
Math 123 Exam 2B

November 10, 2010

Professor Ilya Kofman

NAME: _

1. Evaluate each expression using the graph above.

2 (a)
$$(f+g)(2) = 3$$

(a) (f+g)(2) = 3 (f) Does f(x) have an inverse for all x? Y

2 (b)
$$(fg)(2) = -10$$

(g) Does g(x) have an inverse for all x? Y

2 (c)
$$(g \circ f)(3) = 1$$

$$(d) (f \circ g \circ f)(3) =$$

10

2. You want to fence off a rectangular garden adjacent to a barn (with no fence along the barn). Find the area of the largest garden possible with 100 ft of fenc-

$$Area = \frac{1250}{}$$

3. If $f(x) = x^2 - 7$ and $g(x) = \sqrt{x+3}$, find the following.

$$3 \quad \text{(a) } f \circ g = X - 4$$

3 (b)
$$g \circ f$$

$$= \sqrt{\chi^2 - 4}$$

3 (c)
$$g(f(2))$$
 = O

4. Find the inverse of $f(x) = \sqrt{7-4x}$.

$$y = \sqrt{7-4x}$$

 $x = (y^2 - 7)/-4$

5. Find the inverse of $f(x) = \ln(x/2)$. $f^{-1}(x) = 2e^{x}$

$$y = ln(x/2)$$

 $2e^y = x$

6. Evaluate the following expressions.

3 (a)
$$\log_2 80 - \log_2 5 = \log_2 16 = 4$$

$$\frac{3}{5}$$
 (b) $\log_4 8$ = $\frac{3}{2}$

$$3 \qquad (c) \ln \frac{e^5}{\sqrt{e}} \qquad = 9/2$$

7. Combine into a single logarithm: $\ln(5x) - 3\ln(x^2 + 1) + \frac{1}{2}\ln(5x - 3)$

$$ln \frac{(5x)\sqrt{5x-3}}{(x^2+1)^3}$$

6

8. If $\ln a = 7$, $\ln b = -4$, $\ln c = 8$, evaluate the following expressions.

(a)
$$\ln \frac{a^5}{b^2 c^3} = 5 \ln a - 2 \ln b - 3 \ln c$$

 $5.7 - 2(-4) - 3(8) = 19$

(b)
$$\ln(a\sqrt{bc})$$

= $\ln a + \frac{1}{2} \ln b + \frac{1}{2} \ln c = 9$
(c) $\ln(a/e)$
= $7 + (-2) + (4)$

$$= \ln a - 1 = 6$$

$$7 - 1$$

9. Solve the following equations.

0. Solve the following equations. (a)
$$4^{x+2} = 6^{5x}$$
 (X+2)(3, $4^{2} = 5x$ log 6
$$X = 0.366$$

(b)
$$\log_4(12+2x) = 3$$

 $12+2x = 4^3 = 64$
 $2x = 52$
 $x = 26$

(c)
$$5\ln(4-x) = 3$$

$$\ln(4-x) = \frac{3}{5}$$

$$4-x = e^{3/5} \implies x = 4-e^{3/5}$$

5 pts each XH 30,01 + X = 2.178

- 10. Suppose \$4,000 is invested in an account paying 6.5% interest per year (APR).
 - (a) Find the amount in the account after 7 years if interest is compounded monthly.

· 人名本美国第一个人

(b) How long will it take for the account to have \$8,000 if interest is compounded semiannually?

8.
$$4000(1+\frac{0.065}{2})^{2t} = 8,000$$

 $(1.0325)^{2t} = 2$
 $2t \log(1.0325) = \log 2$
 $t = 10.836 \text{ yrs.}$

(c) Find the amount in the account after 7 years if interest is compounded continuously.

A(7) =
$$4900(40 e^{(0.065)(7)})$$

= 46304.69

(d) How long will it take for the account to have \$8,000 if interest is compounded continuously?

$$4,000 e^{0.065t} = 8,000$$

$$0.065t = ln(8/4)$$

$$t = 10.66 yrs.$$