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ABSTRACT

Aspects Of Utility Maximization
With Habit Formation:

Dynamic Programming And Stochastic PDE’s

Nikolaos Egglezos

This paper studies in detail the habit-forming preference prob-
lem of maximizing total expected utility from consumption net
of the standard of living, a weighted-average of past consump-
tion. We describe the effective state space of the corresponding
optimal wealth and standard of living processes, while the associ-
ated value function is identified as a generalized utility function.
In the case of deterministic coefficients, we exploit the interplay
between dynamic programming and Feynman-Kac results, to ob-
tain equivalent optimality conditions for the value function and its
convex dual in terms of appropriate partial differential equations
(PDE’s) of parabolic type. The optimal portfolio/consumption
pair is provided in feedback form as well.

In a more general context with random coefficients, this interrela-
tion is established via the theory of random fields and stochastic
PDE’s. In fact, the resulting value random field of the optimiza-
tion problem satisfies a non-linear, backward stochastic PDE of
parabolic type, widely referred to as the stochastic Hamilton-
Jacobi-Bellman equation. In addition, the dual value random
field is characterized in terms of a linear, backward parabolic
stochastic PDE. Employing the generalized Itô-Kunita-Wentzell
formula, we present adapted versions of stochastic Feynman-Kac
formulae, which lead to the formulation of stochastic feedback
forms for the optimal portfolio and consumption choices.
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1 Introduction And Synopsis

An important question in financial mathematics is to explain the effect of
past consumption patterns on current and future economic decisions. A use-
ful tool in this effort has been the concept of habit formation. Namely, an
individual who consumes portions of his wealth over time is expected to de-
velop habits which will have a decisive impact on his subsequent consumption
behavior. The nature and magnitude of this impact would presumably de-
pend on his consumption preferences. Employed in a wide variety of economic
applications (e.g. Hicks (1965), Pollak (1970), Ryder and Heal (1973)), habit
formation was in turn considered by several authors in the classical utility
optimization problem (e.g. Sundaresan (1989), Constantinides (1991), De-
temple and Zapatero (1991, 1992), Heaton (1993), Chapman (1998), Schroder
and Skiadas (2002)). In particular, fairly general utility preferences were in-
troduced to accommodate a possible dependence not only on the investment
and consumption decisions of a single agent, but also on his standard of liv-
ing ; i.e., an index-process that aggregates past consumption, reflecting the
presence of habit persistence in the market.

The present thesis returns to the stochastic control problem described in
Detemple and Zapatero (1992) and explores in detail particular aspects of
portfolio/consumption optimization under habit formation in complete mar-
kets. We adopt non-separable von Neumann-Morgestern preferences over a
given time-horizon [0, T ], and maximize total expected utility E

∫ T

0
u(t, c(t)−

z(t; c))dt from consumption c(·) in excess of standard of living z(·; c). Here
the habit-index is defined as an average of past consumption, given by
z(t; c) , z e−

R t
0 α(v)dv +

∫ t

0
δ(s)e−

R t
s α(v)dvc(s)ds, with z ≥ 0 and nonnega-

tive stochastic coefficients α(·), δ(·). It is now clear that an increase in the
consumption strategy leads to a higher instantaneous utility, but also in-
duces higher levels of standard of living, and eventually results in depressed
future utilities. Moreover, by assuming infinite marginal utility at zero, i.e.
u′(t, 0+) = ∞, we force consumption never to fall below the contemporane-
ous level of standard of living, thus triggering the development of “addictive”
consumption patterns. As a lower bound of consumption, standard of liv-
ing plays obviously the role of the addiction-regulator factor. Hence, our
model is comparable to a real-life situation in which a consumer, who aims
to maximize his total expected utility, displays addiction by being perenni-
ally sustained in excess of historical averages; in other words, he is constantly
“forced” to consume more than he used to in the past. At t = 0 the assump-
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tion u′(t, 0+) = ∞ postulates the condition x > wz, specifying the half-plane
D of Assumption 2.2 as the domain of acceptability for the initial wealth x
and initial standard of living z. The quantity w stands for the cost per unit
of standard of living of the subsistence consumption, the consumption policy
that matches the standard of living at all times.

Existence of an optimal portfolio/consumption pair is proved in Detemple
and Zapatero (1992) by establishing a recursive linear stochastic equation for
the properly normalized marginal utility. In order to set up the mathemati-
cal background needed for further analysis, we present a brief formulation of
their solution, based on the methodology of Detemple and Karatzas (2003)
for the case of non-addictive habits. Our contribution starts by characteriz-
ing the effective state space of the corresponding optimal wealth X0(·) and
standard of living z0(·) processes as the random wedge Dt (cf. (2.61)) de-
termined by the stochastic evolution W(t) of w as a process. This result
reveals the stochastic evolution of the imposed condition x > wz over time,
in the sense X0(t) > W(t)z0(t) for all t ∈ [0, T ). As a consequence, we are
motivated to investigate in the sequel the dynamic aspects of our stochastic
control problem. Straightforward computations yield a second representa-
tion (cf. (2.55)) for the “marginal” subsistence consumption cost w per unit
of standard of living, in terms of the “normalized marginal utility” Γ(·) of
(2.43), also referred to as the “adjusted” state-price density process. This
second representation (2.55) provides a new mechanism for pricing economic
features in our market, according to which Γ(·) is used as an alternative state-
price density process; the role of the corresponding discount rate is played by
α(·). Such a mechanism has been identified in Schroder and Skiadas (2002)
as an isomorphism between financial markets incorporating linear habit for-
mation and markets without habit formation. The term “adjusted” in the
terminology of Γ(·) comes from the fact that this process is the marginal
utility of consumption (state-price density) augmented by the expected in-
cremental impact on future utilities (cf. (2.37)). Furthermore, we define the
value function V of the optimization problem as a mapping that depends
on both x and z. Considering the latter as a pair of variables running on
D, we classify V in a broad family of utility functions; in fact, V (·, z) and
the utility function u(t, ·) exhibit similar analytic properties. This is car-
ried out through the convex dual of the value function, defined in (2.67), in
conjunction with differential techniques developed in Rockafellar (1970).

Duality methods in stochastic control were introduced in Bismut (1973)
and elaborated further in Xu (1990), Karatzas and Shreve (1998). Detemple
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and Zapatero (1992) employ martingale methods (Cox and Huang (1989),
Karatzas (1989), Karatzas, Lehockzy and Shreve (1987), and Pliska (1986))
to derive a closed-form solution for the optimal consumption policy, denoted
by c0(·). They also provide insights about the structure of the optimal port-
folio investment π0(·), that finances the policy c0(·), via an application of the
Clark (1970) formula due to Ocone and Karatzas (1991).

In order to describe quantitatively the dependence of the agent’s optimal
investment π0(·) on his wealth X0(·) and standard of living z0(·), Detemple
and Zapatero (1992) restrict the utility function to have either the loga-
rithmic u(t, x) = log x or the power u(t, x) = xp/p form for a model with
nonrandom coefficients. To amend this limitation, we pursue formulae for
the optimal policies where now u can be any arbitrary utility function, by
specializing our analysis to the case of deterministic coefficients. The ensuing
Markovian setting and Feynman-Kac results permit us to express these poli-
cies in “feedback form” on the current levels of wealth and standard of living.
Hence, the amount of available capital, at each time instant, together with
the respective standard of living index, constitute a sufficient statistic for an
economic agent who desires to invest and consume optimally in the financial
market. Driven by ideas of dynamic programming, we characterize the value
function V in terms of a non-linear, second-order parabolic partial differential
equation, widely known as Hamilton-Jacobi-Bellman equation. This equation
is derived from two linear Cauchy problems, which admit unique solutions
subject to a certain growth condition. We establish a linear, second-order
parabolic partial differential equation whose unique solution, subject to the
same growth condition, is the convex dual Ṽ of V ; compare with Xu (1990)
as well, for “habit-free” markets. Thus, we obtain an alternative computa-
tional method for the value function of the maximization problem, since by
solving the last equation for Ṽ and by inverting the dual transformation, V
follows readily.

The use of dynamic programming techniques on stochastic control prob-
lems was originated by Merton (1969, 1971), in order to produce closed-form
solutions in the special case of constant coefficients for models without habit
formation. The infinite-horizon case was generalized by Karatzas, Lehoczky,
Sethi and Shreve (1986). Karatzas, Lehoczky and Shreve (1987) coupled
martingale with convexity methods to allow random, adapted model coef-
ficients for general preferences; nonetheless, they reinstated the Markovian
framework with constant coefficients to obtain the optimal portfolio in closed-
form. A study on the case of deterministic coefficients in markets without
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habits can be found in Karatzas and Shreve (1998).
The work cited thus far indicates that the Hamilton-Jacobi-Bellman equa-

tion is inadequate for the analysis of a non-Markovian model. On the other
hand, the dynamic evolution of domain D, represented by the stochastically
developing half-planes Dt, hints that the principles of dynamic program-
ming should be applicable in more general frameworks as well. Indeed, Peng
(1992) considered a stochastic control problem with stochastic coefficients,
and made use of Bellman’s optimality principle to formulate an associated
stochastic Hamilton-Jacobi-Bellman equation. The discussion in that paper
was formal, due to insufficient regularity of the value function. This thesis
culminates with an explicit application of Peng’s idea to the utility maxi-
mization problem.

“Pathwise” stochastic control problems were recently studied by Lions
and Souganidis (1998a, 1998b) who proposed a new notion of stochastic
viscosity solutions for the associated fully non-linear stochastic Hamilton-
Jacobi-Bellman equations. In two subsequent papers, Buckdahn and Ma
(2001 Parts I, II) employ a Doss-Sussmann-type transformation to extend
this notion in a “point-wise” manner, and obtain accordingly existence and
uniqueness results for similar stochastic partial differential equations. A
problem of “pathwise” stochastic optimization, that emerges from mathe-
matical finance and concerns the optimality dependance on the paths of an
exogenous noise, is considered in Buckdahn and Ma (2006).

Since stock prices and the money-market price are not Markovian pro-
cesses anymore, we are now required to work with conditional expectations,
which take into account the market history up to the present, and thereby
lead to the consideration of random fields. In this context, an important role
is played by certain linear, backward parabolic stochastic partial differen-
tial equations which characterize the resulting random fields as their unique
adapted solutions; in other words, adapted versions of stochastic Feynman-
Kac formulas are established. Results concerning the existence, uniqueness
and regularity of the adapted solutions to stochastic partial differential equa-
tions of this sort were obtained in Ma and Yong (1997, 1999). Kunita (1990)
contains a systematic study of semimartingales with spatial parameters, in-
cluding the derivation of the generalized Itô-Kunita-Wentzell formula that is
put to great use throughout our analysis.

By analogy with the Markovian case, we establish stochastic “feedback
formulae” for the optimal portfolio/consumption decisions, in terms of the
current levels of wealth and standard of living. This pair does not consti-
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tute a sufficient statistic for the maximization problem, any longer, for the
“feedback formulae” convert from deterministic functions to random fields.
Under reasonable assumptions on the utility preferences, the adapted value
field of the stochastic control problem solves, in the classical sense, a non-
linear, backward stochastic partial differential equation of parabolic type. To
wit, the value field possesses sufficient smoothness, such that all the spatial
derivatives involved in the equation exist almost surely. This equation is
the stochastic Hamilton-Jacobi-Bellman equation one would expect, accord-
ing to the theory of dynamic programming (Peng (1992)). Actually, apart
from the classical linear/quadratic case discussed in Peng (1992), this work
is, to the best of our knowledge, the first to illustrate explicitly and directly
the role of backward stochastic partial differential equations in the study
of stochastic control problems in any generality. We conclude by deducing
a necessary and sufficient condition for the dual value random field as the
unique adapted solution of a linear, backward parabolic stochastic partial
differential equation.

Synopsis: An outline of the thesis is laid out as follows. In Chapter 2
we introduce the market model, and go briefly over the optimal portfolio-
consumption solution of the stochastic control problem. Several aspects of
this problem are discussed, concerning the state space of the corresponding
optimal wealth and standard of living vector process, the classification of the
value function in a set of generalized utility functions, and the dual of the
value function. Chapter 3 specializes the preceding work to the case of deter-
ministic model coefficients. Following the dynamic programming approach,
we establish the optimal portfolio and consumption policies in “feedback
form” on the current level of the associated optimal wealth and standard of
living, and show that the value function satisfies a Hamilton-Jacobi-Bellman
equation. An equivalent characterization for the dual value function and
several examples are also provided. In Chapter 4 we investigate the dynamic
programming reasoning in the model with random coefficients. Now the value
function and the “feedback formulae” for the optimal portfolio/consumption
pair are represented by random fields, and our analysis leads to the devel-
opment of stochastic partial differential equations. Consequently, the value
random field solves a stochastic Hamilton-Jacobi-Bellman equation, and its
dual field is the unique solution of a linear, backward stochastic partial differ-
ential equation. The example of logarithmic utility is discussed in this case
as well. Conclusions and several open problems related with more general
utility preferences or incomplete markets are formulated in Chapter 5.
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2 Optimal Portfolio-Consumption Policies With

Habit Formation In Complete Markets

2.1 The Model

We adopt a model for the financial market M0 which consists of one riskless
asset (money market) with price S0(t) given by:

dS0(t) = r(t)S0(t)dt, S0(0) = 1, (2.1)

and m risky securities (stocks) with prices per share {Si(t)}1≤i≤m, satisfying
the equations

dSi(t) = Si(t)

[
bi(t)dt+

d∑
j=1

σij(t)dWj(t)

]
, i = 1, ...,m. (2.2)

Here W (·) = (W1(·), ...,Wd(·))∗ is a d-dimensional Brownian motion on a
probability space (Ω,F , P ) and F = {F(t); 0 ≤ t ≤ T} will denote the P -
augmentation of the Brownian filtration FW (t) , σ(W (s); s ∈ [0, t]). We
impose throughout that d ≥ m , i.e., the number of sources of uncertainty in
the model is at least as large as the number of stocks available for investment.

The interest rate r(·) as well as the instantaneous rate of return vector
b(·) = (b1(·), ..., bm(·))∗ and the volatility matrix σ(·) = {σij(·)}1≤i≤m, 1≤j≤d

are taken to be F-progressively measurable random processes and satisfy∫ T

0

‖b(t)‖dt <∞,

∫ T

0

|r(t)|dt ≤ % (2.3)

almost surely, for some given real constant % > 0. It will be assumed in
what follows that σ(·) is bounded and the matrix σ(t) has full rank for every
t . Under the latter assumption the matrix σ(·)σ∗(·) is invertible, thus its
inverse and the progressively measurable relative risk process

ϑ(t) , σ∗(t)(σ(t)σ∗(t))−1[b(t)− r(t)1m], t ∈ [0, T ] (2.4)
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are well defined; here we denote by 1k the k-dimensional vector whose every
component is one. We make the additional assumption that ϑ(·) satisfies the
finite-energy condition

E

∫ T

0

‖ϑ(t)‖2dt <∞. (2.5)

All processes encountered in this paper are defined on a finite time-horizon
[0, T ] where T is the terminal time for our market.

Furthermore, the exponential local martingale process

Z(t) , exp

{
−
∫ t

0

ϑ∗(s)dW (s)− 1

2

∫ t

0

‖ϑ(s)‖2ds

}
, (2.6)

the discount process

β(t) , exp

{
−
∫ t

0

r(s)ds

}
, (2.7)

their product, that is the so called state-price density process

H(t) , β(t)Z(t), (2.8)

as well as the process

W0(t) , W (t) +

∫ t

0

ϑ(s)ds, (2.9)

will be used quite often.

2.2 Portfolio and Consumption Processes

We envision an economic agent who starts with a given initial endowment
x > 0, and whose actions cannot affect the market prices. At any time
t ∈ [0, T ] the agent can decide both the proportion πi(t) of his wealth X(t) to
be invested in the ith stock (1 ≤ i ≤ m), and his consumption rate c(t) ≥ 0.
Of course, these decisions do not anticipate the future but must depend only
on the current information F(t). The remaining amount [1−

∑m
i=1 πi(t)]X(t)

is invested in the money market. Here the investor is allowed both to sell

7
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stocks short, and to borrow money at the bond interest rate r(·); that is, the
πi(·) above are not restricted to take values only in [0, 1], and their sum may
exceed 1.

The resulting portfolio strategy π = (π1, ..., πm)∗ : [0, T ] × Ω → Rm

and consumption strategy c : [0, T ] × Ω → [0,∞), are assumed to be F-
progressively measurable processes and to satisfy the integrability condition∫ T

0

(
c(t) + ‖π(t)‖2

)
dt <∞, almost surely.

According to the model dynamics set forth in (2.1) and (2.2), the wealth
process X(·) ≡ Xx,π,c(·), corresponding to the portofolio/consumption pair
(π, c) and initial capital x ∈ (0,∞), is the solution of the linear stochastic
differential equation

dX(t) =
m∑

i=1

πi(t)X(t)

{
bi(t)dt+

m∑
j=1

σij(t)dWj(t)

}

+

{
1−

m∑
i=1

πi(t)

}
X(t)r(t)dt− c(t)dt (2.10)

= [r(t)X(t)− c(t)]dt+X(t)π∗(t)σ(t)dW0(t) ,

subject to the initial condition X(0) = x > 0. Equivalently, we have

β(t)X(t) +

∫ t

0

β(s)c(s)ds = x+

∫ t

0

β(s)X(s)π∗(s)σ(s)dW0(s), (2.11)

and from Itô’s lemma, applied to the product of Z and βX, we obtain

H(t)X(t) +

∫ t

0

H(s)c(s)ds

= x+

∫ t

0

H(s)X(s)[σ∗(s)π(s)− ϑ(s)]∗dW (s) . (2.12)

A portofolio/consumption pair process (π, c) is called admissible for the ini-
tial capital x ∈ (0,∞), if the agent’s wealth remains nonnegative at all times,
i.e., if

X(t) ≥ 0, for all t ∈ [0, T ], (2.13)

almost surely. We shall denote the family of admissible pairs (π, c) by A0(x).

8
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For any (π, c) ∈ A0(x), the process

Y (t) = H(t)X(t) +

∫ t

0

H(s)c(s)ds

on the left-hand side of (2.12) is a continuous and nonnegative local martin-
gale, thus a supermartingale. Consequently,

E

(∫ T

0

H(s)c(s)ds

)
≤ x (2.14)

holds for every (π, c) ∈ A0(x), since

x ≥ E

(
H(T )X(T ) +

∫ T

0

H(s)c(s)ds

)
≥ E

(∫ T

0

H(s)c(s)ds

)
from the supermartingale property Y (0) ≥ E[Y (T )] and the condition (2.13)
for t = T .

Let B0(x) denote the set of consumption policies c : [0, T ] × Ω → [0,∞)
which are progressively measurable and satisfy (2.14). Then we have just
verified that c(·) ∈ B0(x), for all pairs (π, c) ∈ A0(x). In a complete market,
where the number of stocks available for trading matches exactly the dimen-
sion of the “driving” Brownian motion, the converse holds true as well, in
the following sense.

Lemma 2.1. Let the market model of (2.1), (2.2) be complete, namely m =
d. Then, for every consumption process c(·) ∈ B0(x) there exists a portfolio
process π(·) such that (π, c) ∈ A0(x). The latter generate a wealth process
X(·) ≡ Xx,π,c(·) which is given by

H(t)X(t) = x+ Et(D(t))− E(D(0)), t ∈ [0, T ]

where D(t) ,
∫ T

t
H(s)c(s)ds.

Here and in the sequel, Et[ · ] denotes conditional expectation E[ · |F(t)]
with respect to the probability measure P , given the σ-algebra F(t).

9
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Proof: For a given c(·) ∈ B0(x), we define the continuous, positive process
X(·) via

H(t)X(t) , x+ Et

[∫ T

t

H(s)c(s)ds

]
− E

[∫ T

0

H(s)c(s)ds

]
, 0 ≤ t ≤ T.

This process satisfies X(0) = x, X(T ) ≥ 0.
By the representation property of Brownian martingales as stochastic

integrals (Karatzas and Shreve (1991), Theorem 3.4.15 and Problem 3.4.16),
the process

M(t) , H(t)X(t) +

∫ t

0

H(s)c(s)ds

= x+ Et

[∫ T

0

H(s)c(s)ds

]
− E

[∫ T

0

H(s)c(s)ds

]
can be expressed as

M(t) = x+

∫ t

0

ψ∗(s)dW (s)

for a suitable F-progressively measurable, Rd-valued process ψ(·) that satis-

fies
∫ T

0
‖ψ(s)‖2ds <∞, almost surely. Thus,

H(t)X(t) +

∫ t

0

H(s)c(s)ds = x+

∫ t

0

ψ∗(s)dW (s)

and comparing with (2.12) we see that the portfolio process π(·) which, to-
gether with x > 0 and c(·), generates X(·) as its wealth process X(·) ≡
Xx,π,c(·), is given by

π(t) = (σ(t)σ∗(t))−1 σ(t)

[
ψ(t)

X(t)H(t)
+ ϑ(t)

]
.

Clearly, the square integrability of π(·) follows from the square integrability
of ψ(·), the continuity of X(·) and condition (2.5). ♦

This argument ensures that any consumption strategy satisfying the bud-
get restriction (2.14) can be financed by a portfolio policy. For this reason,
(2.14) can be interpreted as a “budget constraint”.

10
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2.3 Utility Functions

A utility function is a jointly continuous mapping u : [0, T ] × (0,∞) → R
such that, for every t ∈ [0, T ], the function u(t, ·) is strictly increasing, strictly
concave, of class C1((0,∞)), and satisfies

u′(t, 0+) = ∞, u′(t,∞) = 0, (2.15)

where u′(t, x) , ∂
∂x
u(t, x).

Due to these assumptions, the inverse I(t, ·) : (0,∞) → (0,∞) of the
function u′(t, ·) exists for every t ∈ [0, T ], and is continuous and strictly
decreasing with

I(t, 0+) = ∞, I(t,∞) = 0. (2.16)

Furthermore, one can see that the stronger assertion

lim
x→∞

max
t∈[0,T ]

u′(t, x) = 0 (2.17)

holds. Indeed, fix an ε > 0 and for each n ∈ N consider the set Kn(ε) , {t ∈
[0, T ]; u′(t, n) ≥ ε}. This leads to a nested sequence {Kn(ε)}n∈N of compact
sets whose intersection is empty. Therefore, there exists a positive integer n
such that Kn(ε) = ∅.

Let us now introduce, for each t ∈ [0, T ], the Legendre-Fenchel transform
ũ(t, ·) : (0,∞) → R of the convex function − u(t,−x), namely

ũ(t, y) , max
x>0

[u(t, x)− xy] = u(t, I(t, y))− yI(t, y), 0 < y <∞. (2.18)

The function ũ(t, ·) is strictly decreasing, strictly convex, and satisfies

∂

∂y
ũ(t, y) = −I(t, y), 0 < y <∞, (2.19)

u(t, x) = min
y>0

[ũ(t, y) +xy] = ũ(t, u′(t, x))+xu′(t, x), 0 < x <∞. (2.20)

As consequences of (2.18) and (2.20), we have the following useful inequalities

u(t, I(t, y)) ≥ u(t, x) + y[I(t, y)− x], (2.21)

11
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ũ(t, u′(t, x)) + x[u′(t, x)− y] ≤ ũ(t, y) (2.22)

for every x > 0, y > 0. It is also not hard to verify that

ũ(t,∞) = u(t, 0+), ũ(t, 0+) = u(t,∞). (2.23)

We note here that ũ : [0, T ]× (0,∞) → R is jointly continuous as well.

2.4 The Maximization Problem

For a given utility function u and a given initial capital x > 0, we shall
consider von Neumann-Morgenstern preferences with expected utility

J(z; π, c) ≡ J(z; c) , E

[∫ T

0

u(t, c(t)− z(t; c))dt

]
, (2.24)

corresponding to any given pair (π, c) ∈ A0(x) and its associated index-
process z(·) ≡ z(·; c) defined in (2.26), (2.28) below. This process represents
the “standard of living” of the decision-maker, an index that captures past
consumption behavior and condition the current consumption felicity by de-
veloping “habits”. Of course, in order to ensure that the above expectation
exists and is finite, we shall take into account only consumption strategies
c(·) that satisfy

c(t)− z(t; c) > 0, ∀ 0 ≤ t ≤ T, (2.25)

almost surely. This additional budget specification insists that consump-
tion must always exceed the standard of living, establishing incentives for a
systematic built-up of habits over time and leading to “addiction patterns”.

We shall stipulate that the standard of living follows the dynamics

dz(t) =
(
δ(t)c(t)− α(t)z(t)

)
dt, t ∈ [0, T ],

z(0) = z,
(2.26)

where α(·) and δ(·) are nonnegative, bounded and F-adapted processes and
z ≥ 0 is a given real number. Thus, there exist constants A > 0 and ∆ > 0
such that

0 ≤ α(t) ≤ A, 0 ≤ δ(t) ≤ ∆, ∀ t ∈ [0, T ], (2.27)

12
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hold almost surely. Equivalently, (2.26) stipulates

z(t) ≡ z(t; c) = z e−
R t
0 α(v)dv +

∫ t

0

δ(s)e−
R t

s α(v)dvc(s)ds (2.28)

and expresses z(·) as an exponentially-weighted average of past consumption.
In light of the constraint (2.25), we see that consumption c(·) must always

exceed the “subsistence consumption” ĉ(·) for which ĉ(·) = z(·; ĉ), namely,
that consumption pattern which barely meets the standard of living. From
(2.26), this subsistence consumption satisfies

dĉ(t) =
(
δ(t)− α(t)

)
ĉ(t)dt, t ∈ [0, T ],

ĉ(0) = z,

and therefore with ẑ(·) ≡ z(·; ĉ) we have

c(t) > ĉ(t) = ẑ(t) = z e
R t
0 (δ(v)−α(v))dv, ∀ t ∈ [0, T ].

Back into the budget constraint (2.14), this inequality gives

z E

(∫ T

0

e
R s
0 (δ(v)−α(v))dvH(s)ds

)
≤ x.

Therefore, keeping in mind the strict inequality of (2.25), we need to impose
the following restriction on the initial capital x and the initial standard of
living level z.

Assumption 2.2. (x, z) ∈ D ,
{

(x′, z′) ∈ (0,∞)× [0,∞); x′ > wz′
}
,

where

w , E

[∫ T

0

e
R t
0 (δ(v)−α(v))dvH(t)dt

]
(2.29)

represents the “marginal” cost of subsistence consumption per unit of stan-
dard of living.

Definition 2.3. (Dynamic Optimization). The dynamic optimization prob-
lem is to maximize the expression of (2.24) over the class A′

0(x, z) of admis-

13
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sible portfolio/consumption pairs (π, c) ∈ A0(x) that satisfy (2.25) and

E

[∫ T

0

u−(t, c(t)− z(t; c))dt

]
<∞. (2.30)

(Here and in the sequel, b− denotes the negative part of the real number
b : b− = max{−b, 0}.) The value function of this problem will be denoted by

V (x, z) , sup
(π,c)∈A′

0(x,z)

J(z; π, c), (x, z) ∈ D. (2.31)

Definition 2.4. (Static Optimization). The static optimization problem
is to maximize the expression (2.24) over the class B′0(x, z) of consumption
processes c(·) ∈ B0(x) that satisfy (2.25) and (2.30). The value function of
this problem will be denoted by

U(x, z) , sup
c(·)∈B′0(x,z)

J(z; c), (x, z) ∈ D. (2.32)

We obtain immediately from (2.14) that

V (x, z) ≤ U(x, z), ∀ (x, z) ∈ D.

In fact, equality prevails above: it suffices to solve only the static maximiza-
tion problem, since for a static consumption optimizer process c0(·) ∈ B′0(x, z)
in (2.32) we can always construct, according to Lemma 2.1, a portfolio pro-
cess π0(·) such that (π0, c0) ∈ A′

0(x, z) satisfies

U(x, z) = J(z; c0) = J(z; c0, π0) = V (x, z), ∀ (x, z) ∈ D

and thus constitutes a dynamic portfolio/consumption maximizer pair pro-
cess for (2.31).

We also note that the B′0(x, z) is convex, thanks to the linearity of c 7→
z(t; c) and the concavity of x 7→ u(t, x).

14
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2.5 Solution of the Optimization Problem in Com-
plete Markets

The static optimization problem of Definition 2.4 is treated as a typical max-
imization problem with constraints (2.14) and (2.25) in the case m = d of a
complete market, and admits a solution derived in Detemple and Zapatero
(1992). In this section, we shall follow their analysis, obtaining further results
associated with the value function V and related features. More precisely,
we shall identify the effective state space of the optimal wealth/standard of
living vector process, generated by the optimal portfolio/consumption pair,
as a random wedge, spanned by the temporal variable t ∈ [0, T ] and a fam-
ily of suitable random half-planes (cf. Theorem 2.12). Theorem 2.17 below
describes the relation of the value function V with a utility function as de-
fined in Section 2.3, and begins the study of its dual value function Ṽ . An
alternative representation for the quantity w of (2.29) is provided as well.

We shall deal with maximization problems of this sort by the standard
method of introducing the Lagrange multiplier y ∈ (0,∞) to enforce the
static constraint (2.14). Hence for any such multiplier, we consider the aux-
iliary functional

R(x, z, c; y) , E

[∫ T

0

u(t, c(t)− z(t; c))dt

]
+ y

[
x− E

(∫ T

0

H(s)c(s)ds

)]
. (2.33)

One would expect an additional Lagrange multiplier, related to the restriction
(2.25). Nonetheless, this consideration turns out to be redundant, since
condition (2.25) is satisfied by the optimal nonnegative consumption process
c0(·), thanks to the property of infinite marginal utility imposed in (2.15);
cf. (2.46)-(2.50). In other words, the constraint (2.25) remains practically in
the shadow, once Assumption 2.2 has been made.

For every consumption process c(·) ∈ B′0(x, z), namely, any progressively
measurable process c(·) ≥ 0 that satisfies (2.14), (2.25) and (2.30), we have
from (2.33) that R(x, z, c; y) ≥ J(z; c) holds, and with equality if and only if
the condition

E

(∫ T

0

H(s)c(s)ds

)
= x (2.34)

15



Nikolaos Egglezos Doctoral Dissertation

is satisfied. As a direct consequence of these observations comes the following
result.

Lemma 2.5. Assume that for any given y > 0 as above, there exists a
nonnegative progressively measurable process cy(·) that satisfies the conditions
(2.34), (2.25), (2.30) and maximizes the functional (2.33), namely

R(x, z, cy; y) ≥ R(x, z, c; y), ∀ c(·) ∈ B′0(x, z). (2.35)

Then

J(z; cy) = R(x, z, cy; y) ≥ R(x, z, c; y) ≥ J(z; c), ∀ c(·) ∈ B′0(x, z), (2.36)

so this cy(·) is optimal for the static problem.

Obviously, under our assumptions, the process cy(·) ≥ 0 solves the static
optimization problem, thus the dynamic one as well.

Optimality in the static problem: Analysis

In finding the solution of the auxiliary optimization problem (2.35), a
prominent role will be played by the “adjusted” state-price density process

Γ(t) = H(t) + δ(t) · Et

(∫ T

t

e
R s

t (δ(v)−α(v))dvH(s)ds

)
, t ∈ [0, T ] (2.37)

introduced in Detemple and Zapatero (1992). The process Γ(·) is the state-
price density process H(·) compensated by an additional term that reflects
the effect of habits. We shall also make use of the following helpful notation

F y(t) , e
R t
0 (α(v)−δ(v))dvI(t, yΓ(t)), t ∈ [0, T ] (2.38)

for a suitable Lagrange multiplier y = y0 > 0.

Ansatz 2.6. Suppose, for some given y > 0, that there exists a process
cy(·) ∈ B′0(x, z) which solves the auxiliary problem (2.35), namely,

∞ > R(x, z, cy; y) ≥ R(x, z, c; y), for all c(·) ∈ B′0(x, z).
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Then we have

cy(t) = e
R t
0 (δ(v)−α(v))dv

[
F y(t) + z +

∫ t

0

δ(s)F y(s)ds

]
(2.39)

and

zy(t) ≡ z(t; cy) = cy(t)− e
R t
0 (δ(v)−α(v))dvF y(t)

= e
R t
0 (δ(v)−α(v))dv

[
z +

∫ t

0

δ(s)F y(s)ds

]
, (2.40)

in the notation of (2.37), (2.38).

Discussion: The optimality of cy(·), in conjunction with the convexity of
B′0(x, z), implies

limε↓0
1

ε
·
[
R
(
x, z, cy + ε(c− cy); y

)
−R(x, z, cy; y)

]
≤ 0

for every c(·) ∈ B′0(x, z), or equivalently

limε↓0
1

ε
·E
∫ T

0

[
u
(
t, cy(t)+ε(c(t)−cy(t))−z(t; cy+ε(c−cy))

)
−u
(
t, cy(t)−z(t; cy)

)]
dt

≤ y · E
[∫ T

0

H(t)(c(t)− cy(t))dt

]
.

Consider now only those processes c(·) ∈ B′0(x, z) that satisfy the condition
sup0≤t≤T |c(t)− cy(t)| ≤ 1, and denote the resulting class by By

0(x, z). Then
the concavity of the utility function u(t, ·), the assumptionR(x, z, cy; y) <∞,
the linearity of c 7→ z(t; c) and the dominated convergence theorem, lead from
the above inequality to

E

[∫ T

0

u′(t, cy(t)− z(t; cy)) · [(c(t)− cy(t))− (z(t; c)− z(t; cy))]dt
]

≤ y · E
[∫ T

0

H(t)(c(t)− cy(t))dt

]
.
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In other words, we have

E

[∫ T

0

{
u′(t, cy(t)− z(t; cy))− yH(t)

}
· [c(t)− cy(t)]dt

]
≤ E

[∫ T

0

u′(t, cy(t)− z(t; cy)) · (z(t; c)− z(t; cy))dt

]
(2.41)

for every c(·) ∈ By
0(x, z). According to (2.28), we can rewrite the right-hand

side of the last inequality as

E

[∫ T

0

u′(t, cy(t)− z(t; cy)) ·
(∫ t

0

δ(s)e−
R t

s α(v)dv(c(s)− cy(s))ds

)
dt

]
= E

[∫ T

0

δ(s)

(∫ T

s

e−
R t

s α(v)dvu′(t, cy(t)− z(t; cy))dt

)
(c(s)− cy(s))ds

]
= E

[∫ T

0

δ(t) · Et

(∫ T

t

e−
R s

t α(v)dvu′(s, cy(s)− z(s; cy))ds

)
(c(t)− cy(t))dt

]
.

Through substitution back into (2.41), we come to the conclusion that the
“utility-gradient”

G(t; cy) , u′(t, cy(t)−z(t; cy))−δ(t)·Et

(∫ T

t

e−
R s

t α(v)dvu′(s, cy(s)− z(s; cy))ds

)
satisfies

E

[∫ T

0

{G(t; cy)− yH(t)} · [c(t)− cy(t)]dt

]
≤ 0, ∀ c(·) ∈ By

0(x, z).

This strongly suggests the relationship G(t, cy) = yH(t), or equivalently the
fact that cy(·) satisfies the equation

u′(t, cy(t)−z(t; cy))−δ(t)·Et

(∫ T

t

e−
R s

t α(v)dvu′(s, cy(s)− z(s; cy))ds

)
= yH(t)

(2.42)
for all t ∈ [0, T ]. It is then straightforward that the “normalized marginal
utility” process

Γ(t) ,
1

y
u′(t, cy(t)− z(t; cy)), t ∈ [0, T ] (2.43)
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appearing in (2.42), solves the recursive linear stochastic equation

Γ(t) = H(t) + δ(t) · Et

(∫ T

t

e−
R s

t α(v)dvΓ(s)ds

)
, t ∈ [0, T ]. (2.44)

As was shown by Detemple and Karatzas (2003) (Appendix), the solution of
(2.44) is provided by the process Γ(·) of (2.37). Inverting (2.43), we deduce
that the optimal consumption in excess of the standard of living is given by

cy(t)− z(t; cy) = I(t, yΓ(t))

= e
R t
0 (δ(v)−α(v))dvF y(t), in the notation of (2.38),

and substituting into (2.26) we obtain the dynamics

dzy(t) =
[
δ(t)I(t, yΓ(t)) + (δ(t)− α(t))zy(t)

]
dt, zy(0) = z, (2.45)

for the standard of living process zy(·) ≡ z(· ; cy).
Eventually, by solving the first-order linear ordinary differential equation

(2.45) we arrive at the expression given by (2.40), and the formula (2.39) for
the optimal consumption process cy(·) follows immediately. ♦

Optimality in the static problem: Synthesis

Let us follow now the steps of our previous analysis backwards, and pro-
vide constructive arguments to establish the existence of an optimal con-
sumption policy in the static problem. For this procedure to work, we shall
need to impose the following conditions:

Assumption 2.7. It will be assumed throughout that

E

(∫ T

0

H(t)I(t, yΓ(t))dt

)
<∞, ∀ y ∈ (0,∞),

E

(∫ T

0

∣∣u(t, I(t, yΓ(t))
)∣∣dt) <∞, ∀ y ∈ (0,∞).

In the sequel, we shall provide conditions on both the utility preferences
and the model coefficients, that ensure the validity of the above assumption;
cf. Remarks 2.15, 2.16 and 3.4.
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We recall the process Γ(·) of (2.37), as well as the process F y(·) of (2.38),
parametrized by y ∈ (0,∞). Similarly, we define for each y ∈ (0,∞) the
processes cy(·), zy(·) as in (2.39), (2.40), and observe

cy(t)− zy(t) = e
R t
0 (δ(v)−α(v))dvF y(t) = I(t, yΓ(t)) > 0 for t ∈ [0, T ]. (2.46)

We shall select the scalar Lagrange multiplier y > 0 so that the budget
constraint (2.14) is satisfied without slackness, i.e.,

E

∫ T

0

H(t)cy(t)dt = x

as mandated by Lemma 2.5. Recall the notation of (2.29), and write this
requirement as X (y) = x− wz, where

X (y) , E

[∫ T

0

H(t)cy(t)dt

]
− wz (2.47)

= E

[∫ T

0

H(t)
(
cy(t)− ze

R t
0 (δ(v)−α(v))dv

)
dt

]
= E

[∫ T

0

e
R t
0 (δ(v)−α(v))dvH(t)

(
F y(t) +

∫ t

0

δ(s)F y(s)ds

)
dt

]
= E

[ ∫ T

0

e
R t
0 (δ(v)−α(v))dvH(t)F y(t)dt

+

∫ T

0

δ(s)F y(s)

(∫ T

s

e
R t
0 (δ(v)−α(v))dvH(t)dt

)
ds

]
= E

[ ∫ T

0

e
R t
0 (δ(v)−α(v))dvF y(t)H(t)dt

+

∫ T

0

δ(t)F y(t) · Et

(∫ T

t

e
R s
0 (δ(v)−α(v))dvH(s)ds

)
dt

]
= E

[∫ T

0

e
R t
0 (δ(v)−α(v))dvΓ(t)F y(t)dt

]
= E

[∫ T

0

Γ(t)I(t, yΓ(t))dt

]
, 0 < y <∞ (2.48)

[the third equation comes from (2.39), and the next-to-last equation from
the expression for Γ(·) in (2.37)].
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Under Assumption 2.7, the function X (·) inherits from I(t, ·) its conti-
nuity and strict decrease, as well as X (0+) = ∞ and X (∞) = 0. We shall
denote the (continuous, strictly decreasing, onto) inverse of this function
by Y(·). Obviously then, Assumption 2.2 ensures the existence of a scalar
y0 , Y(x− wz) that satisfies the condition

X (y0) = x− wz. (2.49)

It is straightforward that according to this y0 > 0, we can now consider
the consumption policy

c0(·) ≡ cy0(·) (2.50)

as in (2.39), and note that we have satisfied the budget constraint without
slackness, namely

E

[∫ T

0

H(t)c0(t)dt

]
= x, (2.51)

due to the special choice of y0.
The following result concludes our construction of an optimal consump-

tion rate process for the static problem.

Theorem 2.8. The consumption process c0(·) of (2.50) solves the static op-
timization problem; that is, c0(·) ∈ B′0(x, z), and J(z; c) ≤ J(z; c0) < ∞
holds for any c(·) ∈ B′0(x, z).

Proof: Substituting in the formula (2.40) we obtain the process

z0(·) ≡ zy0(·). (2.52)

From Assumption 2.7, we have clearly J(z; c0) < ∞. On the other hand,
(2.21) implies

u(t, c0(t)− z0(t)) ≥ u(t, 1) + y0Γ(t) [I(t, y0Γ(t))− 1]

≥ −|u(t, 1)| − y0Γ(t) ;

through the observation

E[Γ(t)] ≤ E[H(t)] + ∆e∆T ·
(∫ T

t

E[H(s)]ds

)
≤ e%

(
1 + ∆Te∆T

)
<∞,

(2.53)
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where we have used (2.3), (2.27) and the supermartingale property of Z(·), it
is apparent that c0(·) satisfies condition (2.30) and therefore c0(·) ∈ B′0(x, z).
For any c(·) ∈ B0(x), the concavity of u(t, ·) implies

u(t, c0(t)−z0(t))−u(t, c(t)−z(t)) ≥ u′(t, c0(t)−z0(t))·[c0(t)− c(t)− (z0(t)− z(t))] ,

so, using also (2.28), (2.51), (2.14), (2.43) and (2.44), we have

J(z; c0)− J(z; c) ≥ E

∫ T

0

u′(t, c0(t)− z0(t))

{
c0(t)− c(t)

−
∫ t

0

δ(s)(c0(s)− c(s))e−
R t

s α(v)dvds

}
dt

= E

∫ T

0

u′(t, c0(t)− z0(t)) · (c0(t)− c(t)) dt (2.54)

− E

∫ T

0

δ(s)

(∫ T

s

u′(t, c0(t)− z0(t))e
−

R t
s α(v)dvdt

)
(c0(s)− c(s))ds

= E

∫ T

0

u′(t, c0(t)− z0(t)) · (c0(t)− c(t)) dt

− E

∫ T

0

δ(t) · Et

(∫ T

t

u′(s, c0(s)− z0(s))e
−

R s
t α(v)dvds

)
(c0(t)− c(t))dt

= E

∫ T

0

[
y0Γ(t)− δ(t) · Et

(∫ T

t

y0Γ(s)e−
R s

t α(v)dvds

)]
(c0(t)− c(t))dt

= y0E

∫ T

0

H(t)(c0(t)− c(t))dt = y0

[
x− E

∫ T

0

H(t)c(t)dt

]
≥ 0. ♦

Remark 2.9. From (2.47), (2.48), (2.46), (2.44) and (2.28), we have for
every y > 0 and z > 0 the computations

zw = E

∫ T

0

H(t)cy(t)dt−X (y)

= E

∫ T

0

[H(t)cy(t)− Γ(t)(cy(t)− zy(t))]dt

= E

∫ T

0

[
−δ(t)Et

(∫ T

t

e−
R s

t α(v)dvΓ(s)ds

)
cy(t) + zy(t)Γ(t)

]
dt
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= E

[
−
∫ T

0

Γ(s)

(∫ s

0

δ(t)e−
R s

t α(v)dvcy(t)dt

)
ds+

∫ T

0

zy(t)Γ(t)dt

]
= E

∫ T

0

(
zy(t)−

∫ t

0

δ(s)e−
R t

s α(v)dvcy(s)ds

)
Γ(t)dt

= z · E
∫ T

0

e−
R t
0 α(v)dvΓ(t)dt.

We obtain the expression

w = E

[∫ T

0

e−
R t
0 α(v)dvΓ(t)dt

]
, (2.55)

which re-casts the subsistence consumption cost per unit of standard of living
w of (2.29), as a weighted average of the “adjusted” state-price density process
Γ(·) of (2.37), discounted at the rate α(·). Due to this representation of
w, the terminology “adjusted” state-price density for Γ(·) becomes now quite
intuitive: namely, a comparison of (2.55) with (2.29), which involves only the
density process H(·), clearly connotes the significance of Γ(·) as an alternative
state-price density process, according to a different discount rate, for the
evaluation of economic features in our market.

Corollary 2.10. There exists a portfolio process π0(·) such that the pair of
policies (π0, c0) ∈ A′

0(x, z) attains the supremum of J(z; π, c) over A′
0(x, z)

in (2.31) and the corresponding wealth process X0(·) ≡ Xx,π0,c0(·) is given by

X0(t) =
1

H(t)
Et

[∫ T

t

H(s)c0(s)ds

]
, t ∈ [0, T ]. (2.56)

This optimal investment π0(·) has the characterization

π0(t) = (σ(t)σ∗(t))−1 σ(t)

[
ψ0(t)

X0(t)H(t)
+ ϑ(t)

]
, (2.57)

in terms of the Rd-valued, F-progressively measurable and almost surely square-
integrable process ψ0(·) that represents the martingale

M0(t) , Et

[∫ T

0

H(s)c0(s)ds

]
, t ∈ [0, T ] (2.58)
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as the stochastic integral M0(t) = x+
∫ t

0
ψ∗0(s)dW (s).

Furthermore, the value function V of the dynamic maximization problem
(2.31) is captured as

V (x, z) = G(Y(x− wz)), (x, z) ∈ D; (2.59)

here Y(·) is the inverse of the function X (·), defined in (2.47), and

G(y) , E

[∫ T

0

u
(
t, I(t, yΓ(t))

)
dt

]
, y ∈ (0,∞). (2.60)

Proof: The existence of the optimal portfolio π0(·) is an immediate con-
sequence of Lemma 2.1, along with the validation of (2.56), (2.57) and (2.58).
From the optimality of (π0, c0) we get

V (x, z) = E

[∫ T

0

u(t, c0(t)− z0(t))dt

]
, (x, z) ∈ D,

and (2.59) follows readily from (2.47), (2.51). ♦

Note that, under the optimal policies (π0, c0), the investor goes bankrupt
at time t = T : X0(T ) = 0, almost surely. This is natural, since utility is
desired here only from consumption, not from terminal wealth.

Remark 2.11. Both inequalities in (2.54) are strict, unless c(·) = c0(·).
Hence, c0(·) is the unique optimal consumption process, and thereby π0(·)
is the unique optimal portfolio process, up to almost-everywhere equivalence
under the product of Lebesgue measure and P .

Assumption 2.2 determines the “domain of acceptability” D for the ini-
tial values of wealth and standard of living. The next reasonable issue to be
explored is the temporal evolution of these quantities as random processes,
under the optimal pair policy (π0, c0) and for all times t ∈ [0, T ].
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Theorem 2.12. The effective state space of optimal wealth/standard of living
process

(
X0(·), z0(·)

)
is given by the family of random half-planes

Dt ,
{

(x′, z′) ∈ (0,∞)× [0,∞); x′ >W(t)z′
}
, 0 ≤ t < T,

DT ,
{

(0, z′); z′ ∈ [0,∞)
}
,

(2.61)

where

W(t) ,
1

H(t)
Et

[∫ T

t

e
R s

t (δ(v)−α(v))dvH(s)ds

]
, 0 ≤ t ≤ T (2.62)

stands for the cost of subsistence consumption per unit of standard of living,
at time t. In other words,(

X0(t), z0(t)
)
∈ Dt, for all t ∈ [0, T ], (2.63)

almost surely.

Note that W(0) = w and D0 = D, the quantities of Assumption 2.2;
thus, the random wedge Dt determines dynamically, over time, the half-
planes where the vector process of wealth/standard of living

(
X0(·), z0(·)

)
takes values under the optimal regime.

Proof of Theorem 2.12: Consider the Lagrange multiplier y = y0 > 0,
which gives rise to the optimal pair (π0, c0) and the resulting standard of
living z0(·) processes, specified by (2.57), (2.50) and (2.52), successively. Re-
calling the definitions of (2.37) and (2.62), the corresponding wealth process
X0(·) of (2.56) may be reformulated as

X0(t) =
1

H(t)
Et

[∫ T

t

H(s)

{
I(s, y0Γ(s)) + ze

R s
0 (δ(v)−α(v))dv

+

∫ s

0

δ(θ)e
R s

θ (δ(v)−α(v))dvI(θ, y0Γ(θ))dθ

}
ds

]

=
1

H(t)
Et

[∫ T

t

H(s)

{
ze

R s
0 (δ(v)−α(v))dv
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+

∫ t

0

δ(θ)e
R s

θ (δ(v)−α(v))dvI(θ, y0Γ(θ))dθ

}
ds

+

∫ T

t

H(s)I(s, y0Γ(s))ds

+

∫ T

t

δ(θ)I(θ, y0Γ(θ))

(∫ T

θ

e
R s

θ (δ(v)−α(v))dvH(s)ds

)
dθ

]

=
1

H(t)
Et

[
z0(t)

∫ T

t

e
R s

t (δ(v)−α(v))dvH(s)ds

+

∫ T

t

{
H(s) + δ(s)Es

(∫ T

s

H(θ)e
R θ

s (δ(v)−α(v))dvdθ

)}
I(s, y0Γ(s))ds

]

= W(t)z0(t) +
1

H(t)
Et

[∫ T

t

Γ(s)I(s, y0Γ(s))ds

]
, 0 ≤ t ≤ T.

Therefore,

X0(t)−W(t)z0(t) =
1

H(t)
Et

[∫ T

t

Γ(s)I(s, y0Γ(s))ds

]
> 0, ∀ t ∈ [0, T ),

almost surely, and (2.63) holds on [0, T ). The remaining assertions of the
theorem follow directly from (2.56). ♦

Example 2.13. (Logarithmic utility). Consider u(t, x) = log x, ∀ (t, x) ∈
[0, T ] × (0,∞). Then I(t, y) = 1/y for (t, y) ∈ [0, T ] × (0,∞), X (y) = T/y
for y ∈ (0,∞), and Y(x) = T/x for x ∈ (0,∞). The optimal consumption,
standard of living, and wealth processes are as follows:

c0(t) = ze
R t
0 (δ(v)−α(v))dv +

x− wz

T

[
1

Γ(t)
+

∫ t

0

δ(s)

Γ(s)
e−

R t
s (δ(v)−α(v))dvds

]
,

z0(t) = ze
R t
0 (δ(v)−α(v))dv +

x− wz

T

∫ t

0

δ(s)

Γ(s)
e−

R t
s (δ(v)−α(v))dvds

and

X0(t) =
1

H(t)

[
z0(t)Et

(∫ T

t

e
R s

t (δ(v)−α(v))dvH(s)ds

)
+
T − t

T
(x− wz)

]
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for 0 ≤ t ≤ T. Moreover,

G(y) = −T log y − E

[∫ T

0

log Γ(t)dt

]
, y ∈ (0,∞),

and the value function is

V (x, z) = T log

(
x− wz

T

)
− E

[∫ T

0

log Γ(t)dt

]
, (x, z) ∈ D.

Note here that the conditions of Assumption 2.7 are satisfied; the first holds
trivially, and the second is implied by the observation

E
(
log Γ(t)

)
≤ log

(
E(Γ(t))

)
≤ %+ log

(
1 + ∆Te∆T

)
<∞, 0 ≤ t ≤ T,

where we used Jensen’s inequality, (2.3) and the supermartingale property of
Z(·). Finally, one may ascertain an explicit stochastic integral representation
for M0(·), defined in (2.58), under the additional assumption of deterministic
model coefficients; cf. Example 3.13. The optimal portfolio process π0(·)
follows then by (2.57).

Example 2.14. (Power utility). Consider u(t, x) = xp/p, ∀ (t, x) ∈ [0, T ]×
(0,∞), where p < 1, p 6= 0. Then I(t, y) = y1/(p−1) for (t, y) ∈ [0, T ]× (0,∞),
and

X (y) = y
1

p−1E

[∫ T

0

(Γ(t))p/(p−1)dt

]
= X (1)y

1
p−1 , y ∈ (0,∞),

Y(x) =

(
x

X (1)

)p−1

, x ∈ (0,∞).

The optimal consumption, standard of living, and wealth process are given
by

c0(t) = ze
R t
0 (δ(v)−α(v))dv +

x− wz

X (1)

[
(Γ(t))1/(p−1)

+

∫ t

0

δ(s)e−
R t

s (δ(v)−α(v))dv(Γ(s))1/(p−1)ds

]
,
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z0(t) = ze
R t
0 (δ(v)−α(v))dv +

x− wz

X (1)

[ ∫ t

0

δ(s)e−
R t

s (δ(v)−α(v))dv(Γ(s))1/(p−1)ds

]
,

and

X0(t) =
1

H(t)

[
z0(t)Et

(∫ T

t

e
R s

t (δ(v)−α(v))dvH(s)ds

)
+
x− wz

X (1)
Et

(∫ T

t

(Γ(s))p/(p−1)ds

)]
for every 0 ≤ t ≤ T. In addition,

G(y) =
1

p
X (1)y

p
p−1 , y ∈ (0,∞),

V (x, z) =
1

p
X (1)1−p(x− wz)p, (x, z) ∈ D.

As in the previous example, a concrete formula for the optimal portfolio
process π0(·) can be obtained in the case of deterministic coefficients (cf.
Example 3.14).

Remark 2.15. Given any fixed p ∈ (−,∞) ∪ (0, 1), we set (H(t))p/(p−1) =
m(t)L(t), in terms of

m(t) , exp

{
p

1− p

∫ t

0

r(v)dv +
p

2(1− p)2

∫ t

0

‖ϑ(v)‖2dv

}
,

L(t) , exp

{
p

1− p

∫ t

0

ϑ∗(v)dW (v)− p2

2(1− p)2

∫ t

0

‖ϑ(v)‖2dv

}
for 0 ≤ t ≤ T . In case ϑ(·) is bounded uniformly on [0, T ]× Ω, but not nec-
essarily deterministic, m(·) is also bounded uniformly in (t, ω) and Z(·), L(·)
are martingales, thanks to (2.3) and Novikov condition. Then, Assumption
2.7 is valid for the utility function of Example 2.14 as well, since

X (1) = E

[∫ T

0

m(t)L(t)

{
1 + δ(t) · Et

(∫ T

t

e
R s

t (δ(v)−α(v))dvH(s)

H(t)
ds

)}p/(p−1)

dt

]

≤
(
1 ∨

[
1 + ∆Te%+∆T

]p/(p−1)
)
E

[∫ T

0

m(t)L(t)dt

]
<∞.
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Remark 2.16. Consider utility functions such that

sup
0≤t≤T

I(t, y) ≤ κy−ρ, ∀ y ∈ (0,∞), (2.64)

holds for some κ > 0, ρ > 0. Then, the first condition of Assumption 2.7
holds under at least one of the subsequent conditions:

0 < ρ ≤ 1, (2.65)

or
ϑ(·) is bounded uniformly on [0, T ]× Ω. (2.66)

In particular, (2.64) and (2.65) yield

X (y) ≤ κy−ρE

[∫ T

0

(1 ∨ Γ(t))

]
<∞, y ∈ (0,∞).

Otherwise, use (2.66) to set (H(t))1−ρ = m(t)L(t), in terms of

m(t) , exp

{
(ρ− 1)

∫ t

0

r(v)dv +
1

2
ρ(ρ− 1)

∫ t

0

‖ϑ(v)‖2dv

}
,

and the martingale

L(t) , exp

{
(ρ− 1)

∫ t

0

ϑ∗(v)dW (v)− 1

2
(ρ− 1)2

∫ t

0

‖ϑ(v)‖2dv

}
.

As in Remark 2.15, the boundedness of m(·) and (2.64) imply that

X (y) ≤ κy−ρ
(
1 + ∆Te%+∆T

)(1−ρ)
E

[∫ T

0

m(t)L(t)dt

]
<∞, y ∈ (0,∞).

The function V (·, z) satisfies all the conditions of a utility function as
defined in Section 2.3, for any given z ≥ 0; we formalize this aspect of the
value function in the result that follows, leading to the notion of a generalized
utility function and to the explicit computation of its convex dual

Ṽ (y) , sup
(x,z)∈D

{
V (x, z)− (x− wz)y

}
, y ∈ R. (2.67)
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Theorem 2.17. The function V : D → R is a generalized utility function,
in the sense of being strictly concave and of class C1,1(D); it is strictly in-
creasing in its first argument, strictly decreasing in the second, and satisfies
Vx((wz)

+, z) = ∞, Vx(∞, z) = 0 for any z ≥ 0. Additionally, for all pairs
(x, z) ∈ D, we have that

lim
(x,z)→(χ,ζ)

V (x, z) =

∫ T

0

u(t, 0+)dt, ∀ (χ, ζ) ∈ ∂D, (2.68)

where ∂D =
{

(x′, z′) ∈ [0,∞)2; x′ = wz′
}

is the boundary of D. Further-
more,

Vx(x, z) = Y(x− wz), ∀ (x, z) ∈ D, (2.69)

Vz(x, z) = −wY(x− wz), ∀ (x, z) ∈ D, (2.70)

Ṽ (y) = G(y)− yX (y) (2.71)

= E

∫ T

0

ũ(t, yΓ(t))dt, ∀ y > 0,

Ṽ ′(y) = −X (y), ∀ y > 0, (2.72)

with X (·), G(·) given by (2.48), (2.60), respectively.

Proof: We show first the strict concavity of V . Let (x1, z1), (x2, z2) ∈ D
and λ1, λ2 ∈ (0, 1) such that λ1 + λ2 = 1. For each (xi, zi) consider the
optimal portfolio/consumption policy (πi, ci) ∈ A′

0(xi, zi) which generates the
corresponding wealth process Xxi,πi,ci(·), and the standard of living process
zi(·), i = 1, 2. Define now the portfolio/consumption plan (π, c) , (λ1π1 +
λ2π2, λ1c1 + λ2c2), denoting by Xx,π,c(·), z(·) the corresponding wealth and
standard of living with x , λ1x1 + λ2x2 and z , λ1z1 + λ2z2. It is then easy
to see that (π, c) ∈ A′

0(x, z) and

Xx,π,c(·) = λ1X
x1,π1,c1(·) + λ2X

x2,π2,c2(·),

z(·) = λ1z1(·) + λ2z2(·)

hold almost surely. Therefore, the strict concavity of u(t, ·) implies
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λ1V (x1, z1) + λ2V (x2, z2)

= λ1E

[∫ T

0

u(t, c1(t)− z1(t))dt

]
+ λ2E

[∫ T

0

u(t, c2(t)− z2(t))dt

]
< E

[∫ T

0

u(t, c(t)− z(t))dt

]
≤ V (x, z) = V (λ1x1 + λ2x2, λ1z1 + λ2z2).

As a real-valued concave function on D, V is continuous on its domain.
To establish (2.68), we consider pairs (x, z) ∈ D, and observe from (2.59)

that lim(x,z)→(χ,ζ) V (x, z) = limy→∞G(y) holds for any (χ, ζ) ∈ ∂D. But
(2.16) indicates that limy→∞ I(t, yΓ(t)) = 0 for 0 ≤ t ≤ T , and Assumption
2.7 ensures that G(y) of (2.60) is finite for any y ∈ (0,∞); thus, (2.68)
becomes a direct consequence of the monotone convergence theorem.

We next undertake (2.71). Its second equality is checked algebraically
via (2.28), (2.48) and (2.60). Turning now to the first, for every (x, z) ∈ D,
y > 0 and (π, c) ∈ A′

0(x, z), the relation of (2.18) gives

u(t, c(t)− z(t)) ≤ ũ(t, yΓ(t)) + yΓ(t)(c(t)− z(t)). (2.73)

Taking expectations, we employ (2.28), (2.44), (2.55) and the budget con-
straint (2.14) to obtain

E

∫ T

0

u(t, c(t)− z(t))dt ≤ E

∫ T

0

[
ũ(t, yΓ(t)) + yΓ(t)(c(t)− z(t))

]
dt

= E

∫ T

0

ũ(t, yΓ(t))dt

+ y · E
∫ T

0

Γ(t)

(
c(t)− ze−

R t
0 α(v)dv −

∫ t

0

δ(s)e−
R t

s α(v)dvc(s)ds

)
dt

= E

∫ T

0

ũ(t, yΓ(t))dt− ywz

+ y · E
[∫ T

0

Γ(t)c(t)dt−
∫ T

0

δ(s)

(∫ T

s

e−
R t

s α(v)dvΓ(t)dt

)
c(s)ds

]
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= E

∫ T

0

ũ(t, yΓ(t))dt− ywz

+ y · E
∫ T

0

{
Γ(t)− δ(t)Et

(∫ T

t

e−
R s

t α(v)dvΓ(s)ds

)}
c(t)dt

= E

∫ T

0

ũ(t, yΓ(t))dt− ywz + y · E
∫ T

0

H(t)c(t)dt

≤ E

∫ T

0

ũ(t, yΓ(t))dt+ y(x− wz) = G(y)− yX (y) + y(x− wz). (2.74)

The inequalities in (2.74) will hold as equalities, if and only if

c(t)− z(t) = I(t, yΓ(t)) (2.75)

and

E

∫ T

0

H(t)c(t)dt = x.

Setting Q(y) , G(y) − yX (y) and maximizing over (π, c) ∈ A′
0(x, z), it

follows from (2.74) that V (x, z) ≤ Q(y) + (x − wz)y for every (x, z) ∈ D,

and thereby Ṽ (y) ≤ Q(y) for every y > 0. Conversely, (2.74) becomes an
equality, if (2.75) is satisfied and if X (y) = x − wz, so Q(y) = V (X (y) +

wz, z)−X (y)y ≤ Ṽ (y). Hence (2.71) is established, and clearly the supremum
in (2.67) is attained if x− wz = X (y).

We argue now (2.72) by bringing to our attention the identity

yI(t, y)− hI(t, h)−
∫ y

h

I(t, λ)dλ = yI(t, y)− hI(t, h) + ũ(t, y)− ũ(t, h)

= u(t, I(t, y))− u(t, I(t, h)), (2.76)

which holds for any utility function u and 0 ≤ t ≤ T , 0 < h < y <∞; recall
(2.18) and (2.19). This enables us to compute

yX (y)− hX (h)−
∫ y

h

X (ξ)dξ

= E

∫ T

0

[
yH(t)I(t, yH(t))− hH(t)I(t, hH(t))−

∫ yH(t)

hH(t)

I(t, λ)dλ

]
dt
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= E

∫ T

0

[
u
(
t, I(t, yH(t))

)
− u
(
t, I(t, hH(t))

)]
dt

= G(y)−G(h), (2.77)

which in conjunction with (2.71) leads to

Ṽ (y)− Ṽ (h) = −
∫ y

h

X (ξ)dξ, 0 < h < y <∞, (2.78)

and (2.72) follows.
Finally, let us rewrite (2.67) in the more suggestive form

Ṽ (y) = sup
(x,z)∈D

{
V (x, z)− (x, z) · (y,−wy)

}
, y ∈ R,

where v1 · v2 stands for the dot product between any two vectors v1 and v2.
We recall that for (x∗, z∗) ∈ D and y > 0, we have (y,−wy) ∈ ∂V (x∗, z∗)
if and only if the maximum in the above expression is attained by (x∗, z∗)
(e.g., Rockafellar (1970), Theorem 23.5). However, we have already shown
that this maximum is attained by the pair (x∗, z∗) only if x∗ − wz∗ = X (y),
implying

∂V (x∗, z∗) =
{(
Y(x∗ − wz∗),−wY(x∗ − wz∗)

)}
.

Therefore, (2.69), (2.70) are proved (e.g. Theorem 23.4 loc. cit.), and imply
that Vx(·, z) is continuous, positive (thus V (·, z) strictly increasing), strictly
decreasing on (wz,∞), with limx↓wz Vx(x, z) = limx↓wz Y(x − wz) = ∞ and
limx↑∞ Vx(x, z) = limx↑∞ Y(x − wz) = 0; while, Vz(x, ·) is continuous, nega-
tive, and so V (x, ·) decreases strictly. Consequently, V is a generalized utility
function since it satisfies all its aforementioned properties. ♦

Remark 2.18. We note that given any z ∈ [0,∞), (2.59) can be written as
G(y) = V (X (y)+wz, z) for every y ∈ (0,∞). Thus, if X (·) is differentiable,
then G(·) is also differentiable with

G′(y) = Vx(X (y) + wz, z)X ′(y) = yX ′(y), y ∈ (0,∞) (2.79)

by (2.69).
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3 Representation Of Optimal Strategies In

A Markovian Setting, With Habit-Forming

Preferences And Complete Markets

3.1 Deterministic Coefficients

In Chapter 2 we established the existence and uniqueness, up to almost-
everywhere equivalence, of a solution to our habit-modulated utility maxi-
mization problem in the case of a complete security market. The analysis re-
sulted in a concrete representation for the optimal consumption process c0(·),
given by (2.50), but not for the optimal portfolio strategy π0(·); we provided
for it no useful expression aside from (2.57). In this chapter we shall confront
this issue by revisiting the model in the special case of continuous, determinis-
tic coefficients r(·) : [0, T ] → R, ϑ(·) : [0, T ] → Rd, σ(·) : [0, T ] → L(Rd; Rd),
the set of d × d matrices, α(·) : [0, T ] → [0,∞) and δ(·) : [0, T ] → [0,∞).
Under this additional assumption, asset prices have the Markov property.
This Markovian framework will allow us to characterize the value function
of the dynamic problem in (2.31) as a solution of a nonlinear, second-order
parabolic Hamilton-Jacobi-Bellman (HJB) partial differential equation.

We shall provide the optimal portfolio π0(t) and consumption policy c0(t)
in closed, “feedback forms” on the current level of wealth X0(t) and the
standard of living z0(t). In other words, we derive appropriate functions
C : [0, T )× (0,∞)× [0,∞) → (0,∞) and Π : [0, T )× (0,∞)× [0,∞) → Rd,
such that

c0(t) = C(t,X0(t), z0(t)), π0(t) = Π(t,X0(t), z0(t)), 0 ≤ t < T. (3.1)

It is then evident that the decision-maker, responsible for choosing his trading
strategy and consumption rate at each instant t ∈ [0, T ], needs only to be
aware of his current level of wealthX0(t) and standard of living z0(t), without
keeping track of the entire history of the market up to time t; in other words,
the current level of these processes constitutes a sufficient statistic for the
optimization problem (2.31).

The following two assumptions will be adopted throughout this chapter.
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Assumption 3.1. Suppose that the market coefficients r(·), ϑ(·), σ(·) and
the standard of living weights α(·), δ(·) are non-random, continuous (and
thence bounded) functions on [0, T ]. In fact, let ‖ϑ(·)‖ be Hölder continuous;
that is, there exist some k > 0 and ρ ∈ (0, 1) such that∣∣‖ϑ(t1)‖ − ‖ϑ(t2)‖

∣∣ ≤ k|t1 − t2|ρ

stands for every t1, t2 ∈ [0, T ]. Additionally, assume that δ(·) is differentiable
and ‖ϑ(·)‖ is bounded away from zero and infinity, i.e.

∃ k1, k2 > 0 such that 0 < k1 ≤ ‖ϑ(t)‖ ≤ k2 <∞, ∀ t ∈ [0, T ]. (3.2)

Since the market price of risk ϑ(·) is bounded, the local martingale Z(·)
of (2.6) is a martingale. Thus, by Girsanov’s theorem, the process W0(·) of
(2.9) is standard, d-dimensional Brownian motion under the new probability
measure

P 0(A) , E[Z(T )1A], A ∈ F(T ). (3.3)

We shall refer to P 0 as the equivalent martingale measure of the financial
market M0, and denote expectation under this measure by E0.

Assumption 3.2. Suppose that the utility function u satisfies

(i) polynomial growth of I :

∃ γ > 0 such that I(t, y) ≤ γ + y−γ, ∀ (t, y) ∈ [0, T ]× (0,∞);

(ii) polynomial growth of u ◦ I :

∃ γ > 0 such that u(t, I(t, y)) ≥ −γ− yγ, ∀ (t, y) ∈ [0, T ]× (0,∞);

(iii) Hölder continuity of I : for every y0 > 0 there are constants ε(y0) >
0, k(y0) > 0 and ρ(y0) ∈ (0, 1) such that

|I(t, y)− I(t, y0)| ≤ k(y0)|y − y0|ρ(y0), ∀ t ∈ [0, T ],

∀ y ∈ (0,∞) ∩ (y0 − ε(y0), y0 + ε(y0));

(iv) ∀ t ∈ [0, T ], there is a set N ⊂ (0,∞) of positive Lebesgue measure such
that I ′(t, y) , ∂

∂y
I(t, y) is well-defined and strictly negative ∀ y ∈ N .
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Remark 3.3. Assumption 3.2(i), (ii), together with (2.17) and the strict
decrease of I(t, ·), yields that

∃ γ > 0 such that |u(t, I(t, y))| ≤ γ + yγ + y−γ, ∀ (t, y) ∈ [0, T ]× (0,∞).

Moreover, it is easy to see that u ◦ I inherits from I the property of being
Hölder continuous as stated in Assumption 3.2(iii). In fact, if y0 > 0 and
ε(y0), k(y0), and ρ(y0) are taken as in Assumption 3.2(iii), then an applica-
tion of the mean value theorem leads to

|u(t, I(t, y))− u(t, I(t, y0))| ≤ u′(t, ι(t))|I(t, y)− I(t, y0)|
≤ Qk(y0)|y − y0|ρ(y0)

for each y ∈ (0,∞) ∩ (y0 − ε(y0), y0 + ε(y0)), some function ι(t) with values
between I(t, y) and I(t, y0) and a bound Q on the continuous map u′(t, I(t, η))
with (t, η) ranging over the set [0, T ]× [(0,∞) ∩ (y0 − ε(y0), y0 + ε(y0))].

Remark 3.4. Notice that Assumptions 3.1 and 3.2(i), (ii), in conjunction
with Remark 3.3, guarantee the validity of Assumption 2.7 in the preceding
chapter; compare also with Remark 2.16.

3.2 Feedback Formulae

For each (t, y) ∈ [0, T ] × (0,∞) and t ≤ s ≤ T , we consider the stochastic
processes

Zt(s) , exp

{
−
∫ s

t

ϑ∗(v)dW (v)− 1

2

∫ s

t

‖ϑ(v)‖2dv

}
, (3.4)

H t(s) , exp

{
−
∫ s

t

r(v)dv

}
Zt(s)

= exp

{
−
∫ s

t

r(v)dv −
∫ s

t

ϑ∗(v)dW0(v)

+
1

2

∫ s

t

‖ϑ(v)‖2dv

}
. (3.5)

These extend the processes of (2.6) and (2.8), respectively, to initial times
other than zero. In accordance with (2.37), we shall also consider the ex-
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tended “adjusted” state-price density process

Γt(s) , H t(s) + δ(s) · Es

(∫ T

s

e
R θ

s (δ(v)−α(v))dvH t(θ)dθ

)
(3.6)

= H t(s)

[
1 + δ(s) · Es

(∫ T

s

e
R θ

s (δ(v)−α(v))dvHs(θ)dθ

)]
= H t(s)

[
1 + δ(s)

∫ T

s

e
R θ

s (−r(v)+δ(v)−α(v))dvdθ

]
,

= H t(s)µ(s), t ≤ s ≤ T. (3.7)

We have invoked here the martingale property of Z(·), and have set

µ(t) , 1 + δ(t)w(t), t ∈ [0, T ], (3.8)

with

w(t) ,
∫ T

t

e
R s

t (−r(v)+δ(v)−α(v))dvds, t ∈ [0, T ] (3.9)

and

w′(t) ,
d

dt
w(t) =

[
r(t) + α(t)− δ(t)

]
w(t)− 1

=
[
r(t) + α(t)

]
w(t)− µ(t), t ∈ [0, T ].

(3.10)

Note that w(·), µ(·) are deterministic, and that the former is the Markovian
reduction ofW(·) in (2.62); i.e.,W(·) ≡ w(·) within the context of the current
chapter.

Furthermore, we define the diffusion process

Y (t,y)(s) , yΓt(s), t ≤ s ≤ T, (3.11)

which satisfies the linear stochastic differential equation

dY (t,y)(s) = Y (t,y)(s)

[(
µ′(s)

µ(s)
− r(s)

)
ds− ϑ∗(s)dW (s)

]
, (3.12)
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or equivalently

dY (t,y)(s) = Y (t,y)(s)

[(
µ′(s)

µ(s)
− r(s) + ‖ϑ(s)‖2

)
ds− ϑ∗(s)dW0(s)

]
,

(3.13)
and Y (t,y)(t) = yµ(t), Y (t,y)(s) = yY (t,1)(s) = yH(s)µ(s)/H(t). Invoking the
“Bayes rule” for conditional expectations, a computation akin to the one pre-
sented in the proof of Theorem 2.12 shows that the optimal wealth/standard
of living process

(
X0(·), z0(·)

)
of (2.52), (2.56), satisfies

X0(t)− w(t)z0(t) =
1

ξ
Et

[ ∫ T

t

Y (t,ξ)(s)I(s, Y (0,ξ)(s))ds

]
= E0

t

[ ∫ T

t

e−
R s

t r(v)dvµ(s)I(s, Y (0,ξ)(s))ds

]
= X

(
t,
Y (0,ξ)(t)

µ(t)

)
, 0 ≤ t ≤ T (3.14)

with ξ = Y(x − wz). We have used here the definition (3.11), the Markov
property of Y (0,ξ)(·) under P 0 from (3.13), and introduced the function X :
[0, T ]× (0,∞) → (0,∞) defined as

X (t, y) , E0

[∫ T

t

e−
R s

t r(v)dvµ(s)I(s, yY (t,1)(s))ds

]
. (3.15)

Since the process Y (t,y)(·) is Markovian also under the original probability
measure P (cf. (3.12)), the conditional expectation

Et

[∫ T

t

Y (t,y)(s)I(s, Y (t,y)(s))ds

]
is a function of Y (t,y)(t) = yµ(t), i.e., is deterministic. Therefore, we get the
representation

X (t, y) = E0

{
E0

t

[∫ T

t

e−
R s

t r(v)dvµ(s)I(s, Y (t,y)(s))ds

]}
= E

{
Z(T )

Z(t)
Et

[∫ T

t

e−
R s

t r(v)dvZ(s)µ(s)I(s, Y (t,y)(s))ds

]}
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=
1

y
E

{
Z(T )Et

[∫ T

t

Y (t,y)(s)I(s, Y (t,y)(s))ds

]}
=

1

y
E

[∫ T

t

Y (t,y)(s)I(s, Y (t,y)(s))ds

]
, (3.16)

a generalization of (2.48).

Lemma 3.5. Suppose both Assumptions 3.1, 3.2 hold. Then, the function
X of (3.15) belongs to the class C([0, T ]× (0,∞))∩C1,2([0, T )× (0,∞)) and
solves the Cauchy problem

Xt(t, y) +
1

2
‖ϑ(t)‖2y2Xyy(t, y) +

(
‖ϑ(t)‖2 − r(t)

)
yXy(t, y)− r(t)X (t, y)

= −µ(t)I(t, yµ(t)) on [0, T )× (0,∞), (3.17)

X (T, y) = 0 on (0,∞). (3.18)

Additionally, for every t ∈ [0, T ), X (t, ·) is strictly decreasing with X (t, 0+) =
∞ and X (t,∞) = 0, and so it has a strictly decreasing inverse function

Y(t, ·) : (0,∞)
onto−−→ (0,∞), namely

X (t,Y(t, x)) = x, ∀ x ∈ (0,∞). (3.19)

The function Y is of class C1,2([0, T )× (0,∞)) as well.

Proof: We shall show that

X (t, y) = v(t, log(yµ(t))) (3.20)

for (t, y) ∈ [0, T ]×(0,∞), where v : [0, T ]×R → R satisfies a Cauchy problem
for a non-degenerate, second-order partial differential equation, namely

vt(t, η) +
1

2
‖ϑ(t)‖2vηη(t, η) +

(
µ′(t)

µ(t)
− r(t) +

1

2
‖ϑ(t)‖2

)
vη(t, η)

−r(t)v(t, η) = −µ(t)I(t, eη), 0 ≤ t < T, η ∈ R, (3.21)

v(T, η) = 0, η ∈ R. (3.22)

Standard results of partial differential equations theory (cf. Friedman (1964),
Sections 1.7-1.9) show that there exists a unique solution in C([0, T ]×(0,∞))∩
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C1,2([0, T ) × (0,∞)) for this problem. Furthermore, for every ε > 0, there
exists a positive constant K(ε) such that

|v(t, η)| ≤ K(ε)eεη2

, ∀ η ∈ R. (3.23)

Given a pair (t, y) ∈ [0, T ) × (0,∞), an application of Itô’s formula, in
combination with (3.13) and (3.21), implies

d
[
e−

R s
t r(v)dvv(s, log Y (t,y)(s))

]
= −e−

R s
t r(v)dvµ(s)I(s, Y (t,y)(s))ds (3.24)

−e−
R s

t r(v)dvvη(s, log Y (t,y)(s))ϑ∗(s)dW0(s).

Let n ∈ N and define the stopping time

τn ,

(
T − 1

n

)
∧ inf

{
s ∈ [t, T ] : | log Y (t,y)(s)| ≥ n

}
,

so that the function vη(s, log Y (t,y)(s)) is uniformly bounded on [t, τn] × Ω
and accordingly, the P 0-stochastic integral in (3.24) is actually a martingale.
Thus, integrating the latter relationship over [t, τn] and taking expectations,
we arrive at

v(t, log(yµ(t))) =E0

∫ τn

t

e−
R s

t r(v)dvµ(s)I(s, Y (t,y)(s))ds

+ E0e−
R τn

t r(v)dvv(τn, log Y (t,y)(τn)),

whence

v(t, log(yµ(t))) = X (t, y)+ lim
n→∞

E0
(
e−

R τn
t r(v)dvv(τn, log Y (t,y)(τn))

)
, (3.25)

by the monotone convergence theorem and (3.15). Moreover, the initial con-
dition (3.22) gives

lim
n→∞

e−
R τn

t r(v)dvv(τn, log Y (t,y)(τn)) = 0, a.s. (3.26)

and our next task will be to pass the limit inside the expectation in (3.25)
using domination arguments. Once this is done, we shall have our represen-
tation (3.20).
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To do so, we observe that condition (3.23) leads to the following estimate:∣∣∣e− R τn
t r(v)dvv

(
τn, log Y (t,y)(τn)

)∣∣∣
≤ K(ε)e

R T
t |r(v)|dveε(log Y (t,y)(τn))2

≤ K(ε)e
R T

t |r(v)|dv exp

{
ε

[ ∣∣∣∣log

(
y max

0≤s≤T
µ(s)

)∣∣∣∣
+

∫ T

t

∣∣∣∣−r(v) +
1

2
‖ϑ(v)‖2

∣∣∣∣ dv + sup
t≤s≤T

∣∣∣∣∫ s

t

ϑ∗(v)dW0(v)

∣∣∣∣
]2}

.

Consequently, everything boils down to showing that

E0

[
exp

{
ε sup

t≤s≤T

∣∣∣∣∫ s

t

ϑ∗(v)dW0(v)

∣∣∣∣2
}]

<∞. (3.27)

This inequality follows from an application of Fernique’s Theorem (e.g. Fer-
nique (1974)) for the running maximum of Brownian motion. For a straight-
forward argument the reader is referred to Karatzas and Shreve (1998),
Lemma 3.8.4, according to which condition (3.27) is satisfied for any chosen
0 < ε < 1/(2τ̄) with τ̄ , k 2

2 (T − t). From (3.25), coupled with the domi-
nated convergence theorem and (3.26), we obtain the representation (3.20).
Straightforward computations yield that X is of class C([0, T ] × (0,∞)) ∩
C1,2([0, T )× (0,∞)) and solves the Cauchy problem of (3.17), (3.18).

We may now prove that Xy(t, y) < 0. For t ∈ [0, T ), y > 0 and h > 0, the
(strict) decreasing monotonicity of I(t, ·) and the inequality µ(·) ≥ 1 imply
that

1

h
[X (t, y)−X (t, y + h)]

≥ E0

∫ T

t

e−
R s

t r(v)dv 1

h

[
I
(
s, yY (t,1)(s)

)
− I

(
s, (y + h)Y (t,1)(s)

)]
ds.

The martingale
∫ s

t
ϑ∗(v)dW0(v) = B(〈M〉(s − t)), t ≤ s, has a normal dis-

tribution with mean zero and variance q2(s) , 〈M〉(s − t) with respect
to P 0. Recalling the set N of Assumption 3.2(iv) and setting m(s) ,∫ s

t
(−r(v) + ‖ϑ(v)‖2/2)dv, observe that the last expression is no less than
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1√
2π

∫
N ′

(∫ T

t

e−
R s

t r(v)dv 1

h

[
I
(
s, yµ(s)em(s)−q(s)η

)
− I

(
s, (y + h)µ(s)em(s)−q(s)η

) ]
ds

)
e−η2/2dη,

where

N
′
,
{
η ∈ R : yµ(s)em(s)−q(s)η ∈ N, for some s ∈ [t, T ]

}
.

As h ↓ 0, Fatou’s lemma yields

−Xy(t, y) ≥ − 1√
2π

∫
N ′

(∫ T

t

e−
R s

t r(v)dvI ′
(
s, yµ(s)em(s)−q(s)η

)
ds

)
e−η2/2dη > 0.

Thus, the implicit function theorem ensures the existence of the function
Y : [0, T )× (0,∞) → (0,∞) that possesses the same smoothness with X on
its domain and verifies (3.19). Finally, the claimed marginal values X (t, 0+)
and X (t,∞) are justified by the monotone and dominated convergence the-
orems, respectively. ♦

Remark 3.6. Use (3.24) and (3.20) along with the notation β(t) = e−
R t
0 r(v)dv

of (2.7), to derive

d

(
β(s)X

(
s,
Y (0,y)(s)

µ(s)

))
=− β(s)

[
µ(s)I(s, Y (0,y)(s))ds

+
Y (0,y)(s)

µ(s)
Xy

(
s,
Y (0,y)(s)

µ(s)

)
ϑ∗(s)dW0(s)

]
,

or in integral form

β(t)X
(
t,
Y (0,y)(t)

µ(t)

)
+

∫ t

0

β(s)µ(s)I(s, Y (0,y)(s))ds

= X (0, y)−
∫ t

0

β(s)
Y (0,y)(s)

µ(s)
Xy

(
s,
Y (0,y)(s)

µ(s)

)
ϑ∗(s)dW0(s), (3.28)

for (t, y) ∈ [0, T ]× (0,∞). This expression will be useful for representing the
optimal investment and consumption in feedback form.
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Remark 3.7. One should also notice that the inequality of (3.23) leads to
a condition that ensures a unique solution to the Cauchy problem (3.17),
(3.18). In particular, X is its sole solution of class C([0, T ] × (0,∞)) ∩
C1,2([0, T ) × (0,∞)) over the set of functions f that satisfy the growth con-
dition(
∀ ε > 0

) (
∃ K(ε) > 0

)
such that |f(t, y)| ≤ K(ε) eε

(
log(yµ(t))

)2

,

∀ (t, y) ∈ [0, T ]× (0,∞).
(3.29)

Indeed, if f solves the Cauchy problem of (3.17), (3.18) and satisfies (3.29),
then v(t, η) , f(t, eη

µ(t)
) satisfies (3.21), (3.22) and (3.23) for each ε > 0, and

(3.20) indicates that f coincides with X .

Next, we shall establish feedback formulae for the optimal portfolio and
consumption processes. By analogy with Theorem 2.12, for each t ∈ [0, T ),
the active range for the running optimal wealth X0(t) and for the associated
standard of living z0(t) will be

Dt ,
{
(x′, z′) ∈ (0,∞)× [0,∞); x′ > w(t)z′

}
. (3.30)

Theorem 3.8. Impose the Assumptions 3.1, 3.2. Then, the feedback for-
mulae (3.1) for the optimal consumption c0(·) and investment π0(·) of the
maximization problem in Definition 2.3 are valid, with

C(t, x, z) , z + I
(
t, µ(t)Y(t, x− w(t)z)

)
, (3.31)

Π(t, x, z) , −(σ∗(t))−1ϑ(t) ·
Y
(
t, x− w(t)z

)
xYx

(
t, x− w(t)z

) , (3.32)

for t ∈ [0, T ) and any pair (x, z) ∈ Dt.

Proof: Recalling Assumption 2.2 for the initial endowment x and stan-
dard of living z, i.e. (x, z) ∈ D0, we may use (3.14) to extract

Y (0,ξ)(t)
∣∣
ξ=Y(0,x−wz)

= µ(t)ξ(t), where ξ(t) , Y
(
t,X0(t)− w(t)z0(t)

)
.

Hence the optimal consumption process of (2.50), thanks to (2.46), (2.52)
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and (2.39), (2.40), admits the representation

c0(t) = z0(t) + I
(
t, µ(t)ξ(t)

)
for 0 ≤ t < T , and (3.31) follows. The substitution y = Y(0, x−wz) together
with (3.14) transform (3.28) to the equivalent formula

β(t)
[
X0(t)− w(t)z0(t)

]
+

∫ t

0

β(s)µ(s)
[
c0(s)− z0(s)

]
ds

= x− wz −
∫ t

0

β(s)ξ(s)Xy

(
s, ξ(s)

)
ϑ∗(s)dW0(s).

Differentiating (3.19), we obtain Xy

(
t,Y(t, x− w(t)z)

)
= 1/Yx(t, x− w(t)z)

for every (x, z) ∈ Dt; setting ξx(t) , Yx

(
t,X0(t)−w(t)z0(t)

)
and using (3.8),

the above equation becomes

β(t)X0(t) +

∫ t

0

β(s)c0(s)ds = x−
∫ t

0

β(s)
ξ(s)

ξx(s)
ϑ∗(s)dW0(s) + β(t)w(t)z0(t)

− wz −
∫ t

0

β(s)δ(s)w(s)
[
c0(s)− z0(s)

]
ds+

∫ t

0

β(s)z0(s)ds.

(3.33)

On the other hand, use (2.26) and (3.10) to compute

β(t)w(t)z0(t)− wz =

∫ t

0

d
(
β(s)w(s)z0(s)

)
= −

∫ t

0

β(s)r(s)w(s)z0(s)ds+

∫ t

0

β(s)
[(
r(s) + α(s)− δ(s)

)
w(s)− 1

]
z0(s)ds

+

∫ t

0

β(s)w(s)
(
δ(s)c0(s)− α(s)z0(s)

)
ds

=

∫ t

0

β(s)δ(s)w(s)
[
c0(s)− z0(s)

]
ds−

∫ t

0

β(s)z0(s)ds, (3.34)

and conclude that (3.33) reads

β(t)X0(t) +

∫ t

0

β(s)c0(s)ds = x−
∫ t

0

β(s)
ξ(s)

ξx(s)
ϑ∗(s)dW0(s).
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Comparing this to the stochastic integral equation (2.11) for the wealth pro-
cess, it follows that the optimal strategy satisfies

X0(t)π
∗
0(t)σ(t) = −θ∗(t) ξ(t)

ξx(t)
,

which implies (3.32). ♦

3.3 The Hamilton-Jacobi-Bellman Equation

We shall now proceed with our Markov-based approach, by investigating
in detail the analytical behavior of the value function for the optimization
problem (2.31) as a solution of a partial differential equation, widely referred
to as the Hamilton-Jacobi-Bellman equation. In this vein, we find it useful
to generalize the time-horizon of our asset market M0 by taking initial date
t ∈ [0, T ] rather than zero. Hence, for a fixed commencement time t ∈ [0, T ]
and any given capital wealth/initial standard of living pair (x, z) ∈ Dt (cf.
(3.30)), the wealth process X t,x,π,c(·), corresponding to a portfolio strategy
π(·) and a consumption process c(·), satisfies the stochastic integral equation

X(s) = x+

∫ s

t

[r(v)X(v)− c(v)]dv

+

∫ s

t

X(v)π∗(v)σ(v)dW0(v), t ≤ s ≤ T, (3.35)

and the respective standard of living process z(·) is developed by

z(s) = ze−
R s

t α(θ)dθ +

∫ s

t

δ(v)e−
R s

v α(θ)dθc(v)dv, t ≤ s ≤ T. (3.36)

In this context, we shall call admissible at the initial condition (t, x), and
denote their class by A0(t, x), all portfolio/consumption pairs (π, c) such
that X t,x,π,c(s) ≥ 0, ∀ s ∈ [t, T ], almost surely. Each of these pairs satisfies
the budget constrain

E0

[∫ T

t

e−
R s

t r(v)dvc(s)ds

]
≤ x. (3.37)
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Conversely, for every given consumption plan c(·) satisfying (3.37), there
exists a portfolio process π(·) so that (π, c) ∈ A0(t, x) [cf. Lemma 2.1].
Furthermore, we extend the definition of the dynamic maximization problem
of Definition 2.3 as

V (t, x, z) , sup
(π,c)∈A′

0(t,x,z)

E

[∫ T

t

u(s, c(s)− z(s))ds

]
, (3.38)

where

A′
0(t, x, z) ,

{
(π, c) ∈ A0(t, x); E

[∫ T

t

u−(s, c(s)− z(s))ds

]
<∞

}
,

and V (0, ·, ·) = V (·, ·). Assumptions 3.1 and 3.2 imply

V (t, x, z) = G
(
t,Y(t, x− w(t)z)

)
, (x, z) ∈ Dt, t ∈ [0, T ), (3.39)

now with

G(t, y) , E

[∫ T

t

u
(
s, I(s, yY (t,1)(s))

)
ds

]
, (t, y) ∈ [0, T ]× (0,∞) (3.40)

by analogy with (2.59) and (2.60), as G(0, ·) = G(·). Clearly

V (T, x, z) = 0, ∀ (x, z) ∈ D; (3.41)

in fact, for every t ∈ [0, T ), (x, z) ∈ Dt, we have that V (t, x, z) <∞, and

lim
(x,z)→(χ,ζ)

V (t, x, z) =

∫ T

t

u(s, 0+)ds, ∀ (χ, ζ) ∈ ∂Dt (3.42)

with ∂Dt =
{

(x′, z′) ∈ [0,∞)2; x′ = w(t)z′
}

the boundary of Dt (cf. (2.68)).

Lemma 3.9. Consider Assumptions 3.1 and 3.2. Then, the function G of
(3.40) is of class C([0, T ]× (0,∞))∩C1,2([0, T )× (0,∞)); and within the set
of functions that satisfy the growth condition (3.29), G constitutes the unique
solution of the Cauchy problem
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Gt(t, y) +
1

2
‖ϑ(t)‖2y2Gyy(t, y)− r(t)yGy(t, y) = −u(t, I(t, yµ(t))) (3.43)

on [0, T )× (0,∞),

G(T, y) = 0 on (0,∞). (3.44)

Additionally,

G(t, y)−G(t, h) = yX (t, y)− hX (t, h)

−
∫ y

h

X (t, ξ)dξ, 0 < h < y <∞, (3.45)

Gy(t, y) = yXy(t, y), (3.46)

Gyy(t, y) = Xy(t, y) + yXyy(t, y), 0 ≤ t < T, y > 0. (3.47)

Proof: To prove (3.43) and (3.44) we follow the same reasoning that led
to (3.17) and (3.18), whereas now Remark 3.3 is in use and v : [0, T ]×R → R
is the C([0, T ]×(0,∞))∩C1,2([0, T )×(0,∞)) solution of the Cauchy problem

vt(t, η) +
1

2
‖ϑ(t)‖2vηη(t, η) +

(
µ
′
(t)

µ(t)
− r(t)− 1

2
‖ϑ(t)‖2

)
vη(t, η) (3.48)

= −u(t, I(t, en)), 0 ≤ t < T, η ∈ R,
v(T, η) = 0, η ∈ R. (3.49)

By analogy with (3.24), employ Itô’s formula, (3.12) and (3.48) to obtain

dv(s, log Y (t,y)(s)) =− u(s, I(s, Y (t,y)(s)))ds

− vη(s, log Y (t,y)(s))ϑ∗(s)dW (s),

thus, as in (3.25) and (3.26),

v(t, log(yµ(t))) = E

∫ T

t

u
(
s, I(s, Y (t,y)(s))

)
ds = G(t, y),

which turns out to satisfy the Cauchy problem (3.43), (3.44).
Repeat the computations in (2.77) concerning an initial time t 6= 0 to

obtain (3.45). Clearly, differentiation of the latter yields (3.46) and (3.47).
Concluding, we reason uniqueness like in Remark 3.7. ♦
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Theorem 3.10. (Hamilton-Jacobi-Bellman Equation): Under the Assump-
tions 3.1 and 3.2, the value function V (t, x, z) of (3.39), (3.41) is continuous
on the domain

{
(t, x, z); t ∈ [0, T ], (x, z) ∈ Dt

}
and of class C1,2,2 on the do-

main
{
(t, x, z); t ∈ [0, T ), (x, z) ∈ Dt

}
. It satisfies the boundary conditions

(3.41), (3.42), as well as the following Hamilton-Jacobi-Bellman equation

Vt(t, x, z) + max
0≤c<∞
π∈Rd

{
1

2
‖σ∗(t)π‖2x2Vxx(t, x, z)

+
[
r(t)x− c+ π∗σ(t)ϑ(t)x

]
Vx(t, x, z) (3.50)

+
[
δ(t)c− α(t)z

]
Vz(t, x, z) + u(t, c− z)

}
= 0

on the latter domain. In particular, the maximization in (3.50) is attained
by the pair (Π(t, x, z), C(t, x, z)) of (3.31), (3.32) .

Proof: We may differentiate (3.19) and (3.39) and make use of (3.46),
(3.47) to compute

Xt

(
t,Y(t, x− w(t)z)

)
+ Xy

(
t,Y(t, x− w(t)z)

)
Yt(t, x− w(t)z) = 0,

Xy

(
t,Y(t, x− w(t)z)

)
Yx(t, x− w(t)z) = 1,

as well as,

Vt(t, x, z) = Gt

(
t,Y(t, x− w(t)z)

)
+Gy

(
t,Y(t, x− w(t)z)

)[
Yt(t, x− w(t)z)

− w′(t)zYx(t, x− w(t)z)
]
,

Vx(t, x, z) = Y(t, x− w(t)z),

Vz(t, x, z) = −w(t)Y(t, x− w(t)z),

Vxx(t, x, z) = Yx(t, x− w(t)z),

over
{
(t, x, z); t ∈ [0, T ), (x, z) ∈ Dt

}
. Thanks to these formulas, and (3.8),

the left-hand side of (3.50) becomes

Gt

(
t,Y(t, x− w(t)z)

)
+Gy

(
t,Y(t, x− w(t)z)

)[
Yt(t, x− w(t)z)− w′(t)zYx(t, x− w(t)z)

]
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+ r(t)xY(t, x− w(t)z) + α(t)w(t)zY(t, x− w(t)z)

+ max
0≤c<∞

[
u(t, c− z)− c µ(t)Y(t, x− w(t)z)

]
+ max

π∈Rd

[
1

2
‖σ∗(t)π‖2x2Yx(t, x− w(t)z) + π∗σ(t)ϑ(t)xY(t, x− w(t)z)

]
.

Since both representations subject to maximization are strictly concave, their
derivatives vanish by the optimal values of π and c. Solving these two equa-
tions, we arrive at the feedback forms of (3.31) and (3.32). Substituting next
the maximizers into the previous expression, we equivalently have

Gt

(
t,Y(t, x− w(t)z)

)
+Gy

(
t,Y(t, x− w(t)z)

)[
Yt(t, x− w(t)z)− w′(t)zYx(t, x− w(t)z)

]
+ r(t)xY(t, x− w(t)z) + α(t)w(t)zY(t, x− w(t)z)

+ u
(
t, I
(
t, µ(t)Y(t, x− w(t)z)

))
− µ(t)Y(t, x− w(t)z)

[
z + I

(
t, µ(t)Y(t, x− w(t)z)

)]
− 1

2
‖ϑ(t)‖2Y2(t, x− w(t)z)

Yx(t, x− w(t)z)
.

Let us set y = Y(t, x−w(t)z), thus x = X (t, y) +w(t)z, and employ (3.46),
(3.47) and (3.43) in order to simplify this as

Gt(t, y)− y
[
Xt(t, y) + w′(t)z

]
+ r(t)y

[
X (t, y) + w(t)z

]
+ α(t)w(t)yz

+ u
(
t, I(t, yµ(t))

)
− µ(t)y

[
z + I(t, yµ(t))

]
− 1

2
‖ϑ(t)‖2y2Xy(t, y)

=− 1

2
‖ϑ(t)‖2y2Gyy(t, y) + r(t)yGy(t, y)− yXt(t, y)

+ r(t)yX (t, y)− µ(t)yI(t, yµ(t))− 1

2
‖ϑ(t)‖2y2Xy(t, y)

− zy
[
w′(t)− r(t)w(t)− α(t)w(t) + µ(t)

]
=− y

[
Xt(t, y) +

1

2
‖ϑ(t)‖2y2Xyy(t, y) +

(
‖ϑ(t)‖2 − r(t)

)
yXy(t, y)

− r(t)X (t, y) + µ(t)I(t, yµ(t))

]
= 0,
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where the last two equalities follow by (3.10) and Lemma 3.5. ♦

Remark 3.11. Carrying out the maximization according to the proof of The-
orem 3.10, the equation (3.50) takes the conventional form

Vt(t, x, z) + H
(
Vxx(t, x, z), Vx(t, x, z), Vz(t, x, z), t, x, z

)
= 0, (3.51)

where

H(A, p, q, t, x, z) ,− ‖ϑ(t)‖2 p2

2A
+
[
r(t)x− z − I(t, p− δ(t)q)

]
p

+
[
(δ(t)− α(t))z + δ(t)I(t, p− δ(t)q)

]
q

+ u
(
t, I(t, p− δ(t)q)

)
for A < 0, p > 0 and q < 0. Notice that we have achieved a closed-form
solution of the strongly nonlinear Hamilton-Jacobi-Bellman equation (3.51),
by solving instead the two linear equations (3.17), (3.43) subject to the ap-
propriate initial and growth conditions, and then performing the composition
(3.39).

As a consequence, (3.50) provides a necessary condition that must be
satisfied by the value function V of (3.38). On the contrary, due to the
absence of an appropriate growth condition for V as each component of
(x, z) ∈ Dt increases to infinity, (3.50) fails to be also sufficient; in other
words, we cannot claim directly that V is the C1,2,2 unique solution of (3.50)
on
{
(t, x, z); t ∈ [0, T ), (x, z) ∈ Dt

}
with boundary conditions (3.41), (3.42).

We decide though to treat this matter by establishing a necessary and suffi-
cient condition for the convex dual of V , defined as

Ṽ (t, y) , sup
(x,z)∈Dt

{
V (t, x, z)−

(
x− w(t)z

)
y
}
, y ∈ R, (3.52)

by analogy with (2.67). Doing so, we evade investigating the solvability of

the nonlinear partial differential equation (3.50), since it turns out that Ṽ is
equivalently characterized as the unique solution of a linear parabolic partial
differential equation (cf. (3.57)) and V can be easily recovered by inverting
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the above Legendre-Fenchel transformation to have

V (t, x, z) = inf
y∈R

{
Ṽ (t, y) +

(
x− w(t)z

)
y
}
, (x, z) ∈ Dt.

We formalize these considerations within the context of the subsequent the-
orem.

Theorem 3.12. (Convex Dual of V (t, ·, ·)): Under the Assumptions 3.1,
3.2, and given any t ∈ [0, T ), the function V (t, ·, ·) is a generalized utility
function, as defined in Theorem 2.17, and

Vx(t, x, z) = Y(t, x− w(t)z), ∀ (x, z) ∈ Dt, (3.53)

Vz(t, x, z) = −w(t)Y(t, x− w(t)z), ∀ (x, z) ∈ Dt. (3.54)

Furthermore, the convex dual Ṽ (t, ·) of V (t, ·, ·) of (3.52) is represented as

Ṽ (t, y) = G(t, y)− yX (t, y) = E

∫ T

t

ũ(s, yY (t,1)(s))ds, (3.55)

and satisfies
Ṽy(t, y) = −X (t, y), (3.56)

for every (t, y) ∈ [0, T ]×(0,∞). Moreover, Ṽ is continuous on [0, T ]×(0,∞),
of class C1,2 on [0, T )× (0,∞), and solves the Cauchy problem

Ṽt(t, y) +
1

2
‖ϑ(t)‖2y2Ṽyy(t, y)− r(t)yṼy(t, y) (3.57)

= −ũ(t, yµ(t)) on [0, T )× (0,∞),

Ṽ (T, y) = 0 on (0,∞). (3.58)

If ṽ is a function of class C ([0, T ]× (0,∞))∩C1,2 ([0, T )× (0,∞)) that sat-
isfies (3.57), (3.58), if ṽy has the same order of smoothness as ṽ, and if the

growth condition (3.29) holds for both ṽ and ṽy, then Ṽ = ṽ.

Proof: Setting claim (2.68) aside, the first two parts of this result repre-
sent the Markovian analogue of Theorem 2.17. Therefore, all the respective
assertions, including (3.53)−(3.56), can be proved through a similar method-
ology.
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The claimed degree of regularity for Ṽ comes from Lemmata 3.5, 3.9 and
formula (3.55). Put now together equations (3.55), (3.43), (3.17) and (2.18)
to derive (3.57). The boundary condition (3.58) follows by (3.55).

To argue uniqueness, we assume the existence of another function ṽ
satisfying (3.57), (3.58), such that ṽ and its partial derivative ṽy have the
same smoothness and satisfy the growth condition (3.29); we shall show that

Ṽ = ṽ. More precisely, differentiate (3.57), (3.58) and use (2.19) to verify
that −ṽy is a solution of (3.17), (3.18), and consider Remark 3.7 to derive
that −ṽy = X . It is also easy to check that ṽ − yṽy satisfies (3.43) and
(3.44), thus G = ṽ − yṽy, according to Lemma 3.9. Finally, (3.55) implies

that Ṽ = ṽ. ♦

We illustrate now the significance of Theorem 3.12 by computing the
value function and the feedback formulas for the optimal consumption and
portfolio plans, in several examples.

Example 3.13. (Logarithmic utility). Let u(t, x) = log x for (t, x) ∈ [0, T ]×
(0,∞). We have I(t, y) = 1/y and ũ(t, y) = − log y − 1 for (t, y) ∈ [0, T ] ×
(0,∞). Motivated by the non-homogeneous term of (3.57), we seek appro-
priate functions ν,m : [0, T ] → R such that

ṽ(t, y) , −ν(t) log(yµ(t))−m(t) (3.59)

satisfies (3.57), (3.58). Indeed, this is the case if and only if

ν(t) = T − t, (3.60)

m(t) =

∫ T

t

[
1− (T − s)

(
1

2
‖ϑ(s)‖2 + r(s)− µ′(s)

µ(s)

)]
ds, (3.61)

for 0 ≤ t ≤ T . It follows that both ṽ given by (3.59)− (3.61) and ṽy(t, y) =
−ν(t)/y are of class C([0, T ]× (0,∞))∩C1,2([0, T )× (0,∞)), and satisfy the
growth condition (3.29). From Theorem 3.12, ṽ is the unique solution of the

Cauchy problem (3.57), (3.58), thus Ṽ ≡ ṽ, and

X (t, y) =
ν(t)

y
, G(t, y) = ν(t)

[
1−log(yµ(t))

]
−m(t), (t, y) ∈ [0, T ]×(0,∞).
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Therefore,

Y(t, x) =
ν(t)

x
, x ∈ (0,∞),

V (t, x, z) = ν(t) log

(
x− w(t)z

ν(t)µ(t)

)
+ ν(t)−m(t), (x, z) ∈ Dt,

and the feedback formulae (3.31), (3.32) for the optimal consumption and
portfolio are

C(t, x, z) = z +
x− w(t)z

ν(t)µ(t)
, (x, z) ∈ Dt,

Π(t, x, z) = (σ∗(t))−1 ϑ(t)
x− w(t)z

x
, (x, z) ∈ Dt,

for every 0 ≤ t < T .

Example 3.14. (Power utility). For p ∈ (−∞, 1) \ {0}, let u(t, x) =
xp/p, ∀ (t, x) ∈ [0, T ] × (0,∞). Now, I(t, y) = y1/(p−1) and ũ(t, y) =
1−p

p
yp/(p−1) for (t, y) ∈ [0, T ]× (0,∞). We seek for a function ν : [0, T ] → R

such that

ṽ(t, y) =
1− p

p
ν(t)

(
yµ(t)

)p/(p−1)

satisfies (3.57), (3.58). This happens if and only if ν(·) solves the ordinary
differential equation

ν ′(t) + q(t)ν(t) = −1, t ∈ [0, T ),

ν(T ) = 0

with

q(t) ,
p

(1− p)2

[
1

2
‖ϑ(t)‖2 + (1− p)

(
r(t)− µ′(t)

µ(t)

)]
;

thus,

ν(t) =

∫ T

t

e
R s

t q(θ)dθds.

Also, ṽ and

ṽy(t, y) = −1

y
ν(t)

(
yµ(t)

)p/(p−1)
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have the smoothness claimed in Theorem 3.12, and satisfy condition (3.29).

It turns out that Ṽ ≡ ṽ and

X (t, y) = ν(t)y1/(p−1)(µ(t))p/(p−1), G(t, y) =
1

p
ν(t)

(
yµ(t)

)p/(p−1)
,

∀ (t, y) ∈ [0, T ]× (0,∞). Moreover, for 0 ≤ t < T , we have

Y(t, x) =
xp−1

(ν(t))p−1(µ(t))p
, x ∈ (0,∞),

V (t, x, z) =
1

p
ν(t)

(
x− w(t)z

ν(t)µ(t)

)p

, (x, z) ∈ Dt,

C(t, x, z) = z +
x− w(t)z

ν(t)µ(t)
, (x, z) ∈ Dt,

Π(t, x, z) = (σ∗(t))−1 ϑ(t)
x− w(t)z

(1− p)x
, (x, z) ∈ Dt.

Remark 3.15. Within the context of this chapter Detemple and Zapatero
(1992) obtain a closed form representation for the optimal portfolio, by ap-
plication of the Clark (1970) formula; this reduces to “feedback form” only
for logarithmic and power-form utility functions. These feedback formulas
now become a special case of (3.32) (cf. Examples 3.13 and 3.14) that was
established in Theorem 3.8 for any arbitrary utility function.
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4 The Role of Stochastic Partial Differential

Equations In Utility Optimization Under

Habit Formation

4.1 Optimal Portfolio-Consumption Decisions in a Dy-
namic Framework

In Chapter 3 we specialized the results of Section 2.5 to the case of de-
terministic model coefficients. Employing carefully the interplay of partial
differential equation theory with the Feynman-Kac results, we arrived at an
initial-boundary value problem for the value function V of (3.38), also re-
ferred to as the Hamilton-Jacobi-Bellman equation (cf. Theorem 3.10). We
were also able to obtain feedback-form expressions for the optimal policies.
In this chapter we return to the stochastic control problem introduced in
Definition 2.3, and prepare the ground for a systematic analysis based on the
ideas of dynamic programming. Our motivation goes back to Theorem 2.12,
which reveals the dynamic nature of the optimal wealth/standard of living
pair

(
X0(·), z0(·)

)
in terms of a stochastically developing range. Since the

market model is not Markovian anymore, our analysis will be based on the
recently developed theory of backward stochastic partial differential equa-
tions and their interrelation with appropriate adapted versions of stochastic
Feynman-Kac formulas. This interplay will be based on the generalized Itô-
Kunita-Wentzell formula, and will eventually permit us to show that the
value function of problem (2.31) satisfies a nonlinear, backward stochastic
Hamilton-Jacobi-Bellman partial differential equation of parabolic type.

By analogy with (3.1), we shall establish stochastic “feedback formulas”
representing explicitly the optimal portfolio π0(t) and consumption c0(t) in
closed forms, in terms of the current wealth X0(t) and standard of living
z0(t). In particular, we shall get hold of suitable random fields C : [0, T ) ×
(0,∞)× [0,∞)×Ω → (0,∞) and P : [0, T )× (0,∞)× [0,∞)×Ω → Rd, for
which

c0(t) = C(t,X0(t), z0(t)) and π0(t) = P(t,X0(t), z0(t)), 0 ≤ t < T (4.1)

hold almost surely. On the other hand, it will be clear from the randomness
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of C and P that the current level of wealth/standard of living will no longer
constitute a sufficient statistic for the maximization problem of (2.31).

The conditions listed below will allow us to present the main concepts of
our dynamic approach, with a minimum of technical fuss.

Assumption 4.1. The assumptions made on the model coefficients r(·), b(·),
ϑ(·), σ(·), α(·) and δ(·) in Chapter 2 are in force. Moreover, these coeffi-
cients are continuous, δ(·) is differentiable and the relative risk process ϑ(·) is
universally bounded, satisfying assumption (3.2). Finally, it will be assumed
throughout that the expression r(·)− δ(·) + α(·) is non-random.

This last assumption on r(·)−δ(·)+α(·) is rather severe, and can actually
be omitted. However, it will be crucial in our effort to keep the required anal-
ysis and notation at manageable levels, without obscuring by technicalities
the essential ideas of our reasoning.

In accordance with the comment following Assumption 3.1, the process
W0(·) of (2.9) is a d-dimensional Brownian motion relative to the filtration
F under the equivalent martingale measure P 0, as constructed in (3.3).

Assumption 4.2. Conditions (i), (ii) of Assumption 3.2 remain active, in
conjunction with the following assumptions:

(iii) for each t ∈ [0, T ], the mappings y 7→ u(t, y) and y 7→ I(t, y) are of
class C4((0,∞));

(iv) the function I ′(t, y) = ∂
∂y
I(t, y) is strictly negative for every (t, y) ∈

[0, T ]× (0,∞);

(v) for every t ∈ [0, T ], the mapping y 7→ g(t, y) , yI ′(t, y) is increasing
and concave.

Remark 4.3. The first part of Remark 3.3 still holds, and the compos-
ite function u(t, I(t, ·)) has the order of smoothness posited in Assumption
4.2(iii) for its components, for every t ∈ [0, T ].
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Preparing the ground of our approach, we state the following useful im-
plication of the generalized Itô-Kunita-Wentzell formula (e.g. Kunita (1990),
Section 3.3, pp 92-93). This will enable us to carry out computations in a
stochastically modulated dynamic framework.

Proposition 4.4. Suppose that the random field F : [0, T ]×Rn ×Ω → R is
of class C0,2([0, T ]× Rn) and satisfies

F(t, x) = F(0, x) +

∫ t

0

f(s, x)ds+

∫ t

0

g∗(s, x)dW (s), ∀ (t, x) ∈ [0, T ]× Rn,

almost surely. Here g = (g(1), . . . ,g(d)), g(j) : [0, T ] × Rn × Ω → R, j =
1, . . . , d are C0,2([0, T ] × Rn), F-adapted random fields, and f : [0, T ] ×
Rn × Ω → R is a C0,1([0, T ] × Rn) random field. Furthermore, let X =
(X(1), . . . ,X(n)) be a vector of continuous semimartingales with decomposi-
tions

X(i)(t) = X(i)(0) +

∫ t

0

b(i)(s)ds+

∫ t

0

(h(i)(s))∗dW (s); i = 1, . . . , n,

where h(i) = (h(i,1), . . . ,h(i,d)) is an F-progressively measurable, almost surely
square integrable vector process, and b(i)(·) is an almost surely integrable
process. Then F(·,X(·)) is also a continuous semimartingale, with decompo-
sition

F
(
t,X(t)

)
= F

(
0,X(0)

)
+

∫ t

0

f
(
s,X(s)

)
ds+

∫ t

0

g∗
(
s,X(s)

)
dW (s)

+
n∑

i=1

∫ t

0

∂

∂xi

F
(
s,X(s)

)
b(i)(s)ds+

n∑
i=1

∫ t

0

∂

∂xi

F
(
s,X(s)

)(
h(i)(s)

)∗
dW (s)

+
d∑

j=1

n∑
i=1

∫ t

0

∂

∂xi

g(j)
(
s,X(s)

)
h(i,j)(s)ds (4.2)

+
1

2

d∑
`=1

n∑
i=1

n∑
k=1

∫ t

0

∂2

∂xi∂xk

F
(
s,X(s)

)
h(i,`)(s)h(k,`)(s)ds

for every 0 ≤ t ≤ T .
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The following notation will also be in use throughout the chapter.

Notation 4.5. For any integer k ≥ 0, let Ck(Rn,Rd) denote the set of
functions from Rn to Rd that are continuously differentiable up to order k.
In addition, for any 1 ≤ p ≤ ∞, any Banach space X with norm ‖ · ‖X, and
any sub-σ-algebra G ⊆ F , let

• Lp
G(Ω,X) denote the set of all X-valued, G-measurable random variables

X such that E‖X‖p
X <∞ ;

• Lp
F(0, T ; X) denote the set of all F-progressively measurable, X-valued

processes X : [0, T ]× Ω → X such that
∫ T

0
‖X(t)‖p

Xdt <∞, a.s.;

• Lp
F(0, T ; Lp(Ω; X)) denote the set of all F-progressively measurable, X-

valued processes X : [0, T ]× Ω → X such that
∫ T

0
E‖X(t)‖p

Xdt <∞ ;

• CF([0, T ]; X) denote the set of all continuous, F-adapted processes X(·, ω) :
[0, T ] → X for P -a.e. ω ∈ Ω.

Define similarly the set CF([0, T ]; Lp(Ω; X)), and let R+ stand for the positive
real numbers.

4.2 A Stochastic Version of the Feedback Formulae

Recall the stochastic processes introduced in (3.4), (3.5), (3.6), and (3.11)
with the dynamics of (3.12), (3.13). Thanks to Assumption 4.1, the compu-
tations leading to (3.7), in terms of the definitions (3.8), (3.9) and (3.10), are
also valid in the present setting where the model coefficients are random in
general. Clearly, w(·) remains deterministic as well. However, computations
similar to those leading to (3.14) lead now to the generalized formula

X0(t) = w(t)z0(t) + X

(
t,
Y (0,ξ)(t)

µ(t)

)
, 0 ≤ t ≤ T (4.3)

with ξ = Y(x − wz), where the random field X : [0, T ] × R+ × Ω → R+ is
given by

X(t, y) , E0
t

[∫ T

t

e−
R s

t r(v)dvµ(s)I(s, yY (t,1)(s))ds

]
. (4.4)
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This reduces to X of (3.15), i.e. X(·, ·) ≡ X (·, ·), in the Markovian framework
discussed in Chapter 3. Moreover, a comparison of (2.48), (3.15), (3.16) and
(4.4) divulges the dynamic and stochastic evolution of the function X (·) as
a random field in the sense that X (·) = X (0, ·) = X(0, ·).

We proceed with the derivation of the random fields C and P in (4.1)
by formulating first a semimartingale decomposition for the random field X

of (4.4). A significant role in this program will be played by an appropriate
backward stochastic partial differential equation, whose unique adapted so-
lution will lead, via the generalized Itô-Kunita-Wentzell rule, to a stochastic
Feynman-Kac formula and consequently to the desired decomposition for X.

Let us start by looking at the the Cauchy problem for the parabolic
Backward Stochastic PDE (BSPDE)

−dU(t, η) =

[
1

2
‖ϑ(t)‖2Uηη(t, η) +

(
µ′(t)

µ(t)
− r(t) +

1

2
‖ϑ(t)‖2

)
Uη(t, η)

− r(t)U(t, η)− ϑ∗(t)Ψη(t, η) + µ(t)I(t, eη)

]
dt−Ψ∗(t, η)dW0(t),

η ∈ R, 0 ≤ t < T, (4.5)

U(T, η) = 0, η ∈ R (4.6)

for the pair of F-adapted random fields U and Ψ. According to Assumptions
4.1, 4.2, and the study of parabolic backward stochastic partial differential
equations by Ma and Yong (1997), the problem (4.5), (4.6) admits a unique
solution pair (U ,Ψ) ∈ CF

(
[0, T ]; L2(Ω;C3(R+))

)
×L2

F
(
0, T ; L2(Ω;C2(R+; Rd))

)
.

Apply the generalized Itô-Kunita-Wentzell formula (cf. Proposition 4.4) for
a fixed pair (t, y) ∈ [0, T ) × R+, in conjunction with the dynamics of (3.13)
and the equation of (4.5), to get

d
[
e−

R s
t r(v)dvU(s, log Y (t,y)(s))

]
= −e−

R s
t r(v)dvµ(s)I(s, Y (t,y)(s))ds (4.7)

− e−
R s

t r(v)dv
[
ϑ(s)Uη(s, log Y (t,y)(s))−Ψ(s, log Y (t,y)(s))

]∗
dW0(s),

almost surely. Adopting the proof of Corollary 6.2 in the above citation (p.
76), integrate over [t, T ], take conditional expectations with respect to the
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martingale measure P 0, and make use of (4.4), (4.6) to end up with

X(t, y) = U(t, log(yµ(t))) (4.8)

for every (t, y) ∈ [0, T ] × R+. We may define, accordingly, the random field
ΨX : [0, T ]× R+ × Ω → Rd by

ΨX(t, y) , Ψ(t, log(yµ(t))), (4.9)

and state the subsequent result.

Lemma 4.6. Considering Assumptions 4.1 and 4.2, the pair of random
fields (X,ΨX), where X is provided by (4.4) and ΨX by (4.9), is the unique
CF
(
[0, T ]; L2(Ω;C3(R+))

)
×L2

F
(
0, T ; L2(Ω;C2(R+; Rd))

)
solution of the Cauchy

problem

−dX(t, y) =

[
1

2
‖ϑ(t)‖2y2Xyy(t, y) +

(
‖ϑ(t)‖2 − r(t)

)
yXy(t, y)− r(t)X(t, y)

− ϑ∗(t)yΨX
y (t, y) + µ(t)I(t, yµ(t))

]
dt−

(
ΨX(t, y)

)∗
dW0(t)

on [0, T )× R+, (4.10)

X(T, y) = 0 on R+, (4.11)

almost surely. Furthermore, for each t ∈ [0, T ), we have that X(t, 0+) = ∞,
X(t,∞) = 0 and X(t, ·) is strictly decreasing, establishing the existence of a

strictly decreasing inverse random field Υ(t, ·, ·) : R+ × Ω
onto−−→ R+, such as

X(t,Υ(t, x)) = x, for all x ∈ R+, (4.12)

almost surely. The random field Υ is of class CF
(
[0, T );C3(R+)

)
.

Proof: From (4.5), (4.6), (4.8) and (4.9), it is verified directly that the
pair of random fields (X,ΨX) possesses the desired regularity and constitutes
the unique solution of the Cauchy problem (4.5), (4.6), almost surely.

Next, we shall verify that Xy(t, y) is strictly negative, almost surely. To
this end, let (t, y) ∈ [0, T ) × R+, h > 0, and invoke the (strict) decrease of
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I(t, ·), coupled with (2.3), to certify that

1

h
[X(t, y)− X(t, y + h)]

≥ e−% E0
t

[∫ T

t

1

h

{
I(s, yY (t,1)(s))− I

(
s, (y + h)Y (t,1)(s)

)}
ds

]
.

By the mean-value theorem, there is a real number yh ∈ [y, y + h] such that

I(s, yY (t,1)(s))− I
(
s, (y + h)Y (t,1)(s)

)
= −hY (t,1)(s)I ′

(
s, yhY

(t,1)(s)
)
,

and conditions (2.3), (2.27), (3.2) imply the inequality Y (t,1)(s) ≤ φ(s)Zt
0(s),

in terms of the deterministic function

φ(t) , (1 + ∆w(t))e%+κ2
2(T−t)

and the P 0-martingale

Zt
0(s) , exp

{
−
∫ s

t

ϑ∗(v)dW0(v)−
1

2

∫ s

t

‖ϑ(v)‖2dv

}
, t ≤ s ≤ T. (4.13)

Due to Assumption 4.2(v), the right-hand side of the former inequality
achieves the lower bounds

− e−% E0
t

[∫ T

t

1

yh

g
(
s, yhφ(s)Zt

0(s)
)
ds

]
≥ −e−%

∫ T

t

1

yh

g
(
s, yhφ(s)E0

t

(
Zt

0(s)
))
ds

= −e−%

∫ T

t

I ′(s, yhφ(s))φ(s)ds,

where we have also used Jensen’s inequality. Passing to the limit as h ↓ 0,
we obtain from Fatou’s lemma

−Xy(t, y) ≥ −e−%

∫ T

t

I ′(s, yφ(s))φ(s)ds > 0.

According to the implicit function theorem, the inverse random field Υ :

[0, T ) × R+ × Ω
onto−−→ R+ of X exists almost surely, in the context of (4.12);
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in fact, the two random fields enjoy the same order of regularity on their
respective domains. Concluding, the claimed values of X(t, 0+) and X(t,∞)
are easily confirmed, respectively, by the monotone and dominated conver-
gence theorems. ♦

Remark 4.7. At this point, we should note that Lemma 4.6 assigns to the
pair of random fields (X,ΨX) an additional order of smoothness than is re-
quired in order to solve the stochastic partial differential equation (4.10),
(4.11). Nevertheless, this extra smoothness allows us to apply the Itô-Kunita-
Wentzell formula, as we did already in (4.7).

Furthermore, the above lemma yields the representation

X(t, y) =

∫ T

t

[
1

2
‖ϑ(s)‖2y2Xyy(s, y) +

(
‖ϑ(s)‖2 − r(s)

)
yXy(s, y)− r(s)X(s, y)

− ϑ∗(s)yΨX
y (s, y) + µ(s)I(s, yµ(s))

]
ds−

∫ T

t

(
ΨX(s, y)

)∗
dW0(s)

for the pair (X,ΨX), namely, the semimartingale decomposition of the stochas-
tic processes X(·, y) defined in (4.4) for each y ∈ R+.

The random field Υ represents the random dynamic extension of the func-
tion Y, established in Lemma 3.5. In particular, Υ(0, ·) ≡ Y(0, ·).

Remark 4.8. Combining (2.7), (4.7), (4.8) and (4.9), we obtain the dy-
namics

d

[
β(s)X

(
s,
Y (0,y)(s)

µ(s)

)]
= −β(s)

{
µ(s)I(s, Y (0,y)(s))ds

+

[
ϑ(s)

Y (0,y)(s)

µ(s)
Xy

(
s,
Y (0,y)(s)

µ(s)

)
−ΨX

(
s,
Y (0,y)(s)

µ(s)

)]∗
dW0(s)

}
.
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Therefore, via integration, we arrive at the relationship

β(t)X

(
t,
Y (0,y)(t)

µ(t)

)
+

∫ t

0

β(s)µ(s)I(s, Y (0,y)(s))ds (4.14)

= X(0, y)−
∫ t

0

β(s)

[
ϑ(s)

Y (0,y)(s)

µ(s)
Xy

(
s,
Y (0,y)(s)

µ(s)

)
−ΨX

(
s,
Y (0,y)(s)

µ(s)

)]∗
dW0(s)

for every (t, y) ∈ [0, T ]× R+, almost surely.

We are in position now to develop the stochastic feedback formulae for
the optimal investment and consumption processes. In view of (4.3), the ef-
fective state space of the optimal wealth/standard of living pair

(
X0(·), z0(·)

)
is given by (3.30) as well. This results from the Assumption 4.1 about the
quantity r(·)− δ(·) + α(·), which conditions w(·) to remains non-random in
our context, as it was in the setting of Section 3.

Theorem 4.9. Under the Assumptions 4.1 and 4.2, the optimal consump-
tion c0(·) and the optimal trading strategy π0(·) of the dynamic optimization
problem (2.31) admit the stochastic feedback forms of (4.1), determined by
the random fields

C(t, x, z) , z + I
(
t, µ(t)Υ(t, x− w(t)z)

)
, (4.15)

P(t, x, z) , −1

x
(σ∗(t))−1

[
ϑ(t)

Υ
(
t, x− w(t)z

)
Υx

(
t, x− w(t)z

) −ΨX
(
t,Υ
(
t, x− w(t)z

))]
,

(4.16)

for t ∈ [0, T ) and any pair (x, z) ∈ Dt.

Proof: For any initial wealth x and standard of living z such that (x, z) ∈
D0 of (3.30), we may rewrite (4.3) as

Y (0,J)(t)
∣∣
J=Υ(0,x−wz)

= µ(t)J(t)

with J(t) , Υ
(
t,X0(t)−w(t)z0(t)

)
. From (2.46) and (2.52), it develops that

the optimal consumption process of (2.50) is expressed by

c0(t) = z0(t) + I
(
t, µ(t)J(t)

)
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for 0 ≤ t < T , and (4.15) is proved. Considering (4.14) for y = Υ(0, x−wz),
in connection with (4.3), we obtain

β(t)
[
X0(t)− w(t)z0(t)

]
+

∫ t

0

β(s)µ(s)
[
c0(s)− z0(s)

]
ds

= x− wz −
∫ t

0

β(s)
[
ϑ(s)J(s)Xy (s, J(s))−ΨX(s, J(s))

]∗
dW0(s).

Or equivalently,

β(t)X0(t) +

∫ t

0

β(s)c0(s)ds

= x−
∫ t

0

β(s)

[
ϑ(s)

J(s)

Jx(s)
−ΨX(s, J(s))

]∗
dW0(s) + β(t)w(t)z0(t)

− wz −
∫ t

0

β(s)δ(s)w(s)
[
c0(s)− z0(s)

]
ds+

∫ t

0

β(s)z0(s)ds, (4.17)

where for any (x, z) ∈ Dt, we have differentiated (4.12) arriving at

Xy

(
t,Υ(t, x− w(t)z)

)
= 1/Υx(t, x− w(t)z),

and have defined
Jx(t) , Υx

(
t,X0(t)− w(t)z0(t)

)
.

Returning to (3.34), the formula (4.17) reduces to

β(t)X0(t) +

∫ t

0

β(s)c0(s)ds

= x−
∫ t

0

β(s)

[
ϑ(s)

J(s)

Jx(s)
−ΨX(s, J(s))

]∗
dW0(s),

almost surely. A comparison of the later with the integral expression (2.11)
implies that

X0(t)π
∗
0(t)σ(t) = −

[
ϑ(t)

J(t)

Jx(t)
−ΨX(t, J(t))

]∗
,

which indicates (4.16). ♦
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Remark 4.10. The feedback formulas (4.15), (4.16) amount to an adapted,
stochastic version of those in (3.31), (3.32). In fact, it is not hard to see that
(4.15) coincides with (3.31) and (4.16) coincides with (3.32) under the as-
sumption of deterministic model coefficients. However, in the present chapter
where the above assumption is not imposed, the random fields (4.15), (4.16)
cease to be independent of the past information associated with the market
filtration F. As an immediate result, the vector of current level of wealth and
standard of living ceases to be a sufficient statistic for the utility maximiza-
tion problem of Definition 2.3. In other words, an economic agent trying
to form an efficient financial investment according to the deployed theory, is
required successively to track the whole trading history of the market over the
time-horizon [0, T ].

4.3 The Stochastic Hamilton-Jacobi-Bellman Equation

We devote this section to an additional characterization of the value func-
tion (2.31), as solution of a stochastic Hamilton-Jacobi-Bellman equation.
By analogy with the method of dynamic porgramming, we return to the
time-horizon generalization employed in Section 3.3; namely, we consider
portfolio plans π(·) and consumption policies c(·), for which the dynamics of
the corresponding wealth X t,x,π,c(·) and standard of living z(·) are governed
by (3.35), (3.36) for every t ∈ [0, T ] and (x, z) ∈ Dt. Here though, any ad-
missible portfolio/consumption pair (π, c) ∈ A0(t, x) at the initial condition
(t, x) satisfies the extended (cf. (3.37)) budget constraint

Et

[∫ T

t

H t(s)c(s)ds

]
≤ x, (4.18)

almost surely. Furthermore, a variant of Lemma 2.1, subject to an initial date
t that is not necessarily zero, shows that if (4.18) stands for a consumption
process c(·), then we can always fashion a portfolio strategy π(·) such that
(π, c) ∈ A0(t, x). In addition, the optimization problem of Definition 2.3 is
extended by the random field

V(t, x, z) , ess sup
(π,c)∈A′

0(t,x,z)

Et

[∫ T

t

u (s, c(s)− z(s)) ds

]
, (4.19)

65



Nikolaos Egglezos Doctoral Dissertation

where

A′
0(t, x, z) ,

{
(π, c) ∈ A0(t, x); Et

[∫ T

t

u− (s, c(s)− z(s)) ds

]
<∞, a.s.

}
,

and V(0, ·, ·) = V (·, ·). Summoning Assumptions 4.1 and 4.2, we obtain

V(t, x, z) = G
(
t,Υ(t, x− w(t)z)

)
, (x, z) ∈ Dt, t ∈ [0, T ), (4.20)

almost surely, where we have also introduced the random field G : [0, T ] ×
R+ × Ω 7→ R through

G(t, y) , Et

[∫ T

t

u
(
s, I(s, yY (t,1)(s))

)
ds

]
. (4.21)

One observes immediately that the random fields (4.19) and (4.21) constitute
the dynamic, probabilistic analogues of those in (3.38) and (3.40) respectively,
since in the setting of non-random coefficients it follows that V(·, ·, ·) ≡
V (·, ·, ·) and G(·, ·) ≡ G(·, ·). Of course, V (·, ·) = V (0, ·, ·) = V(0, ·, ·) and
G(·) = G(0, ·) = G(0, ·) hold as well [cf. (2.31), (2.60)], in compliance with
the temporal and stochastic evolution of the function X (·) described in the
previous section. A direct implication of definition (4.19) is

V(T, x, z) = 0, ∀ (x, z) ∈ D, (4.22)

and actually, V(t, x, z) <∞ for every (x, z) ∈ Dt. Moreover, for all (x, z) ∈
Dt, t ∈ [0, T ), we have that

lim
(x,z)→(χ,ζ)

V(t, x, z) =

∫ T

t

u(s, 0+)ds, ∀ (χ, ζ) ∈ ∂Dt (4.23)

by analogy with (3.42).
We shall next derive a semimartingale decomposition for the random

field G of (4.21). Recalling Assumptions 4.1, 4.2, and making use of the
methodology developed in the proof of (4.10), (4.11), we consider the unique
solution (V ,Φ) ∈ CF

(
[0, T ]; L2(Ω;C3(R+))

)
×L2

F
(
0, T ; L2(Ω;C2(R+; Rd))

)
of
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the Cauchy problem

−dV(t, η) =

[
1

2
‖ϑ(t)‖2Vηη(t, η) +

(
µ′(t)

µ(t)
− r(t)− 1

2
‖ϑ(t)‖2

)
Vη(t, η)

− ϑ∗(t)Φη(t, η) + u(t, I(t, eη))

]
dt− Φ∗(t, η)dW (t),

η ∈ R, 0 ≤ t < T, (4.24)

V(T, η) = 0, η ∈ R, (4.25)

almost surely. As in (4.7), an application of Itô-Kunita-Wentzell formula, in
conjunction with (3.12) and (4.24), yields

dV(s, log Y (t,y)(s)) =− u
(
s, I(s, Y (t,y)(s))

)
ds

−
[
Vη(s, log Y (t,y)(s))ϑ(s)− Φ(s, log Y (t,y)(s))

]∗
dW (s),

and by analogy with (4.8), leads to

V(t, log(yµ(t))) = Et

[∫ T

t

u
(
s, I(s, Y (t,y)(s))

)
ds

]
= G(t, y). (4.26)

We also introduce the random field ΦG : [0, T ]× R+ × Ω → Rd via

ΦG(t, y) , Φ(t, log(yµ(t))), (4.27)

and we have the following result.

Lemma 4.11. Adopting Assumptions 4.1 and 4.2, the pair of random fields
(G,ΦG), where G is given by (4.21) and ΦG by (4.27), belongs to the class
CF
(
[0, T ]; L2(Ω;C3(R+))

)
× L2

F
(
0, T ; L2(Ω;C2(R+; Rd))

)
and is the unique

solution of the Cauchy problem

−dG(t, y) =

[
1

2
‖ϑ(t)‖2y2Gyy(t, y)− r(t)yGy(t, y)

− ϑ∗(t)yΦG
y (t, y) + u(t, I(t, yµ(t)))

]
dt−

(
ΦG(t, y)

)∗
dW (t)

67



Nikolaos Egglezos Doctoral Dissertation

on [0, T )× R+, (4.28)

G(T, y) = 0 on R+, (4.29)

almost surely. Moreover, for every (t, y) ∈ [0, T )× R+ we have

G(t, y)−G(t, h) = yX(t, y)− hX(t, h)

−
∫ y

h

X(t, ξ)dξ, 0 < h < y <∞, (4.30)

Gy(t, y) = yXy(t, y), (4.31)

Gyy(t, y) = Xy(t, y) + yXyy(t, y), (4.32)

almost surely.

Once again (cf. Remark 4.7), the additional smoothness of (G,ΦG) will be
essential in the formalization of explicit calculations, and the semimartingale
decomposition of the process G(·, y), y ∈ R+, is realized by

G(t, y) =

∫ T

t

[
1

2
‖ϑ(s)‖2y2Gyy(s, y)− r(s)yGy(s, y)

− ϑ∗(s)yΦG
y (s, y) + u(s, I(s, yµ(s)))

]
ds−

∫ T

t

(
ΦG(s, y)

)∗
dW (s).

Proof of Lemma 4.11: Use (4.24), (4.25), (4.26) and (4.27) to check that
the pair of random fields (G,ΦG) has the asserted order of regularity and is
the unique solution of the Cauchy problem (4.28), (4.29), almost surely.

The proof of the remaining formulas (4.30), (4.31) and (4.32) is like the
proof of (3.45), (3.46) and (3.47) in Lemma 3.9, except now we are dealing
with conditional expectations. ♦

We carry on our analysis with the subsequent lemma, which copes with
the semimartingale decomposition of the random field Υ, defined in Lemma
4.6.
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Lemma 4.12. Consider the hypotheses of Lemma 4.6. Then, there exists a
pair of random fields (Θ,Σ) ∈ LF

(
0, T

′
;C1(R+)

)
×L2

F
(
0, T

′
;C2(R+; Rd)

)
for

each 0 < T
′
< T , such that

−dΥ(t, x) = Θ(t, x)dt− Σ∗(t, x)dW0(t) (4.33)

holds almost surely, for every (t, x) ∈ [0, T )×R+. In particular, these random
fields are uniquely determined by the relationships:

1

2

[
‖Σ(t, x)‖2 − ‖ϑ(t)‖2Υ2(t, x)

]
Xyy(t,Υ(t, x))

+
[ (
r(t)− ‖ϑ(t)‖2

)
Υ(t, x) + ϑ∗(t)Σ(t, x)−Θ(t, x)

]
Xy(t,Υ(t, x)) + r(t)x

+
[
Σ(t, x) + ϑ(t)Υ(t, x)

]∗
ΨX

y (t,Υ(t, x)) + ϑ∗(t)ΨX(t,Υ(t, x)) (4.34)

= µ(t)I
(
t, µ(t)Υ(t, x)

)
and

Xy(t,Υ(t, x))Σ(t, x) + ΨX(t,Υ(t, x)) = 0. (4.35)

Proof: Let (t, x) ∈ [0, T ) × R+. Invoking equation (4.10) for X and
postulating the representation (4.33) for Υ, we may apply differentials and
Proposition 4.4 on identity (4.12), and integrate over [0, t], to compute∫ t

0

{
1

2

[
‖Σ(s, x)‖2 − ‖ϑ(s)‖2Υ2(s, x)

]
Xyy(s,Υ(s, x))

+
[ (
r(s)− ‖ϑ(s)‖2

)
Υ(s, x) + ϑ∗(s)Σ(s, x)−Θ(s, x)

]
Xy(s,Υ(s, x))

+ r(s)x+
[
Σ(s, x) + ϑ(s)Υ(s, x)

]∗
ΨX

y (s,Υ(s, x)) + ϑ∗(s)ΨX(s,Υ(s, x))

− µ(s)I
(
s, µ(s)Υ(s, x)

)}
ds

+

∫ t

0

{
Xy(s,Y(s, x))Σ(s, x) + ΨX (s,Y(s, x))

}∗
dW (s) = 0,

almost surely; (2.9) has also been used. Thus, the uniqueness for the decom-
position of a continuous semimartingale [e.g. Karatzas and Shreve (1991), p
149] implies that both integrals of the above equation vanish. Differentiation
of the Lebesgue integral implies (4.34), while the quadratic variation of the
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stochastic integral vanishes as well, leading to (4.35). The derived equations
define uniquely the random fields Θ and Σ, assigning to them the claimed
order of adaptivity, integrability and smoothness. ♦

Lemma 4.13. Under the Assumptions 4.1, 4.2, the random fields ΨX and
ΦG of (4.9) and (4.27) accordingly, satisfy almost surely the relationship

ΦG
y (t, y)− yΨX

y (t, y) = 0, ∀ (t, y) ∈ [0, T )× R+. (4.36)

Proof: Taking differentials and integrating (4.31) over [z, y], 0 < z <
y <∞, we get

dG(t, y)− dG(t, z) = ydX(t, y)− zdX(t, z)−
∫ y

z

dX(t, λ)dλ,

almost surely, for 0 ≤ t < T. Perform next the substitutions signified by
(4.10) and (4.28) in the above formula, and equalize the respective martingale
parts (e.g. Karatzas and Shreve (1991), Problem 3.3.2) to end up at

ΦG(t, y)− ΦG(t, z) = yΨX(t, y)− zΨX(t, z)−
∫ y

z

ΨX(t, λ)dλ. (4.37)

Of course, (4.37) is valid only if the interchange of Lebesgue and Itô integrals∫ y

z

∫ t

0

ΨX(s, λ)dW (s) dλ =

∫ t

0

∫ y

z

ΨX(s, λ)dλ dW (s)

holds almost surely, for each t ∈ [0, T ). But this is true, due to the observa-
tion that L(t, ·) =

∫ ·
z
ΨX(t, λ)dλ is a C2 random field on [z,∞), and Exercise

3.1.5 in Kunita (1990). Differentiating (4.37) we obtain (4.36). ♦

We are ready now to state the main result of this section.

Theorem 4.14. (Stochastic Hamilton-Jacobi-Bellman Equation): Under
Assumptions 4.1 and 4.2, the pair of random fields (V,Ξ), here the value
field V(t, x, z) is given by (4.20), (4.22), and

Ξ(t, x, z) , ΦG
(
t,Υ(t, x− w(t)z)

)
−Υ(t, x− w(t)z)ΨX

(
t,Υ(t, x− w(t)z)

)
,

(4.38)
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is of class

CF
({
t ∈ [0, T ]; V(t, ·, ·) ∈ C3,3(Dt)

})
×L2

F
({
t ∈ [0, T ); Ξ(t, ·, ·) ∈ C2,2(Dt; Rd)

})
.

Furthermore, this pair (V,Ξ) solves on
{
(t, x, z); t ∈ [0, T ), (x, z) ∈ Dt

}
the stochastic Hamilton-Jacobi-Bellman dynamic programming partial differ-
ential equation

−dV(t, x, z) = ess sup
0≤c<∞
π∈Rd

{
1

2
‖σ∗(t)π‖2x2Vxx(t, x, z)

+
[
r(t)x− c+ π∗σ(t)ϑ(t)x

]
Vx(t, x, z) (4.39)

+
[
δ(t)c− α(t)z

]
Vz(t, x, z)

+ π∗σ(t)xΞx(t, x, z) + u(t, c− z)

}
dt

−Ξ(t,x, z)dW (t)

with the boundary conditions (4.22) and (4.23), almost surely. Furthermore,
the pair of random fields (P(t, x, z),C(t, x, z)) of (4.15), (4.16) provides the
optimal values for the maximization in (4.39).

Proof: Differentiation of (4.12), (4.20) and (4.38), in combination with
(4.31), (4.32) and (4.36), leads almost surely to

Xy

(
t,Υ(t, x− w(t)z)

)
Υx(t, x− w(t)z) = 1,

Vx(t, x, z) = Υ(t, x− w(t)z),

Vz(t, x, z) = −w(t)Υ(t, x− w(t)z),

Vxx(t, x, z) = Υx(t, x− w(t)z),

Ξx(t, x, z) = −Υx(t, x− w(t)z)ΨX
(
t,Υ(t, x− w(t)z)

)
for (x, z) ∈ Dt, 0 ≤ t < T. Using these formulae and (3.8), we may rewrite
the right-hand side of (4.39) as[
r(t)xΥ(t, x− w(t)z) + α(t)w(t)zΥ(t, x− w(t)z)

+ ess sup
0≤c<∞

{
u(t, c− z)− c µ(t)Υ(t, x− w(t)z)

}
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+ ess sup
π∈Rd

{
1

2
‖σ∗(t)π‖2x2Υx(t, x− w(t)z) + π∗σ(t)x

[
ϑ(t)Υ(t, x− w(t)z)

−Υx(t, x− w(t)z)ΨX
(
t,Υ(t, x− w(t)z)

)]}]
dt

−
[
ΦG
(
t,Υ(t, x− w(t)z)

)
−Υ(t, x− w(t)z)ΨX

(
t,Υ(t, x− w(t)z)

)]
dW (t).

The strict concavity of both expressions to be maximized allows us to dif-
ferentiate and solve the resulting equations, in order to attain the optimal
values of c and π. These values turn out to coincide with (4.15) and (4.16),
respectively. Substituting them now into the later expression, we are driven
to[
r(t)xΥ(t, x− w(t)z) + α(t)w(t)zΥ(t, x− w(t)z)

+ u
(
t, I
(
t, µ(t)Υ(t, x− w(t)z)

))
− µ(t)Υ(t, x− w(t)z)

[
z + I

(
t, µ(t)Υ(t, x− w(t)z)

)]
− 1

2Υx(t, x− w(t)z)

∥∥ϑ(t)Υ(t, x− w(t)z) (4.40)

−Υx(t, x− w(t)z)ΨX
(
t,Υ(t, x− w(t)z)

)∥∥2
]
dt

−
[
ΦG
(
t,Υ(t, x− w(t)z)

)
−Υ(t, x− w(t)z)ΨX

(
t,Υ(t, x− w(t)z)

)]∗
dW (t).

On the other hand, usage of differentials on (4.20) implies that

dV(t, x, z) = dG
(
t,Υ(t, x−w(t)z)

)
−w′(t)zΥx(t, x−w(t)z)Gy

(
t,Υ(t, x−w(t)z)

)
,

and couple (4.33) with (2.9) to derive the alternative representation of Υ:

dΥ(t, x) =
[
ϑ∗(t)Σ(t, x)−Θ(t, x)

]
dt+ Σ∗(t, x)dW (t),

almost surely. Then, a straightforward application of Itô-Kunita-Wentzell
formula, involving (4.28), yields that the left-hand side of (4.39) is equal to
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−

[
1

2

[
‖Σ(t, x− w(t)z)‖2 − ‖ϑ(t)‖2Υ2(t, x− w(t)z)

]
Gyy

(
t,Υ(t, x− w(t)z)

)
+
[
r(t)Υ(t, x− w(t)z) + ϑ∗(t)Σ(t, x− w(t)z)

−Θ(t, x− w(t)z)
]
Gy

(
t,Υ(t, x− w(t)z)

)
+
[
Σ(t, x− w(t)z) + ϑ(t)Υ(t, x− w(t)z)

]∗
ΦG

y

(
t,Υ(t, x− w(t)z)

)
− u
(
t, I
(
t, µ(t)Υ(t, x− w(t)z)

))]
dt

−
[
Gy

(
t,Υ(t, x− w(t)z)

)
Σ(t, x− w(t)z) + ΦG

(
t,Υ(t, x− w(t)z)

)]∗
dW (t),

which via (4.31) and (4.32) becomes

−

[
1

2
‖Σ(t, x− w(t)z)‖2Xy

(
t,Υ(t, x− w(t)z)

)
+ Υ(t, x− w(t)z)

{
1

2

[
‖Σ(t, x− w(t)z)‖2

− ‖ϑ(t)‖2Υ2(t, x− w(t)z)
]
Xyy

(
t,Υ(t, x− w(t)z)

)
+
[
r(t)Υ(t, x− w(t)z)− 1

2
‖ϑ(t)‖2Υ(t, x− w(t)z)

+ ϑ∗(t)Σ(t, x− w(t)z)−Θ(t, x− w(t)z)
]
Xy

(
t,Υ(t, x− w(t)z)

)}
+
[
Σ(t, x− w(t)z) + ϑ(t)Υ(t, x− w(t)z)

]∗
ΦG

y

(
t,Υ(t, x− w(t)z)

)
− u
(
t, I
(
t, µ(t)Υ(t, x− w(t)z)

))]
dt

−
[
ΦG
(
t,Υ(t, x− w(t)z)

)
−Υ(t, x− w(t)z)ΨX

(
t,Υ(t, x− w(t)z)

)]∗
dW (t).
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Finally, Lemmata 4.12 and 4.13 transform the latter to

−

[
− r(t)

[
x− w(t)z

]
Υ(t, x− w(t)z)− u

(
t, I
(
t, µ(t)Υ(t, x− w(t)z)

))
+ µ(t)I

(
t, µ(t)Υ(t, x− w(t)z)

)
+

1

2
‖ϑ(t)‖2 Υ2(t, x− w(t)z)

Υx(t, x− w(t)z)

− ϑ∗(t)ΨX
(
t,Υ(t, x− w(t)z)

)
+

1

2
‖ΨX

(
t,Υ(t, x− w(t)z)

)
‖2Υx(t, x− w(t)z)

]
dt

−
[
ΦG
(
t,Υ(t, x− w(t)z)

)
−Υ(t, x− w(t)z)ΨX

(
t,Υ(t, x− w(t)z)

)]∗
dW (t).

Expanding the norm in (4.40) and recalling (3.10), we conclude that both
sides of (4.39) coincide almost surely. ♦

Remark 4.15. Invoking Remark 3.11, we may rewrite equation (4.39) in
the nonlinear form

−dVt(t, x, z) = H
(
Vxx(t, x, z),Vx(t, x, z),Vz(t, x, z),Ξx(t, x, z), t, x, z

)
dt

−Ξ(t, x, z)dW (t),

where

H(A, p, q,B, t, x, z) ,− 1

2A
‖ϑ(t)p+ B‖2 +

[
r(t)x− z − I(t, p− δ(t)q)

]
p

+
[
(δ(t)− α(t))z + δ(t)I(t, p− δ(t)q)

]
q

+ u
(
t, I(t, p− δ(t)q)

)
for A < 0, p > 0, q < 0 and B ∈ R.

Remark 4.16. Theorem 4.14 provides a rare illustration of the Peng (1992)
approach to stochastic Hamilton-Jacobi-Bellman equations. More precisely,
it formulates the nonlinear stochastic partial differential equation satisfied by
the value random field of the stochastic optimal control problem (4.19).
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By analogy with Theorem 3.12, we conclude our program with the expo-
sition of the linear parabolic backward stochastic partial differential equation
(4.47), whose unique solution is represented by the convex dual of V :

Ṽ(t, y) , ess sup
(x,z)∈Dt

{
V(t, x, z)−

(
x− w(t)z

)
y
}
, y ∈ R.

Resolving (4.47), we may invert the previous Legendre-Fenchel transform to
re-cast the random field V as

V(t, x, z) = ess inf
y∈R

{
Ṽ(t, y) +

(
x− w(t)z

)
y
}
, (x, z) ∈ Dt,

almost surely.

Theorem 4.17. (Convex Dual of V(t, ·)): Considering Assumptions 4.1,
4.2, and a given t ∈ [0, T ), V(t, ·, ·) is a generalized utility function, as
defined in Theorem 2.17, almost surely; also,

Vx(t, x, z) = Υ(t, x− w(t)z), ∀ (x, z) ∈ Dt, (4.41)

Vz(t, x, z) = −w(t)Υ(t, x− w(t)z), ∀ (x, z) ∈ Dt. (4.42)

Furthermore, for (t, y) ∈ [0, T ]× R+, we have

Ṽ(t, y) = G(t, y)− yX(t, y) (4.43)

= Et

[∫ T

t

ũ(s, yY (t,1)(s))ds

]
, (4.44)

Ṽy(t, y) = −X(t, y), (4.45)

almost surely. Finally, the pair of random fields (Ṽ,Λ), where

Λ(t, y) , ΦG(t, y)− yΨX(t, y), (t, y) ∈ [0, T ]× R+, (4.46)

belongs to CF
(
[0, T ]; L2(Ω;C3(R+))

)
×L2

F
(
0, T ; L2(Ω;C2(R+; Rd))

)
and is the

unique solution of the following Cauchy problem for the linear BSPDE
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−dṼ(t, y) =

[
1

2
‖ϑ(t)‖2y2Ṽyy(t, y)− r(t)yṼy(t, y)− ϑ∗(t)yΛy(t, y)

+ ũ(t, yµ(t))

]
dt− Λ∗(t, y)dW (t) on [0, T )× R+, (4.47)

Ṽ(T, y) = 0 on R+. (4.48)

Merging now (4.38) and (4.46), we notice that the random fields Ξ and Λ

of the martingale parts of V and Ṽ, respectively, are related via the expres-
sion

Ξ(t, x, z) = Λ
(
t,Υ(t, x− w(t)z)

)
, t ∈ [0, T ), (x, z) ∈ Dt, (4.49)

almost surely.

Proof of Theorem 4.17: As regards the first two parts of the theorem, it
suffices to imitate the proof of their Markovian analogues in Theorem 3.12,
keeping in mind the new feature of conditional expectation.

From Lemma 4.6, Lemma 4.11, identity (4.43) and definition (4.46), it is

easy to verify the stated regularity for the pair (Ṽ,Λ), while the equations
(4.47) and (4.48) are direct implications of equations (4.43), (4.28), (2.18),
(4.10) and (4.29) with (4.11). ♦

Remark 4.18. In conclusion, we should emphasize that the stochastic partial
differential equations of Lemmata 4.6, 4.11, and Theorems 4.14, 4.17 are
stochastic versions of their Markovian counterparts studied in the previous
chapter; cf. Lemmata 3.5, 3.9, and Theorems 3.10, 3.12, respectively. To our
knowledge, this is the first concrete illustration of BSPDE’s in a stochastic
control context beyond the classical linear/quadratic regulator worked out in
Peng (1992).

Finally, we shall elaborate on how Example 3.13 can be modified in or-
der to illustrate Theorem 4.17 as an alternative computational method for
the value random field and the stochastic feedback formulas of the optimal
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portfolio/consumption pair.

Example 4.19. (Logarithmic utility). Take u(t, x) = log x, ∀ (t, x) ∈
[0, T ]× R+; thus, I(t, y) = 1/y, ũ(t, y) = − log y − 1 for (t, y) ∈ [0, T ]× R+.
Our goal is to find an F-adapted pair of random fields that satisfies (4.47),
(4.48). In particular, we recall Example 3.13 where the model coefficients are
deterministic, the Cauchy problem (4.47), (4.48) reduces to (3.57), (3.58),
and its solution is provided by (3.59) − (3.61). Accordingly, we introduce
here the F-adapted random field

ṽ(t, y) , −ν(t) log(yµ(t))−m(t)

for (t, y) ∈ [0, T ]× R+, with

ν(t) = T − t,

m(t) = Et

[∫ T

t

{
1− (T − s)

(
1

2
‖ϑ(s)‖2 + r(s)− µ′(s)

µ(s)

)}
ds

]
.

Moreover, the completeness of the market stipulates the existence of an Rd-
valued, F-progressively measurable, square-integrable process `(·), such that
the Brownian martingale

M(t) = Et

[∫ T

0

{
1− (T − s)

(
1

2
‖ϑ(s)‖2 + r(s)− µ′(s)

µ(s)

)}
ds

]

has the representation

M(t) = M(0) +

∫ t

0

`∗(s)dW (s), 0 ≤ t ≤ T.

It is verified directly that the pair (ṽ, `), where the random field ṽ is of class
CF
(
[0, T ]; L2(Ω;C3(R+))

)
, satisfies (4.47), (4.48). Therefore, Theorem 4.17

implies that (ṽ, `) agrees with (Ṽ,Λ), and

X(t, y) =
ν(t)

y
, G(t, y) = ν(t)

[
1− log(yµ(t))

]
−m(t), (t, y) ∈ [0, T ]×R+.
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Consequently, for 0 ≤ t < T, it transpires that

Υ(t, x) =
ν(t)

x
, x ∈ R+,

V(t, x, z) = ν(t) log

(
x− w(t)z

ν(t)µ(t)

)
+ ν(t)−m(t), (x, z) ∈ Dt.

For this special choice of utility preference, X (and so Υ) is deterministic,
and the feedback formulas (4.15), (4.16) for the optimal consumption and
portfolio decisions are the same as those of Example 3.13.

Remark 4.20. In the case δ(·) = α(·) = 0 and z = 0, namely, without habit
formation in the market model, we have that µ(·) = 1 from (3.8), whence our
analysis remains valid for a random interest rate process r(·) as well. Then,
this chapter generalizes the interrelation of classical utility optimization prob-
lems with the principles of dynamic programming, as explored in Karatzas,
Lehoczky and Shreve (1987) for the special case of deterministic coefficients.
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5 Conclusion And Open Problems

In this thesis we explored various aspects of portfolio-consumption utility
optimization under the presence of addictive habits in complete financial
markets. The effective state space of the optimal wealth and standard of
living processes was identified as a random wedge, and the investor’s value
function was found to exhibit properties similar to those of a utility function.
Of particular interest is the interplay between the dynamic programming
principles and the (stochastic) partial differential equation theory that led
to the characterization of the value function (random field) as a solution of
a highly non-linear (stochastic) Hamilton-Jacobi-Bellman partial differential
equation, respectively. In fact, the convex dual of the value function (ran-
dom field) turned out to constitute the unique solution of a parabolic back-
ward (stochastic) partial differential equation, respectively. A byproduct of
this analysis was an additional representation for the optimal investment-
consumption policies on the current level of the optimal wealth and standard
of living processes.

Another aspect, still at question, that stems from our specification of
preferences is the existence of an optimal portfolio/consumption pair in an
incomplete market; that is, the number of stocks is strictly smaller than the
dimension of the driving Brownian motion. Following the duality methodol-
ogy deployed by He and Pearson (1991) and Karatzas, Lehoczky, Shreve and
Xu (1991), one can fashion fictitious stocks in order to complete artificially
the market, and thereby invoke the analysis presented in Chapter 2 to en-
sure existence of optimal policies. This pair remains optimal in the primal
incomplete market only if the corresponding portfolio does not invest in the
additional stocks at all. The fictitious completion is parametrized by a cer-
tain family of continuous exponential local martingales which includes Z(·)
of (2.6), and gives rise to an analogous class of state-price density processes.
As stated in Schroder and Skiadas (2002), an associated dual optimization
problem can be defined in terms of the respective parametrized “adjusted”
state-price density processes, such that a possible minimizer induces a null de-
mand for the imaginary stocks. In contrast though to the former two papers,
the dual functional fails now to be convex with respect to the dual parameter,
excluding the usage of standard minimization techniques. Evidently, we are
in need of new minimization considerations for the dual problem.

Returning to complete markets, our dynamic programming approach
might also yield explicit solutions for the Hamilton-Jacobi-Bellman equation,
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deterministic or stochastic, related with a utility function u : [0, T ]×R → R,
i.e., of exponential type. In this case the marginal utility at zero is finite
and the “addiction” condition (2.25) is removed; i.e., consumption plans are
allowed to drop bellow the contemporaneous standard of living, abolishing
any further restrictions on the initial endowment x and standard of living z
(cf. Assumption 2.2). In other words, an economic agent has the choice of
reducing consumption to decumulate habits after periods of high consump-
tion expenditures and standard of living buildup. At the same time, past
consumption behavior continues to affect current consumption choices, lead-
ing to the development of “non-addictive” habits. Moreover, the natural
constraint of a non-negative consumption plan remains intact in the model.
Detemple and Karatzas (2003) resolved the respective consumption-portfolio
problem in terms of an endogenously determined stopping time, after which
the consumption non-negativity constraint cease to bind. The existence of
an optimal pair was demonstrated and the optimal consumption process was
provided in closed-form. Hence, given the dynamic programming approach
presented in this thesis, an associated deterministic or stochastic partial dif-
ferential equation might provide information about the optimal investment
strategy as well.

In conclusion, one may attempt to investigate the latter optimization
problem for more general preferences in which utility comes not just from net
consumption c(·)− z(·), but is a generalized utility function u(t, c(t), z(t)) of
time t, current consumption c(t) and standard of living z(t) (cf. Theorems
2.17, 3.12). In this generalized setting, existence of optimal policies remains
still an open question. From a preliminary study, one is formally led to a
system of coupled Forward-Backward Recursive Stochastic Equations, which
do not seem to be covered by the extant theory. Thus, progress on this front
might also yield interesting results on this aspect of Stochastic Analysis.
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