·

∏
p

µ(φ(Σ)p\Vp) ·
∏
p

(
1 +

∑
a≥1

µ(φ(Σ)p ∩ V(p, a))

µ(φ(Σ)p\Vp)

)

=
ζ(2)

2
· µ(φ(Σ)∞) ·

∏
p

µ(φ(Σ)p).

Since µ(Σp) = µ(φ(Σ)p) for all primes p and µ(Σ∞) = µ(φ(Σ∞)), we obtain the result.

We now have theorems computing N (δ)
q (Σ;X,Y ) when X(logX)2 = o(Y ) (Theorem 9.3) and when

Y (log Y )2 = o(X) (Theorem 9.4 with identical right hand sides. Our last task in proving Theorem 3 is to

show that the region that neither Theorem 9.3 nor 9.4 covers contributes negligibly to N (δ)
q (Σ;X,Y ). For

that we need the following lemma.
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Lemma 9.5. The number of D4-quartics L such that |C(L)| ≤ X and X(logX)−3 ≤ |d(L)| ≤ X(logX)3 is
bounded by O(X log logX).

Proof. The number of D4-quartics satisfying the conditions of the lemma can be estimated as a sum of ratios
of L-values from Theorem 4.3. This sum can be bounded, using Proposition 5.2, by

X ·
X(logX)3∑

D=X(logX)−3

1

D
,

yielding the lemma.

Proof of Theorem 3. The invariants d and q of a D4 field with absolute conductor bounded by X satisfy
|d · q| < X. Consider the region RX := {(d, q) ∈ R2 : |d · q| < X}. We bound the number of D4-quartics
L with

√
X(log

√
X)−3 ≤ d(L) ≤

√
X(log

√
X)3 using Lemma 9.5, and estimate the rest of the D4-quartics

using Theorems 9.3 and 9.4 with an argument identical to the proof of Theorem 6, obtaining

ND4
(Σ, X) ∼ ζ(2)

2
· µ(Σ∞) ·

∏
p

µ(Σp) ·X log(X).

Let ςp(Lp,Kp) denote the splitting type of a pair (Lp,Kp) of local extensions of Qp. From Proposition 6.7
and Lemma 9.2, we obtain for each odd prime p,

1

# Aut(Lp,Kp)
· 1

Cp(Lp)
·
(

1− 1

p

)2

=
µ(Mp(ςp(Lp,Kp)))

1− p−2
,

and at ∞, Lemma 9.1 implies # Aut(L∞,K∞) = τς(L∞,K∞). For p = 2, we can utilize Proposition 3.1(3)
to conclude the proof of Theorem 3. 2

Theorem 1 follows directly from Theorem 3 in conjunction with the p-adic density computations in
Theorem 6.9 and the following density computations at ∞ using (44):

(0) D4-quartic fields with 4 real embeddings all have infinite splitting type ((1111), (11)), and therefore we
compute µ(Σ∞) = 1

8 ;

(1) D4-quartic fields with exactly 2 real embeddings all have infinite splitting type ((112), (11)), and
therefore we compute µ(Σ∞) = 1

4 ;

(2) D4-quartic fields with no real embeddings have infinite splitting type ((22), (11)) or ((22), (2)), and
therefore we compute µ(Σ∞) = 1

8 + 1
4 = 3

8 .

9.4 The proof of Theorem 5

We end this article with the proof and a discussion of Theorem 5.
Let K ∈ K be a quadratic field, and for each p ∈ S, let ς denote the prescribed splitting type at p

for K. Since finite abelian groups are isomorphic to their duals, we see that # Cl(K)[4] − # Cl(K)[2], the
number of elements in Cl(K) having exact order 4, is equal to twice the number of index-4 subgroups of
Cl(K) whose quotients are cyclic. By class field theory, such index-4 subgroups of Cl(K) are in bijection
with isomorphism classes of unramified extensions M of K with Gal(M/K) = C4. Such an extension M is
Galois over Q with Galois group D4. Conversely, if M is an octic D4-quartic whose splitting type at every
prime p lies in the first two quadrants of Table 1, then M is unramified over K, its quadratic subfield fixed
by C4 ⊂ D4. Furthermore, it is straightforward to check from Table 1 that under these conditions, M is
unramified over K.

Now we define three collections of local specifications Σ(i) corresponding to the three cases in Theorem
5. First, let K(∗) be the subset of K ∈ K with ς∞(K) = (11) when ∗ = a or c, and ς∞(K) = (2) when ∗ = b,
and define

Σ(∗)
∞ :=


{((1111), (11))} if ∗ = a,

{((112), (11)), ((22), (2))} if ∗ = b,

{((1111), (11)), ((22), (11))} if ∗ = c.
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Next we define Σp for all finite primes p. If p 6∈ S, define

Σp =
{

(ςp, ς
′
p) : (ςp, ς

′
p) lacks central inertia

}
.

For p ∈ S, define

Σp =


{((1111), (11)), ((22), (11)), ((4), (2))} if ς = (11),

{((112), (11)), ((22), (2))} if ς = (2),

{((1211), (11)), ((122), (11)), ((1212), (12)), ((22), (12))} if ς = (12);

Let Σ(∗) then denote collection of local specifications consisting of (Σp)p along with Σ
(∗)
∞ for ∗ = a, b, or

c, which is acceptable and very stable at 2. It is easily checked from Table 1 that the Galois closures of fields
in L(Σ(∗)) correspond to cyclic quartic unramified extensions of fields in K(∗). When ∗ = a or b, L(Σ(∗))
corresponds to order 4 elements in the class groups of K(∗). On the other hand, L(Σ(c)) corresponds to cyclic
quartic extensions of K(c) that are unramified at every finite place, but possibly ramified at infinity; thus,
they correspond to order 4 elements in the narrow class groups of real quadratic fields in K. Furthermore,
from (5), it follows that exactly two distinct isomorphism classes of D4-quartics yield the same Galois closure,
but additionally every index-4 subgroup of the class group corresponds to two order 4 ideal classes. Thus,
we conclude that the left hand sides of Theorem 5(∗) are equal to ND4

(Σ(∗), X), for ∗ = a, b, and c. The
theorem follows from Theorem 3 along with density computations following from Proposition 6.7. 2

Remark 9.6. Fouvry-Klüners [15] prove that the average size of 2rk4(Cl+(K)) over imaginary (respectively,
real) quadratic fields K ordered by discriminant is equal to 2 (respectively, 3

2 ), where rk4(Cl+(K)) =

dimF2
(Cl+(K)4/Cl+(K)2). Furthermore, we have

# Cl+4 (K)−# Cl+2 (K) = (2rk4(Cl+(K)) − 1) · (# Cl+2 (K)).

Genus theory implies that for any quadratic field K, # Cl+2 (K) = 2ω(Disc(K))−1, where ω(D) denotes the
number of prime factors of D. Additionally, using similar techniques as in §5.2, one can check the genus
theory formula for the size of Cl+2 (K) implies the asymptotics:∑

K quad.
−X≤Disc(K)<0

# Cl+2 (K) ∼ 1

4
·
∏
p

(
1 +

2

p

)(
1− 1

p

)2

·X log(X);

∑
K quad.

0<Disc(K)≤X

# Cl+2 (K) ∼ 1

4
·
∏
p

(
1 +

2

p

)(
1− 1

p

)2

·X log(X).

Combining the above result with those of [15] and Theorem 5 illustrates an interesting “independence”

phenomena: the average value of the product (2rk4(Cl+(K)) − 1) · (# Cl+2 (K)) is equal to the product of the

average value of (2rk4(Cl+(K)) − 1) and the average size of Cl+2 (K).

Acknowledgements

We thank Manjul Bhargava, Henri Cohen, Dorian Goldfeld, Joseph Gunther, John W. Jones, Jürgen Klüners,
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