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‘ Calculus I (Math 231) Final Exam

Date: December 17, 2007

NAME: Ké 7

Professor Ilya Kofman

Problem 1. Evaluate the following limits:
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Problem 2. Compute the first derivative for each of these functions:
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Problem 4. Let f(z) be the function defined by the following graph,
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(c) Sketch a graph of f'(z) on the figure.
(d) Label the approximate locations of all points of inflection of f(z). 7

(e) Sketch a graph of f”(z) on the figure.

Make sure your sketches are clearly labeled above!
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Problem 5. Sketch the graph of a differentiable function f(z) with all of the
properties below. .
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e The domain of f is (—oo0, —2) U (=2, 00).
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e fl(z) >0for -4 <z < —2.

e f'(z) <0 for z < —4 and for z > —2.

e f"(z) >0for -6 <z < —2andfor —2<z<3.
e f"(z) <0 for z < —6 and for z > 3.

Label all horizontal and vertical asymptotes, local extrema, and inflection points.
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, O Problem 6. Find the values of the constants m and b such that the following
functlon is differentiable everywhere: '

3 L i <2
h(z) = P —6z if z<
mz+b if £>2

h(®) = (277’———»(,2{z):_<g,/z:,¢{__=> soox
(kY= 3xEo = b= 3 e=e =

(p'Z"'L(:’L/ -,_-—_—) é:‘/é

 ——————————

7. Problem 7. Answer questions below as True or False. (No explanation is needed.)

(a) F:- The function p(z) = I—il has a removable discontinuity at z = 0.
(b) 7 il The function ¢(z) = 2z° — 10z has a zero in the interval (1,2).
(c) T The function+(z) = z'/% has a vertical tangent line at the origin.
(d) If $'(2) = 0 then z = 2 is a local max or min of s(z).

A rational function can have at most two vertical asymptotes.
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\ CHOOSE ANY TWO PROBLEMS ON THIS PAGE

Problem 8. A paper cup in the shape of a circular cone has radius 7 = 2cm and
height h = 4cm. Water is poured into the cup at a rate of 2cm?®/sec. Find the rate

at which the water level is rising when the water is 3cm deep. (Hint: V = %mjh)
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1= ﬁ : t| Problem 9. An open box with a total surface area of 300 in? and with a square base
is to be made from sheet metal. Find the dimensions of the box that will maximize
(“'\ _ } | its volume.
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Problem 10. Consider the curve described by the relation z? + y* = 32. Find the
equation of the tangent line to the curve at the point (-2, 2).
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