Math 123 Exam 2A

November 10, 2010

Professor Ilya Kofman

NAME: ____

1. Evaluate each expression using the graph above.

2 (a)
$$(f+g)(3) = 4$$

2 (a) (f+g)(3) = 4 (f) Does f(x) have an inverse for all x? Y

2 (b)
$$(fg)(1) = -1$$

(g) Does g(x) have an inverse for all x? Y

2 (c)
$$(g \circ f)(4) = 5$$

2 (d)
$$(f \circ g \circ f)(4) = 4$$

2. You want to fence off a rectangular garden adjacent to a barn (with no fence along the barn). Find the area of the largest garden possible with 80 ft of fencing.

$$2x + y = 80$$

$$A(x) = (x)(80-2x)$$
= $80x - 2x^2$

Max at
$$X=20$$
 (so $y=40$)

3. If
$$f(x) = x^2 - 8$$
 and $g(x) = \sqrt{x+5}$, find the following.

$$3 (a) f \circ g = X - 3$$

3 (b)
$$g \circ f = \sqrt{\chi^2 - 3}$$

$$g(c) g(f(2)) = 1$$

5 4. Find the inverse of
$$f(x) = \sqrt{5-3x}$$
. $f^{-1}(x) =$

$$f^{-1}(x) = \frac{x^{2}-3}{3} = \frac{5-x^{2}}{3}$$

$$y = \sqrt{5-3} \times$$

 $X = (y^2 - 5)/-3$

5. Find the inverse of
$$f(x) = \ln(x/3)$$
.

$$x = (y^2 - 5)/-3$$

5. Find the inverse of $f(x) = \ln(x/3)$. $f^{-1}(x) = 3e^{x}$

$$y = ln(\frac{x}{3})$$

 $3e^y = x$

3 (a)
$$\log_4 80 - \log_4 5 = \log_4 16 = 2$$

$$\frac{3}{3}$$
 (b) $\log_8 4 = \frac{2}{3}$

3 (c)
$$\ln \frac{e^3}{\sqrt{e}} = 5/2$$

7. Combine into a single logarithm:
$$\ln(5x) + 3\ln(x^2 + 1) - \frac{1}{2}\ln(3x - 1)$$

$$ln \frac{(5\times)(x^2+1)^3}{\sqrt{3}\times -1}$$

8. If
$$\ln a = 4$$
, $\ln b = -8$, $\ln c = 6$, evaluate the following expressions.

(a)
$$\ln \frac{a^5}{b^2 c^3} = 5 \ln a - 2 \ln b - 3 \ln c$$

= $20 + 16 - 18 = 18$

(b)
$$\ln(a\sqrt{bc})$$
 = $\ln a + \frac{1}{2} \ln d + \frac{1}{2} \ln c = 3$ = $4 - 4 + 3$

$$= \ln a - 1 = 3$$

$$= 4 - 1$$

(b)
$$\log_3(11+2x) = 4$$
 $2x = 3^9 = 8/$ $2x = 70$ $x = 35$

(c)
$$4\ln(6-x) = 3$$

 $\ln(6-x) = \frac{3}{4}$
 $6-x = e^{3/4} = \lambda = 6-e^{3/4}$
 $\chi = 3.88$

- 10. Suppose \$5,000 is invested in an account paying 4.5% interest per year (APR).
 - (a) Find the amount in the account after 6 years if interest is compounded monthly.

$$A(6) = 5,900 \left(1 + \frac{0.045}{12}\right)^{6.12} = {}^{2}6,546 = {}^{2}$$

(b) How long will it take for the account to have \$8,000 if interest is compounded semiannually?

8
$$5,000(1+\frac{0.045}{2})^{2t} = 8000$$

 $(1.0225)^{2t} = \frac{8}{5}$
 $2t \log(1.0225) = (9,8)5$
 $t = 10.56 \text{ yrs.}$

(c) Find the amount in the account after 6 years if interest is compounded continuously.

(d) How long will it take for the account to have \$8,000 if interest is compounded continuously?

ded continuously?

$$5,000 e^{(6.045)t} = 8000$$

 $(0.045)t = ln(8/5)$
 $t = 10.44 yrs.$

0