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Abstract

This thesis is concerned with an agent in a financial market who wishes to trade be-

tween day t = 0 and day t = τ . The agent starts with a specific objective in mind,

which defines a class of acceptable (random) financial positions at the end of day

τ . He wants to determine an initial amount and a self-financing trading strategy

which will turn the discounted terminal value of his portfolio acceptable. By suit-

able choices of acceptable positions, this simple structure becomes flexible enough

to encompass most of the common problems in mathematical finance. There are at

least two distinct viewpoints of acceptability: one, which comes from the theory of

measures of risk, stipulates ‘proper’ measures of risk as a real function evaluated

on future random net worths. The set of acceptable net worths are then defined

by their non-positive risks. The other is a generalization of arbitrage opportuni-

ties. It defines acceptable positions as what everybody finds as good deals, and

defines prices which are fair for both the buyer and the seller, in the sense that

it rules out such good deals for both of them. In this thesis, we propose results

determining the minimum capital requirement and a self-financing trading strat-

egy via which the aforementioned agent can lead his wealth towards acceptability.

Such minimum capital requirement are generalizations of the classical superhedg-

ing prices, although the mathematical techniques we apply are novel. The trading

strategies can also be interpreted as generalized hedging strategies, and we propose

new theoretical and computational methods to evaluate them.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Central to what we do in this thesis is the idea of acceptable financial positions. This

is a theory which has generated a lot of attention in recent mathematical finance

literature, partly because it makes a rigorous assessment of risks associated with

random financial net worths, and partly because it hugely generalizes No-Arbitrage

asset pricing and superhedging ideas in incomplete markets. It took several authors

and the last ten years, if not more, to fully explore the possibilities of such an idea.

In the next chapter we go over the history of the development of the notion of

acceptability, briefly touching the key facts, ideas and main results. A summary

of our own contribution to this field made in this thesis, and how they relate to

existing ideas, can be found in the final subsection 2.7.

In Chapter 3, we are concerned with the problem of minimum capital require-

ment which will allow an investor, by carefully trading in stocks and the money

market, to reach acceptability. Such capital requirements can be interpreted as

either sellers price of a contingent claim when hedging allows acceptable shortfall

(superhedging being a particular case), or as a generalization of No-Arbitrage val-
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uation principle where good-deals have been ruled out for both the buyer and the

seller of the contingent claim. The mathematical set-up assumes acceptable po-

sitions corresponding to arbitrary convex measure of risk, and continuous trading

on stock price processes modeled by special semimartingales. As far as we know,

they give the most general kinds of such results known in the literature. We end

this chapter with an example of computing sellers price of an European call options

where we allow shortfall with bounded pth moment.

In Chapter 4, we take up the problem of determining strategies to achieve ac-

ceptability. The current literature is almost silent here, in part because a complete

solution would provide strategies for almost any kind of hedging / portfolio opti-

mization problem. We attack this problem by first reducing its scope. We consider

discrete time trading, and acceptable positions defined by finitely many scenario

probabilities and floors. In other words, the set of acceptable positions is a con-

vex set of random variable determined by whether their expectations under finitely

many probability measures dominate a corresponding level or not. Such situations

have been studied either on their own merit or as an approximation to the general

case. Under very mild assumptions, we can then greatly reduce our search for a

suitable strategy to a small, convenient class. We then show how a Monte-Carlo

procedure can approximate a valid strategy to arbitrary degree of precision at the

cost of computing power.

We end this thesis with directions for possible future research.

Note. An index of commonly used mathematical symbols and the corresponding

equation numbers where they have been introduced can be found in the next page.
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1.1 Index of notations

Commonly used mathematical symbols Key to deciphering,

in this thesis: e.g., equation number where introduced:

Aρ (2.2), (2.8)

V@Rα (2.3)

St (3.1)

Θ (3.2)

W x,π
u (3.3)

G (4.19)

Λ (3.5)

Λ̃ (Closed) Convex hull of Λ

Γ (3.6)

A0 (3.7)

f (??)

f̃ (3.14)

T (3.31)

A0 (3.30)

Z (3.33)

dp(X,Π) (3.35)

SΠ (3.39)

W (ξ) (4.4)

Sm+1 (4.60)

vt(fi) (4.7)
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Chapter 2

A brief history of acceptability

2.1 Acceptability and coherent measures of risk

One of the first articles to define and study acceptability is the seminal paper

[Artzner et al., 1999]. They provide a definition of risks and present and justify

a unified framework for analysis, construction and implementation of measures of

risk. As the authors point out, these measures of risks, named coherent measures,

can be used as extra capital requirements, to regulate the risk assumed by market

participants, traders, insurance underwriters, as well as to allocate existing capital.

The idea is twofold: first to stipulate axioms which define acceptable future random

net worths, and secondly, to define the measure of risk of an unacceptable position as

the minimum extra capital which, invested in a ‘pre-specified reference investment

instrument’, makes the future discounted value of the position acceptable. The

axioms defining acceptability do not specify a unique measure of risk, instead, they

characterize a large class of risk measures. The choice of precisely which measure

to use from this class is left to additional economic considerations.
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Their basic object of study are random variables on the set of states of na-

ture at a future date, interpreted as possible future values of positions or portfolios

currently held. A supervisor (e.g. regulator, exchange’s clearing firm, or investment

manager) decides on a subset of such future outcomes as acceptable risks. Mathe-

matically, they choose a subset A of the set of all real functions, L0, on a finite set

Ω, and call it the acceptance set. A measure of risk associated with A is a function

ρA : L0 → R, defined by

ρA(X)
4
= inf{m | m+X ∈ A}.

Remark. This definition differs slightly from the original in [Artzner et al., 1999]

since we ignore the rate of return on the reference instrument (e.g. interest rate in

the money market).

Conversely, for any function ρ : L0 → R, one can define a corresponding

acceptance set by

Aρ
4
=
{
X ∈ L0 | ρ(X) ≤ 0

}
.

The crucial point made in this paper is that a proper measure of risk, ρ, should

satisfy the following axioms:

1. Translation invariance: for all X ∈ L0 and all real a, we have ρ(X + a) =

ρ(X)− a.

2. Subadditivity: for all X1 and X2 in L0, we have ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).

3. Positive homogeneity: for all λ ≥ 0 and all X ∈ L0, we have ρ(λX) = λρ(X).

4. Monotonicity: for all X and Y in L0 with X ≥ Y , we have ρ(X) ≤ ρ(Y ).

If a function ρ satisfies all the above axioms, it is called a coherent measure of risk.

This definition induces some restrictions on the corresponding acceptance set, Aρ,
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most importantly that it has to be a convex cone. Moreover, we also have ρAρ = ρ.

Why these axioms are natural requirements for a measure of risk has been argued

in [Artzner et al., 1999, Section 2.2], and we skip such details.

The other major achievement in that paper is the following representation

theorem.

Theorem 2.1 ([Artzner et al., 1999], Proposition 4.1). A risk measure ρ is coher-

ent if and only if there exists a family P of probability measures on the set of states

of nature, such that

ρ(X) = sup
{
EP [−X] | P ∈ P

}
. (2.1)

And thus, the corresponding acceptance set is given by

Aρ =
{
X ∈ L0 | EP [X] ≥ 0, ∀P ∈ P

}
. (2.2)

These probability measures P , coined ‘scenarios’, are defined on Ω, where the

σ-algebra is the power set of Ω. The authors also note that such a representation

theorem had already been proved in Proposition 2, Chapter 10 of [Huber, 1981],

albeit in a different context.

In the rest of the paper, the authors consider three existing measures of

risk: the margin system Standard Portfolio Analysis of Risk (SPAN), developed by

the Chicago Mercantile Exchange, the margin rules of the Securities and Exchange

Commission (SEC), which are used by the National Association of Securities Dealers

(NASD), and the value-at-risk V@R. They show that while the first two measures

of risk are coherent, the last one is not. V@R is a family of functions depending

on a probability measure P we put on Ω. Given α ∈ (0, 1), the function V@Rα,

defined as

V@Rα(X)
4
= − inf {x | P [X ≤ x] > α} , (2.3)
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fails the subadditivity property and hence does not reward diversification. They

prescribe a possible remedy in the coherent measure TailV@R, or Tail Conditional

Expectation (TCE), which is a one-parameter family of coherent risk measures

defined by

TCEα
4
= EP [−X | X ≤ −V@Rα(X)].

2.2 A generalization of the NA principle

In a now well-known paper, [Carr et al., 2001], the authors use the notion of accept-

ability to present a new approach for positioning, pricing, and hedging in incomplete

markets that bridges standard arbitrage pricing and expected utility maximization.

Their starting point is the observation that an arbitrage is an opportunity that ab-

solutely everyone would accept. It follows, from the continuity of preferences, that

opportunities exist, with mild risks, which would be considered acceptable to all

but the most risk-averse. They term such an opportunity that is agreeable to a

wide variety of reasonable individuals to be an acceptable opportunity. Such a class

of acceptable opportunities is specified by a finite set of probability measures and

associated floors, in the sense that an investment is deemed acceptable if its ex-

pected pay-offs under each probability measure exceed the corresponding floor. In

other words, we are given a pre-specified set of probability measures Pi, 1 ≤ i ≤ m,

on the future states of the world, and associated floors fi, 1 ≤ i ≤ m. If X denotes

the final position of an investment strategy, the strategy will be acceptable if

EPi [X] ≥ fi, i = 1, . . . ,m. (2.4)

The paper requires the constants {fi} to be non-positive. For example, if Ω is

finite, a suitable choice of Pi (Dirac mass at sample point i) would yield arbitrage
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opportunities as the only acceptable ones.

The authors then proceed to extend the fundamental theorems of asset pric-

ing. They examine the implications of the liquid assets being priced so that there

are no strictly acceptable opportunities among them. Correspondingly, the con-

cept of hedging is reformulated to one of attaining acceptable residual risks. We

do not discuss further details of this paper, since very soon we shall see a more

unified picture coming up. For the moment, observe the similarities of the two no-

tions of acceptability (2.2) and (2.4), although they come from seemingly disparate

considerations.

2.3 Coherent risk measures and NGD pricing

The authors of [Carr et al., 2001] were not the first one to consider bridges be-

tween No Arbitrage theory and utility maximization principle. The theory of

no-good-deal pricing (NGD), as a pricing technique based on the absence of at-

tractive investment opportunities in equilibrium, was introduced before them in

[Černy and Hodges, 2001]. The term no-good-deal is borrowed from an earlier pa-

per with similar objectives, [Cochrane and Saá-Requejo, 2000], where good-deals

were defined by high sharp-ratio of returns. The first paper which fully establishes

the link between coherent risk measures and the no-good-deal pricing theory is

[Jaschke and Küchler, 2001]. One of their key results is that coherent risk mea-

sures are essentially equivalent to good-deal bounds. The key idea is to observe

that the set of desirable claims has a one-to-one correspondence with the set of

acceptable risks, in the sense of [Artzner et al., 1999], and thus gives rise to a co-

herent measure of risk ρ. Then they make the following crucial observation: let

M be a set of cash streams available in the market (i.e., cash streams that can be
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generated by trading without endowments), then one can define a new risk measure

ρ̃(X)
4
= inf

Y ∈M
ρ(X + Y ), (2.5)

which is again coherent if M is a cone. The good-deal bounds, π and π, which

are generalized valuation bounds, then correspond to the coherent risk measure

ρ̃ by ρ̃(X) = π(−X) = −π(X). Such price intervals [π, π] are consistent with

the absence of good-deals in the market. Correspondingly, as we mention in the

last section, the idea of hedging has been expanded to one where the residual risk

is acceptable. Relations between measures of risk and No Good Deals are further

extended by Staum in [Staum, 2004], where he proves fundamental theorem of asset

pricing for good deal bounds in incomplete markets.

2.4 Convex measures of risk

A significant extension, encompassing all the previous ideas we discussed in this sec-

tion, was made by introducing convex measures of risk in [Föllmer and Schied, 2002].

They consider the same set-up as in [Artzner et al., 1999]. For example, future dis-

counted net worth from any financial position are represented by the vector space

L0 of functions from Ω to R. A quantitative measure of risk is real function ρ,

defined on L0, which can be interpreted as a margin requirement, i.e., the minimal

amount of capital, which if added to the position at the beginning of the given

period and invested into a risk-free asset, makes the discounted position X accept-

able. What the authors argue is that the positive homogeneity of the coherent risk

measure is an undue requirement, because the risk of a position might increase in

a non-linear way with the size of the position. For example, an additional liquidity

risk may arise if a position is multiplied by a large factor. They suggest to relax the
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conditions of positive homogeneity and of subadditivity and to require the weaker

property of convexity:

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), for any λ ∈ [0, 1], X, Y ∈ L0. (2.6)

As with subadditivity, convexity means that diversification does not increase risk.

A measure of risk is called a convex measure of risk if it satisfies (2.6) in addition

to sharing the properties of Translation invariance and Monotonicity of the earlier

coherent measures.

The authors of [Föllmer and Schied, 2002] then prove a representation theo-

rem, similar in spirit to 2.1, which show that any convex measure of risk on a finite

Ω is of the form

ρ(X) = sup
P∈P

(
EP [−X]− α(P )

)
. (2.7)

Here, as before, the set P is the set of all probability measures on Ω. The function

α(·) is a certain penalty function on P. When α is throughout zero, we get back

the coherent measures. Representation (2.7) was independently proved by David

Heath in [Heath, 2000]. As before, a convex measure of risk defines an associated

acceptance set given by

Aρ =
{
X ∈ L0 | ρ(X) ≤ 0

}
=
{
X ∈ L0 | EP [X] ≥ −α(P )

}
. (2.8)

Conversely, a given set of acceptable positions A defines a convex measure of risk

via

ρA(X) = inf { m ∈ R | m+X ∈ A} (2.9)

provided A satisfies certain axioms.

Till now, all the measures of risk that we have discussed are model-free in

the sense that no base probability has been assumed on the space Ω. In order to

extend (2.7) to arbitrary Ω, we need to consider a base probability P on (Ω,F),
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where F is a suitable σ-algebra on Ω. Let L∞(P ) denote the usual Banach space of

P -essentially bounded real functions on Ω. Also, let L1(P ) denote the P -integrable

functions on Ω. We have the following theorem.

Theorem 2.2 ([Föllmer and Schied, 2002] Theorem 6). Supose ρ is a convex mea-

sure of risk defined on L∞(P ). Let P be the set of probability measures Q � P .

Then the following properties are equivalent.

1. There is a penalty function α : P → (−∞,∞] such that

ρ(X) = sup
Q�P

(
EQ[−X]− α(Q)

)
, for all X ∈ L∞(P ). (2.10)

2. The acceptance set Aρ is closed with respect to the weak∗ topology on L∞(P ).

3. Fatou property: if the sequence (Xn)n∈N ⊆ L∞(P ) is uniformly bounded, and

Xn converges to some X in probability P , then ρ(X) ≤ lim infn ρ(Xn).

4. Continuity from above: if the sequence (Xn) ⊆ L∞(P ) decreases to X ∈

L∞(P ), then ρ(Xn) → ρ(X).

We should mention here that there is no uniqueness property of the penalty

function in the representation (2.10).

Some of the most useful examples of convex measures of risk come from con-

sidering shortfall risk which is introduced in [Föllmer and Schied, 2002, Section3].

As we shall see later, these are useful in constructing efficient hedging of contin-

gent claim. Suppose that l : R → R is an increasing convex loss function which

is not identically constant. For a position X ∈ L∞(P ) introduce the expected loss

EP [l(−X)]. If l vanishes on (−∞, 0], then EP [l(−X)] = EP [l(X−)] may be viewed

as a quantitative assessment of the shortfall risk.
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Let x0 be an interior point in the range of l. A position X ∈ L∞(P ) will be

called acceptable if the expected loss is bounded by x0. Thus we consider the class

A
4
=
{
X ∈ L∞(P ) | EP [l(−X)] ≤ x0

}
(2.11)

of acceptable positions. This induces a measure of risk ρA(X) by relation (2.9).

It is straightforward to verify that ρA satisfies all the axioms in order to be called

a convex measure of risk. Additionally, since l is continuous as a finite-valued

convex function on R, the Fatou property of Theorem 2.2 is also satisfied. Thus

ρA possesses a representation of the form (2.10), where the corresponding penalty

function α0 can be expressed in terms of the Fenchel-Legendre transform of l, i.e.,

l∗(z)
4
= sup

x∈R
(zx− l(x)) .

Theorem 2.3 ([Föllmer and Schied, 2002] Theorem 10). Suppose A is the accep-

tance set given by (2.11). Then for Q � P , a penalty function of ρA is given

by

α0(Q) = inf
λ>0

1

λ

(
x0 + EP

[
l∗
(
λ

dQ

dP

)])
.

Example 2.1. For example, if we take l(x) = ex and let x0 = 1, then ρ(X) =

log EP [exp(−X)]. In that case, the penalty function is given by the well-known

variational formula of the relative entropy, namely α0(Q) = H(Q|P ), where the

relative entropy of Q with respect to P is defined as

H(Q|P )
4
=


∫

dQ/dP log (dQ/dP ) dP, if Q� P,

+∞ otherwise.

Example 2.2. Another commonplace example is the case when, for some p > 1,

l(x) =


1
p
xp if x ≥ 0,

0 otherwise,

(2.12)

Then it turns out that α0(Q) = (px0)
1/p · EP [(dQ/dP )q]

1/q
, where q = p/(p− 1).
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2.5 Measures of risk in a financial market

2.5.1 Definition and motivation

The financial implications of this thesis heavily relies on the idea of measure of

risk in a financial market, a phrase introduced in [Föllmer and Schied, 2002]. The

idea itself is older, and we have already seen it in (2.5). Several authors have

recently contributed to the development of this theory. We shall soon discuss

[Barrieu and El Karoui, 2005a] and [Barrieu and El Karoui, 2005b], who establish

these risk measures as special cases of inf-convolution of risk measures. It is only

by considering such risk measures that we begin to see the connections between the

theory of coherent and convex measures (Sections 2.1 and 2.4) on the one hand, and

the generalizations of pricing and hedging theory to incomplete markets (Sections

2.2 and 2.3) on the other hand. In this section we discuss the discrete-time case.

We shall use a similar mathematical set-up in Section 4. The ideas pass smoothly

to continuous time, except for the regularity conditions, which we discuss in Section

3. Here we provide a non-technial expositions following [Föllmer and Schied, 2002,

Section 4].

For simplicity, we consider a market where there is one bank account and

one stock which is traded at (T + 1) time points t = 0, 1, . . . , T . We denote the

discounted price process of one share of the stock by (X0, X1, . . . , XT ). Consider

a self-financing trading strategy which dictates holding ξt number of shares of the

stock during the trading period [t, t+ 1), and

Vt = V0 +
t∑

k=1

ξk(Xk −Xk−1)

is the associated value process for an initial endowment V0.
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Now consider a set of acceptable positions A. In other words, a random

financial position Z will be of acceptable risk if Z ∈ A. More generally, we can

think of Z to be acceptable, if the ‘risky part’ of Z can be hedged at no additional

cost, i.e., we can find a suitable hedging portfolio ξ such that

Z +
T∑

k=1

ξk(Xk −Xk−1) ∈ A. (2.13)

If we think of Z as being the value of a large portfolio, we should avoid run-

ning into the regime of illiquidity when hedging Z. For instance, one may want

to impose individual limits on the number of shares held of the risky asset. In

this case, we can allow ξk to take values in some intervals [ak, bk]. Such con-

straints on the hedging portfolio were first suggested by Cvitanic and Karatzas

in [Cvitanic and Karatzas, 1992] and [Cvitanic and Karatzas, 1993]. Now, (2.13)

generates a larger class of acceptable positions

Ã
4
=

{
Z

∣∣∣∣ ∃ ξ such that Z +
T∑

k=1

ξk(Xk −Xk−1) ∈ A

}
. (2.14)

Define the market measure of risk corresponding to A by

ρ̃(Z) = inf
{
m
∣∣ m+ Z ∈ Ã

}
. (2.15)

In particular, if the to start with the set A is the set of acceptable positions asso-

ciated with a convex measure of risk ρ, the new measure of risk ρ̃ is again convex.

Moreover, ρ̃ is given by

ρ̃(Z) = inf
{
m
∣∣ m+ Z ∈ Ã

}
= inf

{
m

∣∣∣∣ ∃ ξ such that m+ Z +
T∑

k=1

ξk(Xk −Xk−1) ∈ A

}

= inf
ξ

inf

{
m

∣∣∣∣ m+ Z +
T∑

k=1

ξk(Xk −Xk−1) ∈ A

}

= inf
ξ
ρ

(
Z +

T∑
k=1

ξk(Xk −Xk−1)

)
, by (2.9). (2.16)
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The expression in (2.16) is a special case of (2.5), where the measure of risk is

convex and the available cash flow is generated by trading with zero capital. Thus,

suppose, in the set-up of Section 2.3, good deals are defined by a convex measure of

risk ρ, i.e., X is a good deal if ρ(X) ≤ 0. Then the no-good-deals valuation bounds

for the claim Z is given by the interval [−ρ̃(Z), ρ̃(−Z)]. In Chapter 3 we shall see

how to evaluate ρ̃(Z) for arbitrary risk measure ρ and any pay-off Z. The process

ξ which attains the infimum in (2.16) can hence be thought as a hedging strategy.

In Chapter 4 we shall discuss methods to compute such strategies.

We can now specialize the previous paragraph with the shortfall risk mea-

sures discussed in Theorem 2.3. These are closely related to the problem of efficient

hedging or the problem of utility maximization; see, e.g., [Föllmer and Leukert, 2000]

and [Schachermayer, 2000]. We briefly describe the problem. In a complete finan-

cial market a given contingent claim can be replicated by a self-financing trading

strategy, and the cost of the replication defines the price of the claim. In incom-

plete markets, it is not possible to replicate every contingent claim perfectly. One

can still stay on the safe side by a super-replicating or superhedging strategy. See

[El Karoui and Quenez, 1995] and [Karatzas, 1996]. But from a practical viewpoint

the price of super-replication is often prohibitively high. Also, it does not reflect

the reality since it models an extreme risk-averseness. Investors are often inclined

to take up opportunities of making profit together with small or controlled risk

of a loss. Several authors have come up with ideas of partial hedging to redress

this shortcoming. For example, in [Föllmer and Leukert, 1999], the authors discuss

the possibility of super-replicating not with probability one, but with a preset high

probability. In a sense, this is a dynamic version of the value-at-risk or V@R.

In [Föllmer and Leukert, 2000] the authors define efficient hedging by using

shortfall risks in terms of a convex loss function l. The convexity of l correspond
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to risk aversion. The shortfall risk is the expectation of the loss function applied

to the shortfall. Now, there can be two objectives of a hedging portfolio, one, to

minimize the shortfall risk, given some capital constraint. Alternatively, one can

prescribe a bound on the shortfall risk and minimize the cost. These efficient hedges

allow investors to interpolate in a systematic way between the extremes of a perfect

hedge and no hedge depending on the prescribed level of shortfall risk.

The groundwork for bringing in convex measures of risk in such problems

has already been done in Theorem 2.3. We consider a convex loss function l

which vanishes on (−∞, 0]. As we have already mentioned, for such a loss func-

tion l(−X) = l(X−), where X− = max(0,−X). We consider the set of accept-

able financial positions A given by (2.11) for some suitable x0. Theorem 2.3 de-

scribes the corresponding convex risk measure. For a contingent claim Z, con-

sider the case when there exists a trading strategy ξ and a real m such that

m− Z +
∑T

k=0 ξk(Xk −Xk−1) ∈ A. By the definition of A, this would imply

E

l(−Z +m+
T∑

k=0

ξk(Xk −Xk−1)

)−
= E

l(Z −m−
T∑

k=0

ξk(Xk −Xk−1)

)+
 ≤ x0. (2.17)

In other words, if one starts with a capital of m and follows the trading strategy ξ,

then at the end of time T , the shortfall risk will be bounded above x0. By (2.15),

the minimum m for which there is a ξ satisfying (2.17) is given by ρ̃(−Z), which one

can also interpret as the price (upper or sellers price, compare with the good-deal

bounds) of such an efficient hedge. The hedging strategy would be as before the

process ξ which achieves the infimum in (2.16).
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2.5.2 Examples of risk measures in a market

We can now give several examples to illuminate the ideas of the previous subsection.

Also as in the last subsection, here too we use the discrete time framework, just

for simplicity of technicalities. All the ideas in this section can be generalized

smoothly to the continuous time framework, which we shall need anyway in Chapter

3. In all these examples we consider Ω to be the set of all possible states of the

universe. A base probability measure P on some suitable σ-algebra of Ω represents

the randomness in the outcomes. Any financial position is a random variable defined

on Ω.

Example 2.3 (Superhedging). Consider a contingent claim Y , and define the set of

acceptable positions by

A
4
= {X ∈ L∞(P ) | P (X ≥ 0) = 1}

=
{
X ∈ L∞(P ) | EQ[X] ≥ 0, ∀ Q� P

}
. (2.18)

It is immediate from (2.8) that A is derived from a convex measure of risk

ρ(X) = sup
Q�P

(
EQ[−X]− α(Q)

)
, α(Q) ≡ 0.

If we now consider the market measure of risk corresponding to A, defined in (2.15),

we get

ρ̃(−Y ) = inf

{
m

∣∣∣∣∣ ∃ ξ such that P

[
m+

T∑
k=1

ξk(Xk −Xk−1) ≥ Y

]
= 1

}
.

In other words, ρ̃(−Y ) is the no-arbitrage upper superhedging price for the con-

tingent claim Y , and the corresponding strategy ξ (if it exists) is the superhedging

strategy.

Example 2.4 (Hedging with shortfall risk). As before we consider the problem of

hedging a contingent claim Y , but with controlled shortfall. Our choice of loss
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function for the purpose of this example is the pth moment i.e. l(x) = (x+)p/p.

We have already discussed the risk measure arising out of this loss function, and

in the line following (2.12) we describe the penalty function α0(Q) = (px0)
1/p ·

EP [(dQ/dP )q]1/q for some pre-specified tolerance level x0 ∈ R. In other words, we

define the set of acceptable positions by

A
4
=
{
X ∈ L∞(P )

∣∣∣ E[X+]p ≤ px0

}
=
{
X ∈ L∞(P )

∣∣∣ EQ[X] ≥ α0(Q)
}
. (2.19)

Just as in the previous example, we consider the market measure of risk of −Y ,

given by

ρ̃(−Y ) = inf

m
∣∣∣∣∣ ∃ ξ such that EP

[
Y −m−

T∑
k=1

ξk(Xk −Xk−1)

]+

≤ x0

 .

Thus ρ̃(−Y ) is the minimum amount of capital needed to have a shortfall risk

bounded above by x0.

Example 2.5 (Model uncertainty). Here we consider a different example of accept-

ability. Suppose we are uncertain about modeling the random outcomes of the finan-

cial market by P . Instead we have a collection of possible models {Q1, Q2, . . . , Qm}

all of which are probability measures on Ω. It makes sense to have each of these

measures absolutely continuous to one another and absolutely continuous with re-

spect to P . Otherwise, there will be events which are improbable under one, while

probable under some of the others. This reflects an extreme level of uncertainty in

modeling, and can be ruled out in many situations. Suppose the objective of an

investor in this market is to generate a portfolio whose expected value will dominate

another pay-off Y at the terminal time. But computing expectation depends on

the choice of the probability measure. Hence a robust approach will be given by

the following. Define the set of acceptable positions by

A
4
=
{
Z ∈ L∞(P ) | EQi [Z] ≥ 0, for all i = 1, 2, . . . ,m

}
.
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Hence the market measure of risk A of −Y , i.e., ρ̃(−Y ) is given by

inf

{
m

∣∣∣∣∣ ∃ ξ such that EQi

[
m+

T∑
k=1

ξk(Xk −Xk−1)

]
≥ EQi [Y ], 1 ≤ i ≤ m

}
.

In other words ρ̃(−Y ) is the minimum capital required to generate, by trading, an

expected pay-off more than that of Y .

2.6 Inf-convolution of risk measures

The measures of risk in a financial market is an example of risk transfer between

agents (one of them consisting of the financial market). The right framework to

develop this is through inf-convolution of risk measures. Although, for the pur-

pose of this thesis, we do not need the full details of the theory, this might be

a good place to introduce this important method of generating new risk mea-

sures from pre-existing ones. Readers interested in exploring other possibilities

are referred to the excellent expository articles [Barrieu and El Karoui, 2005a] and

[Barrieu and El Karoui, 2005b].

We start with the space L∞(P ), which is the Banach space of all P -essentially

bounded functions from Ω to R. All the measures of risk we discuss in this sub-

section will be defined on this linear space. The inf-convolution of two convex

functionals φA and φB on L∞(P ) is defined as

φA2φB(X)
4
= inf

H∈L∞(P )
{φA(X −H) + φB(H)} .

This is the functional extension of the classical inf-convolution operator acting on

real convex functions f2g(x) := infy{f(x− y) + g(y)}.

Example 2.6. For example, suppose φA(X) = EPA [−X], for some probability mea-

sure PA on Ω, such that PA is absolutely continuous with respect to P . And let φB
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be equal to a convex measure of risk ρ(X) = supQ�P [EQ(−X) − α(Q)]. By using

convex duality, it can be easily verified that the resulting inf-convolution will be

given by the following convex measure of risk:

φA2φB(X) = EPA(−X)− α(PA).

Example 2.7. Another important class of examples is when φA is a convex measure

of risk ρ, and φB is the convex indicator of a convex set B, i.e.,

φB(X) =

0, if X ∈ B,

∞, otherwise.

It is straightforward to see that

φA2φB(X) = inf
H∈L∞(P )

{ρ(X −H) + φB(H)} = inf
H∈B

ρ(X −H). (2.20)

A quick comparison with expression (2.5) or, the more specialized version, (2.16),

proves that measures of risk in a financial market are special cases of (2.20). In

[Barrieu and El Karoui, 2005a], the authors refer to such reduction of risks, as in

(2.20), as transfer of risk.

We end this subsection with the following important representation theo-

rem of the inf-convolution of two convex measures of risk. This is a special case

of Theorem 3.1 in [Barrieu and El Karoui, 2005a]. The central idea is that the

Legendre-Fenchel transform of inf-convolutions act additively on each component

in the following sense.

Theorem 2.4. Let ρA, and ρB be two convex measures of risk on L∞(P ) with cor-

responding penalty functions αA and αB. Let ρA2ρB denote their inf-convolution,

and assume that ρA2ρB(0) > −∞. Then ρA2ρB is another convex measure of risk

with associated penalty function α(Q) = αA(Q) + αB(Q), ∀ Q ∈ P, where P is

the class of all probability measures on Ω absolutely continuous with respect to P .
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2.7 Summary of the thesis

This thesis is in two parts: in the first part, we are concerned with computing

market measures of risk, defined in (2.15), when the set of acceptable positions

A is defined through some convex measure of risk ρ, as in (2.8). Such attempts

have been made by other authors in simpler set-ups, notably in [Larsen et al., 2004]

who consider the case when ρ is determined by finitely many scenarios, and also

[Cherny, 2005], who considers ρ to be a coherent measure of risk. Our propositions

are the most general results of such kinds, in the sense that we assume continuous-

time trading, semimartingale price processes, and arbitrary convex risk measures

ρ. Such generalisations are essential as we have exhibited in examples 2.3, and 2.4

in Subsection 2.5.2. Please see Section 2.5 for a review of the wide applicability

of market measures of risk. The mathematical hurdles one faces in the generality

that we consider are considerable, and we employ theories such as that of uniformly

convex Banach spaces which is uncommon in the literature. This has been done in

Chapter 3, and the main results are stated in Proposition 3.4 and Proposition 3.5.

The second part of this thesis is focussed on determining the process ξ which

achieves the infimum in (2.16). The current literature is almost silent on such

problems, in part because a complete solution will determine hedging portfolios

for almost all major efficient hedging problems, something which looks far-fetched.

Here we resort to a computational approach in discrete time. Chapter 4 is de-

voted to this procedure. We consider again a market measure of risk induced by a

convex measure ρ, described by finitely many scenarios and floors. In Proposition

4.1 we reduce the search of optimal ξ to a much smaller, more convenient class.

The technique we use is a novel application of the Neyman-Pearson lemma. We

then describe how this reduction allows us to do a simple, intuitive Monte-Carlo
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procedure to determine an approximately optimal ξ. The precision can be chosen

arbitrarily at the cost of computing power. We should mention here that the ap-

plication of Neyman-Pearson lemma to portfolio optimization problems by itself is

not new. For example a beautiful application of this theory to quantile hedging can

be found in [Föllmer and Leukert, 1999]. However, our approach and the mode of

application of the Neyman-Pearson theory is different and new.

Each of Chapters 3 and 4 ends with examples applying our results, followed

by an appendix which details the more involved proofs and short introductions to

some of the non-standard mathematical theories we employ.

We conclude this thesis with a short discussion about unresolved problems

and possible future directions of work.
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Chapter 3

Capital requirement to achieve

acceptability

3.1 Introduction

Consider an agent who trades during a finite time-interval [0, T ] in a market that

offers finitely many assets. He is given a class of probability measures (which we

refer to as scenarios), and corresponding real numbers, called floors. Any pay-off

X that he can generate at time T is called acceptable, if the expectation of X

under each scenario is not less than the corresponding floor. In this chapter we

calculate the minimum initial capital required, so that by careful trading, following

a self-financing strategy, the agent can turn the terminal value of the portfolio

acceptable.

In the language of Section 2.5, we shall be computing ρ̃(Z), for an arbitrary

integrable random variable Z, and ρ̃ induced by any convex measure of risk ρ
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via (2.15). The details have been worked out in Subsection 3.1.4. Hence the

history and developments of the financial ideas and interpretation of results in this

chapter are already described in Chapter 2. We owe the problem to a recently

published paper due to Larsen, Pirvu, Shreve and Tütüncü [Larsen et al., 2004],

in which the authors look at a market with a semimartingale price process and

consider the same problem with finitely many scenarios. We borrow much of the

mathematical structure from their paper, and extend their results to any arbitrary

(even uncountable) class of scenarios. What makes our generalisation necessary is

that most such natural measures would require infinitely many scenarios, and the

finite-dimensional arguments used in [Larsen et al., 2004] fail to extend. We provide

an example in Section 4.4 where we compute capital requirement to efficiently hedge

a contingent claim when we allow controlled shortfall. This problem can easily be

cast in our set-up discussed above, but only with infinitely many scenarios and

floors.

Remark. We should mention here that we differ from [Larsen et al., 2004] at another

important point; we only look at a static case, i.e., the risk is measured when we

start trading at t = 0.

This chapter is divided as follows. Subsection 3.1.2 describes our mathe-

matical set-up, leading to a precise statement of the problem in Subsection 3.1.3.

Our solution is a reflection of the central result in [Larsen et al., 2004] for the finite

case, i.e., the minimum capital required to achieve acceptability is equal to the

supremum of the floors corresponding to such convex combinations of the scenarios

under which the price process is a martingale. This is established through three

results in Section 3.3, Propositions 3.2, 3.4, and 3.5, with increasing ease of appli-

cation at the cost of generality. Several novel functional analytic and probabilistic

instruments have been applied in the process. For example, Proposition 3.2, which
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follows from Hilbert space arguments, is a general condition but difficult to verify

in practice. We use results about nearest point projections in Lp spaces, to obtain

a more amenable one in Proposition 3.4. Proposition 3.5 exhibits how such a condi-

tion can be achieved by a proper choice of the underlying filtration. As mentioned

before, an example has been worked out in Section 4.4 as an application of the

theory.

3.1.1 Acknowledgements

This chapter uses mathematical theory which I was unaware of to begin with. I

sincerely thank Prof. Simeon Reich, Prof. Heinz Bauschke and Prof. Leonard

Gross for suggesting me proper directions and references when I needed them. I

am also indebted to Prof. Hans Föllmer and Prof. Martin Schweizer for pointing

out several related references.

3.1.2 Description of the market

The market we consider has one risky asset and zero risk-free interest rate. These

are simplifying assumptions, not difficult to avoid. But we adhere to them for

notational simplicity. The price of our risky asset is assumed to be a real-valued

(although only notational changes are required, in order to handle a vector-valued

semimartingale) special semimartingale St, 0 ≤ t ≤ T , adapted to a suitable

filtered probability space (Ω,F, {Ft}, P ). We assume that the filtration is right-

continuous, F0 contains all the P null sets, and that FT is the entire σ-algebra F.

The semimartingale S has the following Doob-Meyer decomposition

St = S0 +Mt + At, 0 ≤ t ≤ T, (3.1)
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where the process M is a local martingale and A is a predictable process of finite

variation. They are both assumed to be càdlàg. Without loss of generality, at time

zero, the initial price S0 is assumed to be zero.

For any special semimartingaleX which can be decomposed asX = N+V , whereN

is a local martingale and V is a predictable finite variation process, one can define

the H2 norm of X by ‖X‖2
H := E ([N ]T ) + E (|V |2T ). Here [N ] is the quadratic

variation of the local martingale N . The class of special semimartingales with a

finite H2 norm is a Banach space (see [Protter, 2004]).

Assumption 3.1. We shall assume that the H2-norm of the semimartingale S

in (3.1) is finite, i.e., ‖S‖H :=
√

E ([M ]T ) + E (|A|2T ) <∞.

Let Θ denote the collection of predictable processes π such that

E

(∫ T

0

π2
ud[M ]u

)
+ E

(∫ T

0

|πu|d|A|u
)2

<∞. (3.2)

Then for any predictable process π ∈ Θ and for any 0 ≤ t ≤ T , the stochastic

integral of π with respect to the process S is well defined in the interval [0, t]

and will be denoted by (π.S)t :=
∫ t

0
πudSu. The process (π.S)t is again a special

semimartingale in the interval [0, T ] with a finite H2 norm, whose square is given

by (3.2). See [Protter, 2004] for the proofs.

For x ∈ R and π ∈ Θ, we call

W x,π
u := x+ (π.S)u, 0 ≤ u ≤ T, (3.3)

the wealth process at time u starting with initial capital x and generated by the

trading strategy π. We shall make use of the following notation.

Notation 3.1. Let Lp, 1 ≤ p < ∞, denote the space of all F-measurable random

variables which have integrable pth moment under P .
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Now for any π ∈ Θ, it is again a standard fact that the random variable

(π.S)T is square integrable. Thus there is an obvious map from Θ into L2 which

carries π to the stochastic integral (π.S)T . We consider the range of this map

G :=

{
X ∈ L2

∣∣∣ X =

∫ T

0

πudSu, for some π ∈ Θ

}
. (3.4)

Clearly, G is a subspace of the Hilbert space L2. We shall denote by G, the closure

of G in L2. This closure will then be a Hilbert space in its own right.

3.1.3 Statement of the problem

Let ∆ be a collection of probability measures on (Ω,F), which are absolutely con-

tinuous with respect to P and, let φ be a mapping from ∆ into R.

Assumption 3.2. Assume that

Λ
4
=
{

dQ/dP
∣∣∣ Q ∈ ∆

}
(3.5)

is a subset of L2.

Problem 3.1. Let Γ be the subset of L2 defined by

Γ
4
=
{
X ∈ L2

∣∣ EQ (X) ≥ φ(Q), ∀ Q ∈ ∆
}
. (3.6)

A real number x will be called acceptable if

(x+G) ∩ Γ 6= ∅, (3.7)

where the subspace G is defined in (4.19). We shall denote the set of acceptable

initial positions by A0. That is to say, x ∈ A0 if there exists a π ∈ Θ such that

EQ

(
x+

∫ T

0

πudSu

)
≥ φ(Q), ∀ Q ∈ ∆. (3.8)
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It is immediate that the set A0 is a half-line, unbounded from above. We shall be

concerned with determining

inf{x ∈ R| x ∈ A0}. (3.9)

remark. Another important question is whether the set A0 is closed or not. That

is to say, whether the infimum in (3.9) is attained. As we shall see in the beginning

of Section 3.3, our present set-up is deficient in answering the question. We shall

get, however, a partial solution.

3.1.4 Relations with market measures of risk.

Market measures of risk has been introduced and developed (although in discrete

time for simplicity) in Subsection 2.5. In this subsection we show how minimum

capital requirement in our sense is equivalent to computing measures of risk in the

financial market.

We start with the space L∞ of real-valued, P -essentially-bounded measurable

functions defined on (Ω,F, P ) . Define the function ρ by

ρ (X) = sup
Q∈∆

(
EQ [−X] + h (Q)

)
, X ∈ L∞, (3.10)

where ∆ is as in the last section and h : ∆ → R. Then ρ is a convex measure of

risk. Moreover, as shown in [Föllmer and Schied, 2004, page 172] (see Section 2.4,

Theorem 2.2), all convex measures of risk (with some regularity) can be represented

as above for some penalty function h (although ∆ might not be a subset of L2).

Given the subspace G of (4.19), we define the market measure of risk as

another measure of risk

ρG(X)
4
= inf

H∈G
ρ(X −H), X ∈ L∞.
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This is an example of inf-convolution of risk measures as seen in Example 2.7 (see

(2.20)).

By Assumption 3.2, we can extend the domain of ρ and ρG to the whole of

L2. Fix χ ∈ L2. We shall show that by a suitable choice of φ, the value of the

infimum in (3.9) is equal to ρG(χ). To see this, define φ(Q) := h(Q)−EQ(χ). Then,

by definition (3.7), we get inf{x ∈ R | x ∈ A0}

= inf
{
x ∈ R

∣∣∣ ∃ ξ ∈ G, EQ(x+ ξ) ≥ φ(Q), ∀Q ∈ ∆
}

= inf
{
x ∈ R

∣∣∣ ∃ ξ ∈ G, EQ(x+ ξ) ≥ h(Q)− EQ(χ), ∀Q ∈ ∆
}

= inf
{
x ∈ R

∣∣∣ ∃ ξ ∈ G, EQ(−(χ+ x+ ξ)) + h(Q) ≤ 0, ∀Q ∈ ∆
}

= inf
{
x ∈ R

∣∣∣ ∃ ξ ∈ G, ρ(χ+ x+ ξ) ≤ 0
}

= inf

{
x ∈ R

∣∣∣ inf
H∈G

ρ(χ+ x−H) ≤ 0

}
(3.11)

= inf
{
x ∈ R

∣∣∣ ρG(χ+ x) ≤ 0
}

= ρG(χ). (3.12)

The equality in (3.11) requires proper assumption on the regularity of ρ and the

last one is due to translation invariance of the convex risk measure ρG, see page

155, eqn.(4.5) of [Föllmer and Schied, 2004].

3.2 A general Hilbert space problem

Let H be a Hilbert space with an inner product denoted by 〈. , . 〉 and the norm

by ‖.‖. Suppose we are given a set Λ ⊆ H, a mapping f : Λ → R, and a closed

subspace G ⊆ H. For any given real number x, we want to find necessary and

sufficient conditions for the existence of an element z∗ ∈ G such that

〈z∗, y〉 ≥ f(y)− x, ∀y ∈ Λ. (3.13)
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The rest of this section is devoted to solving this problem.

Let Λ̃ denote the convex hull of Λ. Extend the mapping f from Λ to Λ̃ by

defining a new mapping f̃ : Λ̃ → R (the least concave majorant), given by

f̃(y) := sup

{
n∑

i=1

λif(zi)
∣∣∣ y =

n∑
i=1

λizi, zi ∈ Λ, λi ≥ 0,
∑

i

λi = 1

}
. (3.14)

Let us observe that if z∗ is a solution for (3.13), then z∗ also solves a more general

class of inequalities. In fact, by the linearity of inner products, it follows from (3.13)

that if y ∈ Λ̃ can be written as as a convex combination of some {z1, z2, . . . , zn} ⊆ Λ,

i.e. y =
∑
λizi, then 〈z∗, y〉 =

∑
λi.〈z∗, zi〉 ≥

∑
λif(zi)− x. Thus, we can appeal

to the definition of f̃ in (3.14) to obtain

〈z∗, y〉 ≥ f̃(y)− x, ∀y ∈ Λ̃. (3.15)

Let T(y) for any y ∈ H denote the unique orthogonal projection of y on G.

In particular, we have

〈z, y〉 = 〈z,T(y)〉 , ∀z ∈ G. (3.16)

Proposition 3.1. For any x ∈ R, a necessary and sufficient condition for the

existence of z∗ ∈ G satisfying the inequalities in (3.13), is the existence of a constant

M ≥ 0 such that

M ‖T(y)‖ ≥ f̃(y)− x, ∀y ∈ Λ̃. (3.17)

proof. To see the necessity of condition (3.17), just apply the Cauchy-Schwarz

inequality to (3.15) to get

f̃(y)− x ≤ 〈z∗, y〉 = 〈z∗,T(y)〉 ≤ ‖z∗‖ ‖T(y)‖ , ∀y ∈ Λ̃. (3.18)

Setting M := ‖z∗‖ we have established condition (3.17).
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Proving the sufficiency is more subtle. We start with the assumption that (3.17)

holds for some x ∈ R and some real constant M ≥ 0. To simplify notation, let us

define a new mapping b : Λ̃ → R by

b(y) := f̃(y)− x, y ∈ Λ̃.

Condition (3.17) then reads

M ‖T(y)‖ ≥ b(y), ∀ y ∈ Λ̃. (3.19)

We shall establish (3.13) by showing that there exists z∗ ∈ H such that

〈z∗, y〉 ≥ b(y), ∀ y ∈ Λ̃. (3.20)

• We shall first show that for any given finite subset {y1, . . . , yn} ⊆ Λ̃, there is a

z∗ ∈ G such that ‖z∗‖ ≤M and z∗ satisfies

〈z∗, yk〉 ≥ b(yk), ∀ 1 ≤ k ≤ n. (3.21)

We shall argue this by contradiction. Suppose that no such z∗ exists. Con-

sider the set

S :=
{

( 〈z, y1〉, . . . , 〈z, yn〉 )
∣∣∣ z ∈ G, ‖z‖ ≤M

}
which is compact and convex in Rn. Here and throughout, Rn

+ will refer to the

subset of points in Rn which have all co-ordinates non-negative. Let S− be the set

all points (a1, a2, . . . , an) which can be represented as

ak = 〈z, yk〉 − rk, 1 ≤ k ≤ n,

for some rk ≥ 0 and some z ∈ G such that ‖z‖ ≤ M . For notational simplicity,

let us denote bk := b(yk), 1 ≤ k ≤ n. Since we have assumed that no solution to

(3.21) exists, we have

(b1, . . . , bn) /∈ S−. (3.22)
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But, by the Separating Hyperplane Theorem, (3.22) implies that there exists

a vector λ = (λ1, . . . , λn) ∈ Rn, λ 6= 0, such that for all a1 ≥ 0, . . . , an ≥ 0 we have∑
λibi >

∑
λi〈z, yi〉 −

∑
λiai, ∀z ∈ G, ‖z‖ ≤M. (3.23)

For any i, let ai tend to infinity to see that λi ≥ 0. We can thus normalize λ to

have
∑n

i=1 λi = 1. Taking a1 = . . . = an = 0 in (3.23), we obtain∑
λibi >

∑
λi〈z, yi〉 =

〈
z,
∑

λiyi

〉
= 〈z, yc〉 , (3.24)

where yc :=
∑
λiyi ∈ Λ̃.

Note that the function f̃ in (3.14) is concave. This has been proved in

[Rockafellar, 1997], page 37, Theorem 5.6, and the example following right after its

proof. Thus the function b(.) = f̃(.) − x is also concave. Combining with (3.19),

and using the concavity of b, we get

M ‖T(yc)‖ ≥ b(yc) = b
(∑

λiyi

)
≥
∑

λibi > 〈z, yc〉 = 〈z,T(yc)〉, (3.25)

for every z ∈ G with ‖z‖ ≤M . If ‖T(yc)‖ = 0, this leads to 0 ≥
∑
λibi > 0, which

is a contradiction; whereas if ‖T(yc)‖ 6= 0, note that z = M.T(yc)/ ‖T(yc)‖ is an

element of the subspace G with ‖z‖ ≤M which, when plugged into inequality (3.25),

gives

M ‖T(yc)‖ ≥
∑

λibi > M ‖T(yc)‖ ,

again a contradiction. We have thus proved (3.21).

• In general, let us define for any y ∈ Λ̃, the following subset of G:

Πy :=
{
z ∈ G

∣∣∣ ‖z‖ ≤M, 〈z, y〉 ≥ b(y)
}
.

Then there is a solution to (3.20) if we can show that

∩y∈eΛΠy 6= ∅. (3.26)
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Now each Πy is a closed subset of the M -ball of G, a set which is compact under

the weak topology. This follows from the Banach-Alaoglu Theorem and the fact

that a Hilbert space is its own dual (see [Rudin, 1991], pages 68, 94). Thus Πy is a

weak-compact subset of G. Hence, by the finite intersection property, (3.26) holds if

and only if for any finite collection {y1, . . . , yn} ⊆ Λ̃, we have ∩1≤i≤nΠyi
6= ∅. That

is to say, (3.26) holds if and only if for any finite collection {y1, . . . , yn} ⊆ Λ̃ we can

find an element z∗ ∈ H such that ‖z∗‖ ≤ M and 〈z∗, yk〉 ≥ b(yk), k = 1, . . . , n.

But this is what we have shown in (3.21). This proves the theorem. 2

Our previous result does not hold when the subspace G is not a closed sub-

space of the Hilbert space H. However what we shall show now is that not much

is lost if we consider G, the closure of G instead of G itself.

Let us denote by A0 the set of all real numbers x for which the inequalities

in (3.13) have a solution for some z∗ ∈ G, and reserve the notation A0 for that

subset of A0 for which the solution z∗ is actually an element of G. We shall now

show that when Λ is bounded in norm, A0 is a dense subset of A0. However, since

both A0 and A0 are half-lines, this is actually equivalent to proving what we shall

need most, i.e.,

inf A0 = inf A0. (3.27)

Lemma 3.1. If the set Λ is bounded in norm and if x ∈ A0, then (x+ ε) ∈ A0 for

any positive ε.

proof. Fix x ∈ A0 and an ε > 0. By the definition of A0, there exists z ∈ G such

that

〈z, y〉 ≥ f(y)− x, ∀y ∈ Λ.

Now since Λ is bounded in norm and G is dense in G, there is an element z∗ ∈ G
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such that

sup
y∈Λ

|〈z∗, y〉 − 〈z, y〉| ≤ ‖z∗ − z‖ . sup
y∈Λ

‖y‖ ≤ ε.

Hence, we get 〈z∗, y〉 ≥ 〈z, y〉 − ε ≥ f(y) − (x + ε), ∀y ∈ Λ. Since z∗ ∈ G, this

shows that (x+ ε) ∈ A0, and proves the lemma. 2

remark. Equation (3.27) does not hold in full generality, although we always have

inf A0 ≥ inf A0, since A0 ⊆ A0. We shall return to discuss this point again in the

next section.

3.3 Main results

We shall now translate the results of the last subsection in order to solve (3.9).

Consider the Hilbert space L2 and the subspace G of stochastic integrals defined

in (4.19). Let G denote the closure of G in L2. Recall the statement of the problem

in subsection 3.1.3, and as in the setting of the last section, define:

H = L2, G = G, Λ =
{

dQ/dP
∣∣∣ Q ∈ ∆

}
. (3.28)

That the set Λ is a subset of H is a consequence of Assumption 3.2. As before, Λ̃

will denote the convex hull of Λ. Note that there is a one-to-one correspondence

between the elements in Λ and the probability measures in ∆. Define the function

f : ∆ → R by

f(X) = φ(Q), for X = dQ/dP, Q ∈ Λ. (3.29)

Define f̃ on Λ̃ in the same way as in (3.14). The notation for ‖.‖, from now on, is

strictly reserved for the L2 norm.

Clearly with this set-up, for any X ∈ G and any measure Q such that

dQ/dP ∈ Λ̃, one has EQ(X) = 〈X, dQ/dP 〉. This association makes evident the
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relation between solving inequalities (3.8) and (3.13). In fact, if G is a closed

subspace of L2, solving for (3.8) is exactly the same as solving for (3.13). Problems

arise when G is not closed; for then the solution obtained in (3.13) might be an

element strictly in the closure of G. This problem is easy to deal with when Λ is

bounded in norm, since our object of interest, inf A0, remains the same whether we

consider G or G, as shown by Lemma 3.1 at the end of the last section.

In general, however, we cannot expect that the wealth process
∫ t

0
πudSu which

satisfies inequalities (3.8) will have finite H2 norms. A good analogy will be to think

of situations where the optimal wealth process is a strict local martingale instead of

being a true martingale. Our subspace G only allows terminal wealth from a wealth

process which has finite H2-norm, and this is usually a strong requirement. Thus

it seems necessary that we reformulate Problem 3.1 by allowing solutions which

belong to G rather than G itself. We now restate Problem 3.1 in the following way:

Problem 3.2. Define the set of weakly acceptable initial positions by

A0
4
=
{
x ∈ R | (x+G) ∩ Γ 6= ∅

}
, (3.30)

where the subspace G is defined in (4.19) and Γ is defined in (3.6). As before A0,

which is still a half-line not bounded above, is determined (up to closure) by inf A0.

The operator T will denote projection onto the subspace G. That is, for any

X ∈ L2, one has the following decomposition:

X = T(X) + [I − T] (X), (3.31)

where [I − T] (X) is orthogonal to every element in G. The following proposition

is a restatement of Proposition 3.1.

Proposition 3.2. Under Assumptions 3.1 and 3.2, a real number x is weakly

acceptable (in the sense of Problem 3.2) if and only if there exists a non-negative
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real constant M such that

M ‖T(X)‖ ≥ f̃(X)− x, ∀ X ∈ Λ̃. (3.32)

The probabilistic interpretation of T(X) will be clear in the next lemma.

Lemma 3.2. For any X ∈ L2, consider the process Xt
4
= E

(
X
∣∣∣ Ft

)
, 0 ≤ t ≤ T .

Then T(X) = 0 implies {Xt.St,Ft}0≤t≤T is a martingale.

proof. For any stopping time σ taking values in [0, τ ], consider the process πu :=

1{σ≥u}, 0 ≤ u ≤ τ . Since T(X) = 0, we have E
(
X
∫ T

0
πudSu

)
= E (XSσ) = 0.

Thus E (XSσ) is zero for all stopping times σ. By taking conditional expectation

with respect to Fσ, we have E(XσSσ) = 0 for all stopping times σ. This proves the

lemma. 2

Lemma 3.3. For any Q ∈ ∆, let ZQ = dQ/dP denote the Radon-Nikodym deriva-

tive of Q with respect to P . Then T(ZQ) = 0 if and only if the process S is a

Q-martingale on the interval [0, T ].

proof. The only if part follows from the last lemma via what is commonly know

as the Bayes rule. See, for example, [Karatzas and Shreve, 1991], page 193.

For the if part, start with a measure Q such that the process St is a mar-

tingale on the interval [0, T ]. One can show by an application of the Burkholder-

Davis-Gundy inequality (a proof can be found in [Larsen et al., 2004], Proposition

1) that under Assumption 3.1, for any π ∈ Θ, the process
∫ t

0
πudSu is a martingale

under Q. Thus

E

[
dQ

dP

∫ T

0

πudSu

]
= EQ

(∫ T

0

πudSu

)
= 0, ∀π ∈ Θ.

This shows that ZQ is orthogonal to G and hence T(ZQ) = 0. 2

Hereafter a martingale measure will refer to a probability measure Q under

which the process {Su} is a martingale in the interval [0, T ]. Let G⊥ denote the
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orthogonal complement of the subspace G, defined in (4.19). Then, by what we

have just proved in the last lemma, the set

Z := Λ̃ ∩G⊥ =
{
X ∈ Λ̃

∣∣∣ T(X) = 0
}

(3.33)

is the set of probability densities corresponding to the martingale measures in the

convex hull of ∆.

From now on we shall also assume the following.

Assumption 3.3. The function f̃ is contiuous with respect to the L2 norm on Λ̃.

One can then extend f̃ continuously to the closure of Λ, which we shall, by

an abuse of notation, continue to denote by Λ̃. Our next theorem considers the

case when Z = ∅, while the other case is taken up in Proposition 3.4.

Proposition 3.3. Suppose Z = ∅. If we have supQ∈∆ φ(Q) <∞, or equivalently,

sup
X∈Λ

f(X) <∞, (3.34)

then for inf A0 = −∞, where A0 is defined in Problem 3.2.

In other words, under the condition (3.34), the non-existence of martingale

measures in the closed convex hull of the set of scenarios, ∆, implies that every

x ∈ R is an weakly acceptable initial position.

proof. The set T(Λ̃), the image of Λ̃ under the orthogonal projection mapping

T, is closed and convex. Since Z = ∅, we have 0 /∈ T(Λ̃). Thus a basic fact from

Hilbert space theory states that there is an element in T(Λ̃) which is of minimum

positive norm. That is, there is an element X∗ ∈ Λ̃ such that 0 < ‖T(X∗)‖ =

infX∈eΛ ‖T(X)‖.

Note that (3.34) implies supX∈eΛ f̃(X) < ∞. One can then define K =
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max(supX∈eΛ f̃(X)− x, 0), and consider M = K/ ‖T(X∗)‖ to see that

M ‖T(X)‖ ≥M ‖T(X∗)‖ = K ≥ f̃(X)− x, ∀ X ∈ Λ̃.

This shows that (3.32) is satisfied, and proves the theorem. 2

For any X ∈ L2 and for any 1 ≤ p ≤ 2, let us denote the Lp norm of X by

‖X‖p, i.e.,

‖X‖p := [E(|X|p)]1/p .

Since X has finite second moment and we are on a probability space, an application

of Hölder’s inequality shows that ‖X‖p is finite for any 1 ≤ p ≤ 2. We also define

the Lp-distance between a point X ∈ Lp and a non-empty subset Π ⊆ Lp by

dp(X,Π)
4
= inf

Y ∈Π
‖X − Y ‖p . (3.35)

Again, the distance is well-defined and finite for any 1 ≤ p ≤ 2.

Proposition 3.4. Suppose the following assumptions are satisfied:

1. Z 6= ∅.

2. There exists a constant L > 0 and some p ∈ (1, 2] such that

|f̃(X)− f̃(Y )| ≤ L ‖X − Y ‖p ∀ X, Y ∈ Λ̃. (3.36)

3. For any sequence {Xn} ⊆ Λ̃ such that limn↑∞ ‖T(Xn)‖ = 0, we also have (at

least through a subsequence)

lim
n→∞

dp(Xn,Z) = 0. (3.37)

Then we can conclude that

inf A0 = sup
Y ∈Z

f̃(Y ). (3.38)

Here A0 is the set of weakly acceptable initial positions described in Problem 3.2,

and the function f̃ is the least concave majorant of f defined in (3.29).
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Our proof will be achieved by the following two lemmas. The first one

needs the concept of nearest point projections in uniformly convex (or uniformly

rotund) Banach spaces, e.g. the Lp spaces, p ∈ (1,∞). This can be found

in [Megginson, 1998], page 427, Example 5.1.4. We can then use corollary 5.1.19 on

page 435 of [Megginson, 1998], to see that given any closed, convex subset Π and

any element X, both in Lp for some 1 < p < ∞, there is an element SΠ(X) ∈ Π

such that

‖X − SΠ(X)‖p = inf
Y ∈Π

‖X − Y ‖p = dp(X,Π). (3.39)

Additionally, the operator SΠ is sunny, i.e., satisfies (see [Goebel and Reich, 1984],

page 17)

SΠ

(
αX + (1− α)SΠ(X)

)
= SΠ(X), ∀ α ≥ 0. (3.40)

In what follows, we shall consider Π to be the closure of Z in Lp. Since Z is Lp

dense in Π, it follows that any real function, uniformly continuous on Z with respect

to the Lp metric, can be extended uniquely on Π. By our second assumption in

Proposition 3.4, the function f̃ : Λ̃ → R is uniformly continuous with respect to

the Lp and hence can be extended to elements of Π.

The proofs of the following lemmas are done in the appendix.

Lemma 3.4. Under the assumptions and notation of Proposition 3.4, there exists

a constant M1 ∈ [0,∞) such that

dp(X,Z) ≤M1 ‖T(X)‖ , ∀ X ∈ Λ̃. (3.41)

Lemma 3.5. For a given z ∈ R, suppose there exists a constant M2 ∈ [0,∞) (may

depend on z), such that

f̃(SΠ(X))− z ≤M2 ‖T(X)‖ , ∀ X ∈ Λ̃; (3.42)

then z ≥ supX∈Z f̃(X). Conversely, for any z ≥ supX∈Z f̃(X), clearly (3.42) holds

with M2 = 0.



CHAPTER 3. CAPITAL REQUIREMENT TO ACHIEVE ACCEPTABILITY40

proof of theorem 3.4. Choose x ∈ R. For any X ∈ Λ̃, one has the decomposi-

tion

f̃(X)− x = f̃(X)− f̃ (SΠ(X)) + f̃ (SΠ(X))− x. (3.43)

By Lemma 3.4, there is a M1 ∈ [0,∞) such that

dp(X,Z) = ‖X − SΠ(X)‖p ≤M1 ‖T(X)‖ ,

and thus, by assumption (2) in Proposition 3.4, we obtain

|f̃(X)− f̃ (SΠ(X)) | ≤ L ‖X − SΠ(X)‖p ≤ L.M1 ‖T(X)‖ . (3.44)

Plugging in the above inequality in (3.43), we see that (3.32) holds, for some M ≥ 0,

if and only if there exists a constant M2 for which

f̃ (SΠ(X))− x ≤M2 ‖T(X)‖ , ∀X ∈ Λ̃.

But by Lemma 3.5, this can happen if and only if x ≥ supY ∈Z f̃(Y ). This shows

that inf A0 = supY ∈Z f̃(Y ) and proves Proposition 3.4. 2

Our next result displays an interesting link between the geometric and prob-

abilistic aspects of the problem. It shows that an appropriate underlying filtration

of the stock price process automatically implies (3.37).

Proposition 3.5. Let ∆ of subsection 3.1.3 be the set of all probability measures

Q on (Ω,F), such that Q � P and ‖dQ/dP‖ ≤ K, for some given constant

K ∈ (0,∞). As before, Λ̃ will denote the collection of Radon-Nikodym derivatives

of the measures in ∆, i.e.,

Λ̃
4
=
{
X ∈ L2

∣∣∣ X ≥ 0 a.s. P, E(X) = 1 and ‖X‖ ≤ K
}
. (3.45)

Assume that

1. there exists an element M∗ of Z, defined in (3.33), with ‖M∗‖ < K;
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2. all martingales of the filtration {Ft} have continuous versions; and

3. the mapping f̃ satisfies (3.36).

Then, we have inf A0 = supX∈Z f̃(X), where A0 is described in Problem 3.2, see

(3.30), and the function f̃ is the least concave majorant of f defined in (3.29).

This theorem follows from Proposition 3.4, except we only need to show

that (3.37) holds. The proof of the following lemma is in the appendix.

Lemma 3.6. Let {Yn} be a sequence in Λ̃ such that limn→∞ T(Yn) = 0. Then there

exists a sequence {Ln} ⊆ G⊥, with P (Ln ≥ 0) = 1 and E(Ln) = 1, such that:

lim
n→∞

‖Yn − Ln‖p = 0 (3.46)

and

lim sup
n→∞

‖Ln‖2 ≤ K. (3.47)

proof of theorem 3.5. Consider M∗ as in assumption 1 of Proposition 3.5

and the sequence {Ln} from Lemma 3.6. For any α ∈ (0, 1), define the sequence

Wn := αLn + (1− α)M∗. Then, by the triangle inequality, we have

lim sup
n→∞

‖Wn‖ ≤ α lim sup
n→∞

‖Ln‖+ (1− α) ‖M∗‖ .

Thus, from (3.47), we get that lim supn→∞ ‖Wn‖ < K. In other words, there is a

large enough N such that ‖Wn‖ < K for all n > N . Now, by Lemma 3.6, each

P (Ln ≥ 0) = 1 and integrates to one. Also, since M∗ is a probability density,

P (M∗ ≥ 0) = 1 and E(M∗) = 1. Thus we also have P (Wn ≥ 0) = 1 and

E(Wn) = 1, and thus from (3.45), Wn ∈ Λ̃, ∀ n > N . But, again by Lemma 3.6,

each Ln belongs to G⊥. Since M∗ also belongs to G⊥, we conclude

Wn ∈ Λ̃ ∩G⊥ = Z, ∀n > N.
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Clearly then

lim sup
n→∞

dp(Yn,Z) ≤ lim sup ‖Yn −Wn‖p

≤ lim sup ‖Yn − αLn − (1− α)M∗‖p

≤ lim sup ‖Yn − Ln‖p + (1− α) lim sup ‖Ln −M∗‖p

= 0 + (1− α)
(
lim sup ‖Ln‖p + ‖M∗‖p

)
≤ (1− α) (lim sup ‖Ln‖+ ‖M∗‖) ≤ (1− α)2K. (3.48)

The final inequality is due to (3.47) while the one right before it follows from

Hölder’s inequality: for any random variable Z, we have

‖Z‖p ≤ ‖Z‖2 = ‖Z‖ , ∀ 1 < p < 2. (3.49)

Take α ↑ 1 in the above inequality to conclude that lim sup dp(Yn,Z) = 0 which

shows (3.37) holds and the proof of Proposition 3.5 is complete. 2

3.4 Examples

We solve a prototypical example of determining the sellers’ price of an option in

an incomplete market. Due to incompleteness of the market, a typical contingent

claim will not admit a perfect hedge. Following [Föllmer and Schied, 2004], page

315, we avoid superhedging, and instead consider efficient hedging with controlled

shortfall risk. We compute the necessary initial capital for such an efficient hedge.

As expected, this capital is strictly less than the superhedging price.

Example 1. Consider a market with two stocks whose price processes S and S
′

are driven by a two dimensional Brownian motion till a finite terminal time T . For

simplicity, the rate of interest, the mean rate of return, and the rate of dividend are
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kept at zero. The price process S of stock one is given by the following Black-Scholes

type model:

dSt = St[ µdt+ σ1dW1(t) + σ2dW2(t) ]. (3.50)

Here the drift µ is a real constant and the volatilities σ1, σ2 are any two positive

numbers and W1 and W2 are independent Brownian motions. The stochastic dif-

ferential equation driving S
′
is left unspecified. We only assume that it is a strong

solution of a differential equation involving W1 and W2. To generate incomplete-

ness, we assume that trading is allowed only in stock one and not on stock two.

Now suppose we want to hedge a contingent claim C by trading in stock

one. If we start with an initial investment of x and follow a trading strategy π, the

wealth at the end of the trading peiod is given by

WT (x, π) = x+

∫ T

0

πtdSt.

The quantity (C−WT (x, π))+ is known as shortfall. In superhedging, we guarantee

to have a shortfall of zero almost surely. This, however, needs a large initial amount

x which sometimes investors are unable to meet. Thus it makes sense to allow

shortfall in such a way that the risk is not too large.

One common way is to fix a small number α as the level of endurance and

allow such strategies such that the qth. moment of the shortfall is bounded above

by α. That is to say,

E
[
(C −WT (x, π))+

]q ≤ α (3.51)

for some q ≥ 1. Our objective is then to find the minumum real x which al-

lows us to satisfy (3.51). Such a problem can be easily formulated as in subsec-

tion 3.1.3 by a suitable choice of convex risk measure. This has been done in detail

in [Föllmer and Schied, 2004], pages 212-218, where the reader can look for the

proofs.
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The sample space may be any probability space Ω on which a two dimensional

Brownian motion is defined. The filtration is the augmented Brownian filtration

and P is the Wiener measure on this filtered probability space. We take

Λ̃ =
{
X ∈ L2

∣∣∣ P (X ≥ 0) = 1, E(X) = 1
}

(3.52)

and for X ∈ Λ̃, define

f̃(X) := E(XC)− (qα)1/q ‖X‖p . (3.53)

Here p is given by 1/p + 1/q = 1. We can only solve the problem for a finite q

greater than 2. For such a q, it is immediate that p ∈ (1, 2). With this definition,

determining the price of the option is the same problem as stated in equation (3.8).

remark. We have taken Λ̃ in (3.52) to be a subset of L2 which is not usual (see

[Föllmer and Schied, 2004], pages 212-218). However, as long as C has more than

two moments, this can be assumed without loss of generality.

First, we need to determine the elements of Z defined by (3.33). Since trading

is allowed only on stock one, it suffices to find the probability measures in Λ̃ under

which S is a martingale in [0, T ]. The standard tool for such problems is to use

Girsanov’s Theorem. Let Q be a measure equivalent to P under which S is a

martingale. Without loss of generality, we can assume that

Nt = E

[
dQ

dP

∣∣∣Ft

]
= exp(Lt − 1/2〈L〉t), (3.54)

for some L which is a local martingale and 〈.〉 refers to the quadratic variation of

L. Then, by Girsanov’s Theorem, if Mt is a martingale under the original measure

P , the process M , given by

M t := Mt − 〈M,L〉t, (3.55)
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is a local martingale under the new measure Q. Here 〈M,L〉 refers to the mutual

variation between the two processes M and L. Now the process (W1,W2) is a

two dimensional Brownian motion. Construct a new pair of independent Brownian

motions by the following rotation:

W̃1 =
σ1W1 + σ2W2√

σ2
1 + σ2

2

, W̃2 =
−σ2W1 + σ1W2√

σ2
1 + σ2

2

Clearly, (W̃1, W̃2) is another two dimensional Brownian motion which generates

the same filtration as (W1,W2). By the Predictable Representation Property of the

Brownian filtration, one can write the local martingale L in equation (3.54) as

dLt = ztdW̃1(t) + ytdW̃2(t), (3.56)

for some progressively measurable processes z and y. Thus the martingale N ,

in (3.54), can be written in another form

dNt = Nt[ ztdW̃1(t) + ytdW̃2(t) ] = dN1(t) + dN2(t), (3.57)

where N1 and N2 are local martingales with 〈N1, N2〉 ≡ 0. Now, by equation (3.55),

under the new measure Q, the process given by

dW 1(t) := dW̃1(t)− ztdt

is a new Brownian motion. One can write the stochastic differential equation for

S, as in equation (3.50), in terms of W 1 in the following way

dSt = St[ (µ+ σ∗zt)dt+ σ∗dW 1(t) ]

where σ∗ =
√
σ2

1 + σ2
2. Thus, if under the new measure Q, the process S is a

martinagle, the only solution of z is given by

zt ≡ −µ/σ∗, 0 ≤ t ≤ T. (3.58)



CHAPTER 3. CAPITAL REQUIREMENT TO ACHIEVE ACCEPTABILITY46

Since S is adapted to the filtration generated by W̃1 alone, the process yt of (3.57)

can be any progressively measurable process which makes
∫
ydW̃2 a true martingale.

This characterises the class Z of all the martingale measures for S.

We are now ready to solve the problems of hedging. Specifically, we take

the example of the following European options with strike M , whose returns at the

terminal time is

C = (ST −M)+. (3.59)

As discussed before, we consider Λ̃ and f̃ as given by (3.52) and (3.53), and try to

use Proposition 3.5. We still meet some difficulties: Λ̃ is not bounded in norm, as

required by Proposition 3.5. However, we can truncate or localise the problem in

the following way. For any large k let Bk := {X ∈ L2, ‖X‖2 ≤ k}, and define

Λ̃k := Λ̃ ∩Bk, f̃k(X) := f̃(X), X ∈ Λ̃k. (3.60)

Here Λ̃ is defined in (3.52) and f̃ is defined in (3.53) with C as in (3.59). Intuitively,

this means we are putting a heavy penalty of ∞ to measures Q which are far away

from P in the sense that ‖dQ/dP‖2 > k. Now, for a large enough value of k on-

wards, we can assume that the set Z is non-empty. Also, since the random variable

(ST −M)+ has all moments finite, the functional f̃k is clearly lipschitz with respect

to the Lp norm for any p ∈ (1, 2]. We pick our favourite p to satisfy (3.36). The

filtration is the augmented Brownian filtration generated by the two-dimensional

Brownian motion (W1,W2). Thus, all martingales with respect to this filtration

have continuous versions. A direct application of Proposition 3.5 would give us the

following result.

result. For any y ∈ R, there exists a self financing trading strategy π such that

EQ

(
y +

∫ T

0

πudSu

)
≥ f̃(Q), ∀Q ∈ Λ̃k,
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if and only if

y ≥ sup
Q∈Z∩Bk

f̃(Q). (3.61)

Obviously, as k tends to infinity, Λ̃k and f̃k tends to Λ̃ and f̃ respectively.

The value on the right-hand-side of (3.61) thus increases to

sup
Q∈Z

[
EQ(ST −M)+ − (qα)1/q ‖dQ/dP‖p

]
.

We can define this limiting value to be the sellers’ price of the option, since this is

the infimum amount required to hedge the contingent claim in the sense of (3.51).

Unfortunately, from our proofs it is not apparent if there is a strategy which achieves

it.

3.5 Conclusion

We consider the problem of attaining acceptability by trading under convex con-

straints. We start with an arbitrary convex collection of scenario measures and

corresponding floors, and determine the minimum capital required so that the ter-

minal wealth can be made acceptable. Our main result states that the minimum

capital is equal to the supremum of the floors over all such scenarios under which the

stock price process is a martingale. We show in an example how such a result can

determine the capital requirement for hedging a contingent claim with controlled

shortfall.
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3.6 Appendix to Chapter 3

proof of lemma 3.4. We shall first show that for any ε > 0, there is a δ > 0

such that for any X ∈ Λ̃,

‖T(X)‖ < δ ⇒ dp(X,Z) < ε. (3.62)

We shall prove this by contradiction. Fix an ε > 0, suppose that (3.62) does not

hold for any δ > 0. Thus for every δn = 1/n, one can find Xn ∈ Λ̃ such that

‖T(Xn)‖ < 1
n
, but dp(Xn,Z) ≥ ε. But this is clearly impossible by (3.37).

Now take any X ∈ Λ̃. Since Π is the Lp closure of Z, it is clear that

dp(X,Z) = dp(X,Π) = ‖X − SΠ(X)‖p . (3.63)

From (3.40) we know that for any α ≥ 0, if we denote

Xα := αX + (1− α)SΠ(X), (3.64)

we have SΠ (Xα) = SΠ(X). Thus

dp(Xα,Z) = ‖Xα − SΠ(Xα)‖p = ‖αX + (1− α)SΠ(X)− SΠ(X)‖p

= ‖α(X − SΠ(X))‖p = α ‖X − SΠ(X)‖p = α.dp(X,Z). (3.65)

Since SΠ(X) is an element of Π, which is the Lp closure of Z, we can choose a

sequence of elements Yn ∈ Z such that ‖Yn − SΠ(X)‖p → 0. For an α < δ/ ‖T(X)‖

we would have

‖T (αX + (1− α)Yn)‖ = α ‖T(X)‖ < δ.

Thus, from condition (3.62) we get that

dp(αX + (1− α)Yn,Z) < ε, ∀ n ∈ N. (3.66)
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However, by the triangle inequality, we have

dp(Xα,Z) ≤ lim sup
n→∞

[
‖Xα − αX − (1− α)Yn‖p + dp(αX + (1− α)Yn,Z)

]
≤ (1− α) lim sup

n
‖SΠ(X)− Yn‖p + lim sup

n
dp(αX + (1− α)Yn,Z)

= 0 + lim sup dp(αX + (1− α)Yn,Z) ≤ ε.

The last inequality is due to (3.66). Thus for any α < δ/ ‖T(X)‖, we have

dp(Xα,Z) ≤ ε. (3.67)

Now we prove (3.41). If X ∈ Λ̃ is such that ‖T(X)‖ = 0 then X ∈ G⊥ and

thus X ∈ Z. Hence X = SΠ(X) and ‖X − SΠ(X)‖p = 0 and (3.41) is obviously

satisfied. If ‖T(X)‖ 6= 0, choose α = δ/(2 ‖T(X)‖). Applying (3.67), we infer

dp(Xα,Z) ≤ ε. By taking M1 = 2ε/δ, we see that (3.65) implies

dp(X,Z) =
1

α
dp(Xα,Z) ≤ ε

α
= M1 ‖T(X)‖ .

This proves (3.41) and hence the Lemma. 2

proof of lemma 3.5. If X ∈ Z, then T(X) = 0 and SΠ(X) = X. Thus if (3.42)

holds for some z ∈ R, we must have z ≥ f̃(X). Taking supremum over all X ∈ Z,

we infer z ≥ supX∈Z f̃(X).

Sufficiency follows, since for any z ≥ supX∈Z f̃(X) = supX∈Π f̃(X), the left-

hand side of (3.42) is non-positive, and we can take M2 = 0. 2

proof of lemma 3.6. Let us remember that T is the projection operator onto

the subspace G. Thus T(Yn) → 0 implies that there is a sequence {Zn} ⊆ G⊥, such

that

lim
n→∞

‖Yn − Zn‖ = 0. (3.68)



CHAPTER 3. CAPITAL REQUIREMENT TO ACHIEVE ACCEPTABILITY50

Hence, it also follows that

lim E(Zn) = lim E(Yn) = 1. (3.69)

Recall that E(Yn) = 1 for all n, simply by virtue of being a member of Λ̃. Thus, if

we define cn := E(Zn) then, by (3.69), cn → 1, and hence is non-zero for all n > N2,

for some N2 ∈ N. Thus, for all n > N2, we can define Mn := c−1
n Zn to get

E(Mn) = 1. (3.70)

Now, since supn ‖Yn‖ ≤ K by assumption (3.45), and (3.68) holds, the sequence

{Zn} is also uniformly bounded in the L2 norm. Hence, it follows that

‖Yn −Mn‖ ≤ ‖Yn − Zn‖+
(
1− c−1

n

)
‖Zn‖ → 0. (3.71)

As a corollary of the limit in (3.71), we infer that given any ε > 0, there is a N3

such that

‖Mn‖ ≤ ‖Yn‖+ ‖Yn −Mn‖ < K + ε, ∀ n > N3. (3.72)

Now {Mn} ⊆ G⊥ implies T(Mn) = 0. Thus if we define

Mn(t) := E [Mn|Ft] ,

then, by Lemma 3.2, the process

Yn(t) := S(t).Mn(t) (3.73)

is a martingale under P in the time interval [0, T ]. Note that by assumption 2 of

Proposition 3.5, we can choose a continuous version of Mn(t). Since we assume FT

to be the entire σ-algebra, we identify

Mn(T ) = Mn. (3.74)
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Also, by our normalisation in (3.70), we note that

Mn(0) = E(Mn) = 1. (3.75)

Let σn be the stopping time defined by

σn := inf {t |Mn(t) = 0} ∧ T. (3.76)

Claim. We shall defer the proof of the following claim:

‖Mn −Mn(σn)‖p → 0 as n→∞. (3.77)

Assuming that the above claim is true, note that, since p > 1, (3.77) implies

lim E (Mn(σn)) = lim E(Mn) = 1. (3.78)

Thus, as before, there exists N4 ∈ N, such that for all n > N4, if we define dn
4
=

E(Mn(σn)), then the following random variables are well-defined

Ln
4
= d−1

n Mn(σn), E(Ln) = 1. (3.79)

Since the martingale Mn(t) is continuous, by (3.75) and our choice of σn in (3.76),

we see that

Mn(σn) ≥ 0, a.s. P, (3.80)

and

Yn(t ∧ σn) = Mn(t ∧ σn)S(t), ∀ 0 ≤ t ≤ T. (3.81)

However, by the optional sampling theorem, the process on the left-hand side of

the above expression is an Ft-martingale. Thus, the process of the right-hand side

of (3.81) is also an Ft-martingale. For every n > N4, note that d−1
n Mn(t ∧ σn) =

E (Ln | Ft), and hence

{E
(
Ln

∣∣∣ Ft

)
.S(t),Ft}0≤t≤T (3.82)
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is also a martingale. By (3.79) and (3.80), we can change the measure P , by defining

dQn/dP
4
= Ln, ∀ n > N4.

Then from (3.82) one can use Bayes’ rule in the reverse direction to conclude that

Qn is a sequence of martingale measures. Or, in other words, from Lemma 3.3, we

conclude that

Ln ∈ G⊥, ∀ n > N4.

To prove Lemma (3.6), now we only need to show that conditions (3.46) and (3.47)

hold. The process {M2
n(t),Ft} is a submartingale for every n, and hence we have

‖Mn(σn)‖ ≤ ‖Mn‖ . (3.83)

Also from (3.78), it is immediate that dn → 1 and hence

lim sup
n

‖Ln‖ ≤ lim d−1
n . lim sup

n
‖Mn(σn)‖

≤ lim sup
n

‖Mn‖ = lim sup
n

‖Yn‖ ≤ K.

The only equality above is due to (3.71) and the final inequality is from (3.45).

This clearly proves condition (3.47). To prove, condition (3.46), notice that, by the

triangle inequality, limn→∞ ‖Yn − Ln‖p is bounded above by

lim sup ‖Yn −Mn‖p + lim sup ‖Mn −Mn(σn)‖p + lim sup ‖Mn(σn)− Ln‖p (3.84)

The first term is zero by (3.71). The second term is zero by (3.77). For the third

term, an application of (3.49) and (3.83) will show that it is less than

lim sup ‖Mn(σn)− Ln‖ ≤ lim sup
[(

1− d−1
n

)
‖Mn(σn)‖

]
≤ lim sup

[(
1− d−1

n

)
‖Mn‖

]
= (K + ε) lim sup

(
1− d−1

n

)
= 0.

The limiting bound on ‖Mn‖ is obtained from (3.72). This proves that the left-

hand side of (3.84) is zero. We have thus shown condition (3.46) holds and hence

Lemma 3.6 is proved. 2
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proof of claim (3.77). Finally it remains to prove (3.77). Note that by con-

tinuity of the martingale Mn(t), we have Mn(σn) = 0 on the set {σn < T}. Also,

due to (3.74), on the event {σn = T}, both the random variables Mn and Mn(σn)

are the same. Combining, we get

E|Mn −Mn(σn)|p = E
[
|Mn −Mn(σn)|p1{σn<T}

]
= E

[
|Mn|p1{σn<T}

]
(3.85)

Fix an ε > 0. The last term above can be expressed as:

E
[
|Mn|p1{σn<T}

]
= E

[
|Mn|p1{σn<T}∩{Mn>ε}

]
(3.86)

+ E
[
|Mn|p1{σn<T}∩{Mn<−ε}

]
(3.87)

+ E
[
|Mn|p1{σn<T}∩{|Mn|<ε}

]
. (3.88)

The final term (3.88) is bounded as E
[
|Mn|p1{σn<T}∩{|Mn|<ε}

]
≤ εp. The second

term (3.87) can be bounded above by noting

E
[
|Mn|p1{σn<T}∩{Mn<−ε}

]
≤ E

[
|Mn|p1{Mn<−ε}

]
. (3.89)

Now, by assumption in Lemma 3.6, the sequence {Yn} is a sequence in Λ̃. Hence,

by (3.45), we have P (Yn ≥ 0) = 1. It the follows that, we have

P
[
|Mn|1{Mn≤0} ≤ |Yn −Mn|1{Mn≤0}

]
= 1.

The right-hand side of (3.89) can then be bounded above by

E
[
|Mn|p1{Mn<−ε}

]
≤ E

[
|Yn −Mn|p1{Mn<−ε}

]
≤ E|Yn −Mn|p =

(
‖Yn −Mn‖p

)p

≤ ‖Yn −Mn‖p , by (3.49),

which goes to zero by (3.71). In the next paragraph, we shall show that (3.86) goes

to zero. Thus, combining limits of all three terms (3.86), (3.87), and (3.88), and
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using (3.85), we get that lim supn→∞ E |Mn −Mn(σn)|p ≤ εp. Since the inequality

above holds for all ε > 0, we have proved (3.77).

Finally we shall show that the first term on the right-hand side of (3.88) goes

to zero i.e.,

lim
n→∞

E(|Mn|p1{σn<T}∩{Mn>ε}) = 0. (3.90)

For r = 2/p, by (3.72), we get supn E(|Mn|p)r = supn E(|Mn|2) = supn(‖Mn‖)2

is finite. Since r > 1 by choice of p (p < 2), this shows that the random vari-

ables {|Mn|p}n∈N is uniformly integrable. Observe that the non-negative random

variables

Dn
4
= |Mn|p1{σn<T}∩{Mn>ε}

clearly satisfy Dn ≤ |Mn|p, for all n ∈ N. Thus the collection of random variable

{Dn}n∈N are also uniformly integrable. Hence, to prove (3.90), it suffices to show

lim
n→∞

P ({σn < T} ∩ {Mn > ε}) = 0. (3.91)

We shall prove (3.91) by contradiction. So, let us suppose that (3.91) does

not hold, i.e., there is a δ > 0 such that for a subsequence {nk} ⊆ N we have

P ({σnk
< T} ∩ {Mnk

> ε}) > δ, ∀ k ∈ N. (3.92)

To keep notations simple, let us do away with the subsequence notation {nk} and

assume instead

P ({σn < T} ∩ {Mn > ε}) > δ, ∀n ∈ N. (3.93)

On the event {σn < T}, by the Optional Sampling Theorem, we have

E (Mn|Fσn) = Mn(σn) = 0, a.s. P.

Thus we get the following equality

P ({σn < T} ∩ {Mn > ε}) ≤ P ({E (Mn|Fσn) = 0} ∩ {Mn > ε}) . (3.94)
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Define the following non-negative random variables

In := 1{E(Mn|Fσn )=0}, Jn := P (Mn > ε|Fσn), Kn := InJn. (3.95)

Note that by conditioning the event {Mn > ε} on Fσn , we get

P ({E (Mn|Fσn) = 0} ∩ {Mn > ε}) = E(InJn) = E(Kn),

forall n ∈ N. Then, by (3.94) and assumption (3.93), we have

E(Kn) > δ, ∀n ∈ N. (3.96)

Note that Kn is a non-negative random variable, and one can get a lower bound

on the tail probability by using the following basic inequality, often known as the

second moment method :

P

(
Kn ≥

1

2
E(Kn)

)
≥ 1

4

E(Kn)2

E(K2
n)
. (3.97)

Thus, combining with (3.96), we infer

P

(
Kn ≥

δ

2

)
≥ P

(
Kn ≥

1

2
E(Kn)

)
≥ 1

4

(EKn)2

E(K2
n)

≥ δ

4
. (3.98)

Since 0 ≤ Kn ≤ 1, the last inequality follows by noting that E(K2
n) ≤ E(Kn), and

hence
(EKn)2

E(K2
n)

≥ E(Kn) ≥ δ.

Now, note that, since In only takes zero-one values,{
Kn ≥

δ

2

}
⇔ {In = 1} ∩

{
Jn ≥

δ

2

}
. (3.99)

Recall the original random variables Mn which were used to define Kn

in (3.95). We denote the positive and negative parts of Mn by defining

M+
n

4
= max(Mn, 0) and M−

n

4
= max(−Mn, 0).
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Then, on the set {In = 1}, we have E (Mn|Fσn) = 0, which in turn implies

E
(
M−

n |Fσn

)
= E

(
M+

n |Fσn

)
, a.s. P. (3.100)

Also, on the set {Mn > ε}, we obviously have Mn = M+
n , and that {M+

n > ε}.

Thus on the set {In = 1} ∩ {Jn ≥ δ/2}, we have

E
(
M−

n |Fσn

)
= E

(
M+

n |Fσn

)
≥ εP (M+

n > ε|Fσn)

= εP (Mn > ε|Fσn) = εJn ≥ εδ

2
a.s. P.

Combining the above inequality with (3.99) and (3.98), we get that

P

(
E
(
M−

n |Fσn

)
≥ εδ

2

)
≥ P

(
{In = 1} ∩

{
Jn ≥

δ

2

})
= P

(
Kn ≥

δ

2

)
≥ δ

4
, ∀n ∈ N. (3.101)

Recall the non-negative random variables Yn as in the statement of Lemma 3.6.

Note that we always have

M−
n ≤ (Yn +M−

n )1{M−
n 6=0} ≤ (Yn −Mn)1{M−

n 6=0} ≤ |Yn −Mn|. (3.102)

Thus, if we let Rn := E (Mn−|Fσn), from (3.102) we conclude E(Rn) = E (M−
n ) ≤

E|Yn − Mn| ≤ ‖Yn −Mn‖. And thus, by (3.71), we get E(Rn) → 0. But

from (3.101) we get

P (Rn ≥ εδ/2) = P
(
E
(
M−

n |Fσn

)
≥ εδ/2

)
≥ δ/4, ∀n ∈ N.

This clearly contradicts E(Rn) → 0. Thus (3.93) cannot be true and we have thus

proved (3.91). This completes the proof of Claim (3.77). 2



CHAPTER 4. COMPUTING STRATEGIES TO ACHIEVE ACCEPTABILITY57

Chapter 4

Computing strategies to achieve

acceptability

4.1 Introduction

We start by considering a T period market model, with a single stock and a money

market. To model uncertainty in stock price movements, we consider a probability

space (Ω,F, P ) and a filtration

F0 ⊆ F1 ⊆ . . . ⊆ FT ⊆ F.

At every time point t = 0, 1, 2, . . . , T , the discounted price of the stock, St, is

assumed to be an integrable random variable measurable with respect to Ft.

Next we consider a convex measure of risk: for every random variable X

measurable with respect to F, define

ρ(X)
4
= sup

1≤i≤m

[
EQi(−X) + αi

]
= sup

1≤i≤m
[−E(Xfi) + αi] . (4.1)
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Here {fi
4
= dQi/dP} is a collection of Radon-Tikodym derivatives of probability

measures {Qi}, i = 1, . . . ,m, defined on the sample space (Ω,F), and are absolutely

continuous with respect to P . The constants {αi} are real numbers. We restrict

the above definition (4.1) to only those random variables X, for which (4.1) is

well-defined.

Let us now introduce an agent who follows a self-financing portfolio by with-

holding ξt number of shares in between time periods t and (t + 1). Due to the

non-anticipative nature of trading, we impose the natural condition that each ξt

is an Ft-measurable random variable. We also assume that various trading con-

straints dictate the existence of Ft-measurable random variables at and bt such that

the agent is forced to obey

at ≤ ξt ≤ bt, ∀ t = 0, 1, . . . , T − 1. (4.2)

Here at < bt are also assumed to be P -integrable. For any choice of initial capital

w0, and strategy (ξ0, ξ1, . . . , ξT−1), let V (w0, ξ) denote the discounted terminal value

of the portfolio, i.e.,

V (w0, ξ)
4
= w0 +W (ξ), where (4.3)

W (ξ) =
T−1∑
t=0

ξt(St+1 − St). (4.4)

In this paper we investigate an algorithm to compute a near-optimal w0 and

(ξ0, ξ1, . . . , ξT−1), such that V (w0, ξ) is acceptable, i.e.,

ρ(V (w0, ξ)) ≤ 0 ⇔ ρ(W (ξ)) ≤ w0.

The literature on convex measures of risk is almost silent about computing strategies

to achieve acceptability. Although the existence of such strategies, while minimiz-

ing w0, can be guaranteed by several results (as seen in the last chapter), to get
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our hands on one such strategy seems theoretically out of reach. In this chapter,

therefore, we take a computational approach. Our main result, Proposition 4.1,

focusses on a much smaller family of strategies, which satisfy (4.2), and is indexed

by the unit simplex in (m+1) dimension. The crux of the proposition is that, for a

fixed w0, if there is a strategy ξ which satisfies ρ(V (w0, ξ)) ≤ 0, then, without loss

of generality, we can pick ξ from the smaller family.

We then devise a Monte-Carlo scheme, and directly verify non-positivity of

ρ(V (w0, ξ)) for strategies ξ, indexed by a fine grid in the unit simplex. We pick the

one for which ρ(V (w0, ξ)) is approximately non-positive. We give precise bounds

on such approximations using combinatorial properties of the smaller family of

strategies. This is done in Section 4.3. An example clarifies the process in Section

4.4.

4.1.1 Acknowledgments

I thank Prof. Peter Bank for suggesting the particular example in Section 4.4.

4.2 Main results

Denote the (m+ 1)-dimensional unit simplex by

Sm+1
4
=

{
y ∈ Rm+1

∣∣∣ yi ≥ 0,
m+1∑
i=1

yi = 1

}
. (4.5)

Proposition 4.1. For a fixed w0 ∈ R, let L be the collection of adapted processes

ξ = (ξ0, . . . , ξT−1), which satisfy (4.2) and ρ(W (ξ)) ≤ w0. Assume that there exists
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ζ ∈ L for which

ρ(W (ζ)) < w0, and P (ζt = at for all t) < 1. (4.6)

For every 1 ≤ i ≤ m, define the adapted sequence of random variables

vt(fi)
4
= (bt − at)E

[
(St+1 − St)fi

∣∣∣ Ft

]
, t = 0, 1, . . . , T − 1. (4.7)

For every r ∈ Sm+1, with rm+1 > 0, consider the following weighted sum process

λt(r)
4
=

1

rm+1

m∑
i=1

rivt(fi), t = 0, . . . , T − 1. (4.8)

Now, let η be any mean-zero continuous probability distribution function on

the real line. Then there exists a vector r∗ ∈ Sm+1, with r∗m+1 > 0, such that the

{Ft}-adapted process

ξ∗t (ω)
4
= (bt − at)η(−λt(r

∗),∞) + at, t = 0, . . . , T − 1, (4.9)

satisfies (4.2) and ρ(W (ξ∗)) ≤ w0.

The proof of this result will follow after we have introduced some notations.

Let [T ] denote the set {0, 1, . . . , T − 1}. Enlarge the original sample space by

considering

Ω× [T ] = Ω× {0, 1, . . . , T − 1}. (4.10)

Let P[T ] be the power set of the finite collection {0, 1, . . . , T − 1} and let F ⊗ P[T ]

denote the product σ-algebra between F and P[T ]. Extract a sub σ-algebra F̂ by

defining

F̂
4
=
{
A ∈ F ⊗ P[T ]

∣∣∣ {ω : (ω, t) ∈ A} ∈ Ft, ∀ t = 0, 1, . . . , T − 1
}
. (4.11)

That F̂ is a valid σ-algebra is straightforward to verify. Finally, let UT denote the

discrete uniform measure on [T ], and consider the product measure P ⊗UT on the

sub σ-algebra F̂. This gives us a probability space
(
Ω× [T ], F̂, P ⊗ UT

)
.
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The advantages of considering the above probability space is the following

lemma.

Lemma 4.1. Let ⊕L1(Ft) denote the vector space of all T -vectors of the type

(h0, h1, . . . , hT−1) ,

where each ht is a P -integrable random variables measurable with respect to Ft.

Then there is a natural bijection T1 between L1
(
Ω× [T ], F̂, P ⊗ UT

)
and ⊕L1(Ft)

given by

T1(H)(ω)
4
= (H(ω, 0), H(ω, 1), . . . , H(ω, T − 1)), H ∈ L1

(
Ω× [T ], F̂, P ⊗ UT

)
.

Similarly let ⊕L∞(Fi) denote the vector space of all T -vectors of the type

(ψ0, ψ1, . . . , ψT−1) ,

where each ψt is Ft-measurable and P -essentially bounded. Again there is a natural

bijection T∞ between L∞
(
Ω× [T ], F̂, P ⊗ UT

)
and ⊕L∞(Fi) given by

T∞(ψ)(ω)
4
= (ψ(ω, 0), ψ(ω, 1), . . . , ψ(ω, T − 1)), ψ ∈ L∞

(
Ω× [T ], F̂, P ⊗ UT

)
.

Proof of Lemma 4.1. We first claim that if a function L is measurable with respect

to F̂, then for each t, the random variable L(., t) is measurable with respect to

Ft. This follows from our definition of F̂ in (4.11). One the other hand, take any

vector (l0, l1, . . . , lT−1), such that each lt is measurable with respect to Ft, then the

function

L(ω, t)
4
= lt(ω), t = 0, . . . , T − 1,

is measurable with respect to F̂. That these mappings preserve integrability and

essential boundedness is straightforwrd.
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For all sequence {ξt} that satisfy (4.2), let us make a change of variable

φ = π(ξ), where

φt = π(ξ)t = (ξt − at)/(bt − at), t = 0, . . . , T − 1, (4.12)

then, each φt is Ft-measurable and lies between zero and one. Denote by R, the

entire collection of φ processes as ξ ranges over L, i.e.,

R
4
= π(L), (4.13)

then, by assumption (4.6), this collection is non-empty.

For any ξ, the discounted terminal value of the portfolio, W , defined in (4.4),

can be expressed in terms of the φ = π(ξ) as

W (ξ) = W ◦ π−1(φ) =
T−1∑
t=0

(St+1 − St) [(bt − at)φt + at]

=
T−1∑
t=0

[(bt − at) (St+1 − St)φt + at(St+1 − St)]

(4.14)

Thus, for any integrable f defined on (Ω,F, P ), one has∫
W (ξ)fdP = E(Wf) =

T−1∑
t=0

E
(

[(bt − at) (St+1 − St)φt + at(St+1 − St)] f
)

=
n−1∑
t=0

E [(bt − at) (St+1 − St)φtf ] +
n−1∑
t=0

E [at(St+1 − St)f ]

=
T−1∑
t=0

∫
Ω

vt(f)φtdP + c(f), (4.15)

where, we have named

vt(f)(ω)
4
= (bt + at)E

[
(St+1 − St) f

∣∣∣Ft

]
(ω) (4.16a)

and

c(f) = E

[
f

T−1∑
t=0

at(St+1 − St)

]
. (4.16b)
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For t ∈ [T ], if we now look at φ and v as functions of two arguments (ω, t), i.e.,

φ(ω, t)
4
= φt(ω), v(f)(ω, t)

4
= vt(f)(ω), ω ∈ Ω, (4.16c)

then, by Lemma 4.1, both φ and v are F̂-measurable functions on Ω×[T ]. Moreover,

v(f) is P ⊗ UT -integrable and P ⊗ UT ({0 ≤ φ ≤ 1}) = 1, and from (4.15) we can

write ∫
W ◦ π−1(φ)fdP =

T−1∑
t=0

∫
vt(f)φtdP + c(f)

= T

∫
Ω×[T ]

φv(f)d (P ⊗ UT ) + c(f).

(4.17)

Proof of Proposition 4.1. Consider any mean-zero, continuous probability distribu-

tion function η on the real line. Consider the probability space (R,B, η), where B

is the Borel σ-algebra. Let Z be a random variable defined on it with distribution

η.

Consider the following product space

Ω× [T ]× R, F̂ ⊗B(R), P ⊗ UT ⊗ η. (4.18)

Let us recall here that Ω× [T ], F̂ are defined in (4.10), (4.11), and UT is the discrete

uniform measure on the set [T ] = {0, 1, 2, . . . , T − 1}.

Recall the functions fi appearing in (4.1), and define the following functions

in L1(P ⊗ UT ⊗ η):

gi(ω, t, x)
4
= v(fi)(ω, t), 1 ≤ i ≤ m, gm+1(ω, t, x)

4
= Z(x), (4.19)

where the function v is defined in (4.16a), and (4.16c). Also define the constants

γi
4
= (αi − w0 − c(fi)) /T, i = 1, 2 . . . ,m.
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We shall use Proposition 4.2 from the appendix with (Ω̃,B, µ) as in (4.18), k = m,

and {g1, . . . , gm+1} as defined in (4.19). As in the notation of Proposition 4.2, we

define Φ to be the convex collection of all F̂ ⊗ B(R)-measurable functions φ such

that P ⊗ UT ⊗ η(0 ≤ φ ≤ 1) = 1. Then, for ψ ∈ Φ and for i = 1, . . . ,m, we use

Fubini’s theorem to see∫
Ω×[T ]×R

ψgi d (P ⊗ UT ⊗ η) ≥ γi ⇔∫
Ω×[T ]

E
(
ψ
∣∣∣ F̂) gi d (P ⊗ UT ) ≥ (αi − w0 − c(fi)) /T ⇔

T

∫
Ω×[T ]

E
(
ψ
∣∣∣ F̂) v(fi) d (P ⊗ UT ) + c(fi) ≥ αi − w0.

(4.20)

The first equivalence above follows, since gi, by definition (4.19), is already F̂ mea-

surable.

• We shall show now that the set A in (4.58) is non-empty. To see this, take a

process {ξt} from L, i.e., satisfies ρ(W (ξ)) ≤ w0. Let φ = π(ξ), then φ(ω, t), as

a real function on Ω × [T ], satisfies P ⊗ UT (0 ≤ φ ≤ 1) = 1. Moreover, since

ρ(W (ξ)) ≤ w0, expanding ρ in terms of fi imply

E (W (ξ)fi) ≥ αi − w0, ∀ i = 1, 2, . . . ,m.

Hence, from (4.17), it follows that

T

∫
Ω×[T ]

φv(fi)d (P ⊗ UT ) + c(fi) ≥ αi − w0, i = 1, . . . ,m.

Since φ is independent of Z, by the equivalences in (4.20), we obtain∫
Ω×[T ]×R

φgid (P ⊗ UT ⊗ η) ≥ γi, i = 1, . . . ,m, (4.21)

and thus the set A defined in (4.58) is non-empty. Thus from Proposition 4.2 we

conclude the existence of an r = (r1, . . . , rm+1) ∈ Sm+1 such that φ∗, as in (4.61),
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satisfies φ∗ ∈ A and∫
φ∗Zd (P ⊗ UT ⊗ η) ≥

∫
ψZd (P ⊗ UT ⊗ η) , ∀ψ ∈ A. (4.22)

• claim. rm+1 is strictly positive.

To see this, suppose on the contrary rm+1 = 0. Then φ∗ becomes independent

of Z, and since Z is mean-zero by assumption, we get∫
φ∗Zd (P ⊗ UT ⊗ η) =

∫
R
Zdη.

∫
Ω×[T ]

φ∗d (P ⊗ UT ) = 0. (4.23)

Now, by (4.6), we can choose ζ ∈ L such that

ρ(W (ζ)) < 0, and P (ζt = at, ∀ t) < 1. (4.24)

Define the process σ = π(ζ), then, from (4.24), P (σt = 0, ∀ t) < 1. Now,

by (4.24), and following exactly the same arguments as in (4.21), the process σ,

seen as a random variable on Ω× [T ], will satisfy∫
Ω×[T ]×R

σgid (P ⊗ UT ⊗ η) =

∫
Ω×[T ]

σgid (P ⊗ UT ) > γi, 1 ≤ i ≤ m. (4.25)

Also, from the second inequality in (4.24), we get (P ⊗ UT ) (σ = 0) < 1. Together

with (P ⊗ UT ) (0 ≤ σ ≤ 1) = 1, we infer that∫
Ω×[T ]

σd (P ⊗ UT ) > 0. (4.26)

For any K > 0, define

βK = 1{Z≥−K}.

Note that limK→∞ η(Z > −K) = 1. Let essinf(Z) denote the η-essential infimum

of Z (can be −∞). By continuity of η, and by (4.25), we can choose a K large

enough, but less than −essinf(Z), such that η(Z ≥ −K) < 1, and∫
Ω×[T ]×R

βKσgid (P ⊗ UT ⊗ η) =

η(Z > −K)

∫
Ω×[T ]

σgid (P ⊗ UT ) > γi, ∀ 1 ≤ i ≤ m.

(4.27)



CHAPTER 4. COMPUTING STRATEGIES TO ACHIEVE ACCEPTABILITY66

Define a random variable θ : Ω× [T ]× R → R, by

θ(ω, t, z) = βK(z)σ(ω, t).

Clearly θ is a F̂ ⊗ B(R)-measurable and is an element of A by (4.27). However,

note that∫
Ω×[T ]×R

θZd (P ⊗ UT ⊗ η) =

∫
R
Z1{Z≥−K}dη

∫
Ω×[T ]

σd (P ⊗ UT )

=

∫ ∞

−K

zη(dz)

∫
σd (P ⊗ UT ) > 0.

(4.28)

The last inequality follows from (4.26) and the fact that for any K < −essinf(Z),

we have ∫ ∞

−K

zη(dz) =

∫ ∞

0

zη(dz) +

∫ 0

−K

zη(dz) >

∫
R
zη(dz) = 0.

The final equality above is a consequence of η having mean zero. Hence from (4.23),

we see that

0 =

∫
φ∗Zd (P ⊗ UT ⊗ η) <

∫
θZd (P ⊗ UT ⊗ η) ,

which contradicts (4.22). This proves that rm+1 > 0.

From the conclusion of Proposition 4.2,we get φ∗ to be of the form

φ∗ =


1, if

∑k
i=1 riv(fi) + rm+1Z > 0,

0, if
∑k

i=1 riv(fi) + rm+1Z < 0.

(4.29)

Recall that from the definition of the function v in (4.16c), it is clear that each

v(fi) is independent of Z. Now, since rm+1 > 0, we have

(P ⊗ UT ⊗ η)

(
k∑

i=1

riv(fi) + rm+1Z = 0

)
=

∫
η

(
rm+1Z = −

k∑
i=1

riv(fi)
∣∣∣ F̂

)
d (P ⊗ UT ) = 0,
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the integrand is zero being the consequence of the continuity of η and the fact that

rm+1 > 0.

Thus, in (4.29), there is no loss in taking

φ∗ =

1 if
∑k

i=1 riv(fi) + rm+1Z > 0

0 otherwise.

(4.30)

Now from Proposition 4.2 we also get that φ∗ ∈ A, i.e.,∫
φ∗gid (P ⊗ UT ⊗ η) ≥ γi, i = 1, 2, . . . ,m.

And from (4.20) this implies that

T

∫
Ω×[T ]

E
(
φ∗
∣∣∣ F̂) v(fi)dν + c(fi) ≥ αi − w0, i = 1, . . . ,m, (4.31)

where

E
(
φ∗
∣∣∣ F̂) (ω, t) = (P ⊗ UT ⊗ η)

(
k∑

i=1

riv(fi) + rm+1Z > 0
∣∣∣ F̂) (ω, t)

= η

(
− 1

rm+1

m∑
i=1

riv(fi)(ω), ∞

)
= η (−λt(ω),∞) , (4.32)

where the {Ft}-adapted process {λt} is defined as in (4.8). Thus, if we let

ξt(ω)
4
= (bt − at)η(−λt,∞) + at, t = 0, . . . , T − 1,

then, by (4.31) and (4.17), we conclude that
∫
W (ξ)fidP ≥ αi−w0, i = 1, . . . ,m,

or in other words, ρ(W (ξ)) ≤ w0. This proves the proposition.
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4.3 Computations

For every s = (s1, . . . , sm+1) in the unit simplex Sm+1, recall from Proposition 4.1,

the Ft-adapted process

λt(s)
4
=

1

sm+1

m∑
i=1

sivt(fi), t = 0, 1, . . . , T − 1, (4.33)

and the derived process

ξt(s)
4
= (bt − at)η(−λt(s),∞) + at, t = 0, . . . , T − 1. (4.34)

For every initial w0, Proposition 4.1 proves (under slight assumptions) the existence

of an r ∈ Sm+1 via which the process ξ(r) satisfies ρ(W (ξ(r))) ≤ w0.

Construct a finite mesh G within the compact set Sm+1. Suppose we can

compute the value of ρ(W (ξ(r))) for every r ∈ G. Then for a given w0, we can

verify for each point on the grid if ρ(W (ξ(r))) is less than w0. For any ε > 0, if the

grid is fine enough, suitable smoothness assumptions will guarantee the existence

of a point r∗ ∈ G, for which ρ(W (ξ(r∗))) ≤ w0 + ε.

In fact, we can also optimize on w0 by a similar procedure. For that fine

mesh G, let r∗ be a grid point which attains

ρ(W (ξ(r∗))) = min
r∈G

ρ(W (ξ(r))).

Let w∗0 = ρ(W (ξ(r∗))), then, in an obvious way, the choice of (w∗0, ξ(r
∗)) gives a

near-minimal initial capital for the problem of finding (w0, ξ) which satisfies (4.2)

and ρ(W (ξ)) ≤ w0.

The above procedure would work if we could theoretically compute ρ(W (ξ(s)))

for every s ∈ Sm+1. This is often impossible. However, for any fixed s, we can es-

timate ρ(W (ξ(s))) by Monte-Carlo simulations upto any desired level of accuracy.
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We show in this section that it is possible to do a Monte-Carlo simulation to simul-

taneously approximate ρ(W (ξ(s))) for every s ∈ Sm+1 with a uniform error bound.

This will allow our search algorithm described above to go through, up to approx-

imations. The feasibility of our claim depends on the theory of Uniform Law of

Large Tumbers and the related concept of Vapnik-C̆ervonenkis dimension which is

a combinatorial property of the particular structure of {ξt} in (4.34). This theory is

well-developed and we cherry-pick only the necessary results for our purpose. These

have been stated in the appendix. Further references have also been provided for

the interested reader.

Central to computing ρ(W (ξ(s))), for any s ∈ Sm+1, is to compute E(W (ξ(s))·

fi) for every fi that defines ρ. Now, from equation (4.15), we can write

E(W (ξ(s))fi) =
T−1∑
t=0

∫
Ω

vt(fi)η(−λt(s),∞)dP + c(fi)

= T

∫
Ω×[T ]

η(−λ(s),∞)v(fi)d (P ⊗ UT ) + c(fi).

= T

∫
Ω×[T ]×R

I {λ(s) + Z > 0} v(fi)d (P ⊗ UT ⊗ η) + c(fi).(4.35)

Here, as in the last section, Z is a random variable with law η independent of F̂,

and I{·} denotes the indicator of an event.

We would now like to do a change of measure in (4.35) above with v(fi) as

the ‘Radon-Nikodým’ derivative. This is not possibly directly, since v(fi) is not

necessarily positive. However, we can work separately with v+(fi) = max(v(fi), 0)

and v−(fi) = max(−v(fi), 0), which denote the positive and the negative parts
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respectively. Hence, one obtains

E(W (ξ(s))fi)− c(fi) = T

∫
Ω×[T ]×R

I{λ(s) + Z > 0} v+(fi) d (P ⊗ UT ⊗ η)

−T
∫

Ω×[T ]×R
I{λ(s) + Z > 0} v−(fi) d (P ⊗ UT ⊗ η)

= a+
i ·
(
µ+

i ⊗ η
)
{λ(s) + Z > 0}

−a−i ·
(
µ−i ⊗ η

)
{λ(s) + Z > 0}. (4.36)

Here we have introduced several probability measures on (Ω × [T ], F̂), defined by

their corresponding unnormalized Radon-Nikodým derivatives:

dµ+
i /d (P ⊗ UT ) ∝ v+(fi), dµ−i /d (P ⊗ UT ) ∝ v−(fi), (4.37a)

and the corresponding constants

a+
i

4
=

T−1∑
t=0

E[v+
t (fi)], a−i

4
=

T−1∑
t=0

E[v−t (fi)], i = 1, 2, . . . ,m. (4.37b)

If any of the constants in (4.37b) is zero, the corresponding measure becomes the

zero measure and can be dropped from our analysis. For efficiency in computation

we would like to keep track of

ℵ 4
=

m∑
i=1

(
1{a+

i >0} + 1{a−i >0}

)
. (4.38)

Assumption 4.1. Throughout the rest of this section, we shall assume that

1. Ω is a subset of a Euclidean space and one can perfectly generate samples

from the joint distribution of (S0, S1, . . . , ST ),

2. the random variables vt(fi) (thus also λt) can be perfectly evaluated as func-

tions of (S0, . . . , ST ), and
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3. the constants c(fi), a
+
i and a−i can be evaluated for every 1 ≤ i ≤ m.

Now, by (4.36), evaluating E(W (ξ(s))fi) boils down to evaluating the fol-

lowing two probabilities

(
µ+

i ⊗ η
)
{λ(s) + Z > 0}, and

(
µ−i ⊗ η

)
{λ(s) + Z > 0}. (4.39)

It will be difficult to compute the quantities above for every s ∈ Sm+1. Instead, we

use the Vapnik-C̆ervonenkis theory, described in Subsection 4.5.2 in the Appendix,

to set up a Monte-Carlo scheme to estimate them for all s with uniform precision.

The key to this is to observe the trivial equality

{λ(s) + Z > 0} =

{
m∑

j=1

sjv(fj) + sm+1Z > 0

}
. (4.40)

We now apply Dudley’s Theorem, Theorem 4.3 in the Appendix, withX = Ω×[T ]×

R and the vector space G to be linear space spanned by Z and v(fj), j = 1, 2, . . . ,m.

Thus we infer that the collection of sets{{
ω̃ ∈ Ω× [T ]× R :

m∑
j=1

rjv(fj)(ω̃) + rm+1Z(ω̃) > 0

}
, r ∈ Rm+1

}
, (4.41)

has a VC dimension not more than (m+ 1). From (4.40), the collection of sets

{{λ(s) + Z > 0}, s ∈ Sm+1}

is contained in (4.41), and hence also has a VC-dimension not more than (m+1). It

is hence possible to estimate the probabilities in (4.39), uniformly for all s ∈ Sm+1,

by drawing independent samples from distributions µ+
i ⊗ η and µ−i ⊗ η.

Our aim now would be to apply Theorem 4.6. We first have to choose two

positive parameters, ε and δ, determining the precision of our estimates. Now, for
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every i = 1, 2, . . . ,m, choose κ+
i such that

4(κ+
i )2(m+1) exp

(
−2κ+

i

(
ε

a+
i

)2

+ 4

(
ε

a+
i

)
+ 4

(
ε

a+
i

)2
)
≤ δ. (4.42)

Generate κ+
i many iid samples {(ωj, tj, zj) ∈ Ω × [T ] × R, j = 1, 2, . . . , κ+

i }, from

the joint distribution µ+
i ⊗ η.

Remark. It is fairly standard to generate samples from measures µ+
i , defined through

their unnormalized densities given in (4.37a). We can either directly identify the

distribution, as we do in the next section. Or, under the assumption that one can

generate perfect samples from the underlying distribution (P ⊗ UT ), one can use

any of the standard Markov Chain algorithms, from the simple rejection sampling,

to the general Metropolis-Hastings algorithm to generate samples from µ+
i . Sev-

eral books, e.g. [Gelman et al., 2003, Chap. 11], describe the details of all these

algorithms.

Let E+
i (·) denote the empirical estimates of probabilities by the sample fre-

quency. For example, for any s ∈ Sm+1, we have

E+
i {λs + Z > 0} =

1

κ+
i

κ+
i∑

j=1

I{λtj(s)(ωj) + zj > 0}. (4.43)

We can now apply (4.74) from Theorem 4.6 to claim that under the joint distribu-

tion of all the κ+
i many samples drawn

Prob

{
sup

s∈Sm+1

a+
i | E+

i {λs + Z > 0} − (µ+
i ⊗ η){λs + Z > 0} | > ε

}
≤ δ, ∀i. (4.44)

Exactly in the same way, one can replace the µ+
i by µ−i above, compute κ−i by

4(κ−i )2(m+1) exp

(
−2κ−i

(
ε

a−i

)2

+ 4

(
ε

a−i

)
+ 4

(
ε

a−i

)2
)
≤ δ, (4.45)

and obtain estimates E−i , analogous to (4.43), which satisfies

Prob

{
sup

s∈Sm+1

a−i | E−i {λs + Z > 0} − (µ−i ⊗ η){λs + Z > 0} | > ε

}
≤ δ, ∀i. (4.46)
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From (4.44) and (4.46), it follows, by using (4.36), that one can estimate the quan-

tity E(−W (ξ(s))fi) + αi by

Di(s)
4
= −a+

i E+
i {λ(s) + Z > 0}+ a−i E−i {λ(s) + Z > 0} − c(fi) + αi. (4.47)

Since ρ(W (ξ(s))) = sup1≤i≤m{E(−W (ξ(s))fi)+αi}, it follows that a good estimate

of this quantity would be supi Di(s). We can sum-up this approximation by a

simple union bound using (4.44) and (4.46) as follows.

Under the joint distribution of all the {κ+
i , κ

−
i }1≤i≤m samples drawn from

the distributions {µ+
i ⊗ η, µ−i ⊗ η}1≤i≤m, one has

Prob

{
sup

s∈Sm+1

|sup
i

Di(s)− ρ(W (ξ(s))) | ≥ ε

}
≥ 1− ℵδ.

Here, the empirical estimates Di are given in (4.47), and the number ℵ (≤ 2m) is

described in (4.38). We use the number ℵ and not the crude bound 2m to bring

more efficiency in our estimate.

Now that we have estimated ρ(W (ξ(s))) for every s ∈ Sm+1 with uniform

precision, we can carry out the grid searching procedure described at the beginning

of this section to get a near-optimal pair (w0, ξ) which satisfies (4.2) and ρ(W (ξ)) ≤

w0. The next section displays the entire method through an explicit example.

4.4 Examples

The previous theory is now applied to an explicit example where stock prices follow

geometric Brownian motion, but observed only at finitely many time points.

We consider T = 3 and Ω = RT , the σ-algebra Ft being generated by the

first t co-ordinates of ω ∈ Ω. We take F0 to be the trivial σ-algebra {∅,Ω}. Take P
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to be the product probability measure of T many independent Normal distributions

with mean zero and variance one. In other words, we consider random variables

(Z1, Z2, . . . , ZT ) such that each Zi is independent and identically distributed as

N(0, 1). The discounted stock price movement, under P , is described by

S0 = 4, St+1 = St exp

[
−1

2
+ Zt+1

]
, t = 0, 1, . . . , T − 1. (4.48)

In other words, we have

St = S0 exp

[
t∑

i=1

Zk −
t

2

]
, t = 0, 1, . . . , T − 1. (4.49)

However, the investor is not entirely certain of his modeling assumptions, and so

considers other scenarios Q1 and Q2, where Q1 and Q2 are two probability measures

defined on (Ω,FT ) by

under Q1, Z1, . . . , ZT
iid∼ N(1, 1),

under Q2, Z1, . . . , ZT
iid∼ N(−1, 1).

For convenience we also introduce Q3 = P .

Remark. Note, from (4.48), the effect of changing measure on the stock price move-

ments. For Q1, the geometric Brownian motion gets a positive drift, for Q2 it gets

a negative drift, while Q3 is the same as P , where stock prices are a martingale.

Assume that various constraints dictate that his trading strategy is bounded

between zero and one throughout, i.e., in the notation of (4.2), we have

at ≡ 0, bt ≡ 1, for all 0 ≤ t ≤ T − 1.

Now, the investor sets to do the following: if the conditions are favorable, and

the stock prices tend to go up under Q1, he wants a large lower bound e4 for his

terminal wealth. On the other hand, if the stock prices tend to go down, under Q2,

he sets a lower bound for his losses, by setting that his final wealth should be more
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than e−1. He has at least $1 to invest, and would like to know an optimal initial

capital, and a trading strategy to achieve his goals.

This requires us to define a measure of risk ρ: if X is measurable with respect

to FT , then

ρ(X)
4
= max

i=1,2,3
[EQi(−X) + αi], m = 3,

where

α1 = e4, α2 = e−1, α3 = 1.

Then, we would like to compute a near-optimal pair (w0, ξ) of initial capital w0 and

0 ≤ ξt ≤ 1, for all 0 ≤ t ≤ T − 1, such that

ρ(w0 +W (ξ)) ≤ 0 ⇔ w0 + EQi [W (ξ)] ≥ αi, i = 1, 2, 3.

The first step will be to compute the functions f1, f2, and f3. They are

straight forward since

f1(z1, . . . , zk) = dQ1/dP = exp

[
T∑

k=1

zk − T/2

]

f2(z1, . . . , zk) = dQ2/dP = exp

[
−

T∑
k=1

zk − T/2

]
f3(z1, . . . , zk) = dQ3/dP ≡ 1.

(4.50)

We can now compute the functions vt(fi). These are given by

vt(f1) = E [f1(St+1 − St) | Ft]

= StE [f1 (exp(Zt+1 − 1/2)− 1) | Ft] , from (4.48),

= St exp

(
t∑

k=1

Zk

)
E

(
exp

{
T∑

k=t+1

Zk − T/2

}
[exp(Zt+1 − 1/2)− 1]

)
,

(4.51)
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where the last equality is due to (4.50) and the independence of {Zi}. Recall that

if Z follows N(0, 1), then

E [exp(σZ)] = exp(σ2/2), σ ∈ R.

Thus, for z = (z1, z2, . . . , zT ) ∈ Ω, a straightforward computation leads to

vt(f1)(z) = St exp

[
t∑

k=1

zk

]{
exp

(
1− t

2

)
− exp

(
− t

2

)}

= 4(e− 1) exp

{
2

t∑
1

zk − t

}
, by (4.49).

(4.52)

In particular, we have

E(vt(f1)) = 4(e− 1)E

[
exp

(
2

t∑
k=1

Zk − t

)]
= 6.87et.

Similarly, we compute

vt(f2) = E [f2(St+1 − St) | Ft]

= StE [f2 (exp(Zt+1 − 1/2)− 1) | Ft] , from (4.48),

= St exp

(
−

t∑
k=1

Zk

)
E

(
exp

{
−

T∑
k=t+1

Zk − T/2

}
[exp(Zt+1 − 1/2)− 1]

)

= −S0 exp(−t)e− 1

e
= −4(e− 1) exp(−t− 1). (4.53)

And obviously, since St is a martingale under Q3, we have

vt(f3) = E [St+1 − St | Ft] = 0.

Hence, for s = (s1, s2, s3, s4) ∈ S4, the random variable λt(s) is given by

λt(s) =
4e−t(e− 1)

s4

[
s1 exp

{
2

t∑
1

zk

}
− s2 exp(−1)

]

=
4e−t(e− 1)

s4

[
s1e

t

(
St

S0

)2

− s2 exp(−1)

]

= 4(e− 1)

[
s1

s4

(
St

S0

)2

− s2

s4

et

]
.
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Thus, for 1 ≤ t ≤ 2 and z = (z1, z2, z3) ∈ Ω, we have the following table:

v+(f1)(t, z) = vt(f1)(z), a+
1 = 76.34, v−(f1)(t, z) = 0, a+

1 = 0,

v+(f2)(t, z) = 0, a+
1 = 0, v−(f2)(t, z) = 2.53e−t, a−2 = 3.80,

v+(f3)(t, z) = 0, a+
3 = 0, v+(f3)(t, z) = 0, a−3 = 0.

From above and (4.38), we also have

ℵ = 2.

Clearly, we need to consider only two changes of measures, the one given by v+(f1)

and the other by v−(f2). The rest are all zero measures. Finally, since at ≡ 0, from

(4.16b), we get

c(fi) = 0, i = 1, 2, 3.

We take the precision parameters to be

ε = .5, δ = .05.

From (4.42) and (4.45), we determine a sufficient number of samples for desired

accuracy would be

κ+
1 = 1, 400, 000, κ−2 = 10500.

Let us now analyze the probability measures µ+
1 and µ−2 on R3×{0, 1, 2}. If z ∈ R3,

and 0 ≤ t ≤ 2, then from (4.37a) and (4.52) we get

dµ+
1 (z, t) ∝ v+(f1)(z, t) · d (P ⊗ UT ) (z, t)

∝ exp

{
2

t∑
1

zk − t

}
·
(

1√
2π

)3

exp

{
−1

2

3∑
k=1

z2
k

}

∝ e−t

(
1√
2π

)3

exp

{
−1

2

t∑
k=1

(zk − 2)2 − 1

2

3∑
k=t+1

z2
k

}
.

(4.54)
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Thus generating a sample from µ+
1 is the same as picking a t ∈ (0, 1, 2) randomly

with probability proportional to exp(−t). Then, conditionally on t, we generate t

independent samples Z1, . . . , Zt from N(2, 1), and 3− t samples from N(0, 1).

Simulating from µ−2 is even simpler, since, from (4.53), we get that

dµ−2 (z, t) ∝ v−(f2)(z, t) · d (P ⊗ UT ) (z, t)

∝ e−t ·
(

1√
2π

)3

exp

{
−1

2

3∑
k=1

z2
k

}
.

(4.55)

Here, we pick t from {0, 1, 2} with probability proportional to exp(−t), and generate

(Z1, . . . , ZT ) as independent and identically distributed samples from N(0, 1).

Finally, we take η to be N(0, 1).

result of simulations. An estimate of the minimum capital is w0 = 2.52. And,

an estimate of the trading strategy for this capital is ξ∗t = Φ (−λt), where Φ is the

standard normal cumulative distribution function, and λt is the process given by

λt = 4(e− 1)

[
.38

(
St

S0

)2

− .99et

]
.

4.5 Appendix to Chapter 4

4.5.1 A generalised Neyman-Pearson Lemma

Let (Ω̃,B, µ) be a probability space. Let L1(µ) denote the space of all µ-integrable

functions on Ω̃. Consider a subset {g1, g2, . . . , gk, gk+1} of L1(µ) for some integers

k. Also consider real constants {γ1, γ2, . . . , γk}.

Define Φ as the set of B-measurable functions φ that satisfy µ (0 ≤ φ ≤ 1) =
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1. Define F : Φ −→ Rk+1 by

F (φ)
4
=

(∫
φg1dµ,

∫
φg2dµ, . . . ,

∫
φgk+1dµ

)
, φ ∈ Φ, (4.56)

and let

T
4
= −F (Φ) = {−F (φ), φ ∈ Φ}. (4.57)

The set T is obviously a closed, bounded (hence compact), convex subset of the

(k + 1)-dimensional Euclidean space.

Proposition 4.2. Suppose the set

A
4
=

{
φ ∈ Φ

∣∣∣ ∫ φgidµ ≥ γi, ∀ i = 1, . . . , k

}
(4.58)

is non-empty. Consider the function T : Φ → R given by

T(φ) =

∫
φgk+1dµ, (4.59)

and denote the (k + 1)-dimensional simplex by

Sk+1
4
=

{
y ∈ Rk+1

∣∣∣ yi ≥ 0,
k+1∑
i=1

yi = 1

}
. (4.60)

Then there exists a vector r ∈ Sk+1 such that the function T is maximized over A

by a function φ∗ satisfying

φ∗ =


1, if

∑k+1
i=1 rigi(ω) > 0

0, if
∑k+1

i=1 rigi(ω) < 0.

(4.61)

proof of proposition 4.2. Define the continuous function δ on T by

δ(x)
4
= xk+1,

which makes the following diagram commute: Φ
F //

T ��?
??

??
??

T

δ
��

R
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Now, δ being a continuous function, achieves its minimum on the compact set

F (A) which is a closed subset of T . This proves that the function T has a maximum

in A. It remains to prove that the maximizer can be taken of the form (4.61).

We shall follow closely to Ferguson [Ferguson, 1967], providing references

wherever needed. First we need a few definitions: a set S in Rk+1 will be called

bounded from below, if there exists a finite number η, such that for every y ∈ S

yj > η, for j = 1, 2, . . . , (k + 1). (4.62)

Let x be a point in Rk+1. The lower quantant of x, denoted by Qx, is defined as

the set

Qx = {y ∈ Rk+1 : yj ≤ xj for i = 1, 2, . . . , (m+ n)}. (4.63)

A point x is said to be a lower boundary point of a convex set S ∈ Rm+n if

Qx ∩ S̄ = {x}. (4.64)

Here S̄ is the closure of the set S. The set of all lower boundary points of a convex

set S is denoted by λ(S). We now state a lemma whose proof can be found in

Ferguson [Ferguson, 1967] p. 69.

Lemma 4.2. If a non-empty convex set S is bounded from below, then λ(S) is

non-empty.

Finally we shall need one of the basic properties of euclidean spaces:

Lemma 4.3. (The Separating Hyperplane Theorem.) Let S1 and S2 be disjoint

convex subsets of Rm+n. Then there exists a vector p 6= 0 such that 〈p, y〉 ≤ 〈p, x〉

for all x ∈ S1 and all y ∈ S2. Here 〈a, b〉 refers to the inner product between vectors

a and b.

For a proof see, for instance, Ferguson [Ferguson, 1967] p. 73.
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Let d∗ denote the maximum that δ achieves on the set F (A). Define a vector

ν by declaring

νi := −γi, i = 1, 2, . . . , k, and νk+1 := −d∗. (4.65)

Consider Qν as defined in (4.63). Then the set

T ′
4
= T ∩Qν (4.66)

is non-empty, convex, and bounded from below. Hence by Lemma 4.2, the set λ(T ′)

of lower boundary points of T ′ is non-empty. Fix x0 ∈ λ(T ′). Note that, by (4.66),

we get

x0 ∈ T ′ ⊆ Qν . (4.67)

Also by definition (4.64), we have

Qx0 ∩ T ′ = {x0}.

It follows that

Qx0 ∩ T = {x0}, (4.68)

since

Qx0 ∩ T ′ = Qx0 ∩Qν ∩ T = Qx0 ∩ T.

The first equality above follows from (4.66), while the second follows from the fact

that Qx0 ⊆ Qν . It is immediate from (4.68) that if we let C denote the interior of

Qx0 , then the sets T and C are disjoint convex sets. By Lemma 4.3, there exists a

vector p 6= 0 such that

〈 p , y 〉 ≤ 〈 p , x0 〉 ≤ 〈 p , x 〉 , ∀ y ∈ C, ∀ x ∈ T. (4.69)

Take any y in C and choose a coordinate i. Let yi ↓ −∞ keeping the rest of the

coordinates fixed. The resulting sequence is still in C. However, from (4.69), it
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follows that the inequality gets reversed unless pi is non-negative. Since this is true

for every i = 1, 2, . . . , k + 1, and p 6= 0, we can normalise p to obtain

ri
4
= pi

/ k+1∑
i=1

pj, ∀ i = 1, 2, . . . ,m+ n.

The vector r is clearly in Sk+1, as defined in (4.60).

Now, recall from (4.57) that T = −F (Φ), where the function F is given

by (4.56). From (4.67), x0 ∈ T , therefore, there exists a function φ∗ ∈ Φ such that

x0 = −F (φ∗) =

(
−
∫
φ∗g1dµ,−

∫
φ∗g2dµ, . . . ,−

∫
φ∗gk+1dµ

)
.

In other words, we can write the second inequality in (4.69) as

〈 p , −F (φ∗) 〉 ≤ 〈 p , −F (φ) 〉 , ∀ φ ∈ Φ.

If we expand the function F (.), and interchange summation with integration, we

get

−
∫ (∑

rigi

)
φ∗dµ ≤ −

∫ (∑
rigi

)
φdµ, ∀ φ ∈ Φ.

This is possible only if

φ∗ =


1, if

∑k+1
i=1 rigi(ω) > 0,

0, if
∑k+1

i=1 rigi(ω) < 0.

(4.70)

Finally, recall from (4.67) that x0 ∈ Qν . From (4.65), we infer that

x0(i) ≤ −γi ⇔
∫
φ∗gidµ ≥ γi, ∀ i = 1, 2, . . . , k.

This shows that φ∗ ∈ A. Also, from (4.65), we get

x0 ≤ −d∗ ⇔
∫
φgk+1dµ ≥ d∗.
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However, d∗ denotes the maximum value that the function T, of (4.59), achieves on

A. Thus clearly ∫
φgk+1dµ = d∗

and φ∗, as in (4.70), maximizes T over A. This prove the proposition. 2

4.5.2 Uniform law of large numbers

We briefly mention here three basic theorems about the theory of uniform law of

large numbers and the related concept of Vapnik-C̆ervonenkis dimensions. This

is a subject in itself and we shall use very little of it for our purpose. Hence we

shall skip all details and refer the reader to the excellent book [Devroye et al., 1996,

Chap. 12], from where our propositions in this section have been lifted.

Notation 4.1. We consider a probability space (Θ,=, %), where Θ is a complete,

separable metric space. On Θn, let %n denote the product probability measure

on the product σ-algebra. Similarly on Θ∞ := ΘN, let %∞ denote the infinite

product probability. For any θ ∈ Θ∞, and any n ∈ N, define the random empirical

measure: %n(C) := 1/n
∑n

i=1 1(θi∈C), C ∈ =, or, for any =-integrable function f ,

the corresponding random expectation %n(f) := 1/n
∑n

i=1 f(θi).

For any C ∈ = and any ε > 0, the law of large numbers dictate

lim
n→∞

%∞
(
|%n(C)− %(C)| > ε

)
= 0. (4.71a)

However, if we have a collection of {Cα}α∈I of sets in =, it is not always true that

lim
n→∞

%∞
(

sup
α∈I

|%n(Cα)− %(Cα)| > ε
)

= 0. (4.71b)

Equality above can be achieved under proper conditions on the collection {Cα}α∈I ,

and then we say Uniform Law of Large Numbers(ULLN) holds. The Vapnik-
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C̆ervonenkis theory provides one such condition. Its strength lies in that the condi-

tion on {Cα}α∈I is combinatorial in nature, and hence independent from the choice

of %. (This sometimes can also be a weakness, since significant improvements can

be made for specific choice of %.) The theory begins with the concept of shatter-

coefficient.

Definition 4.1. Let {Cα}α∈I be a collection of =-measurable subsets of Θ. For

(θ1, . . . , θd) ∈ Θd, let N(θ1, . . . , θd) be the number of different sets in

{ {θ1, . . . , θd} ∩ Cα, α ∈ I } .

The d-th shatter coefficient of the collection {Cα}α∈I is defined as

sd
4
= max

(θ1,...,θd)∈Θd
N(θ1, . . . , θd).

In other words, the shatter coefficient is the maximal number of different subsets

of d points that can be picked out by the class {Cα}α∈I .

Remark. Note that we have deliberately suppressed mentioning the class {Cα}α∈I

in the notation for the shatter coefficient. This is really for notational clarity. The

shatter coefficient is clearly a property of the collection of sets we consider.

The following theorem can be found in [Devroye et al., 1996, Thm 12.5, p. 197].

Theorem 4.4. For any collection {Cα}α∈I , and for any n ∈ N, ε > 0, we have

%∞
{

sup
α∈I

|%n(Cα)− %(Cα) | > ε

}
≤ 8sn exp(−nε2/32), (4.72)

where the constant sn is the nth shatter coefficient of the collection {Cα}α∈I and is

independent of the probability measure %.

Hence (4.71b) will hold if the constants sn grows at most polynomially. This

is achieved for certain collections of sets which have a finite Vapnik-C̆eronenkis

(VC) dimension. The following definition is from [Devroye et al., 1996, p. 196].
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Definition 4.2. As before we consider the collection {Cα}α∈I of =-measurable

subsets of Θ. The largest positive integer for which sd = 2d is known as the VC

dimension of the collection {Cα}α∈I . If sd = 2d for all integers d ≥ 1, we then define

the VC dimension to be ∞.

The next lemma [Devroye et al., 1996, p. 218] describes a fundamental rela-

tionship between VC dimension and the shatter coefficients.

Sauer’s Lemma. Let {Cα}α∈I be a subset of = with finite VC dimension V > 2.

Then for all n > 2V, we have sn ≤ nV.

Thus Theorem 4.4 together with Sauer’s Leamma will yield the following.

Theorem 4.5. Let (Θ,=) be a measurable space. Let {Cα}α∈I be any collection of

measurable subsets of Θ with a finite VC dimension V. Then for any probability

measure % on (Θ,=) and any n ≥ 2V, we have

%∞
{

sup
α∈I

|%n(Cα)− %(Cα) | > ε

}
≤ 8nV exp(−nε2/32). (4.73)

In particular, limn→∞ %
∞ {supα∈I |%n(Cα)− %(Cα) | > ε} = 0.

We shall be using, however, a better bound than Theorem 4.5. The following

theorem is from Devroye (1982).

Theorem 4.6. In the setting of the previous theorem 4.5, we have

%∞
{

sup
α∈I

|%n(Cα)− %(Cα) | > ε

}
≤ 4sn2 exp(−2nε2 + 4ε+ 4ε2).

Hence, by Sauer’s Lemma,

%∞
{

sup
α∈I

|%n(Cα)− %(Cα) | > ε

}
≤ 4n2VC exp(−2nε2 + 4ε+ 4ε2). (4.74)

Finally There is one collection of sets with finite VC dimensions which we

shall need in our analysis.
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Proposition 4.3. [Dudley, 1978, Thm 7.2] Let G be a d-dimensional real vector

space of real functions on an infinite set X. Define the class of sets

C = {{x ∈ X : g(x) > 0} : g ∈ G} .

Then the VC dimension of C is not more than d.
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Conclusion

The results in the previous chapters, although general, nevertheless falls short in

some examples. The results in Chapter 3 do not hold for an important class of risk

measures called the entropy risk, which arises naturally with exponential loss func-

tions (see example 2.1). It is unclear how to proceed in this case when no natural

Banach space seems to help. Chapter 4 also has some serious shortcomings. One,

that the computations increase exponentially as T increases in a T -period model.

The estimates in Theorem 4.6 then has to be improved, and this might already

have been done in the machine learning literature, although we are not aware of

it. It is worth mentioning, that bounds such as in theorem 4.6 is conservative. Ac-

tual simulations converge much faster than predicted. Theoretically, our proofs can

be extended to the case where we have infinitely many scenarios, with uniformly

integrable Radon-Nikodým derivatives, in the description of the risk measure in

(4.1). However the computations become unfeasible. Since our main stress was on

computing the strategies, results like Proposition 4.1 is not unnecessarily general-

ized. More serious is the case of continuous times, which is completely beyond our

methodologies. And it will be an interesting project to consider extensions of the

results in continuous time. Finally, this thesis is solely concerned with static risk

measures, which, although surprisingly flexible to be moulded towards a variety of

applications, has its own limitations. A much more theoretically and conceptually
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difficult concept is that of dynamic risk measures, an excellent source for which is

[Klöppel and Scweizer, 2005]. Much of this area is still left for exploring and will

be a likely direction for future work.
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