Calculus I (Math 231) Final Exam

Date: December 17, 2007

Professor Ilya Kofman

NAME: Key

Problem 1. Evaluate the following limits:

$$5 \text{ (a) } \lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 3x - 4} = \lim_{X \to Y} \frac{X(X - Y)}{(X + 1)(X - Y)} = \frac{4}{4 + 1} = \frac{4}{5}$$

5 (b)
$$\lim_{x\to 0} \frac{8x}{\sin 2x} = \lim_{x\to 0} \frac{4 \cdot \frac{2x}{5iu^2x}}{5iu^2x} = 4$$

5 (c)
$$\lim_{x \to -\infty} \frac{-5x^3 + 1}{17x^3 + 7x - 11} = \frac{-5}{17}$$

Problem 2. Compute the first derivative for each of these functions:

(a)
$$f(x) = \frac{e^{3x}}{x^2 + 5}$$
 $f' = (x^2 + 5)(3e^{3x}) - (e^{3x})(2x)$

$$g' = \left(\ln (6x) \sqrt{x^3 + 7x}\right)$$

$$g' = \left(\ln (6x)\right) \left(\frac{1}{2} (x^3 + 7x)^{-1/2} (3x^2 + 7)\right)$$
Problem 3. Evaluate
$$+ (x^3 + 7x)^{1/2} \left(\frac{6}{6x}\right)$$

$$= -\frac{7}{3} x^{-3} + 2x^{3/2} + \frac{1}{2} e^{2x} + C$$

$$5 \text{ (b)} \int_{1}^{3} \left(6x^{2} + \frac{4}{x} + 5\right) dx = \left[2 \times^{3} + 4 \ln x + 5 \times \right]_{1}^{3}$$

$$= \left(2 \cdot 3^{3} + 4 \ln 3 + 15\right) - \left(2 + 4 \cdot 0 + 5\right)$$

$$= 62 + 4 \ln 3 \qquad \qquad 66.394.$$

(a) f'(x) < 0 for which x? $\times < 0$

f'(x) > 0 for which x? $\times > 0$

(b)
$$\lim_{x \to \infty} f(x) = 2$$
 and $\lim_{x \to -\infty} f(x) = 2$.

- (c) Sketch a graph of f'(x) on the figure.
- (d) Label the approximate locations of all points of inflection of f(x).
- (e) Sketch a graph of f''(x) on the figure.

Make sure your sketches are clearly labeled above!

$$\mathcal{U}$$
 BONUS: $\lim_{x\to\infty} f'(x) = \underline{\qquad}$ and $\lim_{x\to\infty} f''(x) = \underline{\qquad}$.

Problem 5. Sketch the graph of a differentiable function f(x) with all of the properties below.

- The domain of f is $(-\infty, -2) \cup (-2, \infty)$.
- f(-6) = 1, f(-4) = -1, and f(3) = 0.
- $\bullet \lim_{x \to -2} f(x) = \infty.$
- $\lim_{x \to -\infty} f(x) =$ and $\lim_{x \to \infty} f(x) = -\infty$.
- f'(x) > 0 for -4 < x < -2.
- f'(x) < 0 for x < -4 and for x > -2.
- f''(x) > 0 for -6 < x < -2 and for -2 < x < 3.
- f''(x) < 0 for x < -6 and for x > 3.

Label all horizontal and vertical asymptotes, local extrema, and inflection points.

Problem 6. Find the values of the constants m and b such that the following function is differentiable everywhere:

$$h(x) = \begin{cases} x^3 - 6x & \text{if } x \le 2 \\ mx + b & \text{if } x > 2 \end{cases}$$

$$h(2) = (2)^3 - 6(2) = 8 - 12 = -4 \implies \text{wortharmy}$$

$$h'(x) = 3x^2 - 6 \implies h'(2) = 3 \cdot 4 - 6 = 6 = m$$

$$6 \cdot 2 + 6 = -4 \implies 6 = -16$$

- 20 Problem 7. Answer questions below as True or False. (No explanation is needed.)
 - (a) _____ F The function $p(x) = \frac{|x|}{x}$ has a removable discontinuity at x = 0.
 - (b) T The function $q(x) = 2x^5 10x$ has a zero in the interval (1, 2).
 - (c) The function $r(x) = x^{1/3}$ has a vertical tangent line at the origin.
 - (d) _____ F If s'(2) = 0 then x = 2 is a local max or min of s(x).
 - (e) _____F A rational function can have at most two vertical asymptotes.
 - (f) $\int_0^5 f(x) dx = -\int_{-5}^0 f(x) dx$ for all integrable f(x).
 - (g) $\frac{\mathsf{T}}{dx} \left(\int_0^x t^{\sqrt{2}} dt \right) = x^{\sqrt{2}}.$
 - (h) $\int_{0}^{2\pi} |\sin x| \ dx = 2 \int_{0}^{\pi} \sin x \ dx.$
 - (i) $\int_0^{\pi} \sin^2 x \ dx = \int_{\pi}^{2\pi} \sin^2 x \ dx.$
 - (j) $\int_{-4}^{4} (x^5 + 7x)^{13} dx = 0.$

CHOOSE ANY TWO PROBLEMS ON THIS PAGE

Problem 8. A paper cup in the shape of a circular cone has radius $r=2\,\mathrm{cm}$ and height $h=4\,\mathrm{cm}$. Water is poured into the cup at a rate of $2\,\mathrm{cm}^3/\mathrm{sec}$. Find the rate at which the water level is rising when the water is $3\,\mathrm{cm}$ deep. (Hint: $V=\frac{1}{3}\pi r^2 h$)

$$V = \frac{1}{3}\pi r^{2}h, \quad \frac{h}{4} = \frac{r}{2} \implies h = 2r$$

$$h = 3 \implies r = \frac{3}{2}$$

$$V = \frac{1}{3}\pi r^{2}(2r) = \frac{2}{3}\pi r^{3}$$

$$\frac{dh}{dt} = 2\frac{dr}{dt}$$

$$\frac{dV}{dt} = 2\pi r^{2}\frac{dr}{dt} \implies 2 = 2\pi \left(\frac{3}{2}\right)^{2}\frac{dr}{dt}$$

$$\Rightarrow \frac{dr}{dt} = \frac{1}{\pi\left(\frac{2}{3}\right)^{2}} = \frac{4}{9\pi}$$

$$\Rightarrow \frac{dr}{dt} = \frac{1}{\pi\left(\frac{2}{3}\right)^{2}} = \frac{4}{9\pi}$$

Problem 9. An open box with a total surface area of 300 in² and with a square base is to be made from sheet metal. Find the dimensions of the box that will maximize its volume.

$$x^{2} + 4xy = 300$$

$$V = x^{2}y = x^{2}(\frac{300 - x^{2}}{4x}) = 75x - \frac{x^{3}}{4}$$

$$V' = 75 - \frac{3}{4}x^{2} \stackrel{\text{set}}{=} 0$$

$$x^{2} = \frac{4}{3}(75) = 100$$

$$x = 10, \quad y = 5 \quad (V = 500)$$

Problem 10. Consider the curve described by the relation $x^4 + y^4 = 32$. Find the equation of the tangent line to the curve at the point (-2, 2).

$$x^{4} + y^{4} = 32$$

 $4x^{3} + 4y^{3} \cdot dx = 0$
 $-8 + 8y' = 0 \Rightarrow y' = 1$
 $y-2 = 1(x+2)$
 $y = x + 4$

V= ITh3

2= I.9. dh

dh = 8