NAME:

1. Evaluate each expression using the graph above.
$2($ a) $(f+g)(2)=3$
(f) Does $f(x)$ have an inverse for all x ? Y
$2(\mathrm{~b})(f g)(2)=-10$
(g) Does $g(x)$ have an inverse for all x ? Y
$2(c)(g \circ f)(3)=$ \qquad
$2(\mathrm{~d})(f \circ g \circ f)(3)=$ \qquad -1
2. You want to fence off a rectangular garden adjacent to a barn (with no fence along the barn). Find the area of the largest garden possible with 100 ft of fenc10 ing.

$$
\begin{aligned}
A(x) & =(x)(100-2 x) \\
& =100 x-2 x^{2} \\
\max \text { at } x & =25 \quad(\text { so } y=50) \\
A(25) & =1250
\end{aligned}
$$

3. If $f(x)=x^{2}-7$ and $g(x)=\sqrt{x+3}$, find the following.

3
(a) $f \circ g$
$=x-4$

3 (b) $g \circ f$

$$
=\sqrt{x^{2}-4}
$$

3 (c) $g(f(2))$

$$
=0
$$

4. Find the inverse of $f(x)=\sqrt{7-4 x}$.

$$
f^{-1}(x)=\frac{-x^{2}-7}{4}=\frac{7-x^{2}}{4}
$$

$$
\begin{gathered}
y=\sqrt{7-4 x} \\
x=\left(y^{2}-7\right)(-4)
\end{gathered}
$$

5. Find the inverse of $f(x)=\ln (x / 2)$.

5

$$
\begin{aligned}
& y=\ln (x / 2) \\
& 2 e^{y}=x
\end{aligned}
$$

6. Evaluate the following expressions.

3
(a) $\log _{2} 80-\log _{2} 5=\log _{2} 16=4$

3
(b) $\log _{4} 8$
$=3 / 2$

3
(c) $\ln \frac{e^{5}}{\sqrt{e}}$
$=9 / 2$
7. Combine into a single logarithm: $\ln (5 x)-3 \ln \left(x^{2}+1\right)+\frac{1}{2} \ln (5 x-3)$

$$
\ln \frac{(5 x) \sqrt{5 x-3}}{\left(x^{2}+1\right)^{3}}
$$

8. If $\ln a=7, \ln b=-4, \ln c=8$, evaluate the following expressions.
(a) $\ln \frac{a^{5}}{b^{2} c^{3}}=5 \ln a-2 \ln b-3 \ln C$

$$
5.7-2(-4)-3(8)=19
$$

(b) $\ln (a \sqrt{b c})$
(c) $\ln (a / e)$

$$
\begin{aligned}
& =\ln a+\frac{1}{2} \ln b+\frac{1}{2} \ln c=9 \\
& =7+(-2)+(4)
\end{aligned}
$$

$$
=\ln a-1
$$

$$
=\varphi
$$

9. Solve the following equations.
(a) $4^{x+2}=6^{5 x}$

$$
\begin{gathered}
(x+2) \log 4=5 x \log \\
x=0.366
\end{gathered}
$$

(b) $\log _{4}(12+2 x)=3$

$$
\begin{aligned}
12+2 x & =4^{3}=64 \\
2 x & =52 \\
x & =26
\end{aligned}
$$

(c) $5 \ln (4-x)=3$

$$
\begin{aligned}
\ln (4-x) & =3 / 5 \\
4-x & =e^{3 / 5} \Rightarrow x=4-e^{3 / 5}
\end{aligned}
$$

$5 p^{\text {the }}$ ex th

$$
x=2.178
$$

10. Suppose $\$ 4,000$ is invested in an account paying 6.5% interest per year (APR). (a) Find the amount in the account after 7 years if interest is compounded monthly.

$$
6 \quad A(t)=4000\left(1+\frac{0.065}{12}\right)^{7-12}=\$ 6296.96
$$

(b) How long will it take for the account to have $\$ 8,000$ if interest is compounded semiannually?

$$
\begin{aligned}
4000\left(1+\frac{0.065}{2}\right)^{2 t} & =8,000 \\
(1.0325)^{2 t} & =2 \\
2 t \log (1.0325) & =1092 \\
t & =10.836 \mathrm{ys}
\end{aligned}
$$

(c) Find the amount in the account after 7 years if interest is compounded continuously.

6

$$
\begin{aligned}
A(T) & =4000\left(e^{(0.065)(7)}\right) \\
& =\$ 6304.69
\end{aligned}
$$

(d) How long will it take for the account to have $\$ 8,000$ if interest is compounded continuously?

$$
8
$$

$$
\begin{aligned}
4,000 e^{0.065 t} & =8,000 \\
0.065 t & =\ln (8 / 4) \\
t & =10.66 \text { fir. }
\end{aligned}
$$

