
The Numéraire Portfolio and Arbitrage in
Semimartingale Models of Financial Markets

Konstantinos Kardaras

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2005



c© 2005

Konstantinos Kardaras

All Rights Reserved



To my parents, for bringing me up.

To my sister, who still shares the same room in my life.

To my friends, who make me laugh and cry.

3



I would like to thank my advisor Ioannis Karatzas

for his support and help, both scientifically and morally

during my staying at Columbia University.

4



ABSTRACT

The Numéraire Portfolio and Arbitrage in

Semimartingale Models of Financial Markets

Konstantinos Kardaras

We study the existence of the numéraire portfolio under pre-

dictable convex constraints in a general semimartingale financial

model. The numéraire portfolio generates a wealth process which

makes the relative wealth processes of all other portfolios with

respect to it supermartingales. Necessary and sufficient condi-

tions for the existence of the numéraire portfolio are obtained

in terms of the triplet of predictable characteristics of the asset

price process. This characterization is then used to obtain further

necessary and sufficient conditions, in terms of an arbitrage-type

notion. In particular, the full strength of the “No Free Lunch

with Vanishing Risk” (NFLVR) is not needed, only the weaker

“No Unbounded Profit with Bounded Risk” (NUPBR) condition

that involves the boundedness in probability of the terminal val-

ues of wealth processes. We show that this notion is the minimal

a-priori assumption required, in order to proceed with utility

optimization. The fact that it is expressed entirely in terms of

predictable characteristics makes it easy to check, something that

the stronger (NFLVR) condition lacks.
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0. Introduction

0.1. Background and Discussion of Results. The branch of Probability

Theory that goes by the name “Stochastic Finance” is concerned (among other

problems) with finding adequate descriptions of the way financial markets work.

There exists a huge literature of models by now, and we do not attempt to give

a history or summary of all the work that has been done. There is, however,

a broad class of these models that has been used extensively: those for which

the price processes of certain financial instruments1 are considered to evolve

as semimartingales. The concept of semimartingale is a very intuitive one: it

connotes a process that can be decomposed into a finite variation term that

represents the “signal” or “drift” and a local martingale term that represents

the “noise” or “uncertainty”. Discrete-time models can be embedded in this

class, as can processes with independent increments and many other Markov

processes, such as solutions to stochastic differential equations. Models that

are not included are, for example, those where price processes are driven by

fractional Brownian motion.

There are at least two good reasons for the choice of semimartingale asset

price processes in modeling financial markets. The first is that semimartingales

constitute the largest class of stochastic processes which can be used as inte-

grators, in a theory that resembles as closely as possible the ordinary Lebesgue

integration. In economic terms, integration with respect to a price process

represents the wealth of an investment in the market, the integrand being the

strategy that an investor uses. To be more precise, let us denote the price

process of a certain tradeable asset by S = (St)t∈R+ ; for the time being, S could

1These can be stocks, indices, currencies, etc.
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be any random process. An investor wants to invest in this asset. As long as

simple “buy-and-hold strategies” are being used, which in mathematical terms

are captured by an elementary integrand θ, the “stochastic integral” of the strat-

egy θ with respect to S is obviously defined: it is the sum of net gains or losses

resulting from the use of the buy-and-hold strategy. Nevertheless, the need to

consider strategies that are not of that simple and specific structure, but can

change continuously in time2 arises. If one wishes to extend the definition of

the integral to this case, keeping the previous intuitive property for the case of

simple strategies and requiring a very mild “dominated convergence” property,

the Bichteler-Dellacherie theorem3 states that S has to be a semimartingale.

A second reason why semimartingale models are ubiquitous, is the pioneering

work on no-arbitrage criteria that has been ongoing during the last decades.

Culminating with the papers [8] and [12] of Delbaen and Schachermayer, the

connection has been established between the economic notion of no arbitrage

— which found its ultimate incarnation in the “No Free Lunch with Vanish-

ing Risk” (NFLVR) condition — and the mathematical notion of existence of

equivalent probability measures, under which asset prices have some sort of

martingale property. In [8] it was shown that if we want to restrict ourselves

to the realm of locally bounded stock prices, and agree that we should ban-

ish arbitrage by use of simple strategies, the price process again has to be a

semimartingale.

In this work, we consider a general semimartingale model and make no further

mathematical assumptions. On the economic side, it is part of the assumptions

2An example of this is the hedging strategy of a European call option in the Black-Scholes

model.
3See for example the book [5] by Bichteler himself.
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that the asset prices are exogenously determined – in some sense they “fall

from the sky”, and an investor’s behavior has no effect whatsoever on their

movement. The usual practice is to assume that we are dealing with small

investors and whistle away all the criticism, as we shall do. We also assume

a frictionless market, in the sense that transaction costs for trading are non-

existent or negligible.

Our main concern will be a problem which can be cast in the mold of dynamic

stochastic optimization, though of a highly static and deterministic nature, since

the optimization is being done in a path-by-path, pointwise manner. We explore

a specific strategy whose wealth appears “better” when compared to the wealth

generated by any other strategy, in the sense that the ratio of the two processes

is a supermartingale. If such a strategy exists, it is essentially unique and we

call it the numéraire portfolio.

We derive necessary and sufficient conditions for the numéraire portfolio to

exist, in terms of the predictable characteristics of the stock-price process4. Since

we are working in a more general setting where jumps are also allowed, there

is the need to introduce a characteristic that measures the intensity of these

jumps. Sufficient conditions have already been established in the paper [15] of

Goll and Kallsen, where the focus is on the equivalent problem of maximizing

expected logarithmic utility. These authors went on to show that their con-

ditions are also necessary when the following assumptions hold: the problem

of maximizing the expected log-utility has a finite value, no constraints are

enforced on the strategies, and the (NFLVR) condition is satisfied. Further,

4These are the analogues (and generalizations) of the drift and volatility coëfficients in Itô

process models.
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Becherer [4] also discussed how under these assumptions the numéraire port-

folio exists; as is somewhat well-known, it coincides with the log-optimal one.

In both of these papers, deep results from Kramkov and Schachermayer [25] on

utility maximization from terminal wealth had to be used, to obtain necessary

and sufficient conditions.

Here we follow a bare-hands approach, which makes possible some improve-

ments. First, the assumption of finite expected log-utility is dropped completely

— there should be no reason for this to appear anyhow, since we are not work-

ing on the log-optimal problem. Secondly, we can enforce any type of closed

convex constraints on portfolio choice, as long as these arrive in a predictable

manner. Thirdly, and perhaps most controversially, we drop the (NFLVR) as-

sumption and impose no normative assumption on the model. It turns out that

the numéraire portfolio can exist even when the classical No Arbitrage (NA)

condition fails.

In the context of stochastic portfolio theory, we feel there is no need for no-

arbitrage assumptions to begin with: if there is arbitrage in the market, the

role of optimization should be actually to find and utilize these opportunities,

rather than ban the model. It is actually possible that the optimal strategy of

an investor is not the arbitrage (see Examples 3.7 and 3.19). The usual practice

of assuming that we can invest unconditionally on the arbitrage breaks down

because of credit limit constraints: arbitrages are sure to give more capital than

initially invested in at a fixed future date, but can do pretty badly meanwhile,

and this imposes an upper bound on the money the investor can bet on it. If

the previous reason for not banning arbitrage does not satisfy the reader, here is

a more severe problem: in very general semimartingale financial markets there

does not seem to exist any computationally feasible way of deciding whether
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arbitrages exist or not. This goes hand-in-hand with the fact that the exis-

tence of equivalent martingale measures — its incredible theoretical importance

notwithstanding — is a purely normative assumption and not easy to check, at

least by looking directly at the dynamics of the stock-price process.

Our second main result comes hopefully to shed some light on this situa-

tion. Having assumed nothing about the model when initially trying to decide

whether the numéraire portfolio exists, we now take a step backwards and in

the opposite-than-usual direction: we ask ourselves what the existence of the

numéraire portfolio can tell us about arbitrage-like opportunities in the market.

Here, the necessary and sufficient condition for existence is the boundedness in

probability of the collection of terminal wealths attainable by trading. Read-

ers acquainted with arbitrage notions will recognize that this boundedness in

probability is one of the two conditions that comprise (NFLVR); what remains

of course is the (NA) condition. One can go on further, and ask how severe

this assumption (of boundedness in probability for the set of terminal wealths)

really is. The answer is simple: when this condition fails, one cannot do utility

optimization for any utility function; conversely if this assumption holds, one

can proceed as usual with utility maximization.

The obvious advantage of not assuming the full (NFLVR) condition is that

there is a direct way of checking whether the weaker condition of boundedness

in probability holds, in terms of the predictable characteristics of the price

process, i.e., in terms of the dynamics of the stock-price process. Furthermore,

our result can be used to understand the gap between the concepts of (NA) and

the stronger (NFLVR); the existence of the numéraire portfolio is exactly the

bridge needed to go from (NA) to (NFLVR). This has already been understood
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for the continuous-path process case in the paper [9]; here we do it for the

general case.

0.2. Synopsis. We offer here an overview of what is to come, so the reader

does not get lost in the technical details and little detours.

Chapter 1 introduces the financial model, the ways that a financial agent can

invest in this market, and the constraints that an investor faces. In Chapter 2

we introduce the numéraire portfolio. We discuss how it relates to other notions,

and conclude with our first main result (Theorem 2.20) that provides necessary

and sufficient conditions for the existence of the numéraire portfolio in terms of

the predictable characteristics of the stock-price process.

Chapter 3 begins by recalling of some arbitrage notions and their interre-

lationships. We proceed to discuss the second main result, which establishes

the equivalence of the existence of the numéraire portfolio with an arbitrage

notion. Some applications are presented, namely in arbitrage equivalences for

exponential Lévy markets and in utility optimization.

In Chapters 2 and 3 some of the proofs are not given, since they tend to

be quite long; this is the content of the next three sections. In Chapter 4 we

describe necessary and sufficient conditions for existence of wealth processes that

are increasing and not constant. Chapter 5 deals with a deterministic, static

case of the problem, where prices are modeled by exponential Lévy processes.

After the case of exponential Lévy models, we proceed in Chapter 6 to general

semimartingales.

Finally, we include an Appendix. In an effort to keep the text as self-contained

as possible, we included there some topics that might not be as widely known as

we would wish, and some results which, were they to be presented in the main

text, would have interfered with its natural flow.
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0.3. General notation. A vector p of the d-dimensional real Euclidean space

Rd is understood as a d × 1 (column) matrix. The transpose of p is denoted

by p>, and the usual Euclidean norm is ‖p‖ :=
√

p>p. We use superscripts

to denote coordinates: p = (p1, . . . pd)>. By R+ we denote the positive real

half-line [0,∞).

The symbol “∧” denotes minimum: f ∧ g = min(f, g); for a real-valued

function f its negative part is f− := −(f ∧ 0) and its positive part is f+ :=

max(f, 0) = f + f−.

The indicator function of a set A is denoted by 1A. To ease notation and

the task of reading, subsets of Rd such as
{
x ∈ Rd | ‖x‖ ≤ 1

}
are “schemati-

cally” denoted by {‖x‖ ≤ 1}; for the corresponding indicator function we write

1{‖x‖≤1}.

A measure ν on Rd (Euclidean spaces are always supposed to be endowed

with the Borel σ-algebra) is called a Lévy measure, if ν({0}) = 0 and
∫

(1 ∧
‖x‖2)ν(dx) < +∞. A Lévy triplet (b, c, ν) consists of a vector b ∈ Rd, a d × d

symmetric, non-negative definite matrix c, and a Lévy measure ν on Rd. Once

we have defined the price processes, the elements c and ν of the Lévy triplet

will correspond to the instantaneous covariation rate of the continuous part and

to the instantaneous jump intensity of the process, respectively. Also, b can be

thought as an instantaneous drift rate, although one has to be careful with this

interpretation, since b does not take into consideration the drift coming from

large jumps of the process.

Suppose we have two measurable spaces (Ωi,Fi), i = 1, 2, a measure µ1 on

(Ω1,F1), and a transition measure µ2 : Ω1 × F2 7→ R+; i.e., for fixed ω1 ∈ Ω1,

the set function µ2(ω1, ·) is a measure on (Ω2,F2), and for fixed A ∈ F2 the

function µ2(·, A) is F1-measurable. We shall denote by µ1 ⊗ µ2 the measure on
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the product space (Ω1 × Ω2,F1 ⊗F2) defined for E ∈ F1 ⊗F2 as

(0.1) (µ1 ⊗ µ2) (E) :=

∫ (∫
1E(ω1, ω2)µ2(ω1, dω2)

)
µ1(dω1).

0.4. Remarks of probabilistic nature. For results concerning the general

theory of stochastic processes described below, we refer the interested reader to

the book [17] of Jacod and Shiryaev, especially the first two chapters.

We are given a stochastic basis (Ω,F ,F,P), where the filtration F = (Ft)t∈R+

is assumed to satisfy the usual hypotheses of right continuity and augmentation

by the P-null sets. Without loss of generality we can assume that F0 is P-

trivial and that F = F∞ :=
∨

t∈R+
Ft. The probability measure P will be fixed

throughout and will receive no special mention. Every formula, relationship,

etc. is supposed to be valid P-a.s. (again, no special mention will be made).

The expectation of random variables defined on the measure space (Ω,F ,P)

will be denoted by E.

The set Ω × R+ is the base space; a generic element will be denoted by

(ω, t). Every process on the stochastic basis can be seen as a function from

Ω × R+ with values in Rd for some d ∈ N. The predictable σ-algebra on

Ω×R+ is generated by all the adapted, left-continuous processes; we denote it

by P . Also, for any adapted, right-continuous process Y that admits left-hand

limits, its left-continuous version Y− is defined by setting Y−(0) := Y (0) and

Y−(t) := lims↑t Y (s) for t > 0; this process is obviously predictable. We also

define the jump process ∆Y := Y − Y−.

For a d-dimensional semimartingaleX and a d-dimensional predictable process

H, we shall denote by H ·X the stochastic integral process, whenever this makes

sense, in which case we shall be referring to H as being X-integrable5. Let us

5When we say that H is X-integrable we shall assume tacitly that it is predictable.
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note that we are assuming vector stochastic integration. A good account of

this can be found in [17] as well as in the paper [6] by Cherny and Shiryaev.

Also, for two real-valued semimartingales X and Y , we define their quadratic

covariation process by

[X, Y ] := XY −X0Y0 −X− · Y − Y− ·X.

Finally, by E(Y ) we shall be denoting the stochastic exponential of the linear

semimartingale Y ; we send the reader to Appendix A for more information.
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1. The Market, Investments, and Constraints

1.1. The stock prices model. On the given stochastic basis (Ω,F ,F,P) we

shall consider a (d + 1)-dimensional semimartingale S ≡ (S0, S1, . . . , Sd) that

models the prices of d+1 assets. The vector (S1, . . . , Sd) represents what we shall

casually refer to as stocks and S0 is the money market (or bank account). The

only difference between the stocks and the money market is that the latter plays

the role of a “benchmark”, in the sense that wealth processes are quoted in units

of S0 and not nominally. As we shall see (and as is common in Mathematical

Finance), for our problem we can assume that S0 ≡ 1; in economic language,

the interest rate is zero.

Coupled with S, there exists another (d+1)-dimensional semimartingale X ≡
(X0, X1, . . . , Xd) withX0 = 0 and ∆X i > −1 for i = 0, 1, . . . , d; X is the returns

process and generates the asset prices S in a multiplicative way: Si = Si
0E(X i),

i = 0, 1, . . . , d. The assumption of a money market satisfying S0 ≡ 1 (that will

eventually be made) gives rise to a returns process X0 ≡ 0.

Observe that we work with the stochastic — as opposed to the usual —

exponential; in financial terms, we consider simple - as opposed to compound -

interest. Simple interest is easier to comprehend in financial terms; also, as it

turns out, the stochastic exponential is mathematically much better-suited to

work with when we are dealing with stochastic processes.

Remark 1.1. Under our model we have S > 0 and S− > 0; one can argue that

this is not the most general case of a semimartingale model, since it does not

allow for negative prices — for example, prices of forward contracts can take

negative values. The general model should be an additive one: S = S0 + X,

where now X i represents the cumulative gains of Si after time zero and can
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be any semimartingale (without having to satisfy ∆X i > −1 for i = 1, . . . , d),

as long as at least the money market process S0, as well as its left-continuous

version remain strictly positive.

In our discussion we shall be using the returns process X, not the stock-price

process S directly. All the work we shall do carries to the additive model almost

vis-a-vis; whenever there is a small change we trust that the reader can spot

it. We choose to work under the multiplicative model since it is somehow more

intuitive and more applicable: almost every model used in practice is written

in this way.

The predictable characteristics of the returns process X will be important

in our discussion. To this end, we fix the canonical truncation function6 x 7→
x1{‖x‖≤1}. With respect to the canonical truncation and write the canonical

decomposition of the semimartingale X as

(1.1) X = Xc +B +
[
x1{‖x‖≤1}

]
∗ (µ− η) +

[
x1{‖x‖>1}

]
∗ µ.

Some remarks on this representation are in order. First, µ is the jump measure

of X, i.e., the random counting measure on R+ × (Rd \ {0}) defined by

(1.2) µ([0, t]× A) :=
∑

0≤s≤t

1A(∆Xs), for t ∈ R+ and A ⊆ Rd \ {0} .

With this in mind, the last process that appears in equation (1.1) is just[
x1{‖x‖>1}

]
∗ µ ≡

∑
0≤s≤· ∆Xs1{‖∆Xs‖>1}

the sum of the “big” jumps of X; throughout the text, the asterisk denotes

integration with respect to random measures. Once this term is subtracted

6In principle one could use any bounded Borel function h such that h(x) = x in a neigh-

borhood of x = 0; the use of this specific choice will merely facilitate some calculations and

notation.
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from X, what remains is a semimartingale with bounded jumps, thus a special

semimartingale with a unique decomposition into a predictable finite variation

part, denoted by B in (1.1), and a local martingale part. Finally, this last local

martingale part can be decomposed further, into its continuous part, denoted

by Xc, and its purely discontinuous part, which can be identified as the local

martingale
[
x1{‖x‖≤1}

]
∗ (µ−η). Here, η is the predictable compensator of µ, so

the purely discontinuous part is just a compensated sum of the “small” jumps

— the ones with less than unit magnitude.

We define C := [Xc, Xc] to be the quadratic covariation process of Xc. Then,

the triple (B,C, η) is called the triplet of predictable characteristics of X. We

set G :=
∑d

i=0 (Ci,i + Var(Bi) + [1 ∧ (xi)2] ∗ η); then G is an predictable, linear,

increasing process, and all three processes (B,C, η) are absolutely continuous

with respect to it. It follows that one can write

(1.3) B = b ·G, C = c ·G, and η = G⊗ ν

where all b, c and ν are predictable, b is a vector process, c is a positive-

definite matrix-valued process and ν is a process with values in the space of

Lévy measures. For the product-measure notation G ⊗ ν (see formula (0.1))

we consider the measure induced by G. Any process G̃ with dG̃t ∼ dGt can

be used in place of G, and is many times more natural. The final choice of an

increasing process G reflects also the idea of an operational clock (as opposed

to the natural time flow, described by t), since it should roughly give an idea of

how fast the market is moving.

We abuse terminology and also call (b, c, ν) the triplet of predictable charac-

teristics of X; this depends on G, but everything that we shall be discussing

are invariant to the choice of G.
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Remark 1.2. In “purely continuous” models, known in the literature as quasi-

left-continuous (meaning that the price process does not jump at predictable

times), G can be chosen continuous. Nevertheless, if we want to include discrete-

time models, we must allow for the possibility that G has positive jumps too.

Since C is a continuous increasing process, and also since by (1.1) we obtain

that E[∆Xτ1{‖∆Xτ‖≤1} | Fτ−] = ∆Bτ for every predictable time τ , we have

(1.4) c = 0 and b =

∫
x1{‖x‖≤1}ν(dx), on the predictable set {∆G > 0} .

Remark 1.3. We make a small technical observation. The properties of c being

a symmetric positive-definite predictable process and ν a predictable process

taking values in the space of Lévy processes, in general hold P⊗G-a.e. We shall

assume that they hold everywhere, i.e., for all (ω, t) ∈ Ω×R+; we can always do

this by changing them on a predictable set of P ⊗ G-measure zero to be c ≡ 0

and ν ≡ 0.

Definition 1.4. Let X be any7 semimartingale with canonical representation

(1.1), and consider an operational clock G such that the relationships (1.3) hold.

If
∫
{‖x‖>1} ‖x‖ ν(dx) <∞ for P⊗G-a.e. (ω, t) ∈ Ω× R+, then the drift rate of

X (with respect to G) is defined as the quantity

b+

∫
{‖x‖>1}

xν(dx).

The concept of drift rates will be used throughout. Their existence does

not depend on the choice of the operational clock G, although the drift rate

itself does. Under the assumption of Definition 1.4, if the increasing process[
‖x‖1{‖x‖>1}

]
∗ η =

(∫
{‖x‖>1} ‖x‖ ν(dx)

)
·G is finite (this happens if and only

7By “any” we mean not necessarily the returns process.
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if X is a special semimartingale), then the predictable process

B +
[
x1{‖x‖>1}

]
∗ η =

(
b+

∫
{‖x‖>1}

xν(dx)

)
·G

is called the drift of X. If drifts exist, drift rates exist too; the converse is not

true. Semimartingales that are not special might have well-defined drift rates.

For example a σ-martingale is exactly a semimartingale with vanishing drift

rate; cf. Appendix D on σ-localization for further discussion.

1.2. Wealth processes and strategies. Given an initial capital w ∈ R+, one

can invest in the assets described by the process S by choosing a predictable,

d-dimensional and (S1, . . . , Sd)-integrable process process θ, which we shall refer

to as strategy. The number θi
t represents the number of shares from the ith stock

held by the investor at time t. Let us denote the wealth process from such a

strategy by W . The total amount of money invested in stocks is
∑d

i=1 θ
iSi
−; in

order for the wealth process to satisfy the self-financing condition at every point

in time, it is necessary that the remaining wealth W− −
∑d

i=1 θ
iSi
− be invested

in the money market, which will result in returns (W− −
∑d

i=1 θ
iSi
−) · X0. In

this case the value of the investment is described by the process

(1.5) W := w +

(
W− −

d∑
i=1

θiSi
−

)
·X0 + θ · S.

Now, W represents the nominal amount of money that the investor has. It

is not hard to solve this last equation, because it is linear in W . One can

check directly (or consult Lemma A.3 of Appendix A) that the solution of

equation 1.5, given in terms of the discounted wealth W̃ := W/S0 and the

vector S̃ = (S1/S0, . . . , Sd/S0) of discounted stock prices, is

W̃ = w + θ · S̃.
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A peep ahead in Definition 2.1 reveals that the numéraire portfolio is defined

in terms of ratios of wealth processes; ratios of discounted wealth processes are

the same as ratios of the original wealth processes, so we might as well work in

discounted terms. From now on we assume that S0 ≡ 1 and that S and X are

d-dimensional processes with only “stock” components. Starting with capital

w ∈ R+ and investing according to the strategy θ, the investor’s wealth process

is W := w + θ · S. The local boundedness away from zero and infinity of S0

makes S-integrability equivalent to S̃-integrability, so we lose nothing in the

class of strategies.

Some restrictions have to be enforced so that the investor cannot use so-

called doubling strategies. The assumption prevailing in this context is that the

wealth process should be uniformly bounded from below by some constant. This

has the very clear financial interpretation of a credit limit that the particular

investor has to face. We shall set this credit limit to be zero; one can regard

this as just shifting the wealth process to some extend, and working with this

relative credit line instead of the absolute one. So, for any w ∈ R+ and any

predictable, S-integrable process θ, the value process W = w + θ · S is called

admissible if W ≥ 0.

1.3. Constraints on strategies. We start with an example in order to moti-

vate Definition 1.6 below.

Example 1.5. Suppose that the investor is prevented from selling stock short

or borrowing from the bank. In terms of the strategy and wealth process, this

will mean that θi ≥ 0 for all i = 1, 2, . . . , d and also θ>S− ≤ W−. By setting

C :=
{

p ∈ Rd | pi ≥ 0 and
∑d

i=1 pi ≤ 1
}

, the prohibition of short sales and
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borrowing is translated into the requirement
(
θiSi

−
)
1≤i≤d

∈ W−C, where this

relationship holds in an Ω× R+-pointwise manner.

The example leads us to consider the class of all possible constraints that

can be represented this way; although in this particular case the set C was non-

random, we might have situations where the constraints depend on both time

and the path.

Definition 1.6. Consider an arbitrary set-valued process C : Ω×R+ → B(Rd)

with 0 ∈ C(ω, t) for all (ω, t) ∈ Ω × R+. The admissible wealth process W =

w + θ · S will be called C-constrained, if the vector
(
θiSi

−
)
1≤i≤d

belongs to the

set W−C1{W−>0} + Č1{W−=0} in a Ω× R+-pointwise sense. Here

(1.6) Č :=
⋂
a>0

aC

is the set of cone points8 of C.

We denote by W the class of all admissible, C-constrained wealth processes.

By Wo we shall be denoting the subclass of W that consists of wealth processes

W which stay strictly positive, in the sense that W > 0 and W− > 0.

The special treatment of constraints on the set {W− = 0} is purely for con-

tinuity reasons: if we are allowed to invest according to θ(ω, t) however small

our capital is, we might as well be allowed to invest in it even if our capital is

zero, provided we keep ourselves with positive wealth. In any case, the reader

can easily ignore this; soon we shall be considering only wealth processes with

W− > 0.

8Tyrell Rockafellar in [29] calls Č the recession cone of C.
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Let us give another example of constraints of this type. They actually fol-

low from the positivity constraints and will not constrain the wealth processes

further, but the point is that we can always include them in our constraint set.

Example 1.7. Natural Constraints. An admissible strategy generates a

wealth process that starts positive and stays positive. Thus, if W = w + θ · S,

then we have ∆W ≥ −W−, or θ>∆S ≥ −W−, or further that
∑d

i=1 θ
iSi
−∆X i ≥

−W−. Remembering the definition or the random measure ν from (1.3). we

see that this requirement is equivalent to ν[
∑d

i=1 θ
iSi
−x

i < −W−] = 0, P ⊗ G-

almost everywhere. Define now the random set-valued process (randomness

comes through ν)

(1.7) C0 :=
{
p ∈ Rd | ν[p>x < −1] = 0

}
;

we shall call it the set-valued process of natural constraints. The requirement

∆W ≥ −W− is exactly what corresponds to θ being C0-constrained. Note that

C0 is not deterministic in general. It is now clear that we are not consider-

ing random constraints just for the sake of generality, but because they arise

naturally as part of the problem.

Remark 1.8. In our Definition 1.6 of C-constrained strategies, the multiplicative

factor W− before C might seem ad-hoc, but will be crucial in our analysis. We

have already seen how it comes up naturally in certain constraint considerations.

In any case, more wealth should give one more freedom in choosing the number

of stocks for investing. Finally, observe that if C is a cone process, we have

W−C = C = Č, so that the constraints do not depend on the wealth level.

Eventually (see section 2.3) we shall ask for more structure on the set-valued

process C, namely convexity, closedness and predictability. The reader can check
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that the examples presented have these properties; the “predictability structure”

should be clear from the definition of C0, which involves the predictable process

ν.

1.4. Stochastic exponential representation of wealth processes. Pick a

wealth process W ∈ Wo. Since the process W = w + θ · S satisfies W > 0 and

W− > 0, we can write W = wE(π · X), where π is the X-integrable process

with components πi := θiSi
−/W− (here we are using a property of the stochastic

integral that goes by the name “Second Associativity Theorem” and appears

as Theorem 4.7 in [6]). The equivalent of W > 0 and W− > 0 is π>∆X > −1.

The original constraints (θiSi
−)1≤i≤d ∈ W−C translate for the process π in the

requirement that

(1.8) π(ω, t) ∈ C(ω, t), Ω× R+-pointwise.

The converse also holds: start with a set-valued process C that represents

constraints on portfolios. For any X-integrable process π with π>∆X > −1

and π(ω, t) ∈ C(ω, t), Ω × R+-pointwise, set W := wE(π · X). Then, for the

S-integrable process θ with θi := πiW−/S
i
− we have W = 1 + θ · S for some

S-integrable θ. Both W and W− are strictly positive and the requirement (1.8)

amounts to θ being C-constrained: W is an element of Wo.

To summarize the preceding discussion: we have shown the class equality

Wo = {wE(π ·X) | w > 0 and π ∈ Π} , where

Π :=
{
π ∈ P | π is X-integrable, π>∆X > −1, and (1.8) holds

}
.

The elements of Π will be called portfolios; we make this distinction with the

corresponding notion of strategy, previously denoted by θ. A portfolio π ∈ Π

is understood to generate the wealth process W π := E(π ·X) and the strategy
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θ with θi = πiW π
−/S

i
−. It is clear that πi signifies the proportion of our current

wealth invested in the stock Si.

Example 1.9. We give some (rather trivial) examples of portfolios. Here, we

assume no constraint other than admissibility, i.e., C = C0. Denote by ei the

unit vector with all zero entries but for the ith coördinate, which is unit. Since

e>i ∆X = ∆X i > −1 for all i = 1, 2, . . . , d, we have that any unit vector ei

is a portfolio. Since the zero vector is always a portfolio and the class Π is

predictably convex9 it follows that any predictable process π with π ∈ [0, 1]d

and
∑d

i=1 π
i ≤ 1 is a portfolio. The quantity 1 −

∑d
i=1 π

i is the percentage of

wealth that is not invested in any stock.

A more interesting example is the market portfolio m, that is defined by

mi :=
Si
−∑d

j=1 S
j
−

;

we leave the reader the task to prove that

Wm =

(
d∑

j=1

Sj
0

)−1 d∑
j=1

Sj.

In this sense, the wealth generated by m follows the total capitalization of the

market (relative to the initial total capitalization, of course), hence the name

“market portfolio”.

1.5. Time horizons. We shall be working on an infinite time planning horizon.

Of course, any finite time horizon can be easily contained in this case, but let

us spend a few lines to explain this in some detail.

9Predictable convexity means that if π and π̃ are elements of Π and α is a [0, 1]-valued

predictable process then απ + (1− α)π̃ also belongs in Π
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Let us first discuss the range of integration of the portfolios that we are

considering. Up to now, we merely asked a portfolio π ∈ Π to be X-integrable.

Some authors10 require also the existence of the limit of the corresponding wealth

process at infinity. There is a notion of global integrability, which is stronger

than mere integrability plus the existence of the limit at infinity. One can

consult the book [5] of Bichteler; a discussion from a slightly different viewpoint

is made in Cherny and Shiryaev [7]. A brief account, together with some results

that we shall be using later on, is given in Appendix C. Let us denote by Π∞

the class of portfolios π ∈ Π which are globally X-integrable; we also define the

class W∞ of wealth processes as the elements of W that are semimartingales up

to infinity, and the corresponding “strictly positive” elements Wo
∞ as the value

processes W ∈ W∞ for which inft∈R+ W
π
t > 0.

Let us discuss now how we can embed any time-horizon in our discussion. Pick

any (possibly infinite-valued) stopping time τ . We shall say that a portfolio π

is X-integrable up to τ , if π is Xτ -integrable up to infinity, where Xτ represents

the stopped process defined by Xτ
t := Xτ∧t for all t ∈ R+. Under this proviso,

one can define the classes Πτ and Wτ as before, but requiring integrability up

to τ in place of plain integrability. It is clear that if τ1 ≤ τ2 are two stopping

times then Πτ2 ⊆ Πτ1 , with the same relationship holding for the wealth process

classes too. Note that if τ = ∞, the class Πτ is exactly Π∞ defined in the

previous paragraph.

Here is something more interesting: pick some (again, possibly infinite-valued)

predictable time τ ; so that there exists an increasing sequence of stopping times

(τn)n∈N such that τn ↑ τ and τn < τ on {τ > 0}. Say that a portfolio π is

X-integrable for all times before τ if it is X-integrable up to time τn for all

10Notably Delbaen and Schachermayer in their paper [8].
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n ∈ N. We define Πτ− and Wτ− as before, by the requirement of integrability

for all times before τ , i.e., Πτ− =
⋂

n∈N Πτn , and a similar relationship for the

wealth processes class. One easily sees that this definition is independent of

the announcing sequence (τn)n∈N. Obviously, Πτ ⊆ Πτ− and Wτ ⊆ Wτ−. For

τ = ∞, the difference in these classes is exactly the difference between the

requirements of plain and global integrability, and the classes W∞− and Π∞−

are exactly W and Π.

Now, with a clear conscience, we can utter the usual sentence: Since every-

thing can be deduced from the infinite-horizon case, we shall assume it from

now on, and not bother with remarks of the preceding type anymore. If we ever

refer to “integrability for all times”, it will have the usual meaning of simple

integrability.
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2. The Numéraire Portfolio: Definitions,

General Discussion and Predictable

Characterization of its Existence

2.1. The numéraire portfolio. Here is the central notion of our work.

Definition 2.1. A portfolio ρ ∈ Π will be called (global) numéraire portfolio, if

for every wealth process Ŵ ∈ W the relative wealth process, defined as Ŵ/W ρ,

is a supermartingale, and W ρ
∞ < +∞.

Since 0 ∈ Π, 1/W ρ is a positive supermartingale and the limit W ρ
∞ that

appears in this definition exists and is strictly positive. We ask it further to be

finite, because we want it to have a “global” property. The corresponding local

notion, where one does not impose W ρ
∞ < +∞, might be called “the numéraire

for all times before infinity”, following the discussion of section 1.5. Definition

2.1 in this form first appears in Becherer [4], where we send the reader for the

history of this concept. A simple observation from that paper shows that the

wealth process generated by numéraire portfolios is unique11: indeed, if there

are two numéraire portfolios ρ1 and ρ2 in Π, both W ρ1/W ρ2 and W ρ2/W ρ1 are

supermartingales; an application of Jensen’s inequality then gives

1 ≥ E [W ρ1
t /W ρ2

t ] ≥ (E [W ρ2
t /W ρ1

t ])−1 ≥ 1, for all t ∈ R+.

For the positive random variable U := W ρ1
t /W ρ2

t we have E[U ] = E[U−1] = 1, so

it must be that U = 1, i.e., W ρ1
t = W ρ2

t for any fixed t ∈ R+; since both processes

are càdlàg we have the result holding simultaneously for all t ∈ R+ so that

W ρ1 = W ρ2 . The uniqueness of the stochastic exponential gives ρ1 ·X = ρ2 ·X,

11This fact will also become clear later on.
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thus ρ1 = ρ2, P ⊗ G-almost everywhere. In this sense, the numéraire portfolio

is unique too.

This uniqueness property of the numéraire portfolio should explain the use

of the definite article “the” in its definition; nevertheless, there is also a sec-

ond reason for using the definite article, and this is linguistic. In general, by

“numéraire” we mean any strictly positive semimartingale process Y with Y0 = 1

(it may not even be generated by a portfolio) such that it acts as an “inverse

deflator” for our wealth processes, i.e., we see our investment according to a

portfolio π relatively to Y , giving us a wealth of W π/Y . Of course, if ρ satisfies

the requirements of Definition 2.1, W ρ can act as a numéraire is the sense of

what we are discussing here. Nevertheless, we agree to call W ρ “the numéraire”,

since it is in a sense the best tradable benchmark: whatever anyone else does,

it looks as a supermartingale12 through the lens of relative wealth to W ρ.

In accordance with the preceding paragraph, note an amusing fact: the prop-

erty of being the numéraire portfolio is numéraire-independent! Indeed, for any

numéraire Y the relative wealth of two wealth processes seen relatively to Y is

exactly equal to the relative wealth of the two wealth processes, since Y cancels

out. The reader can now see why in the first place we decided to work using the

money market to discount the wealth processes, thus assuming that S0 ≡ 1.

Remark 2.2. The numéraire portfolio is introduced in Definition 2.1 as the so-

lution to some optimization-type problem. As we shall see, it has at least four

more such optimality properties, which we mention here with hints on where

they will appear again. If ρ is the numéraire portfolio, then

12Supermartingale are in amny senses the stochastic analogues of decreasing functions.
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• it is growth-optimal, in the sense that it maximizes the growth rate over

all portfolios (cf. section 2.5);

• it maximizes the asymptotic growth of the wealth process it generates

over all portfolios (Proposition 2.18);

• it is also the solution of a log-utility maximization problem. In fact, if

this problem is defined in relative (as opposed to absolute) terms, the

two are equivalent. For more infomation, consult Proposition 3.16;

• it minimizes the reverse relative entropy among all supermartingale de-

flators. Consult Definition 3.6 on supermartingale deflators and Remark

3.8 for these notions and results.

We can state now our basic problem.

Problem 2.3. Find necessary and sufficient conditions for the existence of the

numéraire portfolio in terms of the triplet of predictable characteristics of the

stock-price process S (equivalently, of the returns process X).

Example 2.4. We can already give the first example of a numéraire portfolio.

The numéraire portfolio clearly exists and is equal to zero, if and only if all

elements W ∈ W are supermartingales under P. This is a trivial example, but

we shall make use of it when we study arbitrage in exponential Lévy markets.

Also, although not needed in the sequel, let us stay in accordance with our

problem and remark that the corresponding predictable characterization of this

is that

π>b+

∫
π>x1{‖x‖>1}ν(dx) ≤ 0,

for all predictable processes π with ν[π>x < −1] = 0.

In this Chapter we shall be concerned with the solution of Problem 2.3, which

appears as Theorem 2.20. In the next Chapter we shall also consider Problem
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3.5, which asks for an arbitrage characterization of the existence of the numéraire

portfolio.

The following simple result shows that the existence of the numéraire has

some implications for the class of wealth processes W .

Proposition 2.5. Suppose that the numéraire portfolio ρ exists. Then, all

wealth processes of W are semimartingales up to infinity (i.e., W = W∞) and

ρ is globally X-integrable (ρ ∈ Π∞, or equivalently W ρ ∈ Wo
∞).

Proof. Let us start with ρ. We already know that (W ρ)−1 being a positive su-

permartingale implies that (W ρ
∞)−1 := limt→∞ (W ρ

t )−1 exists and is finite. The

assumption W ρ
∞ < +∞ implies that (W ρ

∞)−1 is strictly positive. Lemma C.2 of

Appendix C gives both that ρ is globally X-integrable and that W ρ is a semi-

martingale up to infinity. Now, pick any otherW ∈ W ; sinceW/W ρ is a positive

supermartingale, Lemma C.2 applied again gives that it is a semimartingale up

to infinity, and so will be W = W ρ (W/W ρ). �

2.2. Preliminary necessary and sufficient conditions for existence of

the numéraire portfolio. In order to figure out whether a portfolio ρ ∈ Π

is the numéraire portfolio we should (at least) check that W π/W ρ is a super-

martingale for all π ∈ Π. This is seemingly weaker than the requirement of

Definition 2.1, but the two are actually equivalent; see the proof of Lemma 2.8.

For the time being, let us derive a convenient expression for the ratio W π/W ρ.

Thus, let us consider a baseline portfolio ρ ∈ Π that produces a wealth W ρ,

and any other portfolio π ∈ Π; their relative wealth process is given by the ratio

W π/W ρ = E(π ·X)/E(ρ ·X) . With the help of Lemma A.2 of Appendix A we
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get

(E(ρ ·X))−1 = E
(
−ρ ·X +

(
ρ>cρ

)
·G+

[
(ρ>x)2

1 + ρ>x

]
∗ µ
)
,

where µ is the jump measure of X defined in (1.2) and G is the operational

clock appearing in (1.3). The last equality coupled with use of Yor’s formula13

E(Y1)E(Y2) = E(Y1 + Y2 + [Y1, Y2]) will give

W π

W ρ
= E(π ·X) E

(
−ρ ·X +

(
ρ>cρ

)
·G+

[
(ρ>x)2

1 + ρ>x

]
∗ µ
)

= E
(
(π − ρ) ·X(ρ)

)
(we have skipped some calculations), where

X(ρ) := X − (cρ) ·G−
[

ρ>x

1 + ρ>x
x

]
∗ µ.

Remark 2.6. Let us call π(ρ) := π− ρ; then, we have the following situation: for

any portfolio π, the portfolio π(ρ) when invested in the market described by the

returns process X(ρ) generates a value equal to W π/W ρ. We can see the relative

wealth process as the usual wealth that would be generated by investing in an

auxiliary market. Of course, X(ρ) depends only on ρ as it should, since we only

consider the baseline fixed.

For ρ to be the numéraire portfolio, we want W π/W ρ to be a supermartingale.

In conjunction with Propositions D.2 and D.3, sinceW π/W ρ is a strictly positive

process, the supermartingale property is equivalent to the σ-supermartingale

one, which is in turn equivalent to requiring that its drift rate is finite and

negative (for drift rates look at Definition 1.4). For the reader not familiar with

the σ-localization technique, Kallsen’s paper [19] is a good reference; for an

overview of what is needed here, see Appendix D.

13Lemma A.1 in Appendix A.
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Since W π/W ρ = E
(
(π − ρ) ·X(ρ)

)
, the condition of negativity on the drift

rate of W π/W ρ is equivalent to saying that the drift rate of the semimartingale

(π− ρ) ·X(ρ) is negative. Straightforward computations give that this drift rate

(if it exists) is

(2.1)

rel(π | ρ) := (π−ρ)>b−(π−ρ)>cρ+

∫ [
(π − ρ)>x

1 + ρ>x
− (π − ρ)>x1{‖x‖≤1}

]
ν(dx).

The point of the notation rel(π | ρ) is to serve as a reminder that this quantity

is the rate of return of the relative wealth process W π/W ρ. Observe that the

integrand in (2.1), namely

1 + π>x

1 + ρ>x
− 1− (π − ρ)>x1{‖x‖≤1} ,

is ν-bounded from below by −1 on the set {‖x‖ > 1}, whereas on the set

{‖x‖ ≤ 1} (near x = 0) it behaves like (ρ − π)>xx>ρ, which is comparable

to ‖x‖2. It follows that the integral always makes sense, but can take the value

+∞, so that the drift rate of W π/W ρ either exists (i.e., is finite) or takes the

value +∞. In any case, the quantity rel(π | ρ) of (2.1) is well-defined. Let us

record what we just proved.

Lemma 2.7. Let π and ρ be two portfolios. Then, W π/W ρ is a supermartingale

if and only if rel(π | ρ) ≤ 0, P⊗G-almost everywhere.

Using this Lemma 2.6 we get the preliminary, necessary and sufficient condi-

tions needed to solve the numéraire problem. In a different, more general form,

these have already appeared in the paper [15] by Goll and Kallsen. We just

state them here as a consequence of our previous discussion.

Lemma 2.8. Suppose that C is enriched with the natural constraints (C ⊆ C0),

and consider a process ρ with ρ(ω, t) ∈ C(ω, t) for all (ω, t) ∈ Ω×R+. In order
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for ρ to be the numéraire portfolio in the class Π, it is necessary and sufficient

that

(1) rel(π | ρ) ≤ 0, holds P ⊗ G-a.e. for every predictable π with π(ω, t) ∈
C(ω, t).

(2) ρ is predictable; and

(3) ρ is globally X-integrable.

Proof. The necessity is trivial, but for the fact that we ask condition (1) to holds

not only for all portfolios, but for any predictable process π (which might not

even be X-integrable). Suppose it holds for all portfolios, and take a predictable

process π with π(ω, t) ∈ C(ω, t). Then, πn := π1{‖π‖≤n}+ρ1{‖π‖>n} is a portfolio,

so that rel(π | ρ)1{‖π‖≤n} = rel(πn | ρ) ≤ 0, and finally rel(π | ρ) ≤ 0.

The three conditions are also sufficient for ensuring that W π/W ρ is a super-

martingale for all predictable π with π(ω, t) ∈ C(ω, t); we have to show that the

latter property continues to hold even if we replace W π with any W ∈ W .

Of course, we can assume that W0 = 1. Now, pick W = 1 + θ · S for

some C-constrained strategy θ and define the sequence of stopping times τn :=

inf {t ∈ R+ | Wt ≤ 1/n}; the process 1 + (θ1[[0,τn]]) · S can be written as W πn

for some πn with πn(ω, t) ∈ C(ω, t), so that W/W ρ is a supermartingale on the

stochastic interval [[0, τn]]. Using Fatou’s lemma then, one shows that it is also

a supermartingale on the “interval type” set Γ :=
⋃

n∈N[[0, τn]]. We need only

show that (θ1(Ω×R+)\Γ ·S)/W ρ is also a supermartingale. We shall show, in fact,

that the process (θ1(Ω×R+)\Γ) ·S is identically zero, which is a way of saying that

zero is an absorbing state for W .

We claim that for all n ∈ N, the process W (n) := 1 + (nθ1(Ω×R+)\Γ) · S is an

element of W ; this happens because W (n) ≥ nW−1(Ω×R+)\Γ and θ1(Ω×R+)\Γ ∈
W−1(Ω×R+)\ΓC1{W− 6=0}. Now, since each W (n) is bounded from below by one,
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we have that W (n)/W ρ is a supermartingale for each n ∈ N. But W (n)/W ρ =

1/W ρ +nW1(Ω×R+)\Γ/W
ρ; and if W1(Ω×R+) is non-zero all these processes can-

not be supermartingales, since they will be unbounded in probability. We thus

conclude that (θ1(Ω×R+)\Γ) · S ≡ 0, which finishes the proof. �

In order to obtain necessary and sufficient conditions for the existence of the

numéraire portfolio in terms of predictable characteristics, the three conditions

of Lemma 2.8 will be tackled one by one. For condition (1), one has to solve

pointwise (for each fixed (ω, t) ∈ Ω × R+) a convex optimization problem over

the set C(ω, t). It is obvious that if (1) above is to hold for C, then it must also

hold for the closed convex hull of C, so we might as well assume that C is closed

and convex if we want to find the process ρ. For condition (2), in order to prove

that the solution we get is predictable, the set-valued process C must have some

predictable structure. We describe how this is done in the next section. After

this, a simple test in terms of predictable characteristics will give us condition

(3), and we shall be able to provide the solution of Problem 2.3 in Theorem

2.20.

2.3. The predictable, closed convex structure of constraints. Let us

start with a remark concerning degeneracies that might appear in the market.

This has to do with linear dependence that some stocks might exhibit at some

points of the base space, and will cause seemingly different portfolios to produce

the exact same wealth processes; they should then be treated as equivalent. To

formulate this notion, consider two portfolios π1 and π2 with W π1 = W π2 . The

uniqueness of the stochastic exponential will imply that π1 · X = π2 · X, and

so the predictable process ζ := π2 − π1 will satisfy ζ · X ≡ 0, which is easily
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seen to be equivalent to ζ ·Xc = 0, ζ>∆X = 0 and ζ · B = 0. This makes the

following definition plausible.

Definition 2.9. For a Lévy triplet (b, c, ν) define the linear subspace of null

investments N to be the set of vectors

(2.2) N :=
{
ζ ∈ Rd | ζ>c = 0, ν[ζ>x 6= 0] = 0 and ζ>b = 0

}
for which nothing happens if one invests in them. Two portfolios π1 and π2

satisfy π2(ω, t) − π1(ω, t) ∈ N(ω, t) for P ⊗ G-almost every (ω, t) ∈ Ω × R+ if

and only if W π1 = W π2 ; we consider such π1 and π2 to be the same.

Here are the predictability, closedness and convexity requirements for our

constraints.

Definition 2.10. The Rd-set-valued process C will be said to impose predictable

closed convex constraints if

(1) N(ω, t) ⊆ C(ω, t) for all (ω, t) ∈ Ω× R+,

(2) C(ω, t) is a closed convex set, for all (ω, t) ∈ Ω× R+, and

(3) C is predictably measurable, in the sense that for any closed F ⊆ Rd,

we have {C ∩ F 6= ∅} := {(ω, t) ∈ Ω× R+ | C(ω, t) ∩ F 6= ∅} ∈ P .

In this definition we must assume that C is closed and convex and contains

every null vector for every (ω, t) ∈ Ω×R+, not just in an “almost every” sense.

The first requirement in this definition can be construed as saying that we

are giving investors at least the freedom to do nothing; that is, if an investment

is to lead to absolutely no profit or loss, one should be free to make it. In the

non-degenerate case this just becomes 0 ∈ C(ω, t) for all (ω, t) ∈ Ω× R+.
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One can refer to Appendix B for more information about the measurability

requirement {C ∩ F 6= ∅} ∈ P for all closed F ⊆ Rd, where the equivalence with

other definitions of measurability is discussed.

In any case, we should include the following result, which is there to convince

the reader that all the constraints in mind belong in this class.

Lemma 2.11. Let (H,H) be an auxiliary measure space and φ : H × Rd 7→ R
a function that satisfies the following:

(1) φ(h, 0) ≤ 0 for all h ∈ H,

(2) φ(h, ·) is a convex function for fixed h ∈ H.

(3) φ(·, p) is H-measurable for fixed p ∈ Rd,

Also, let z : Ω×R+ 7→ H be a predictable process such that φ(z(ω, t),N(ω, t)) =

{φ(z(ω, t), 0)} (i.e., φ(z(ω, t), ·) is constant-valued on N(ω, t)) for all (ω, t) ∈
Ω× R+. Then, the set

C(ω, t) :=
{
p ∈ Rd | φ(z(ω, t), p) ≤ 0

}
is a predictable closed convex set-valued process.

Also, countable intersections of sets like this (where all (H,H), φ and z can

depend on n ∈ N) will be predictable closed convex constrains.

Proof. We briefly explain why this is true, sending the reader to section B for

all the details.

First of all, for the last sentence, the intersection of closed convex sets is again

closed and convex, so one only has to consult Lemma B.3 to find out that the

intersection of a sequence of measurable closed random sets is measurable too.

Now, the set
{
p ∈ Rd | φ(z, p) ≤ 0

}
is closed and convex (trivial from the

convexity in p of the functions φ) and it also contains N because φ(z,N) =



Konstantinos Kardaras - Doctoral Dissertation 32

{φ(z, 0)} and φ(h, 0) ≤ 0. Only the predictablity has to be discussed. Since

φ(z(ω, t), p) is a Carathéodory function, i.e, predictably measurable in (ω, t) ∈
Ω× R+ for fixed p ∈ Rd and continuous in p ∈ Rd with (ω, t) ∈ Ω× R+ fixed,

the result follows from Lemma B.5. �

The natural constraints C0 of (1.7) can be easily seen to satisfy the require-

ments of Definition 2.10; for the proof of the predictability requirement, which

is very plausible from the definition, see Corollary B.6 of Appendix B. In view

of this, we can always assume C ⊆ C0, since otherwise we can replace C by C∩C0

(and use the fact that intersections of closed predictable set-valued processes

are also predictable — see Lemma B.3 of Appendix B).

Example 2.12. Let us give an example of “local volatility” constraints. Here,

we assume that S (and thus X) is continuous. Risk-averse investors like to

have as few fluctuations of their wealth as possible. One possible local measure

of randomness is given by the square root of the quadratic variation rate of

the log-wealth process log(W π), which is equal to (π>cπ)1/2: this is the local

volatility and is exactly equal to the quadratic variation rate of π · X. Pick

now a predictable positive process ε of some “small” numbers and require that

(π>cπ)1/2 ≤ ε. This is a predictable convex constraint (observe that for any

π ∈ N we have π>cπ = 0).

We now give a little twist to the previous situation and turn it into the

problem of following closely a baseline14 portfolio. We shall use the notation

and ideas of Remark 2.6, which explains how we can see relative wealth processes

as usual wealth processes when investing in an auxiliary market. Suppose that

we want to invest in such a way as to not deviate a lot from a baseline portfolio

14This could be any index, or the whole market.
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ξ — for example, ξ could be the market portfolio m, in which case we would like

to follow an index closely, but not exactly. Here is what can be done: instead of

working under the original market, we work under the marker that is generated

by the process X(ξ) as described in Remark 2.6, and we try to keep the local

volatility in this new market low. In this sense, the constraint on the portfolio

π(ξ) we can use would be
(
(π(ξ))>cπ(ξ)

)1/2 ≤ ε. After the optimal portfolio π
(ξ)
∗

has been found (by any kind of optimization in this auxiliary market), we can

turn back to the original market and use π∗ := ξ+π
(ξ)
∗ as the optimal portfolio.

2.4. Unbounded Increasing Profit. We proceed with an effort to obtain a

better understanding of condition (1) in Lemma 2.8. In this section we state a

sufficient predictable condition of its failure; in the next section, when we state

our first main theorem about the predictable characterization for the existence

of the numéraire portfolio, we shall see that this condition is also necessary.

The failure of that condition is intimately related to the existence of wealth

processes that start with no capital at all, manage to escape from zero, and are

furthermore increasing. The existence of such a possibility in a financial market

amounts to the most egregious form of arbitrage.

Definition 2.13. A wealth process W ∈ W of the form W = θ ·S (in particular,

with W0 = 0), is called unbounded increasing profit, if θ ∈ Č and W is an

increasing process, not identically equal to zero. If no such wealth process

exists we say that the No Unbounded Increasing Profit (NUIP) condition holds.

The qualifier “unbounded” reflects the fact that, since θ ∈ Č, one can invest

as much as one wishes according to the strategy θ; by doing so, the investor’s

wealth will be multiplied accordingly. Of course, the numéraire cannot exist if

such strategies exist (this was actually shown implicitly in the proof of Lemma
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2.8). To obtain the connection with predictable characteristics, we also give the

definition of the immediate arbitrage opportunity vectors in terms of the Lévy

triplet.

Definition 2.14. Let (b, c, ν) be any Lévy triplet. Define the set I of immediate

arbitrage opportunities to be the set of vectors ξ ∈ Rd\N such that the following

three conditions hold:

(1) ξ>c = 0,

(2) ν[ξ>x < 0] = 0,

(3) ξ>b−
∫
ξ>x1{‖x‖≤1}ν(dx) ≥ 0.

Vectors of the set N in (2.2) satisfy these three conditions, but cannot be

considered “arbitrage opportunities” since they have zero returns. The set I is

a cone, with the entire “face” N removed. When we want to make explicit the

dependence of the set I on the chosen Lévy triplet (b, c, ν), we write I(b, c, ν).

Assume for simplicity that X is a Lévy process15 and that we can find a vector

ξ ∈ I. In terms of the process ξ ·X, condition (1) of Definition 2.11 implies that

there is no diffusion part, and condition (2) that there are no negative jumps;

condition (iii) implies that ξ ·X has finite first variation, though this is not as

obvious. Using also the fact that ξ /∈ N, we get that ξ ·X is actually non-zero

and increasing, and the same will hold for W ξ = E(ξ ·X). We refer the reader

to Chapter 4 for a thorough discussion.

Proposition 2.15. The (NUIP) condition of Definition 2.13 is equivalent to

the predictable set
{
I ∩ Č 6= ∅

}
being P⊗ G-null. Here Č :=

⋂
a∈R+

aC is the

15Of course this is not necessary, but it eases the presentation.



Konstantinos Kardaras - Doctoral Dissertation 35

set of cone points of C, and{
I ∩ Č 6= ∅

}
:=
{
(ω, t) ∈ Ω× R+ | I (b(ω, t), c(ω, t), ν(ω, t)) ∩ Č(ω, t) 6= ∅

}
.

The proof of this result is given in Chapter 4. As remarked before, one should

at least read the first part of Chapter 4, which contains the one side of the

argument: if there exists an unbounded increasing profit, the set
{
I ∩ Č 6= ∅

}
cannot be P⊗G-null. The other direction, though it follows the same idea, has

a “measurable selection” flavor and the reader might wish to skip or skim it.

Remark 2.16. One might wonder what connection the previous result has with

our original problem. We attempt here a quick answer, showing that if the

condition I ∩ Č = ∅ fails (i.e., if the set of cone points of our constraints C

exposes some immediate arbitrage opportunities), then one cannot find a ρ ∈ C

such that rel(π | ρ) ≤ 0 for all π ∈ C. To this end, pick a vector ξ ∈ I ∩ Č 6= ∅,
and suppose that ρ satisfied rel(π | ρ) ≤ 0, for all π ∈ C. Since ξ ∈ Č, we have

nξ ∈ C for all n ∈ N and the convex combination (1− n−1)ρ+ ξ ∈ C too; but C

is closed, and so ρ+ ξ ∈ C. Now

rel(ρ+ ξ | ρ) = . . . = ξ>b−
∫
ξ>x1{‖x‖≤1}ν(dx) +

∫
ξ>x

1 + ρ>x
ν(dx)

is strictly positive from the definition of ξ, a contradiction. It follows that there

cannot exist any ρ satisfying rel(π | ρ) ≤ 0 for all π ∈ C.

We already mentioned that the converse holds as well; namely if I ∩ Č = ∅,
then one can find a ρ that satisfies the previous requirement. But the proof of

this part is longer; it is carried out in Chapter 5.

2.5. The growth-optimal portfolio and connection with the numéraire

portfolio. We hinted in Remark 2.16 that if
{
I ∩ Č 6= ∅

}
is P ⊗ G-null, then
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one can find a process ρ ∈ C ∩ C0 such that rel(π | ρ) ≤ 0 for all π ∈ Π. It is

actually also important to have an algorithmic way of computing ρ.

For a portfolio π ∈ Π, its growth rate is defined as the drift rate of the log-

wealth process logW π. One can use the stochastic exponential formula (A.1)

and formally (since it will not always exist) compute the growth rate of π to be

(2.3) g(π) := π>b− 1

2
π>cπ +

∫ [
log(1 + π>x)− π>x1{‖x‖≤1}

]
ν(dx).

It is well-understood by now that the numéraire portfolio and the portfolio

that maximizes in an (ω, t)-pointwise sense the growth rate over all portfolios

in Π are essentially the same. Let us describe this in some more detail, being a

bit informal for now. A vector ρ ∈ C maximizes this concave function g if and

only if the directional derivative of g at the point ρ in the direction of π − ρ is

negative for any π ∈ Π. One can compute this directional derivative to be

(∇g)ρ(π−ρ) = (π−ρ)>b−(π−ρ)>cρ+
∫ [

(π − ρ)>x

1 + ρ>x
− (π − ρ)>x1{‖x‖≤1}

]
ν(dx),

and this turns out to be exactly rel(π | ρ) .

Let us now be more formal. We do not know if we can differentiate under

the integral appearing in equation 2.3; even worse, we do not know a priori

whether the integral is well-defined. Both its positive and negative parts could

lead to infinite results. The non-integrability of the negative part is not too

severe, since one wants to maximize g: if a portfolio π leads to the negative

part of the integrand integrate to infinity, all vectors aπ for a ∈ [0, 1) will lead

to a finite result. More annoying is the fact that the positive part can integrate

to infinity, especially if one notices that if this happens for at least one vector

π ∈ C, concavity will imply that it happens for many vectors — actually for all

vectors in the relative interior of C, with the possible exception of those of the
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form −aπ for a > 0. This problem is exactly the “pathwise” analogue of the

situation where the expected log-utility is infinite, and both can be resolved in

the exact same way: by looking at relative, instead of absolute, quantities. This

will become very clear when we reach section 3.3.

In the spirit of the above discussion, let us describe a class of Lévy measures

for which the concave growth rate function g of (2.3) is well-defined.

Definition 2.17. (i) A Lévy measure ν will be said to integrate the log, if we

have ∫
{‖x‖>1}

log(1 + ‖x‖)ν(dx) <∞.

(ii) Consider any Lévy measure ν. A sequence (νn)n∈N of Lévy measures with

νn ∼ ν that integrate the log, and with densities fn := dνn/dν satisfying

0 < fn ≤ 1, fn(x) = 1 for ‖x‖ ≤ 1, and lim
n→∞

↑ fn = 1

will be called an approximating sequence.

There are many ways to choose the sequence (νn)n∈N, or equivalently the

densities (fn)n∈N; for example one could take fn(x) = 1{‖x‖≤1}+‖x‖−1/n 1{‖x‖>1}.

Observe also that the sets C0, N and I remain unchanged if we move from the

original triplet to any of the approximating triplets, which will be useful since

it gives us that I(b, c, ν) ∩ Č = ∅ if and only if I(b, c, νn) ∩ Č = ∅ for all n ∈ N.

The problem of the positive infinite value for the integral appearing in equa-

tion (2.3) disappears when the Lévy measure ν integrates the log. In the general

case, where the growth-optimal problem takes an infinite value, our strategy

will be the following: we shall solve the optimization problem concerning g for

a sequence of problems using the approximation described in Definition 2.17,
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and then show that the corresponding solutions converge to the solution of the

original problem.

2.6. An asymptotic optimality property of the numéraire portfolio.

Before we proceed, let us also give an “asymptotic growth optimality” property

of the numéraire portfolio. Let us first note that, since by definition W π/W ρ is

a positive supermartingale for every π ∈ Π, the limt→∞(W π
t /W

ρ
t ) exists and is

[0,+∞)-valued. As a consequence, for any increasing processH withH∞ = +∞
(H does not even have to be adapted!),

(2.4) lim sup
t→∞

(
1

Ht

· log
W π

t

W ρ
t

)
≤ 0 .

This version of “asymptotic growth optimality” was first observed and proved

(for Ht ≡ t, but this is not too essential) in Algoet and Cover [1] for the

discrete-time case; see also Karatzas and Shreve [23] and Goll and Kallsen [15]

for a discussion of (2.4) for the continuous-path and the general semimartingale

case respectively.

In Proposition 2.18 below, we separate the cases when limt→∞(W π
t /W

ρ
t ) is

(0,∞)-valued and when it is zero, by finding a predictable characterization of

this dichotomy. Also, in the case of convergence to zero, we quantify how fast

does this takes place. Note that Proposition 2.18 mostly makes sense if the

numéraire portfolio exists for all times before infinity but not globally, i.e., if

W ρ
∞ = +∞.

Proposition 2.18. Assume that the numéraire portfolio ρ exists (not necessar-

ily globally). For any other π ∈ Π, define the positive, predictable process

λπ := −rel(π | ρ) +
1

2
(π − ρ)>c(π − ρ) +

∫
ha

(
1 + π>x

1 + ρ>x

)
ν(dx),
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where ha(y) := [− log a+ (1− a−1)y]1[0,a)(y)+[y − 1− log y]1[a,+∞)(y) for some

a ∈ (0, 1) is a positive, convex function. Consider the increasing, predictable

process Λπ := λπ ·G . Then

on {Λπ
∞ < +∞} , we have lim

t→∞

W π
t

W ρ
t

∈ (0,+∞), whereas

on {Λπ
∞ = +∞} , we have lim sup

t→∞

(
1

Λπ
t

· log
W π

t

W ρ
t

)
≤ −1 .

Remark 2.19. Some remarks are in order. Let us begin with the “strange look-

ing” function ha, that depends also on the (cut-off point) parameter a ∈ (0, 1).

Ideally we would like to define h0(y) = y − 1 − log y for all y > 0 ; but the

problem is that the positive, predictable process
∫
h0

(
1+π>x
1+ρ>x

)
ν(dx) may fail to

be G-integrable, because the function h0(y) explodes to +∞ as y ↓ 0. For this

reason, we define ha(y) to be equal to h0(y) for all y ≥ a, and for y ∈ [0, a) we

define it in a linear way so that at the “gluing” point a, ha is continuously dif-

ferentiable. The functions ha(·) all are finite-valued at y = 0 and satisfy ha ↑ h0

as a ↓ 0.

Now, let us focus on λ and Λ. Observe that λπ is predictably convex in

π, namely, if π1 and π2 are two portfolios and ϑ is a [0, 1]-valued predictable

process, then λϑπ1+(1−ϑ)π2 ≤ ϑλπ1 + (1 − ϑ)λπ2 . This, together with the fact

that λπ = 0 if and only if π − ρ is a null investment, implies that λπ can be

seen as a measure of instantaneous deviation of π from ρ; by the same token,

Λπ
∞ can be seen as the total (cumulative) deviation of π from ρ. With these

remarks in mind, Proposition 2.18 says in effect that, if an investment deviates

a lot from the numéraire portfolio (i.e., if Λπ
∞ = +∞), its performance will

lag considerably behind that of the numéraire portfolio. Only if an investment

follows very closely the numéraire portfolio the whole time (i.e., if Λπ
∞ < +∞)
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will the two wealth processes have comparable growths over the entire time

period. Also, in connection with the previous paragraph, letting a ↓ 0 in the

definition of Λ we get equivalent measures of distance of a portfolio π from the

numéraire portfolio, in the sense that the event {Λπ
∞ = +∞} does not depend

on the choice of a; nevertheless we get ever sharper results, since λπ is increasing

for decreasing a ∈ (0, 1).

Proof. The proof of Proposition 2.18 is immediate from its abstract version,

which is Lemma A.7 in the Appendix. One only has to notice that W π/W ρ is

a positive supermartingale and to identify A of Lemma A.7 with rel(π | ρ) ·G,

Ĉ with
(
(π − ρ)>c(π − ρ)

)
·G, and h(1 + x) ∗ η̂ with

(∫
h
(

1+π>x
1+ρ>x

)
ν(dx)

)
·G,

respectively. �

2.7. The first main result. We are now ready to state the main result which

describes the predictable characterization for the existence of the numéraire

portfolio. We already discussed about condition (1) of Lemma 2.8 and its pre-

dictable characterization: there exists a predictable process ρ with ρ(ω, t) ∈
C(ω, t) such that rel(π | ρ) ≤ 0 for all π ∈ Π, if and only if

{
I ∩ Č 6= ∅

}
has

zero P⊗G-measure. If this holds we construct such a predictable process ρ, and

the only thing that might keep ρ from being the numéraire portfolio is failure

of global X-integrability. To cover this, for a given predictable process ρ define

φρ := ν
[
ρ>x > 1

]
+

∣∣∣∣ρ>b+

∫ [
ρ>x

(
1(‖x‖>1) − 1(ρ>x>1)

)]
ν(dx)

∣∣∣∣ .
Here is the statement of the main theorem; its proof is given in Chapter 6.

Theorem 2.20. Consider a financial model described by a semimartingale re-

turns process X and predictable closed convex constraints C. Then we have the

following:
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The set
{
I ∩ Č 6= ∅

}
is predictable. If it has zero P⊗G-measure, there exists a

unique predictable process ρ with ρ(ω, t) ∈ C ∩N⊥(ω, t) such that rel(π | ρ) ≤ 0

for all π ∈ Π. On the predictable set
{∫

{‖x‖>1} log(1 + ‖x‖)ν(dx) <∞
}
, the

process ρ is obtained as the unique solution of the concave optimization problem

ρ = arg max
π∈C∩N⊥

g(π);

in general, it can be obtained as the limit of the solutions to the corresponding

problems where one replaces ν by νn (an approximating sequence) in the defini-

tion of g. Finally, if the previous process ρ is such that (φρ ·G)∞ < +∞, then

ρ ∈ Π∞, and it is the numéraire portfolio.

Conversely, suppose that the numéraire portfolio ρ exists for the class Π.

Then, the predictable random set
{
I ∩ Č 6= ∅

}
has zero P ⊗ G-measure, and ρ

satisfies (φρ ·G)∞ < +∞ and rel(π | ρ) ≤ 0 for all π ∈ Π.

Remark 2.21. Let us pause slightly to remark on the above condition, which

amounts to the global G-integrability of both

(2.5)

φρ
1 := ν

[
ρ>x > 1

]
and φρ

2 := ρ>b+

∫ [
ρ>x

(
1{‖x‖>1} − 1{ρ>x>1}

)]
ν(dx).

Now, the integrability of φρ
1 simply states that the process ρ ·X cannot make an

infinite number of large positive jumps; but this must obviously be the case if

ρ ·X is to have any limit at infinity, let alone be a semimartingale up to infinity.

The second term φρ
2, is exactly the drift rate of the part of ρ ·X that remains

when we subtract all large positive jumps (more than unit in magnitude). This

part has to be a special semimartingale up to infinity, so its drift rate must be

globally G-integrable, which is exactly the requirement (|φρ
2| ·G)∞ <∞.
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Example 2.22. Let us consider the case where X is a continuous-path semi-

martingale. Since the jump-measure ν is then identically equal to zero, an

immediate arbitrage opportunity is a vector ξ ∈ Rd with cξ = 0 and ξ>b > 0.

It follows that there are no immediate arbitrage opportunities if and only if b

lies in the range of c, i.e., if there exists a d-dimensional process ρ with b = cρ;

of course, if c is non-singular this always holds and ρ = c−1b. It is easy to

see that this “no immediate arbitrage opportunities” condition is equivalent to

dBt � d[X,X]t. We refer the reader to [22], to Chapter 1 of [23], and to [9] for

more thorough discussion.

Consider now the unconstrained case C = Rd. The derivative of the growth

rate is (∇g)π = b− cπ = cρ− cπ, which is trivially zero for π = ρ, and so ρ will

be the numéraire portfolio as long as
(
(ρ>cρ) ·G

)
∞ <∞, or, in the case where

c−1 exists, when
(
(b>c−1b) ·G

)
∞ <∞.

Remark 2.23. Let us write X = A + M for the unique decomposition of a

special semimartingale X into a predictable finite variation part A and a local

martingale M , which we further assume is locally square-integrable. By calling

〈M,M〉 the predictable compensator of [M,M ], the condition for absence of

immediate arbitrage opportunities in continuous-path models is the very simple

dAt � d 〈M,M〉t. This should be compared with the more complicated way we

have defined this notion for general markets in Definition 2.14. One wonders

if we can have the simple criterion of continuous-path models in more general

situations. It is easy to see that dAt � d 〈M,M〉t is necessary for absence

of immediate arbitrage opportunities; nevertheless, it is not sufficient — it is

too weak. Take for example X to be standard linear Poisson process. In the

absence of constraints on portfolio choice, any positive portfolio is an immediate
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arbitrage opportunity. Nevertheless, At = t and Mt = Xt − t with 〈M,M〉t =

t = At, so that dAt � d 〈M,M〉t holds trivially.
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3. Arbitrage Characterization of the Numéraire

Portfolio, and Applications in Mathematical

Finance

3.1. Arbitrage-type definitions. There are two widely-known conditions re-

lating to arbitrage in financial markets: the classical “No Arbitrage” and its

stronger version “No Free Lunch with Vanishing Risk”. We recall them below,

together with yet another notion; this is exactly what one needs to bridge the

gap between the previous two, and it will actually be the most important for

our discussion.

Definition 3.1. For the following three definitions we consider our financial

model with constrains C on the set of portfolios Π.

(1) A portfolio π ∈ Π∞ is said to generate an arbitrage opportunity, if it

satisfies P[W π
∞ ≥ 1] = 1 and P[W π

∞ > 1] > 0. If no such portfolio exists

we say that the market satisfies the no arbitrage (NA) condition.

(2) A sequence of portfolios (πn)n∈N that are elements of Π∞ is said to

generate an unbounded profit with bounded risk, if the collection of

positive random variables (W πn
∞ )n∈N is unbounded in probability, i.e., if

lim
m→∞

↓
(

sup
n∈N

P[W πn
∞ > m]

)
> 0.

If no such sequence exists, we say that the market satisfies the no un-

bounded profit with bounded risk (NUPBR) condition.

(3) A sequence (πn)n∈N of elements in Π∞ is said to be a free lunch with

vanishing risk, if there exist an ε > 0 and an increasing sequence (δn)n∈N

of real numbers with 0 ≤ δn ↑ 1, such that P[W πn
∞ ≥ δn] = 1 as well as
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P[W πn
∞ ≥ 1 + ε] ≥ ε. If no such sequence exists we say that the market

satisfies the no free lunch with vanishing risk (NFLVR) condition.

We have to use elements of Π∞ in the previous definitions, in order to make

sure that the limits exist. If there exists unbounded profit with bounded risk,

one can find a sequence of wealth processes, each starting with less and less

capital (converging to zero) and such that the terminal wealths are unbounded

with a fixed probability. Thus, “Unbounded Profit with Bounded Risk” can

be translated as “the possibility of making (a considerable) something out of

almost nothing”; it should be contrasted with the classical notion of arbitrage,

which can be translated as “the certainty of making something more out of

something”.

None of the two conditions (NA) and (NUPBR) implies the other, and they

are not mutually exclusive. It is easy to see that they are both weaker than

(NFLVR). In fact, we have the following result that gives the exact relationship

between these notions under the case of cone constraints. Its proof can be found

in [8] for the unconstrained case; we include it here for completeness.

Proposition 3.2. Suppose that C enforces predictable closed convex cone con-

straints. Then, (NFLVR) holds if and only if both (NA) and (NUPBR) hold.

Proof. It is obvious that if either of the conditions (NA) or (NUPBR) fail, then

(NFLVR) fails too.

Conversely, suppose that (NFLVR) fails. If (NA) fails there is nothing more

to say, so suppose that (NA) holds and let (πn)n∈N generate a free lunch with

vanishing risk. Since we have no arbitrage, the assumption P[W πn
∞ ≥ δn] = 1

results in the stronger P[inft∈R+ W
πn
t ≥ δn] = 1. Construct a new sequence of

portfolio (π̃n)n∈N by requiring W π̃n = 1 + (1 − δn)−1(W πn − 1). The reader
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can readily check that W π̃n ≥ 0 and that π̃n(ω, t) ∈ C(ω, t), Ω × R+-pointwise

(here it is essential that C be a cone). Further, P[W πn
∞ ≥ 1+ ε] ≥ ε translates to

P[W π̃n
∞ ≥ 1+(1−δn)−1ε] ≥ ε, which means that (π̃n)n∈N generates an unbounded

profit with bounded risk so that (NUPBR) fails and the proof is over. �

The (NFLVR) condition has proven very fruitful in understanding cases when

we can change the original measure P to some other equivalent probability

measure such that the stock-price processes (or, at least the wealth processes)

has some kind of martingale (or maybe only supermartingale) property under

Q. The following definition puts us in the proper context for the statement of

Theorem 3.4.

Definition 3.3. Consider a financial market model described by a semimartin-

gale returns X and predictable closed convex cone constraints C. A probability

measure Q will be called an equivalent supermartingale measure, if Q ∼ P, and

every W ∈ W is a Q-supermartingales. If such a measure exists, we denote this

fact by (ESMM).

Similarly define the concept of an equivalent local martingale measure (ELMM)

Q by requiring Q ∼ P and that every W ∈ W is a Q-local martingale.

In this definition we assume that C are cone constraints. The reason is that if

(ESMM) or (ELMM) holds for the market with convex constraints C, the same

holds for the constraints cone(C), the closure of the cone generated by C.

The following theorem is one of the most well-known in mathematical finance;

we give the “constrained” version.
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Theorem 3.4. For a financial market model with stock-price process S and

predictable closed convex cone constraints C, (NFLVR) and (ESMM) are equiv-

alent.

In the unconstrained case, one can prove further that there exists a Q ∼ P
such that the stock prices S become σ-martingales under Q — this version of

the theorem is what is called the “Fundamental Theorem of Asset Pricing”.

The concept of σ-martingale is just the σ-localized equivalent of local martin-

gales; the reader should consult Appendix D for more information. Since we are

assuming positive stock price processes, and a positive σ-martingale is a local

martingale, we conclude that S is a vector of local martingales under Q. Nev-

ertheless, it should be pointed out that Theorem 3.4 holds for any stock-price

process, and then the local martingale concept is not sufficient. In any case,

we know in particular that Q will be an equivalent local martingale measure

according to Definition 3.3.

As a contrast to the preceding paragraph, let us note that because we are

working under constraints, we cannot hope in general for anything better than

an equivalent supermartingale measure in the statement of Theorem 3.4. One

can see this easily in the case where X is a single-jump process which jumps

at a stopping time τ with ∆Xτ ∈ (−1, 0) and we are constrained in the cone

of positive strategies. Under any measure Q ∼ P, the process S = E(X),

an element of W , will be non-increasing and not identically equal zero, which

prevents it from being a local martingale.

The implication (ESMM) ⇒ (NFLVR) is easy; the reverse implication is

considerably harder for the general semimartingale model. There is a saga

of papers devoted in proving some version of it. A proof of Theorem 3.4 in

the generality we assume, appears in the paper [18] by Kabanov, although all
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the crucial work has been done by Delbaen and Schachermayer in [8] and the

theorem is certainly due to them. To make sure that Theorem 3.4 can be derived

from Kabanov’s result, one has to observe that the class of wealth processes W
is convex and closed in the semimartingale16 topology. A careful inspection

of the proof in Mémin’s work [28], of the fact that the class of all stochastic

integrals with respect to the d-dimensional semimartingale X is closed under

this topology, will convince the reader that one can actually pick the limiting

semimartingale from a convergent sequence in W to be again an element of W .

3.2. The numéraire portfolio and arbitrage. We now discuss the relation-

ship of the numéraire portfolio with the arbitrage notions previously defined.

Problem 3.5. Find necessary and sufficient conditions for the existence of the

numéraire portfolio in terms of arbitrage notions (as the ones in Definition 3.1).

The solution to this problem is our second main result, Theorem 3.12.

Let us start by assuming that everything is nice and the numéraire W ρ exists

globally. By way of definition, the process (W ρ)−1 acts as a “deflator”, under

which all wealth processesW ∈ W become supermartingales. Of course, (W ρ)−1

does not have to be the only process with this property.

Definition 3.6. The class of supermartingale deflators D is defined as

D := {D ≥ 0 | D0 = 1, DW is a supermartingale for all W ∈ W} .

By Do we denote the class of equivalent supermartingale deflators, that is of

elements D ∈ D for which we further have D∞ > 0.

16Sometimes this is called the Émery topology.
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An equivalent supermartingale measure Q generates an equivalent super-

martingale deflator, in terms of the positive martingale

Dt :=
dQ
dP

∣∣∣
Ft

, for t ∈ R+,

so that (ESMM) ⇒ Do 6= ∅. In general, the elements of D are supermartingales,

not martingales, and the reverse implication Do 6= ∅ ⇒ (ESMM) does not hold,

as can ne seen from the following simple example.

Example 3.7. The 3-dimensional Bessel Process. Consider a one-stock

market, where the price process satisfies the stochastic differential equation

dSt = S−1
t dt+ dβt , S0 = 1 . Here, β is a standard, linear Brownian motion, so

S is the 3-dimensional Bessel process. We work on the finite time horizon [0, 1].

Clearly, b = S−2 and c = S−2, so the numéraire portfolio for the unconstrained

case exists and is ρ = c−1b = 1. Thus Do 6= ∅. Although the numéraire portfolio

exists, this market admits arbitrage. To wit, with the notation

ϕ(x) =
e−x2/2

√
2π

, Φ(x) =

∫ x

−∞
ϕ(u)du, for x ∈ R,

consider the function κ(x) := xϕ(x)/Φ(x), x > 0, which is easily seen to

satisfy κ(0+) = 0 and κ(+∞) = 0. It follows that κ is bounded, so that

the the predictable process πt = κ
(
St/
√

1− t
)
, for t ∈ [0, 1] is a well-defined

portfolio. In the next paragraph we shall see that simple use of Itô’s formula

shows that the wealth process generated by using the portfolio π is given by

W π
t = cΦ

(
St/
√

1− t
)
, where c is chosen so that W π

0 = 1, i.e., c := 1/Φ(1) .

Since S1 > 0, it follows that W π
1 = 1/Φ(1) > 1, i.e., there exists arbitrage, and

of course (NA), and thus (ESMM), fails.
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To prove the preceding claim, set Yt := Φ
(

St√
1−t

)
and observe that Y > 0.

Then, one has to prove that

dYt

Yt

= κ

(
St√
1− t

)
dSt

St

,

which is the same as

(3.1) dYt =
1√

1− t
ϕ

(
St√
1− t

)
dSt.

Let us write Ŝt = St/
√

1− t to easy the task of reading. In order to prove

(3.1), first observe that

dŜt =
1√

1− t
dSt +

St

2(1− t)3/2
dt =

1√
1− t

dSt +
Ŝt

2(1− t)
dt,

so that further use of Itô’s formula gives

dΦ(Ŝt) = ϕ(Ŝt)dŜt +
1

2(1− t)
ϕ′(Ŝt)dt

=
1√

1− t
ϕ(Ŝt)dSt +

1

2(1− t)

(
ϕ′(Ŝt) + Ŝtϕ(Ŝt)

)
dt

=
1√

1− t
ϕ(Ŝt)dSt,

where the last equality follows from ϕ′(x) = −xϕ(x). The claim is proved.

There exists also an indirect way to show that arbitrage exists, proposed by

Delbaen and Schachermayer [11]. For this, one has to assume that the filtration

F is the one generated by S, or equivalently by β. It is well-known that S−1 is

a strict local martingale, i.e., E[S−1
t ] < 1 for all t > 0. Furthermore, using the

strong martingale representation property of β it can be seen that S−1
1 is the

only candidate for an equivalent local martingale measure density. Since it fails

to integrate to one, (ESMM) fails. Theorem 3.4 implies that (NFLVR) fails; the

fact that it is actually (NA) which fails, will become clear after Theorem 3.12.
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We note that this is one of the rare occasions, when one can compute the

arbitrage portfolio concretely. We were successful in this, because of the very

special structure of the 3-dimensional Bessel process; every model has to be

attacked in a different way and there is no general theory that will spot the

arbitrage. Nevertheless, we refer the reader to Fernolz, Karatzas and Kardaras

[14] and Fernolz and Karatzas [13] for many examples of arbitrage relatively to

the market portfolio, under easy-to-check, descriptive (as opposed to normative)

conditions on market structure.

Remark 3.8. In order to keep the discussion complete, let us mention that, if

the numéraire portfolio ρ exists, the supermartingale property of DW ρ for all

D ∈ D leads to the property

(3.2) E [logW ρ
∞] = inf

D∈D
E
[
log
(
D−1
∞
)]

of the supermartingale deflator (W ρ
∞)−1.

Indeed, to prove this, first observe that since every D ∈ D is itself is a

supermartingale (take π = 0), the inequality log− x ≤ x−1 for all x > 0 shows

that E log− (D−1
∞ ) ≤ ED∞ ≤ 1, so that E log (D−1

∞ ) always makes sense and can

take the value +∞. Now, if E log (D−1
∞ ) = ∞ for all D ∈ D there is nothing to

prove. So, pick a D ∈ D with E log (D−1
∞ ) < ∞. Using the fact that DW ρ is

a supermartingale, that log (D−1
∞ ) is integrable and Jensen’s inequality for the

logarithmic function we get E logW ρ
∞ ≤ E log (D−1

∞ ) <∞.

Equation (3.2) can be seen as an optimal property of the numéraire portfolio,

dual to log-optimality (this is discussed in section 3.3). Also, we can consider

it as a minimal reverse relative entropy property of (W ρ)−1 in the set D. Let

us explain: when an element D ∈ D is actually a probability measure Q, i.e.,

dQ = D∞dP, then H(P | Q) := E[log (D−1
∞ )] = EQ[D−1

∞ log (D−1
∞ )] is the relative
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entropy of P with respect to Q. In general (even when D is not a probability

density), we could regard E[log (D−1
∞ )] as the relative entropy of P with respect to

D (whatever this might mean). The qualifier “reverse” comes from the fact that

one usually considers minimizing the entropy of another equivalent probability

measure Q with respect to the original P (what is called the minimal entropy

measure). We refer the reader to Example 7.1 of Karatzas and Kou [21] for

further discussion.

Let us now describe what goes wrong if the numéraire portfolio fails to exist.

This can happen in two ways. First, the set
{
I ∩ Č 6= ∅

}
may not have zero

P⊗G-measure; in this case, Proposition 2.15 shows that one can construct an

unbounded increasing profit, the most egregious form of arbitrage. Secondly,

in case the P ⊗ G-measure of
{
I ∩ Č 6= ∅

}
is zero, the constructed predictable

process ρ can fail to be globally X-integrable. The next definition prepares the

ground for the statement of Proposition 3.10, which describes what happens in

this latter case.

Definition 3.9. Consider a sequence (fn)n∈N of random variables. Its supe-

rior limit in the probability sense, P-lim supn→∞ fn, is defined as the essential

infimum of the collection {g ∈ F | limn→∞ P[fn ≤ g] = 1}.

It is obvious that the sequence (fn)n∈N of random variables is unbounded in

probability if and only if P-lim supn→∞ |fn| = +∞ with positive probability.

Of course, the P-lim inf can be defined analogously, and one can readily check

that (fn)n∈N converges in probability if and only if its P-lim inf and P-lim sup

coincide, but these last facts will not be used below.

Proposition 3.10. Assume that the predictable set
{
I ∩ Č 6= ∅

}
has zero P⊗G-

measure, and let ρ be the predictable process constructed as in Theorem 2.20.
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Pick any sequence (θn)n∈N of [0, 1]-valued predictable processes with limn→∞ θn =

1 holding P ⊗ G-almost everywhere, and such that ρn := θnρ is globally X-

integrable for all n ∈ N. Then, W
ρ

∞ := P-lim supn→∞W ρn
∞ is a (0,+∞]-valued

random variable, and does not depend on the choice of the sequence (θn)n∈N.

On the event {(φρ ·G)∞ < +∞} the random variable W
ρ

∞ is an actual limit in

probability, and

{W ρ

∞ = +∞} = {(φρ ·G)∞ = +∞} ;

in particular, P[W
ρ

∞ = +∞] > 0 if and only if ρ fails to be globally X-integrable.

The proof is the content of the second part of Chapter 6. The above result

says, in effect, that closely following the numéraire portfolio, when it is not glob-

ally X-integrable, one can make arbitrarily large gains with fixed, positive proba-

bility. There are many ways to choose the sequence (θn)n∈N. One particular ex-

ample is θn := 1Σn with Σn := {(ω, t) ∈ Ω× R+ | t ∈ [0, n] and ‖ρ(ω, t)‖ ≤ n}.

Remark 3.11. The failure of ρ to be globallyX-integrable can happen in two dis-

tinct ways. Let us define the stopping time τ := inf {t ∈ R+ | (φρ ·G)t = +∞}
(this can be possibly infinite). In a similar fashion define a whole sequence

(τn)n∈N of stopping times by τn := inf {t ∈ R+ | (φρ ·G)t ≥ n}. We consider

two cases.

First, let us suppose that τ > 0 and (φρ · G)τ = +∞; then τn < τ for

all n ∈ N and τn ↑ τ . By using the sequence ρn := ρ1[[0,τn]] it is easy to

see that limn→∞W ρn
∞ = +∞ almost surely — this is a consequence of the

supermartingale property of {(W ρ
t )−1, 0 ≤ t < τ}. An example of a situation

when this happens in finite time (say, in [0, 1]) is when the linear price-generating

process X satisfies dXt = (1 − t)−1/2dt + dβt, where β is a standard linear
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Brownian motion. Then, ρt = (1 − t)−1/2 and thus (φρ ·G)t =
∫ t

0
(1 − u)−1du,

which of course gives us τ ≡ 1.

Nevertheless, this is not the end of the story. With the notation set-up above

we will give an example with (φρ · G)τ < +∞. Actually, we shall only time-

reverse the example we gave before and show that in this case τ ≡ 0. So, take

the stock-generating process now to be dXt = t−1/2dt + dβt; then, ρt = t−1/2

and (φρ ·G)t =
∫ t

0
u−1du = +∞ for all t ∈ R+. We then get that τ = 0. In this

case we cannot invest in ρ as before in a “forward” manner, because it has a

“singularity” at t = 0 and we cannot take full advantage of it. This is basically

what makes the proof of Proposition 3.10 non-trivial.

Let us remark further that in the latter case, and for a continuous-path process

X with no constraints (as the one described in this example), Delbaen and

Schachermayer in their paper [9], as well as Levental and Skorohod in [27],

show that one can actually create “instant arbitrage”, which is a wealth process

that never falls below its initial capital and is also not constant17. For the case

of jumps it is an open question whether one can still construct this instant

arbitrage.

Here is our second main result, that puts the numéraire portfolio in the con-

text of arbitrage.

Theorem 3.12. For a financial model described by the stock-price process S

and the predictable closed convex constraints C, the following are equivalent:

(1) The numéraire portfolio exists.

(2) The set of equivalent supermartingale deflators Do is non-empty.

17This is almost the definition of an increasing unbounded profit, but weaker since the

wealth process is not assumed to be increasing.
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(3) The (NUPBR) condition holds.

Proof. The implication (1) ⇒ (2) is trivial: (W ρ)−1 is an element of Do.

Now, for the implication (2) ⇒ (3), start by assuming that Do 6= ∅ and pick

an element D ∈ Do . We wish to show that the set of terminal values of wealth

processes in W∞ that start with unit capital is bounded in probability. Since

D∞ > 0, this is equivalent to showing that the set {D∞W∞ | W ∈ W∞ and W0 = 1}
is bounded in probability. But this is obvious, since every process DW for

W ∈ W∞ is a positive supermartingale and so, for all a > 0,

P[D∞W∞ > a] ≤ E[D∞W∞]

a
≤ E[D0W0]

a
=

1

a
.

Finally, for the implication (3) ⇒ (1), suppose that the numéraire portfolio

fails to exist. Then, according to the discussion that precedes Proposition 3.10,

either we have opportunities for unbounded increasing profit, in which case

(NUPBR) certainly fails, or ρ exists but is not globally X-integrable, in which

case Definition 3.9, gives that (NUPBR) fails again. �

Remark 3.13. Conditions (2) and (3) of this last theorem remain invariant

by an equivalent change of probability measure. Thus, the existence of the

numéraire portfolio remains unaffected also, although the numéraire portfolio

itself of course will change. Notice that although this would have been a pretty

reasonable conjecture to have made from the outset, it does not follow directly

from the definition of the numéraire portfolio by any trivial considerations.

Note that the discussion of the previous paragraph does not remain valid

if we only consider absolutely continuous changes of measure (unless the price

process is continuous). Even though one would rush to say that (NUPBR) would

hold, let us remark that non-equivalent changes of measure might change the

structure of admissible wealth processes, since now it will be easier for wealth
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processes to satisfy the positivity condition: in effect, the natural constraints set

C0 can be larger. Consider, for example, a finite time-horizon case where, under

P, X is a driftless compound Poisson process with ν({−1/2}) = ν({1/2}) > 0.

It is obvious that C0 = [−2, 2] and X itself is a martingale. Now, the simple

absolutely continuous change of measure that transforms the jump measure to

ν1(dx) := 1{x>0}ν(dx) charges only the point x = 1/2, C0 = (−2,∞] and of

course (NUIP) fails.

3.3. Application to Utility Optimization. A central problem of mathemat-

ical finance is the maximization of expected utility of an economic agent who

can invest in the market. The point of this section is to convince the reader that

for solving this problem, the full power of (NFLVR) is not necessary. Rather,

the weaker (NUPBR) is the minimal “arbitrage” notion needed to proceed in

the solution for any utility maximization problem. Here we shall try to convey

that failure of the classical (NA) property — as described in item (1) of Defi-

nition 3.1 — will not prevent the investor from finding an optimal investment

strategy, and this in many cases will not be an arbitrage. In a loose sense to

become precise below, the problem of maximizing expected utility from termi-

nal wealth for a rather large class of utility functions that has been considered

in the literature, is solvable if and only if the special case of the logarithmic

utility problem has a solution — which is exactly in the case when (NUPBR)

holds.

To start, let us formalize preference structures. We assume that an investor

is equipped with a utility function: this is defined as a concave and strictly

increasing function U : (0,∞) 7→ R. We also define U(0) by continuity. Starting

with initial capital w > 0, the objective of the investor is to find a portfolio
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ρ̂ ≡ ρ̂(w) ∈ Π∞ such that

(3.3) E
[
U(wW ρ̂

∞)
]

= sup
π∈Π∞

E [U(wW π
∞)] =: u(w).

Remark 3.14. The optimization problem (3.3) makes sense only if its value

function u is finite. Due to the concavity of U , if u(w) < +∞ for some w > 0,

then u(w) < +∞ for all w > 0 and u is continuous, concave and increasing.

When we have u(w) = ∞ for some (equivalently, all) w > 0, there are two

cases. Either the supremum in (3.3) is not attained, so there is no solution; or,

in case there exists a portfolio with infinite expected utility, the concavity of U

will imply that there will be infinitely many of them.

Probably the most important example of a utility function is the logarithmic

U(w) = logw. Due to its special structure, the optimal portfolio (when it exists)

does not depend on the initial capital, and is myopic, i.e., does not depend on

the given time-horizon. The relationship between the numéraire and the log-

optimal portfolio is well-known and established by now. In fact, under a suitable

reformulation of log-optimality, we can show an equivalence between the two

notions.

Definition 3.15. A portfolio ρ ∈ Π∞ will be called relatively log-optimal, if

E
[
log

(
W π

∞
W ρ

∞

)]
≤ 0, for every π ∈ Π∞.

Of course, if a portfolio is log-optimal, then it is also relatively log-optimal.

The two notions coincide if the value function of the log-optimal problem is

finite. Nevertheless, if this fails, we can have existence of an essentially unique

relatively log-optimal portfolio, when there will be infinitely many log-optimal

portfolios.
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Proposition 3.16. A numéraire portfolio exists if and only if a relatively log-

optimal problem portfolio exists, in which case the two are the same.

Proof. Suppose ρ is the numéraire portfolio. Then, for any other π ∈ Π∞, we

have E[W π
∞/W

ρ
∞] ≤ 1, and Jensen’s inequality gives E[log(W π

∞/W
ρ
∞)] ≤ 0.

Let us now assume that the numéraire portfolio does not exist; we shall

show that a relative log-optimal portfolio does not exist either. By way of

contradiction, suppose that ρ̂ was a relatively log-optimal portfolio.

First, we observe that
{
I ∩ Č 6= ∅

}
must have zero P ⊗ G-measure. To see

why, suppose the contrary. Then, by Proposition 2.15, we could select a portfolio

ξ ∈ Π∞ that produces an unbounded increasing profit. According to Remark

2.16, we would have that ρ̂+ξ ∈ Π∞ and rel(ρ̂ | ρ̂+ξ) ≤ 0 with strict inequality

holding on a predictable set of positive P⊗G-measure; this would mean that the

process W ρ̂/W ρ̂+ξ is a non-constant positive supermartingale, so that Jensen’s

inequality again would give E[log(W ρ̂
∞/W

ρ̂+ξ
∞ )] < 0, contradicting the relative

log-optimality of ρ̂.

Continuing, since the numéraire portfolio does not exist and we already

showed that
{
I ∩ Č = ∅

}
has full P ⊗ G-measure, we must have that ρ (the

candidate for the numéraire portfolio) is not globally X-integrable. In particu-

lar, the predictable set {ρ̂ 6= ρ} must have non-zero P ⊗ G-measure. But then

we can find a predictable set Σ ⊆ {ρ̂ 6= ρ} such that Σ has non-zero P ⊗ G-

measure and such that ρ1Σ ∈ Π∞. This implies ρ̂1(Ω×R+)\Σ + ρ1Σ ∈ Π∞, and

since rel(ρ̂ | ρ̂1(Ω×R+)\Σ + ρ1Σ) = rel(ρ̂ | ρ)1Σ ≤ 0, with strict inequality on

Σ, the same discussion as in the end of the preceding paragraph shows that ρ̂

cannot be the relatively log-optimal portfolio. �



Konstantinos Kardaras - Doctoral Dissertation 59

Corollary 3.17. A relatively log-optimal portfolio exists if and only if the con-

dition (NUPBR) holds.

Example 3.18. Take a one-stock market model with St = exp(βτ∧t), where β is

a standard, linear Brownian motion and τ is an almost surely finite stopping

time with E [β+
τ ] = +∞. For the logarithmic utility U(w) = logw we have

u(w) ≥ E [log(wS∞)] = +∞, so that the log-utility optimization problem does

not have a unique solution. In this case, ρ = 1/2 is both the numéraire portfolio

and the relative log-optimal portfolio. We shall also give the more “natural”

Example 3.24 that involves finite time-horizon.

Example 3.19. Here, we continue Example 3.7 on the 3-dimensional Bessel

process market. Since the numéraire portfolio exists, (NUPBR) holds. We

have also seen that (NA) fails — there exists arbitrage in the market, as de-

scribed in Example 3.7. An investor with logarithmic utility will choose the

portfolio ρ = 1 as his optimal investment; in this case we have finite expected

utility, since even E[ST ] < ∞. Even though arbitrage opportunities exist in the

market, the investor’s optimal choice is clearly not an arbitrage.

Remark 3.20. In the case where Π 6= Π∞, i.e., when we are working in a “truly

infinite” time horizon, one can define analogously a portfolio ρ ∈ Π to be rela-

tively log-optimal if for all other π ∈ Π we have

E
[
lim sup

t→∞

(
log

(
W π

t

W ρ
t

))]
≤ 0.

Almost the exact same proof as the one in Proposition 3.16 will show that a

relatively log-optimal portfolio exists if and only if the numéraire portfolio exists

for all times before infinity, and that the two portfolios must coincide. We also
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refer the reader to Karatzas [20] and the references cited there, for this and

related results.

We return now to the general case of a general utility U and show that if

the relative log-optimal problem fails to have a solution, then none of the other

utility problems has a solution either.

Proposition 3.21. Assume that (NUPBR) fails. Then, for any utility func-

tion U , the corresponding utility maximization problem either does not have a

solution or has infinitely many of them. More precisely: if U(∞) = +∞, then

u(w) = +∞ for all w > 0, so we either have no solution (in the case where the

supremum is not attained) or an infinite number of them (in the case where the

supremum is attained); whereas if U(∞) < +∞ there is no solution.

Proof. Since (NUPBR) fails, pick an ε > 0 and a sequence (πn)n∈N of elements

of Π∞ such that, with An := {W πn
∞ ≥ n}, we have P[An] ≥ ε, for all n ∈ N.

If we suppose that U(∞) = +∞, then it is obvious that, for all w > 0 and

n ∈ N we have u(w) ≥ E[U(wW πn
∞ )] ≥ εU(wn); so that u(w) = +∞ and we

have the result stated in the proposition in view of Remark 3.14.

Now, suppose that U(∞) < ∞; then of course U(w) ≤ u(w) ≤ U(∞) < ∞
for all w > 0. Furthermore, u is also concave, thus continuous. Pick any w > 0,

suppose that π ∈ Π∞ is optimal for U with initial capital w, and observe

u(w + n−1) ≥ E[U(wW π
∞ + n−1W πn

∞ )] ≥ E[U(wW π
∞ + 1An)].

Pick M > 0 large enough so that P[wW π
∞ > M ] ≤ ε/2; since U is concave we

know that for any y ∈ (0,M ] we have U(y + 1) − U(y) ≥ U(M + 1) − U(M).

Set a := (U(M +1)−U(M))ε/2 - this is a strictly positive because U is strictly
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increasing. Then, E[U(wW π
∞+1An)] ≥ E[U(wW π

∞)+a] = u(w)+a; this implies

u(w + n−1) ≥ u(w) + a for all n ∈ N, and contradicts the continuity of u. �

Having resolved the situation when (NUPBR) fails, let us now assume that

it holds. We shall have to put a little bit more structure on the utility functions

that we consider, so let us suppose that they are continuously differentiable and

that they satisfy the Inada conditions U ′(0) = +∞ and U ′(+∞) = 0. We also

assume that we are in the unconstrained case (C = Rd).

The (NUPBR) condition is equivalent to the existence of the numéraire port-

folio ρ. Since all wealth processes when divided by W ρ become supermartin-

gales, we conclude that the change of numéraire which utilizes W ρ as a bench-

mark produces a market for which the original measure P is a supermartingale

measure (see Delbaen and Schachermayer [10] for this “change of numéraire”

technique). In particular, (NFLVR) holds and the duality results of the paper

[12] allows us to write down the superhedging duality, valid for any positive,

F -measurable random variable H:

inf {w > 0 | ∃ π ∈ Π∞ with wW π
∞ ≥ H} = sup

D∈D
E[D∞H].

This relationship allows one to show that the utility optimization problems

admit a solution (when their value is finite). We shall not go into the details,

but send the reader to the papers [25, 26] of Kramkov and Schachermayer for

more information.

3.4. Arbitrage equivalences for exponential Lévy financial models. In

this section we present a complete characterization of the arbitrage situation in

exponential Lévy financial models. By “exponential Lévy”, we mean that the

returns process X is a F-Lévy process, i.e., for all 0 ≤ s < t, the increment
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Xt − Xs is independent of the σ-algebra Fs and has a distribution that only

depends on the difference t − s. Then, X has a deterministic triplet of char-

acteristics (b, c, ν) with respect to the canonical truncation function and the

natural time flow G(t) = t. For this section we assume that the constraints

C are deterministic. We shall consider both the finite and the infinite horizon

case, since they turn out to be radically different. In the finite-horizon case, if

there is any kind of arbitrage, it is of the worst kind: an unbounded increasing

profit. In the infinite-horizon case we basically always have arbitrage, unless the

original measure P is a supermartingale measure (which makes sense, given that

we have an infinite amount of time to do it and things are evolving constantly).

We use the numéraire portfolio to prove the latter fact; we have not been able

to find a proof in the existing literature.

Theorem 3.22. Consider an exponential Lévy model. Suppose that C is a non-

random fixed closed convex cone of Rd with N ⊆ C which enforces constraints

on portfolios. On a finite financial planning horizon [0, T ], the following are

equivalent:

(1) There exists a Q ∼ P under which p>X is a Lévy supermartingale for

every p ∈ C.

(2) The (ESMM) condition holds;

(3) The (NFLVR) condition holds;

(4) The (NA) condition holds;

(5) The (NUIP) condition holds;

(6) The (NUPBR) condition holds;

(7) The numéraire portfolio exists;

(8) I ∩ C = ∅.
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If C = Rd one can replace (1) and (2) by the stronger:

(1′) There exists a Q ∼ P under which X is a Lévy martingale.

(2′) The (ELMM) condition holds;

Proof. For the implication (1) ⇒ (2), observe from (2.1) that under Q we have

relQ(0 | π) ≤ 0 for all π ∈ Π, so Q is an equivalent supermartingale measure.

All the implications (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (8) are trivial or follow from

Propositions 2.15 and 3.2. Also, Theorem 3.12 implies that (6) ⇔ (7) ⇔ (8).

It remains to show that (8) ⇒ (1) and we are done. We rush through the

steps of the proof of this fact that relies on the Esscher transform, since the

technique is pretty well known; see for example Rogers [24].

First of all, by an equivalent change of measure that preserves the Lévy

property, we can assume that for all p ∈ Rd one has E[exp(p>XT )] <∞. With

this understanding, set f(p) := E[exp(−p>XT )] for p ∈ C; the function f is

convex and differentiable. Also, let f∗ := infp∈C f(p); nothing changes if we

restrict this infimum on C ∩N⊥.

The infimum f∗ must be achieved by a point in C; otherwise, if there exists

a minimizing sequence of elements of C ∩N⊥ which is a divergent in norm, we

can show18 that we can construct a unit vector ζ ∈ C∩N⊥ that is an immediate

arbitrage opportunity, i.e., the assumption I ∩ C = ∅ is violated.

We know that the infimum is attained at some point p∗ ∈ C; by differentiating

f in each direction p∗+p for all other p ∈ C we get E[−p>XT exp(−p>∗XT )] ≥ 0.

It then easily follows that if we set ZT := exp(−p>∗XT )/f(p∗), the strictly pos-

itive random variable ZT defines a probability measure Q(A) := E[ZT1A] such

18The reader can check Chapter 5 to see how this is done.
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that all (p>Xt)t∈[0,T ] for p ∈ C are Q-Lévy processes19 and since EQ[p>XT ] ≤ 0

for all p ∈ C, we get that (p>Xt)t∈[0,T ] are Q-supermartingales. �

The following example shows that the deflator corresponding to the numéraire

portfolio in an exponential Lévy market need not be a martingale, and in fact is a

strict supermartingale. This is why we had to go through the Esscher transform

in the proof of Theorem 3.22. This should be contrasted to the continuous-path

case where, in the absence of constraints, (W ρ)−1 is at least a local martingale.

The example also shows that we cannot expect to be able in general to compute

the numéraire portfolio just by naively trying to solve ∇g(ρ) = rel(0 | ρ) = 0,

because sometimes this equation simply fails to have a solution.

Example 3.23. Consider a one-dimensional Lévy process with b ∈ R, c = 0 and

ν(dx) = (1 + x)1(−1,1](x)dx, where dx is the usual Lebesgue measure. We have

C0 = [−1, 1] and, for any π ∈ (−1, 1),

g′(π) = b+

∫ 1

−1

[
x(1 + x)

1 + πx
− (x+ 1)x1{‖x‖≤1}

]
dx = b− 2

3
+

∫ 1

−1

x(1 + x)

1 + πx
dx;

it is easy to see that g′ is decreasing in π ∈ (−1, 1), that g′(−1) = +∞ and

g′(1) = b−2/3. We can infer that if b > 2/3, there is no solution to the equation

g′(π) = 0. In that case the numéraire portfolio is π = 1 and (W ρ)−1 is a strict

Lévy supermartingale, since rel(0 | 1) = −g′(1) < 0.

In this example it seems that the drift is very favorable to the investor, who

is inclined to invest more than π = 1 in order to get more growth, but cannot

do that because negative wealth is not allowed.

19If not familiar with this fact, the reader can check that the Lévy structure is retained

under these measure transformations.
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Example 3.24. This is another example where the log-utility optimization prob-

lem does not have a unique solution, in the spirit of Example 3.18. Again,

consider a one-dimensional Lévy process with b ∈ R, c = 0 and ν(dx) =(
1(−1,1](x) + x−1 (log(1 + x))−2 1[1,∞)(x)

)
dx. We now have that C0 = [0, 1].

Observe that for all π ∈ (0, 1) the process logWπ ≡ log E(π>X) is a Lévy

process; a moment’s reflection shows that its jump measure behaves like y−2dy

as y → +∞ and like eydy as y → −∞, which means that logWπ has infinite

expectation. We see that the problem of maximizing expected log-utility does

not have unique solution. Of course, the numéraire exists and will be unique.

For π ∈ (0, 1), the simple calculation

g′(π) =

∫ 1

−1

x

1 + πx
dx+

∫ ∞

1

1

(1 + πx) (log(1 + x))2 dx

will give us g′(0+) =
∫∞

1
(log(1 + x))−2 dx = +∞ and likewise g′(1−) = −∞,

which means that the numéraire portfolio ρ belongs to the open interval (0, 1).

Let us note — just for fun — that numerical results show that ρ ∼= .916.

Although the expected log-utility is infinite, the numéraire portfolio does not

put all the weight on the stock.

Here is the infinite time-horizon result.

Proposition 3.25. Consider an exponential Lévy financial model with infinite

financial planning horizon and deterministic, fixed closed convex constraints C.

Then, the following are equivalent:

(1) The original probability P is a supermartingale measure;

(2) The (ESMM) condition holds;

(3) The (NFLVR) condition holds;

(4) The (NUPBR) condition holds;
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(5) The (NA) condition holds.

Remark 3.26. The predictable characterization for the original measure P to be

a supermartingale measure is very easy. We just have to check that for every

π ∈ C such that ν
[
π>x < −1

]
= 0, we have π>b+

∫
π>x1{‖x‖>1}ν(dx) ≤ 0.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) and (3) ⇒ (5) are all trivial; we

only prove (4) ⇒ (1) and (5) ⇒ (1). We show that if P is not a supermartingale

measure, then both (NUPBR) and (NA) fail.

So, assume that P is not a supermartingale measure. If I ∩ Č 6= ∅, then

(NUIP) fails and so both (NUPBR) and (NA) will fail. On the other hand, if

I ∩ Č = ∅, the numéraire portfolio exists for all times before infinity: it is a

constant portfolio ρ that gives rise to a positive supermartingale (W ρ)−1. We

claim that (W ρ
∞)−1 = 0; for otherwise the process L((W ρ)−1), which is the Lévy

process −ρ ·X(ρ) in the notation of section 2.2, would be a semimartingale up

to infinity according to Lemma C.2. But a Lévy process cannot have a limit

to infinity unless it is identically constant, which means that we should have

−ρ · X(ρ) ≡ 0 and so W ρ = E(−ρ · X(ρ)) ≡ 1, or ρ ∈ N. But this cannot

happen unless P is a supermartingale measure, and we are working under the

assumption that it is not. Now, the fact W ρ
∞ = ∞ allows us to construct

portfolios πn ∈ Π by requiring πn := ρ1[0,τn], where τn is the finite stopping time

τn := inf {t ∈ R+ | W ρ
t ≥ n}. We deduce that W πn

∞ ≥ n, which shows that both

conditions (NUPBR) and (NA) fail. �
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4. The “No Unbounded Increasing Profit”

Condition

This Chapter is devoted to the proof of Proposition 2.15; at this point the

reader should be reminded of the context of that proposition that was given in

section 2.4 and the discussion therein. We split the proof in three steps.

• If
{
I ∩ Č 6= ∅

}
P ⊗ G-null, then (NUIP) holds: Let us suppose that

π is a portfolio that creates unbounded increasing profit; we shall show that{
I ∩ Č 6= ∅

}
is not P ⊗ G-null. By way of definition we have that

{
π ∈ Č

}
has full P ⊗ G-measure, so we wish to prove that {π ∈ I} has strictly positive

P⊗G-measure.

Now, W π has to be a non-decreasing process, which means that the same will

hold for π · X. We also shall have π · X 6= 0 with positive probability. This

means that the predictable set {π /∈ N} has strictly positive P ⊗ G-measure,

and it will suffice to show that properties (1), (2) and (3) of Definition 2.14 hold

P⊗G-a.e.

Since π · X is a process with finite variation we must have that π · Xc = 0,

which translates into π>c = 0, P⊗ G-a.e.; because π ·X is increasing, one has

1{π>x<0} ∗ µ = 0, so that ν[π>x < 0] = 0, P⊗G-a.e.

Finally, since π ·X of finite variation, one can decompose

(4.1) π ·X = π ·B − [π>x1{‖x‖≤1}] ∗ η + [π>x] ∗ µ.

The last term [π>x] ∗ µ is a pure-jump increasing process, while for the sum of

the first two we have

∆
(
π ·B − [π>x1{‖x‖≤1}] ∗ η

)
=
(
π>b−

∫
π>x1{‖x‖≤1}ν(dx)

)
∆G = 0 ,
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where the last equality follows from (1.4). It follows that the sum of the first

two terms on the right-hand side of equation (4.1) is the continuous part of

π · X (when seen as a finite variation process) and thus has to be increasing;

this translates to the requirement π>b −
∫
π>x1{‖x‖≤1}ν(dx) ≥ 0, P ⊗ G-a.e.,

and ends the proof.

• The set-valued process I is predictable: In order to prove the other

half of Proposition 2.15, we need to select a predictable process from the set{
I ∩ Č 6= ∅

}
. For this, we shall have to prove that I is a predictable set-valued

process. Nevertheless I is not closed, and it is usually helpful to work with

closed sets when trying to apply selection results.

For a Lévy triplet (b, c, ν) and every a > 0, define Ia to be the set of vectors

of Rd such that (1) to (3) of Definition 2.14 hold, and where we also require

that

(4.2) ξ>b+

∫
ξ>x

1 + ξ>x
1{‖x‖≥1}ν(dx) ≥ a−1.

The following lemma contains the properties of these sets that will be useful.

Lemma 4.1. With the previous definition we have:

(1) The sets Ia are increasing in a > 0; we have Ia ⊆ I and also I =⋃
a>0 Ia. In particular, I ∩ Č 6= ∅ if and only if Ia ∩ Č 6= ∅ for all large

enough a > 0.

(2) For all a > 0, the set Ia is closed and convex.

Proof. Let us first note that because of conditions (1) to (3) of Definition 2.14,

we have that the left-hand-side of (4.2) is well-defined (the integrant is positive

since ν[ξ>x < 0] = 0) and has to be positive. In fact, if ξ ∈ I, it has to be
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strictly positive, otherwise we would have ξ ∈ N. The fact that Ia is increasing

for a > 0 is trivial, and part (1) of this lemma follows immediately.

For the second part, we first show that Ia is closed. It is obvious that the

subset of Rd consisting of vectors ξ such that ξ>c = 0 and ν[ξ>x < 0] = 0 is

closed. On this last set, the functions ξ>x are ν-positive. For a sequence (ξn)n∈N

in Ia with ξn → ξ, Fatou’s lemma will give that∫
ξ>x1{‖x‖≤1}ν(dx) ≤ lim inf

n→∞

∫
ξ>n x1{‖x‖≤1}ν(dx) ≤ lim inf

n→∞
ξ>n b = ξ>b,

so that ξ satisfies requirement (3) of Definition 2.14 also. The “large jumps”

measure 1{‖x‖>1}ν(dx) is finite, and we can use the bounded convergence theo-

rem to get

ξ>b+

∫
ξ>x

1 + ξ>x
1{‖x‖≥1}ν(dx) = lim

n→∞

{
ξ>n b+

∫
ξ>n x

1 + ξ>n x
1{‖x‖≥1}ν(dx)

}
≥ a−1

and the fact that Ia is closed is established. Finally, convexity is trivial as soon

as one uses the fact that the function x 7→ x/(1 + x) is concave for x > 0. �

For the remainder of this Chapter, we denote by I the Rd-set-valued process

I (b(ω, t), c(ω, t), ν(ω, t)); same for Ia. From I =
⋃

n∈N In and Lemma B.3, in

order to prove predictability of I we only have to prove predictability of Ia.

To this end, define the following R-valued functions, with arguments from

(Ω× R+)× Rd, hiding the dependence in the argument (ω, t) ∈ Ω× R+:

f1(p) = p>c, f2(p) =

∫
((p>x)−)2

1 + ((p>x)−)2
ν(dx),

fn
3 (p) = p>b−

∫
p>x1{n−1<‖x‖≤1}ν(dx), for all n ∈ N, and

f4(p) = p>b+

∫
p>x

1 + p>x
1{‖x‖≥1}ν(dx).
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Observe that all these functions are predictably measurable in (ω, t) ∈ Ω× R+

and continuous in p (follows from applications of the dominated convergence

theorem).

In a limiting sense, also define f3(p) ≡ f∞3 (p) = p>b −
∫

p>x1{‖x‖≤1}ν(dx);

but observe that this function might not even be well-defined since both the

positive and negative parts of the integrand might have infinite ν-integral.

Also, consider the sequence of set-valued processes, where n ∈ N:

Aa
n :=

{
p ∈ Rd | f1(p) = 0, f2(p) = 0, fn

3 (p) ≥ 0, f4(p) ≥ a−1
}

of which the “infinite” version coincides with Ia:

Ia ≡ Aa
∞ :=

{
p ∈ Rd | f1(p) = 0, f2(p) = 0, f3(p) ≥ 0, f4(p) ≥ a−1

}
.

Because of the requirement f2(p) = 0, the function f3 can be considered well-

defined (but not finite, since it can take the value −∞). In any case, it is easy

to see that for any element p of the set
{
p ∈ Rd | f2(p) = 0

}
, we have that

fn
3 (p) ↓ f3(p), so that the sequence (Aa

n)n∈N is decreasing and that Aa
n ↓ Ia. But

every Aa
n is closed and predictable (refer to Lemmata B.3 and B.5) and thus so

is Ia.

Remark 4.2. Since
{
I ∩ Č 6= ∅

}
=
⋃

n∈N
{
In ∩ Č 6= ∅

}
and all the random set-

valued processes In and Č are closed and predictable, Proposition B.3 gives us

that the set
{
I ∩ Č 6= ∅

}
is predictable.

• (NUIP) implies that
{
I ∩ Č 6= ∅

}
is P⊗G-null: We are now ready to finish

the proof of Proposition 2.15. Let us suppose that
{
I ∩ Č 6= ∅

}
is not P ⊗ G-

null; under this assumption, we shall construct an unbounded increasing profit.

Start by observing that I =
⋃

n∈N
({

p ∈ Rd | ‖p‖ ≤ n
}
∩ In

)
, where In is the

set-valued process defined in the previous section. It follows that there exists
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some n ∈ N such that the convex, closed and predictable set-valued process

Bn :=
{
p ∈ Rd | ‖p‖ ≤ n

}
∩ In ∩ Č has (P ⊗ G)({Bn 6= ∅}) > 0. According to

Theorem B.7, there exists a predictable process π with π(ω, t) ∈ Bn(ω, t) when

Bn(ω, t) 6= ∅ and π(ω, t) if Bn(ω, t) = ∅. Now, π is bounded (by n), so π ∈ Π.

Using the reverse reasoning of the one we used in the beggining of this Chapter

(when we were proving that if
{
I ∩ Č 6= ∅

}
P⊗G-null, then (NUIP) holds) we

get that π · X is a non-decreasing process, and the same will be true of W π.

Now, we must have that P[W π
∞ > 1] > 0, otherwise we would have π ·X ≡ 0,

which is impossible since (P⊗G)({π /∈ N}) > 0 by construction.
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5. The Numéraire Portfolio for Exponential

Lévy Markets

We saw in Lemma 2.8 that if the numéraire portfolio ρ exists, it has to satisfy

rel(π | ρ) ≤ 0 pointwise, P ⊗ G-a.e. In order to find necessary and sufficient

conditions for the existence of a (predictable) process ρ to satisfy this inequality,

it makes sense first to consider the corresponding static, deterministic problem.

Since Lévy processes correspond to constant, deterministic triplets of charac-

teristics with respect to the natural time flow G(t) = t, for the results in this

Chapter the reader is welcome to regard X as a Lévy process with characteristic

triplet (b, c, ν); this means that Bt = bt, Ct = ct and η(dt, dx) = ν(dx)dt. We

also take C to be a closed convex subset of Rd; we remark that C can be enriched

as to accommodate the natural constraints C0 =
{
π ∈ Rd | ν[π>x < −1] = 0

}
.

The following result, which will be the focus of this Chapter, is the determin-

istic analogue of Theorem 2.20.

Theorem 5.1. Let (b, c, ν) be a Lévy triplet and C a closed convex subset of

Rd. Then the following are equivalent:

(1) I ∩ Č = ∅.
(2) There exists a unique vector ρ ∈ C ∩ N⊥ with ν

[
ρ>x ≤ −1

]
= 0 such

that rel(π | ρ) ≤ 0 for all π ∈ C. If the Lévy measure ν integrates the

log, the vector ρ is characterized as ρ = arg maxπ∈C∩N⊥ g(π). In general,

ρ is the limit of a series of problems, in which ν is replaced by a sequence

of approximating measures.
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We have already shown (consult Remark 2.16) that if (1) fails, than (2) fails

as well. We need to show that if (1) holds, then (2) holds too. Chapter 5 is

devoted to the proof of this fact.

Remark 5.2. Combining requirements (1) and (2) of Definition 2.10 we get that

C = C + N: indeed, for any π ∈ C and ζ ∈ N ⊆ C we have that nζ ∈ C for any

n ∈ N and the convex combination (1 − n−1)π + ζ belongs to C as well; but C

is closed, and so π + ζ ∈ C. Now, C is closed and N is a linear subspace; this

means that prN⊥C = C ∩N⊥ is also closed in the subspace N⊥, where prN⊥ is

the usual Euclidean projection on N⊥, the orthogonal complement of N.

The vector ρ constructed as described in Theorem 5.1 will be the unique

vector that satisfies rel(π | ρ) ≤ 0 for all π ∈ C only in the case where N = {0};
in general the set of all the solutions will be ρ+N (where ρ is the special solution

lying on N⊥). The reason is, of course, that for any ζ ∈ N and any vectors π

and ρ of C one has rel(π+ζ | ρ) = rel(π | ρ), as one can check immediately from

(2.1), (2.2). With the same notation, we have furthermore g(π + ζ) = g(π).

The conclusion from the above discussion is that, with no loss of generality,

we can restrict our attention to the set C∩N⊥ for the portfolios. Any degeneracy

originally present in the market disappears on this set. We shall need to restrict

our attention to that set, since we shall be using an approximation procedure for

obtaining the solution and we want our corresponding approximating solutions

to remain bounded (in order to have a limit). If we do not project them on

N⊥ we cannot make sure that these sequences do not escape to infinity: our

portfolios might “get lost far away in the (sub)space N”. Furthermore, the fact

that we are choosing the solution in a unique way will rid us of “measurable

selection” procedure later.
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In the process of the proof we shall need the following simple characterization

of the condition I ∩ Č 6= ∅:

Lemma 5.3. If ξ ∈ Č \ N, then ξ ∈ I if and only if rel(0 | aξ) ≤ 0 for all

a ∈ R+.

Proof. The fact that ξ ∈ I ∩ Č implies rel(0 | aξ) ≤ 0 for all a ∈ R+ is trivial.

For the converse, let ξ ∈ Č \N satisfy rel(0 | aξ) ≤ 0 for all a ∈ R+; we wish

to show that ξ ∈ I. The second condition of Definition 2.14 is readily satisfied,

since we assume that C contains the natural constraints. Now, for all a ∈ R+,

we have −a−1rel(0 | aξ) ≥ 0; writing this down we get

ξ>b− aξ>cξ +

∫ [
ξ>x

1 + aξ>x
− ξ>x1{‖x‖≤1}

]
ν(dx) ≥ 0.

The integrand is ν-integrable and is pointwise decreasing in a > 0 (remember

that ν[ξ>x < 0] = 0), so we must have ξ>c = 0 (condition (1) of Definition

2.14), which now implies that

ξ>b+

∫ [
ξ>x

1 + aξ>x
− ξ>x1{‖x‖≤1}

]
ν(dx) ≥ 0.

Using the dominated convergence theorem and letting a ↑ ∞ we get condition

(3) of Definition 2.14, namely ξ>b−
∫
ξ>x1{‖x‖≤1}ν(dx) ≥ 0. �

We make one final observation. On several occasions during the course of the

proof we shall use Fatou’s lemma in the following form: if we are given a finite

measure κ and a sequence (fn)n∈N of measurable functions that are κ-uniformly

bounded from below, then
∫

lim infn→∞ fn(x)κ(dx) ≤ lim infn→∞
∫
fn(x)κ(dx).

The finite measures κ that we shall consider will be of the form (‖x‖ ∧ k)2 ν(dx),

where k ∈ R+ and ν is our Lévy measure.
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We can now proceed with the proof of the sufficiency of the condition I∩Č = ∅
in solving rel(π | ρ) ≤ 0. We shall first do so for the case of a Lévy measure

that integrates the log, then extend to the general case.

• Proof of Theorem 5.1 for a Lévy measure that integrates the log.

We are trying to show (1) ⇒ (2) of Theorem 5.1, so let us assume I ∩ Č = ∅.
For this section we also make the assumption

∫
{‖x‖>1} log(1 + ‖x‖)ν(dx) <∞.

Recall from section 2.5 the growth rate function

g(π) := π>b− 1

2
π>cπ +

∫ [
log(1 + π>x)− π>x1{‖x‖≤1}

]
ν(dx)

of (2.3). This is a concave function on C and is well-defined, in the sense that

we always have g(π) < +∞ (because ν integrates the log), but can take the

value −∞ on the boundary of C. Nevertheless, if we restrict our attention to

(5.1) C� =
{
π ∈ C | ν[π>x ≤ −u] = 0 for some u < 1

}
,

then we also have g(π) > −∞.

Let us agree to call g∗ := supπ∈C g(π), and let (ρn)n∈N be a sequence of

vectors in C with g(ρn) → g∗. Since for any π ∈ C and any ζ ∈ N we have

g(π + ζ) = g(π), we can choose the sequence ρn to take values on the subspace

N⊥ (recall the discussion of Remark 5.2). We shall prove later that this sequence

is bounded in Rd; for the time being let us take this for granted and, without

loss of generality, suppose that (ρn)n∈N converges to a point ρ ∈ C (otherwise,

choose a convergent subsequence). The concavity of g implies that g∗ is a finite

number and it is obvious from continuity that g(ρ) = g∗. Of course, we have

that ν
[
ρ>x ≤ −1

]
= 0, otherwise g(ρ) = −∞.

Pick now any π ∈ C� in the notation of (5.1); we then have that the mapping

[0, 1] 3 u 7→ g(ρ + u(π − ρ)) is well-defined (i.e., real-valued), concave and
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decreasing, so that the right-derivative at u = 0 should be negative; of course,

this derivative is just rel(π | ρ), so we have the result for π ∈ C�.

The extension of the inequality rel(π | ρ) ≤ 0 for all π ∈ C now follows easily.

Indeed, if π ∈ C, then for 0 ≤ u < 1 we have uπ ∈ C� and rel(uπ | ρ) ≤ 0; by

using Fatou’s lemma one can easily check that we also have rel(π | ρ) ≤ 0. We

do not do this now since anyway we shall have the chance to do this again three

times in the sequel in a slightly more complicated manner.

We still have to show that the sequence (ρn)n∈N of vectors of C ∩ N⊥ is

bounded. Suppose that (ρn)n∈N is unbounded, and without loss of generality

also that the sequence of unit-length vectors ξn := ρn/ ‖ρn‖ converges to a unit-

lenth vector ξ ∈ N⊥ (picking a subsequence otherwise). We shall use Lemma

5.3 applied to the vector ξ and show that ξ ∈ I∩ Č, contradicting condition (1)

of Theorem 5.1.

Start by picking any a ∈ R+; for all large enough n ∈ N we have aξn ∈ C,

and since C is closed we have aξ ∈ C as well, which implies ξ ∈ Č (since a ∈ R+

is arbitrary). We have ξ ∈ Č \ N, and only need to show rel(0 | aξ) ≤ 0. For

this, we can assume that the sequence (ρn)n∈N is picked in such a way that the

functions [0, 1] 3 u 7→ g(uρn) are increasing; otherwise, replace ρn by the vector

uρn for the choice of u ∈ [0, 1] that maximizes [0, 1] 3 u 7→ g(uρn). This would

imply that eventually, for all large enough n ∈ N we have rel(0 | aξn) ≤ 0; this

means ∫ [
−ξ>n x

1 + aξ>n x
+ ξ>n x1{‖x‖≤1}

]
ν(dx) ≤ ξ>n b− aξ>n cξn.

If we can show that we can apply Fatou’s lemma to the quantity on the left-

hand-side of this inequality, we get the same inequality with ξ in place of ξn
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and so rel(0 | aξ) ≤ 0; an application of Lemma 5.3 shows that ξ ∈ I ∩ Č,

contradicting condition (1) of Theorem 5.1.

To show that we can actually apply Fatou’s lemma, let us show that the

integrand is bounded from below for the finite measure (‖x‖ ∧ k)2 ν(dx) with

k := 1 ∧ (2a)−1. Since ξ>n x/(1 + aξ>n x) ≤ a−1 and
∣∣ξ>n x∣∣ ≤ ‖x‖, the integrand

is uniformly bounded from below by −(a−1 + 1). Thus, we only need con-

sider what happens on the set {‖x‖ ≤ k}; but there, the integrand is equal to

−a(ξ>n x)2/(1+aξ>n x), which cannot be less than −2a ‖x‖2 and we are done. �

• The extension to general Lévy measures. We now have to extend the

result of the previous section to the case where ν does not necessarily inte-

grate the log. Recall from Definition 2.17 the use of the approximating triplets

(b, c, νn), where for every n ∈ N we define the measure νn(dx) := fn(x)ν(dx);

all these measures integrate the log. We assume throughout that I ∩ Č = ∅.
We remarked that the sets N and I remain invariant if we change the Lévy

measure from ν to νn. Then, since we have I(b, c, νn) ∩ Č = ∅, the discus-

sion in the previous Chapter, gives us unique vectors ρn ∈ C ∩ N⊥ such that

reln(π | ρn) ≤ 0 for all π ∈ C, where reln is associated with the triplet (b, c, νn).

As before, the constructed sequence (ρn)n∈N is bounded. To prove it, we

shall use Lemma 5.3 again, in the exact same way that we did for the case of a

measure that integrates the log. Assume by way of contradiction that (ρn)n∈N

is not bounded. By picking a subsequence if necessary, assume without loss of

generality that ‖ρn‖ diverges to infinity. Now, call ξn := ρn/ ‖ρn‖. Again, by

picking a further subsequence if the need arises, assume that ξn → ξ, where ξ

is a unit vector in N⊥. Since ρn ∈ C for all n ∈ N it follows that aξ ∈ C for all

a ∈ R+, i.e., ξ ∈ Č \N. We know that for sufficiently large n ∈ N, we have that
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reln(0 | aξn) ≤ 0; equivalently∫ [
−ξ>n x

1 + aξ>n x
fn(x) + ξ>n x1{‖x‖≤1}

]
ν(dx) ≤ ξ>n b− aξ>n cξn.

The situation is exactly the same as in the proof in the case of a measure that

integrates the log, but for the appearance of the density fn(x) which can only

have a positive effect on any lower bounds that we have established there, since

0 < fn ≤ 1. We show that the integrand is bounded from below for the finite

measure (‖x‖ ∧ k)2 ν(dx) with k = 1∧(2a)−1, thus we can apply Fatou’s lemma

to the left-hand-side of this inequality to get the same inequality with ξ in place

of ξn, and so rel(0 | aξ) ≤ 0. Invoking Lemma 5.3, we arrive at a contradiction

with the assumption I ∩ Č = ∅.

• Now that we know that (ρn)n∈N is a bounded sequence, we can assume that

it converges to a point ρ ∈ C ∩N⊥, picking a subsequence if needed. We shall

show now that ρ satisfies rel(π | ρ) ≤ 0 for all π ∈ C. Pick any π ∈ C; we know

that we have∫ [
(π − ρn)>x

1 + ρ>nx
fn(x)− (π − ρn)>x1{‖x‖≤1}

]
ν(dx) ≤ −(π−ρn)>b+(π−ρn)>cρn

for all n ∈ N. Yet once more, we shall use Fatou’s lemma on the left-hand-side

to get to the limit the inequality∫ [
(π − ρ)>x

1 + ρ>x
− (π − ρ)>x1{‖x‖≤1}

]
ν(dx) ≤ −(π − ρ)>b+ (π − ρ)>cρ ;

and so that rel(π | ρ) ≤ 0 for all π ∈ C.

To justify the use of Fatou’s lemma, we shall show that the integrands are

uniformly bounded from below for the measure (‖x‖ ∧ k)2 ν(dx), where we set

k = 1 ∧ (2 supn∈N ‖ρn‖)−1 which is a strictly positive number from the bound-

edness of (ρn)n∈N. First, observe that the integrands are uniformly bounded by
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−1−supn∈N ‖π − ρn‖, which is a finite number. Thus, we only need worry about

the set {‖x‖ ≤ k}. There, the integrands are equal to (π−ρn)>x(ρ>nx)/(1+ρ>nx);

this cannot be less than −2 supn∈N (‖π − ρn‖ ‖ρn‖) ‖x‖2, and Fatou’s lemma can

be used.

Up to now we have shown that rel(π | ρ) ≤ 0 for all π ∈ C for the limit ρ of

a subsequence of (ρn)n∈N. Nevertheless, carrying the previous steps we see that

every subsequence of (ρn)n∈N has a further convergent subsequence whose limit

ρ̂ ∈ C ∩N⊥ satisfies rel(π | ρ̂) ≤ 0 for all π ∈ C. The uniqueness of the vector

ρ ∈ C ∩N⊥ that satisfies rel(π | ρ) ≤ 0 for all π ∈ C gives that ρ̂ = ρ, and we

conclude that the whole sequence (ρn)n∈N converges to ρ. �
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6. The Numéraire Portfolio for General

Semimartingales

The purpose of this Chapter is to provide the proofs of Theorem 2.20 and

Proposition 3.10

• Proof of Theorem 2.20. We are ready now to prove our first main result.

We start with a predictable characterization of global X-integrability that the

predictable process ρ, candidate of being the numéraire portfolio, must satisfy.

Lemma 6.1. Suppose that ρ is a predictable process with ν[ρ>x ≤ −1] = 0

and rel(0 | ρ) ≤ 0. Then, ρ is globally X-integrable, if and only if we have

(φρ ·G)∞ <∞ for the increasing, predictable process

φρ := ν[ρ>x > 1] +

∣∣∣∣ρ>b+

∫
ρ>x

(
1{‖x‖>1} − 1{|ρ>x|>1}

)
ν(dx)

∣∣∣∣ .
Proof. We have to show that φρ

1 and φρ
2 of (2.5) are globally G-integrable. Ac-

cording to Theorem C.3 of Appendix C, only the sufficiency has to be proved,

since the necessity holds trivially (remember that ν[ρ>x ≤ −1] = 0). Further-

more, from the same theorem, the sufficiency will be shown if we can prove

that the predictable processes ψρ
1 := ρ>cρ and ψρ

2 :=
∫ (

1 ∧
(
ρ>x

)2)
ν(dx) are

globally G-integrable (observe that ψρ
3 of that theorem is already covered by

φρ
2).

Dropping the “ρ” superscripts, we embark on proving the globalG-integrability

of ψ1 and ψ2, assuming the global G-integrability of φ1 and φ2. We have that ψ2

will certainly be globally G-integrable, if one can show that the positive process

ψ′2 :=

∫
(ρ>x)2

1 + ρ>x
1{|ρ>x|≤1}ν(dx) +

∫
ρ>x

1 + ρ>x
1{ρ>x>1}ν(dx)
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is globally G-integrable. Using also the fact that both −rel(0 | ρ) and ψ1 = ρ>cρ

are positive processes, we get that ψ1 and ψ2 will certainly be globally G-

integrable if we can show that ψ1 +ψ′2− rel(0 | ρ) is globally G-integrable. But

one can compute this sum to be equal to

ρ>b+

∫
ρ>x

(
1{‖x‖>1} − 1{|ρ>x|>1}

)
ν(dx) + 2

∫
ρ>x

1 + ρ>x
1{ρ>x>1}ν(dx);

the first two terms equal exactly φ2, which is globally G-integrable, and the last

(third) term is globally G-integrable because φ1 is. �

Continuing, let us remark that the last paragraph of Theorem 2.20 follows

directly from Lemmata 2.8 and 6.1. It remains to prove all the claims of the

second paragraph of Theorem 2.20.

The fact that
{
I ∩ Č 6= ∅

}
is predictable has been shown in Remark 4.2.

Now, suppose that
{
I ∩ Č 6= ∅

}
has zero P⊗G-measure. We first assume that

ν integrates the log, P ⊗ G-almost everywhere. We set ρ = 0 on
{
I ∩ Č 6= ∅

}
.

Now, on
{
I ∩ Č = ∅

}
, according to Theorem 5.1, there exists a (uniquely de-

fined) process ρ with ρ>∆X > −1 that satisfies rel(π | ρ) ≤ 0, and g(ρ) =

maxπ∈C∩N⊥ g(π); by Theorem B.7, this process ρ is predictable and we are done.

Now, we drop the assumption that ν integrates the log. By considering an

approximating sequence (νn)n∈N and keeping every νn predictable (this is trivial

if all densities fn are deterministic), we get a sequence of (ρn)n∈N that take values

in C∩N⊥ and solve the corresponding approximating problems. As was shown

in Chapter 5 (in the last part of the proof, the case of a general Lévy measure),

the sequence (ρn)n∈N will converge pointwise to a process ρ, which will thus be

predictable and for which we have rel(π | ρ) ≤ 0 for all π ∈ Π.

Now that we have the our predictable candidate-process ρ for the numéraire

portfolio, we only have to check that it is globally X-integrable; according to
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Lemma 6.1 this is exactly covered by the predictable criterion (φρ ·G)∞ < +∞.

By Lemma 2.8, we are done. �

• Proof of Proposition 3.10. We embark on the proof by first defining

Ω0 := {(φρ ·G)∞ <∞} and ΩA := {(φρ ·G)∞ = ∞} = Ω \ Ω0.

First, we show the result for Ω0. Assume that P[Ω0] > 0, and call P0 the

probability measure one gets by conditioning P on the set Ω0. The process ρ of

course remains predictable when viewed under the new measure; and because

we are restricting ourselves on Ω0, ρ is globally X-integrable under P0.

The dominated convergence theorems for Lebesgue, as well as for stochastic

integrals, gives that all three sequences of processes ρn · X, [ρn · Xc, ρn · Xc]

and
∑

s≤·
[
ρ>n ∆Xs − log(1 + ρ>n ∆Xs)

]
converge uniformly (in t ∈ R+) in P0-

measure to three processes, not depending on the sequence (ρn)n∈N. Then, the

stochastic exponential formula (A.1) gives that W ρn
∞ converges in P0-measure

to a random variable, not depending on the sequence (ρn)n∈N. Since the limit

of the sequence (1Ω0W
ρn
∞ )n∈N is the same under both the P-measure and the

P0-measure, we conclude that, on Ω0, the sequence (W ρn
∞ )n∈N converges in P-

measure to a real-valued random variable, independently of the choice of the

sequence (ρn)n∈N.

Now we have to tackle the set ΩA, which is more tricky. We shall have to

further use a “helping sequence of portfolios”. Suppose P[ΩA] > 0, otherwise

there is nothing to prove. Under this assumption, there exist a sequence of

[0, 1]-valued predictable processes (hn)n∈N such that each πn := hnρ is globally

X-integrable and such that the sequence of terminal values ((πn · X)∞)n∈N is
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unbounded in probability20. Lemma A.4 shows that (W πn
∞ )n∈N is also unbounded

in probability. Then, P[lim supn→∞W πn
∞ = +∞] > 0, where the lim sup is taken

in probability and not almost surely (see Definition 3.9).

Let us return to our original sequence of portfolios (ρn)n∈N with ρn = θnρ

and show that {lim supn→∞W πn
∞ = +∞} ⊆ {lim supn→∞W ρn

∞ = +∞}. Both of

these upper limits, and in fact all the lim sup that will appear until the end

of the proof, are supposed to be in P-measure. Since each θn is [0, 1]-valued

and limn→∞ θn = 1, one can choose an increasing sequence (k(n))n∈N of nat-

ural numbers such that the sequence (W
θk(n)πn

∞ )n∈N is unbounded in P-measure

on the set {lim supn→∞W πn
∞ = +∞}. Now, each process W θk(n)πn/W ρk(n) is a

positive supermartingale, since rel(θk(n)πn | ρk(n)) = rel(θk(n)hnρ | hnρ) ≤ 0,

the last inequality due to the fact that [0, 1] 3 u 7→ g(uρ) is increasing, and

so the sequence of random variables (W
θk(n)πn

∞ /W
ρk(n)
∞ )n∈N is bounded in prob-

ability. ¿From the last two facts follows that the sequence of random variables

(W
ρk(n)
∞ )n∈N is also unbounded in P-measure on {lim supn→∞W πn

∞ = +∞}.
Up to now we have shown that P[lim supn→∞W ρn

∞ = +∞] > 0 and we also

know that {lim supn→∞W ρn
∞ = +∞} ⊆ ΩA; the only things that remains is to

show that the last set inclusion is actually an equality, mod P. To do so, define

ΩB := ΩA \{lim supn→∞W ρn
∞ = +∞} and assume that P[ΩB] > 0. Working un-

der the conditional measure on ΩB (denote by PB), and following the exact same

steps we carried out two paragraphs ago, we find predictable processes (hn)n∈N

such that each πn := hnρ is globally X-integrable under PB and such that the

sequence of terminal values ((πn ·X)∞)n∈N is unbounded in PB-probability; then

20Readers unfamiliar with this fact should consult a book like [5]: for example, the result

that we are mentioning can be seen as a rather direct consequence of Corollary 3.6.10, in page

128 of that book.
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PB[lim supn→∞W ρn
∞ = +∞] > 0, which contradicts the definition of ΩB and we

are done. �
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Appendix A. Stochastic Exponentials

If Y is a linear semimartingale, its stochastic exponential E(Y ) is defined to

be the unique solution Z to the stochastic integral equation Z = 1 + Z− · Y ; it

is given by the formula

(A.1) E(Y ) = exp

{
Y − 1

2
[Y c, Y c]

}∏
s≤·

{(1 + ∆Ys) exp(−∆Ys)} ,

where Y c denotes the continuous martingale part of the semimartingale Y .

The stochastic exponential Z = E(Y ) satisfies Z > 0 and Z− > 0 if and

only if ∆Y > −1; from (A.1) we have log E(Y ) ≤ Y . When we are given

a process Z that satisfies Z > 0 and Z− > 0 we can invert the stochastic

exponential operator and get the stochastic logarithm L(Z), which is defined

as the stochastic integral L(Z) := (1/Z−) · Z. The stochastic logarithm will

then satisfy ∆L(Z) > −1. In other words, we have a one to one correspondence

between the class of semimartingales Y that satisfy ∆Y > −1 and the class

of semimartingales Z that satisfy Z > 0 and Z− > 0 given by the stochastic

exponential operator and having the stochastic logarithm as its inverse.

The following result is commonly known as Yor’s formula.

Lemma A.1. If Y and Z are two linear semimartingales, then

(A.2) E(Y )E(Z) = E(Y + Z + [Y, Z]).

Proof. Since E(Y ) = 1 + E(Y )− · Y and E(Z) = 1 + E(Z)− · Z, integration by

parts gives

E(Y )E(Z) = 1+(E(Y )−E(Z)−) ·Y +(E(Y )−E(Z)−) ·Z+(E(Y )−E(Z)−) · [Y, Z].

Now, collect terms and use the uniqueness of the stochastic exponential. �
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Lemma A.2. If R is a linear semimartingale with ∆R > −1, then we have

E(R)−1 = E(Z), where

(A.3) Z = −R + [Rc, Rc] +
∑
s≤·

(∆Rs)
2

1 + ∆Rs

.

Proof. First, we observe that since the process E(R)−1 is bounded away from

zero, its stochastic logarithm exists; besides the process that is a candidate for

being its stochastic logarithm is a well-defined semimartingale, since we know

that
∑

s≤·(∆Rs)
2 < ∞. Since E(R)E(Z) = 1, with the help of Yor’s formula

(A.2) we get that E(0) = 1 = E(R)E(Z) = E(R+Z+[R,Z]), and the uniqueness

of the stochastic exponential implies that R+Z + [R,Z] = 0. By splitting this

last equation into its continuous and purely discontinuous parts, one can guess

and then easily check that it is solved by Z of (A.3). �

As a simple application, here is the solution to the equation (1.5).

Lemma A.3. If W satisfies the equation (1.5), then the discounted wealth

process is given by W̃ = w + θ · S̃.

Proof. Remember that S0 = E(X0) and consider the semimartingale Z which

solves (S0)−1 = E(Z). The only thing that will be used from the previous lemma

is that X0 +Z + [X0, Z] = 0; we use this fact in the equality of the second line

in

W̃ = E(Z)W = w + (S0
−)−1 ·W − ((S0

−)−1W−) · Z + (S0
−)−1[Z,W ]

= w + θ ·
[
(S0)−1 ·

(
S − S− ·X0 + [S − S− ·X0, Z]

)]
,
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and leave the details to the reader. Setting w = Si
0 and θ = ei (the unit vectors)

in this equation we get that (S0)−1 · (S − S− ·X0 + [S − S− ·X0, Z]) = S̃−S0,

in which case we can write W̃ = w + θ · S̃. �

The following lemma will help us prove Proposition 3.10; although easy to

believe, its proof (at least the one we were able to put together) is slightly

tedious.

Lemma A.4. Let R be a collection of linear semimartingales such that R0 =

0, ∆R > −1 and E(R)−1 is a (positive) supermartingale for all R ∈ R (in

particular, E(R)∞ exists and takes values in (0,∞]). Then, the collection of

processes R is unbounded in probability (see the remark below) if and only if

the collection of positive random variables {E(R)∞ | R ∈ R} is unbounded in

probability.

Remark A.5. A class R of semimartingales will be called “unbounded in prob-

ability”, if the collection of random variables {supt∈R+
|Rt| | R ∈ R} is un-

bounded in probability. Similar definitions will apply for (un)boundedness from

above and below, taking one-sided suprema. Without further comment, we shall

only consider boundedness notions “in probability” through the course of the

proof.

Proof. Since R ≥ log E(R) for all R ∈ R, one side of the equivalence is trivial,

and we only have to prove that if R is unbounded then {E(R)∞ | R ∈ R} is

unbounded. We split the proof of this into four steps.

As a first step, observe that since {E(R)−1 | R ∈ R} is a collection of posi-

tive supermartingales, it is bounded from above, so that {log E(R) | R ∈ R} is
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bounded from below. Since R ≥ log E(R) for all R ∈ R and R is unbounded,

it follows that it must be unbounded from above.

Let us now show that the collection of random variables {E(R)∞ | R ∈ R}
is unbounded if and only if the collection of semimartingales {E(R) | R ∈ R}
is unbounded (from above, of course, since they are positive). One direction

is trivial: if the semimartingale class is unbounded, the random variable class

is unbounded too; we only need show the other direction. Unboundedness

of {E(R) | R ∈ R} means that we can pick an ε > 0 so that, for any n ∈
N, there exists a semimartingale Rn ∈ R such that for the stopping times

τn := inf {t ∈ R+ | E(Rn)t ≥ n} we have P[τn < ∞] ≥ ε. Each E(Rn)−1 is a

supermartingale, so

P[E(Rn)−1
∞ ≤ n−1/2] ≥ P[E(Rn)−1

∞ ≤ n−1/2 | τn <∞] P[τn <∞] ≥ ε(1− n−1/2),

which shows that the sequence (E(Rn)∞)n∈N is unbounded and the claim of this

paragraph is proved.

What we want to prove now is that ifR is unbounded, then {E(R) | R ∈ R} is

unbounded too. Define the class Z := {L (E(R)−1) | R ∈ R}; we have Z0 = 0,

∆Z > −1 and that Z is a local supermartingale for all Z ∈ Z.

For our third step, we show that if the collection Z is bounded from below,

then it is also bounded from above. To this end, pick any ε > 0. We can find an

M ∈ R+ such that the stopping times τZ := inf {t ∈ R+ | Zt ≤ −M + 1} satisfy

P[τZ < ∞] ≤ ε/2 for all Z ∈ Z. Since ∆Z > −1, we have ZτZ
≥ −M and

so each stopped process Zτz is a supermartingale (it is a local supermartingale

bounded uniformly from below). Then, with yε := 2M/ε we have that Z is

bounded from above as well, because

P[ sup
t∈R+

Zt > yε] ≤ ε/2 + P[ sup
t∈R+

ZτZ
t > yε] ≤ ε/2 + (1 + yε/M)−1 ≤ ε .
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We have now all the ingredients for the proof. Suppose that R is unbounded;

we discussed that it has to be unbounded from above. According to Lemma A.2,

every Z ∈ Z is of the form (A.3). When Z is unbounded from below, things are

pretty simple, because log E(Z) ≤ Z for all Z ∈ Z so that {log E(Z) | Z ∈ Z} is

unbounded from below and thus {E(R) | R ∈ R} = {exp(− log E(Z)) | Z ∈ Z}
is unbounded from above.

It remains to see what happens if Z is bounded from below. The third step

(two paragraphs ago) of this proof implies that Z is bounded from above as well.

Then, because of equation (A.3) and the unboundedness from above of R, this

would mean that the collection { [Rc, Rc]+
∑

s≤· [(∆Rs)
2/ (1 + ∆Rs)] | R ∈ R }

of increasing processes is also unbounded. Now, for Z ∈ Z we have

log E(Z) = − log E(R) = −R +
1

2
[Rc, Rc] +

∑
s≤·

[∆R− log(1 + ∆R)]

from (A.3) and the stochastic exponential formula, so that

Z − log E(Z) =
1

2
[Rc, Rc] +

∑
s≤·

[
log(1 + ∆Rs)−

∆Rs

1 + ∆Rs

]
.

Since the collection { [Rc, Rc] +
∑

s≤· [(∆Rs)
2/ (1 + ∆Rs)] | R ∈ R } is un-

bounded (as we discussed), it follows that the collection of increasing processes

on the right-hand-side of the last equation is unbounded too. Since Z is

bounded, this means that {log E(Z) | Z ∈ Z} is unbounded from below, and

we conclude again as before. �

Remark A.6. Without the assumption that {E(R)−1 | R ∈ R} consists of su-

permartingales, this lemma is not longer true. In fact, take R to have only one

element R with Rt = at + βt, where a ∈ (0, 1/2) and β is a standard linear

Brownian motion. Then, R is bounded from below and unbounded from above,
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nevertheless log E(R)t = (a−1/2)t+βt is bounded from above, and unbounded

from below.

The following result is the abstract version of Proposition 2.18.

Lemma A.7. Let X be a local supermartingale with ∆X > −1 and Doob-Meyer

decomposition X = M−A , where A is an increasing, predictable process. With

Ĉ := [Xc, Xc] being the quadratic covariation of the continuous local martingale

part of X and η̂ the predictable compensator of the jump measure µ̂, define the

increasing, predictable process Λ := A+ Ĉ/2 +h(1 + x) ∗ η̂, where h : R+ → R+

is the convex function defined for some a ∈ (0, 1) as

h(y) :=
[
− log a+ (1− a−1)y

]
1[0,a)(y) + [y − 1− log y]1[a,+∞)(y),

. Consider also the positive supermartingale Y = E(X). Then,

on {Λ∞ < +∞} , lim
t→∞

Yt ∈ (0,+∞) ;

on {Λ∞ = +∞} , lim sup
t→∞

log Yt

Λt

≤ −1 .

Remark A.8. In the course of the proof, we shall make heavy use of the following

fact: for a locally square integrable martingale N with angle-bracket process

〈N,N〉, on the event {〈N,N〉∞ < +∞} the limit N∞ exists and is finite, while

on the event {〈N,N〉∞ = +∞} we have limt→∞(Nt/ 〈N,N〉t) = 0.

Note also that if N = v(x) ∗ (µ̂− η̂), then 〈N,N〉 ≤ v(x)2 ∗ η̂ (equality holds

if and only if N is quasi-left-continuous). Combining this with the previous

remarks we get that on {(v(x)2 ∗ η̂)∞ < +∞} the limit N∞ exists and is finite,

while on {(v(x)2 ∗ η̂)∞ = +∞} we have limt→∞[Nt/(v(x)
2 ∗ η̂)t ] = 0 .
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Proof. For the supermartingale Y = E(X), the stochastic exponential formula

(A.1) gives log Y = X − [Xc, Xc]/2 −
∑

s≤· [∆Xs − log(1 + ∆Xs)], or equiva-

lently that

(A.4) log Y = (M c − Ĉ/2)− A+
(
x ∗ (µ̂− η̂)− [x− log(1 + x)] ∗ µ̂

)
.

Let us start with the continuous local martingale part. We use Remark A.8

twice: first, on the event {Ĉ∞ < +∞}, M c
∞ exists and is real-valued; secondly,

on the event {Ĉ∞ = +∞}, we have limt→∞(M c
t − Ĉt/2)/(Ĉt/2) = −1.

Now we deal with the purely discontinuous local martingale part. Let us first

define the two indicator functions l := 1[−1,−1+a) and r := 1[−1+a,+∞), where l

and r stand for mnemonics for left and r ight. Define the three semimartingales

E := [l(x) log(1 + x)] ∗ µ̂− [l(x)x] ∗ η̂,

F := [r(x) log(1 + x)] ∗ (µ̂− η̂) + [r(x)h(1 + x)] ∗ η̂,

D := x ∗ (µ̂− η̂)− [x− log(1 + x)] ∗ µ̂ = E + F.

We claim that on {(h(1 + x) ∗ η̂)∞ < +∞}, both E∞ and F∞ exist and are

real-valued. For E, this happens because ([l(x)h(1 + x)] ∗ η̂)∞ < +∞ implies

that there will only be a finite number of times when ∆X ∈ (−1,−1 + a] , so

that both terms in the definition of E will have a limit at infinity. Turning to

F , the second term in its definition is obviously finite-valued at infinity, while

for the local martingale term [r(x) log(1 + x)] ∗ (µ̂ − η̂) we need only observe

that it has finite predictable quadratic variation (because of the set inclusion

{([r(x)h(1 + x)] ∗ η̂)∞ < +∞} ⊆
{(

[r(x) log2(1 + x)] ∗ η̂
)
∞ < +∞

}
), then use

Remark A.8.

Now we turn attention to the event {(h(1 + x) ∗ η̂)∞ = +∞} , on which at

least one of ([l(x)h(1 + x)] ∗ η̂)∞ and ([r(x)h(1 + x)] ∗ η̂)∞ must be infinite. We
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deal with the event {([r(x)h(1 + x)] ∗ η̂)∞ = ∞} first; there, from the definition

of F and Remark A.8, it is easy to see limt→∞ Ft/ ([r(x)h(1 + x)] ∗ η̂)t = −1.

Let us work next on the event {([l(x)h(1 + x)] ∗ η̂)∞ = ∞}. We know that

the inequality log y ≤ y − 1− h(y) holds for y > 0; using this last inequality in

the first term of the definition of E, we obtain the comparison

E ≤ [l(x)(x− h(1 + x))] ∗ (µ̂− η̂)− [l(x)h(1 + x)] ∗ η̂

which, along with Remark A.8, gives lim supt→∞Et/ ([l(x)h(1 + x)] ∗ η̂)t ≤ −1 .

Let us summarize the last paragraphs for the purely discontinuous part. On

{(h(1 + x) ∗ η̂)∞ < +∞}, the limit D∞ exists and is finite; and on the event

{(h(1 + x) ∗ η̂)∞ = +∞}, we have: lim supt→∞
(
Dt/

(
h(1 + x) ∗ η̂

)
t

)
≤ −1 .

From the previous discussion on the continuous and the purely discontinuous

local martingale parts of log Y and the definition of Λ, the result follows. �

Remark A.9. In the previous proposition, if we make the additional assumption

∆X ≥ −1+ε for some ε > 0, then by considering simply h(y) = y−1− log y in

the definition of Λ , we get limt→∞
(
log Yt/Λt

)
= −1 on the set {Λ∞ = +∞} ,

i.e., the exact speed of convergence of log Y to −∞ .
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Appendix B. Measurable Random Subsets

Throughout this section we shall be working on a measurable space (Ω̃,P);

although the results are general, for us Ω̃ will be the base space Ω × R+ and

P the predictable σ-algebra. The metric of the Euclidean space Rd, its denoted

by “dist” and its generic point by z. We shall be following Chapter 17 of [2]

to which we send the reader for more information about this subject, treated

there in much more generality.

A random subset of Rd is just a random variable taking values in 2Rd
, the

powerset (class of all subsets) of Rd. Thus, a random subset of Rd is a function

A : Ω̃ 7→ 2Rd
. A random subset A of Rd will be called closed (resp., convex) if

the set A(ω̃) is closed (resp., convex) for every ω̃ ∈ Ω̃.

We have to require some measurability requirement for these types of processes,

and thus we must ask for some measurable structure on the space 2Rd
. Thus,

we endow 2Rd
with the smallest σ-algebra that makes all the functions

2Rd 3 A 7→ dist(z, A) ∈ R+ ∪ {+∞}

(by way of definition, dist(z, ∅) = +∞) measurable for all z ∈ Rd. This def-

inition is very elegant, but to make some use of it we have to establish some

equivalent formulations. The following result should give the reader more in-

sight.

Proposition B.1. The constructed σ-algebra on 2Rd
is also the smallest σ-

algebra that makes any of the following three classes of functions measurable.

(1) 2Rd ∈ A 7→ 1{A∩K 6=∅}, for every compact K ⊆ Rd

(2) 2Rd ∈ A 7→ 1{A∩F 6=∅}, for every closed F ⊆ Rd

(3) 2Rd ∈ A 7→ 1{A∩G6=∅}, for every open G ⊆ Rd
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Proof. We first show that each 2Rd ∈ A 7→ 1{A∩K 6=∅}, for compact K ⊆ Rd is

measurable with respect to the σ-algebra on 2Rd
. Pick a countable dense subset

D of K (this will be a recurring theme in the proofs to follow). We have that

{A ∩K 6= ∅} ⇐⇒ min
z∈K

dist(z, A) = 0 ⇐⇒ inf
z∈D

dist(z, A) = 0,

and the claim follows (for the second equivalence we must require compactness).

Now, pick a closed F ∈ 2Rd
and let (Kn)n∈N be the sequence of compact sets

increasing to Rd. Then, we have {A ∩ F 6= ∅} =
⋃

n∈N {A ∩ (F ∩Kn) 6= ∅} and

each F ∩ Kn is compact; thus any function of class (2) is measurable if every

function of class (1) is measurable.

If G is an open set in Rd, pick a sequence Fn of closed sets with Fn ↑ G; then

{A ∩G 6= ∅} =
⋃

n∈N {A ∩ Fn 6= ∅}, so every function of class (3) is measurable

if every function of class (2) is.

Finally, observe that for any z ∈ Rd and any a > 0 we have that dist(z, A) < a

if and only if
{
y ∈ Rd | dist(y, z) < r

}
∩ A 6= ∅ for some rational 0 ≤ r < a.

Thus, the functions 2Rd ∈ A 7→ dist(z, A) are measurable if all functions of class

(3) are. �

A Carathéodory function is a mapping from Ω̃ × Rd in some other topolog-

ical space (that is also a measurable space with its Borel σ-algebra) that is

measurable with respect to the first argument (keeping the second fixed) and

continuous with respect to the second (keeping the first fixed). From the defi-

nition of the σ-algebra on 2Rd
, the random subset A of Rd is measurable if and

only if the function

Ω̃× Rd 3 (ω̃, z) 7→ dist(z,A(ω̃)) ∈ R+ ∪ {+∞}

is Carathéodory (continuity in z is evident from the triangle inequality).
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By Proposition B.1, a random subset A of Rd is measurable if for any compact

K ⊆ Rd, the set {A ∩K 6= ∅} :=
{
ω̃ ∈ Ω̃ | A(ω̃) ∩K 6= ∅

}
is P-measurable.

Remark B.2. Suppose that random subset A is a singleton A(ω̃) = {a(ω̃)} for

some a : Ω̃ 7→ Rd. Then, A is measurable if and only if {a ∈ K} ∈ P for all

closed K ⊆ Rd, i.e., if and only if a is P-measurable.

We now deal with unions and intersections of random subsets of Rd.

Lemma B.3. Suppose that (An)n∈N is a sequence of measurable random subsets

of Rd. Then, the union random subset
⋃

n∈N An is also measurable. If further-

more each An is closed, the intersection random subset
⋂

n∈N An is measurable

too.

Proof. Let A :=
⋃

n∈N An. For any subset G ⊆ Rd we have {A ∩G 6= ∅} =⋃
n∈N {An ∩G 6= ∅}, so the first assertion follows,

For the second, call C :=
⋂

n∈N An. We can assume that (An)n∈N is a decreas-

ing sequence; otherwise, replace An them with A′
n :=

⋂
1≤k≤n Ak; each A′

n is

measurable: for compact K ⊆ Rd and D a dense countable subset of K we have

{A′
n ∩K 6= ∅} =

{
min
z∈K

max
1≤k≤n

dist(z,Ak) = 0

}
=

{
inf
z∈D

max
1≤k≤n

dist(z,Ak) = 0

}
,

which is an element of P . Now, since K is a compact set we have {C ∩K 6= ∅} =⋂
n∈N {A′

n ∩K 6= ∅} ∈ P . �

Lemma B.4. Let C be a closed and convex measurable random set. If x ∈ Rd,

then the random element p, defined for ω̃ ∈ Ω̃ as the (unique) projection of x

onto C(ω̃) is P-measurable.
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Proof. Let A :=
{
z ∈ Rd | dist(x, z) ≤ dist(x,C)

}
. Since for every compact

K we have {A ∩K 6= ∅} = {dist(x,K) ≤ dist(x,C)} ∈ P, A is a measurable

random subset. Then, C∩A = {p} is also measurable and we conclude in view

of Remark B.2. �

The following lemma gives a way to construct measurable, closed random

subsets of Rd. To state it, we shall need a slight generalization of the notion

of a Carathéodory function. So, for a measurable closed random subset A of

Rd, a function f that maps Ω̃ × Rd to another topological space will be called

Carathéodory on A, if it is measurable (with respect to the product σ-algebra

on Ω̃ × Rd) and if f(ω̃, z) is a continuous function of z ∈ A(ω̃), for all ω̃ ∈ Ω̃.

Of course, if A ≡ Rd, we recover the usual notion of a Carathéodory function.

Lemma B.5. Let E be any topological space, F ⊆ E a closed subset, and A a

closed and convex random subset of Rd. If f : Ω̃ × Rd → E is a Carathéodory

function on A, then C := {z ∈ A | f(·, z) ∈ F} is closed and measurable.

Proof. The fact that C is closed is obvious, since f is Carathéodory on A. Now,

pick any compact K ⊆ Rd; we wish to show that {C ∩K 6= ∅} ∈ P .

First observe that one can find a sequence of P-measurable, Rd-valued processes

(pn)n∈N such that, for every ω̃ ∈ Ω̃, the countable set {p1(ω̃), p2(ω̃), . . .} is dense

in A(ω̃) ∩ K. Indeed, if D is a dense countable subset of K enumerated as

D = {x1, x2, . . .}, then the processes pn, defined as the projections of xn on A

are F -measurable by Lemma B.4 and they are obviously dense in A∩K. Now we

can write {C ∩K 6= ∅} = {infn∈N distE(f(·, pn), F ) = 0}, which is P-measurable

because each function Ω̃ ∈ z 7→ distE(f(·, pn), F ) ∈ R+ is. �
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Corollary B.6. The set-valued process C0 =
{
p ∈ Rd | ν

[
p>x < −1

]
= 0
}

of

natural constraints in (1.7) is predictable.

Proof. Just write C0 =
{
p ∈ Rd |

∫
φ(1 + p>x)ν(dx)

}
, where we have set φ(x) :=

(x−)2/ (1 + (x−)2), and use Lemma B.5; here one has to also remember Remark

1.3 on a nice version of the predictable characteristics. �

The last result focuses on the measurability of the “argument” process in

random optimization problems.

Theorem B.7. Suppose that C is a closed and convex, measurable, non-empty

random subset of Rd and f : Ω̃×Rd 7→ R∪{−∞} is a Carathéodory function on

C. Consider the optimization problem f∗(ω̃) = maxz∈C f(ω̃, z). We have that:

(1) The value function f∗ is P-measurable.

(2) Suppose that for all ω̃, f∗(ω̃) is finite and there exists a unique z∗(ω̃) ∈
C(ω̃) satisfying f(ω̃, z∗(ω̃)) = f∗(ω̃). Then, z∗ is P-measurable.

In particular, if C is a closed and convex, measurable, non-empty random

subset of Rd, we can find a P-measurable h : Ω̃ → Rd with h(ω̃) ∈ C(ω̃) for all

ω̃ ∈ Ω̃.

Proof. For conclusion (1), just as in the proof of Lemma B.5, pick a dense,

countable subset D of Rd, and find a sequence of P-measurable, Rd-valued

processes (pn)n∈N, such that for every ω̃ ∈ Ω̃ the countable random subset

{p1(ω̃), p2(ω̃), . . .} is dense in C. Then, f∗(ω̃) = supn∈N f(ω̃, pn(ω̃)) is P-

measurable.

Now, for conclusion (2), Lemma B.5 gives us that the random subset of

Rd defined as {z ∈ C | f(ω̃, z) = f∗(ω̃)} is P-measurable; but this is exactly
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the singleton {z∗(ω̃)}, and once more Remark B.2 gives us that z∗ is an P-

measurable process.

For the last statement, one can use for example the function f(x) = −‖x‖
and the result already obtained. �

In case the maximizer is not unique, one can still measurably select from the

set of maximizers. This result is more difficult; in any case we shall not be using

it.
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Appendix C. Semimartingales up to Infinity

and Global Stochastic Integration

We recall here a few important concepts from [7] and prove a few useful

results.

Definition C.1. Let X = (Xt)t∈R+ be a semimartingale, and assume that

X∞ := limt→∞Xt exists. Then X will be called a semimartingale up to infinity

if the process X̃ defined on the time interval [0, 1] by X̃t = X t
1−t

(of course,

X̃1 = X∞) is a semimartingale relative to the filtration F̃ = (F̃t)t∈[0,1] defined

by

F̃t :=

 F t
1−t
, for 0 ≤ t < 1;∨

t∈R+
Ft, for t = 1.

We define similarly local martingales up to infinity, processes of finite variation

up to infinity, etc., if the corresponding process X̃ has the property.

Until the end of this subsection, a “tilde” over a process, means that we are

considering the process of the previous definition, with the new filtration F̃.

To appreciate the difference between the concepts of (plain) semimartingale

and semimartingale up to infinity, consider the simple example where X is

the deterministic, continuous process Xt := t−1 sin t; it is obvious that X is a

semimartingale and that X∞ = 0, but Var(X)∞ = +∞ and thus X cannot be a

semimartingale up to infinity (recall that a deterministic semimartingale must

be of finite variation).

Every semimartingale up to infinity X can be written as the sum X = A+M ,

where A is a process of finite variation up to infinity (which simply means that

Var(A)∞ < ∞) and M is a local martingale up to infinity (which means that
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there exists an increasing sequence of stopping times (τn)n∈N with {τn = +∞} ↑
Ω such that each of the stopped processes M τn is a uniformly integrable mar-

tingale).

Here are examples of semimartingales up to infinity.

Lemma C.2. If Z is a positive supermartingale, then it is a special semi-

martingale up to infinity. If furthermore Z∞ > 0, then L(Z) is also a special

semimartingale up to infinity, and both processes Z−1 and L(Z−1) are semi-

martingales up to infinity.

Proof. We start with the Doob-Meyer decomposition Z = M − A, where M is

a local martingale with M0 = Z0 and A is an increasing, predictable process.

Since M is a positive local martingale, it is a supermartingale too, and we can

infer that both limits Z∞ and M∞ exist and are integrable. This means that

A∞ exists and actually E[A∞] = E[M∞] − E[Z∞] < ∞, so A is a predictable

process of integrable variation up to infinity. It remains to show that M is a

local martingale up to infinity. Set τn := inf {t ≥ 0 | Mt ≥ n}; this obviously

satisfies {τn = +∞} ↑ Ω (the supremum of a positive supermartingale is finite).

Since sup0≤t≤τn
Mt ≤ n + Mτn1{τn<∞} and by the optional sampling theorem

E[Mτn1{τn<∞}] ≤ E[M0] < ∞, we get E[sup0≤t≤τn
Mt] < ∞. Thus, the local

martingale M τn is actually a uniformly integrable martingale and thus Z is a

special semimartingale up to infinity.

Now assume that Z∞ > 0. Since Z is a supermartingale, this will mean that

both Z̃ and Z̃− are bounded away from zero. Since Z̃−1
− is locally bounded and

Z̃ is a special semimartingale, L(Z̃) = Z̃−1
− ·Z̃ will be a special semimartingale as

well, meaning that L(Z) is a special semimartingale up to infinity. Furthermore,

Itô’s formula applied to the inverse function (0,∞) 3 x 7→ x−1 implies that Z̃−1
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is a semimartingale up to infinity and since Z̃− is locally bounded, L(Z̃−1) =

Z̃− · Z̃−1 is a semimartingale, which finishes the proof. �

Consider a d-dimensional semimartingale X. A predictable process H will be

called globally X-integrable if it is X-integrable and the semimartingale H ·X
is a semimartingale up to infinity. The following result is proved in [7].

Theorem C.3. Let X be a d-dimensional semimartingale with triplet (b, c, ν)

with respect to the canonical truncation function and the operational clock G.

A predictable process ρ is globally X-integrable, if and only if the predictable

processes below are globally G-integrable:

ψρ
1 := ρ>cρ, ψρ

2 :=

∫ (
1 ∧

(
ρ>x

)2)
ν(dx), and

ψρ
3 := ρ>b+

∫
ρ>x

(
1{‖x‖>1} − 1{|ρ>x|>1}

)
ν(dx)

The process ψρ
1 controls the quadratic variation of the continuous martingale

part of ρ ·X, whereas ψρ
2 controls the quadratic variation of the “small-jump”

purely discontinuous martingale part of ρ · X and the intensity of the “large

jumps”. Also, ψρ
3 controls the drift term of ρ ·X when the large jumps are sub-

tracted; it is actually the drift rate of the bounded-jump part (that corresponds

to “b” in the triplet of characteristics) in the canonical decomposition of ρ ·X.

This theorem is very general; we use it to prove Lemma 6.1, which gives a

simple necessary and sufficient condition for global integrability of the candidate

for the numéraire portfolio. The reader should contrast Theorem C.3 with

Lemma 6.1, where one does not have to worry about the large negative jumps

of ρ·X, about the quadratic variation of its continuous martingale part, or about

the quadratic variation of its small-jump purely discontinuous parts. This might
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look surprising, but follows because in Lemma 6.1 we assume ν[ρ>x ≤ −1] =

0 and rel(0 | ρ) ≤ 0: there are not many negative jumps (none above unit

magnitude), and the drift dominates the quadratic variation.
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Appendix D. σ-Localization

A very good account of the concept of σ-localization is given in the paper [19]

by Kallsen. Here we recall briefly what is needed.

For a semimartingale Z and a predictable set Σ, define ZΣ := Z01Σ(0)+1Σ ·Z.

Definition D.1. Let Z be a class of semimartingales. Then, the corresponding

σ-localized class Zσ is defined as the set of all semimartingales Z for which there

exists an increasing sequence (Σn)n∈N of predictable sets, such that Σn ↑ Ω×R+

(up to an evanescent set) and ZΣn ∈ Z for all n ∈ N.

If the corresponding class Z has a name (like “supermartingales”) we baptize

the class Zσ with the same name preceded by “σ-” (like “σ-supermartingales”).

The concept of σ-localization is a natural extension of the well-known concept

of localization along a sequence (τn)n∈N of stopping times, as one can easily see

by considering the predictable sets Σn ≡ [[0, τn]] := {(ω, t) | 0 ≤ t ≤ τn(ω) <∞}.
Let us define the set U of semimartingales Z, such that the collection of ran-

dom variables {Zτ | τ is a stopping time} is uniformly integrable — also known

in the literature as semimartingales of class (D). The elements of U admit the

Doob-Meyer decomposition Z = A +M into a predictable finite variation part

A with A0 = 0 and E[Var(A)∞] < ∞ and a uniformly integrable martingale

M . It is then obvious that the localized class Uloc corresponds to all special

semimartingales; they are exactly the ones which admit a Doob-Meyer decom-

position as before, but where now A is only a predictable, finite variation process

with A0 = 0 and M a local martingale. Let us remark that the local super-

martingales (resp., local submartingales) correspond to these elements of Uloc

with A decreasing (resp., increasing). This last result can be found for example

in [16].
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One can have very intuitive interpretation of some σ-localized classes in terms

of the predictable characteristics of Z.

Proposition D.2. Consider a linear semimartingale Z, and let (b, c, ν) be the

triplet of predictable characteristics of Z relative to the canonical truncation

function and the operational clock G. Then,

(1) Z belongs to Uloc if and only if the predictable process
∫
|x|1{|x|>1}ν(dx)

is G-integrable.

(2) Z belongs to Uσ if and only if
∫
|x|1{|x|>1}ν(dx) <∞.

(3) Z is a σ-supermartingale if and only if
∫
|x|1{|x|>1}ν(dx) < ∞ and

b+
∫
x1{|x|>1}ν(dx) ≤ 0.

Proof. The first statement follows from the fact that a linear semimartingale Z

is a special semimartingale (i.e., a member of Uloc) if and only if
[
|x|1{|x|>1}

]
∗ η̂

is a finite, increasing predictable process (one can consult [16] for this fact).

The second statement follows easily from the first and σ-localization. Finally,

the third follows for the fact that for a process in Uloc the predictable finite

variation part is given by the process
(
b+

∫ [
x1{|x|>1}

]
ν(dx)

)
· G and using

the last remark before the proposition, the first part of the proposition, and

σ-localization. �

Results like the last proposition are very intuitive, because b+
∫
x1{|x|>1}ν(dx)

represents the infinitesimal drift rate (with respect to G) of the semimartin-

gale Z; we expect this rate to be negative (resp., positive) in the case of σ-

supermartingales (resp., σ-submartingales). The importance of σ-localization

is that it allows us to talk directly about drift rates of processes, rather than

about drifts. Sometimes drift rates exist, but cannot be integrated to give a drift
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process; this is when the usual localization technique fails, and the concept of

σ-localization becomes useful.

What follows is a result giving sufficient conditions about the local super-

martingale (or even plain supermartingale) property of a semimartingale, when

all that is known is that it is a σ-supermartingale.

Proposition D.3. Suppose that Z is a linear semimartingale with triplet of

characteristics (b, c, ν) relative to the canonical truncation function and the op-

erational clock G.

(1) Suppose that Z is a σ-supermartingale. Then, the following are equiva-

lent:

(a) Z is a local supermartingale.

(b) The positive, predictable process
∫

(−x)1{x<−1}ν(dx) is G-integrable.

(2) If Z is a σ-supermartingale (resp., σ-martingale) that is bounded from

below by a constant, then it is a local supermartingale (resp., local mar-

tingale). If furthermore E[Z+
0 ] <∞, it is a supermartingale.

(3) If Z is bounded from below by a constant, then it is a supermartingale if

and only if E[Z+
0 ] <∞ and b+

∫
x1{|x|>1}ν(dx) ≤ 0.

Proof. For the proof of (1), the implication (a) ⇒ (b) follows from part (1)

of Proposition D.2. For (b) ⇒ (a), assume that
∫

(−x)1{x<−1}ν(dx) is G-

integrable. Since Z is a σ-supermartingale, it follows from part (3) of Propo-

sition D.2 that
∫
x1{x>1}ν(dx) ≤ −b +

∫
(−x)1{x<−1}ν(dx). Now, this last

inequality implies that
∫
|x|1{|x|>1}ν(dx) ≤ −b+2

∫
(−x)1{x<−1}ν(dx); the last

dominating process is G-integrable, thus Z ∈ Uloc (again, part (1) of Proposi-

tion D.2). The special semimartingale Z has predictable finite variation part



Konstantinos Kardaras - Doctoral Dissertation 106

equal to
(
b+

∫
x1{x>1}ν(dx)

)
· G, which is decreasing, so that Z is a local

supermartingale.

For part (2), we can of course we can assume that Z is positive. We dis-

cuss the case of a σ-supermartingale; the σ-martingale case follows in the same

way. According to part (1) of this proposition, we only need to show that∫
(−x)1{x<−1}ν(dx) is G-integrable. Since the negative jumps of Z are bounded

in magnitude by Z−, we have that
∫

(−x)1{x<−1}ν(dx) ≤ (Z−)ν [x < −1], which

is G-integrable, because ν [x < −1] is G-integrable and Z− is locally bounded.

Now, if we further assume that E[Z0] <∞, Fatou’s lemma for conditional expec-

tations gives us that the positive local supermartingale Z is a supermartingale.

Let us move on to part (3) and assume that Z is positive. First assume that

Z is a supermartingale. Then, of course we have E[Z0] < ∞ and that Z is

an element of Uσ (and even of Uloc) and part (3) of Proposition D.2 ensures

that b +
∫
x1{|x|>1}ν(dx) ≤ 0. Now, assume that Z is a positive semimartin-

gale with E[Z0] < ∞ and that b +
∫
x1{|x|>1}ν(dx) ≤ 0. Then, of course we

have that
∫
x1{x>1}ν(dx) < ∞. Also, since Z is positive we always have that

ν [x < −Z−] = 0 so that
∫

(−x)1{x<−1}ν(dx) <∞ too. Part (2) of Proposition

D.2 will give us that Z ∈ Uσ, and part (3) of the same proposition that Z is

a σ-supermartingale. Finally, part (2) of this proposition gives us that Z is a

supermartingale. �

Proposition D.3 has been known for some time and made its first appearance

in the paper [3] of Ansel and Stricker. The authors did not deal directly with σ-

martingales, but with semimartingales Z which are of the form Z = Z0 +H ·M ,

where M is a martingale and H is M -integrable (a martingale transform). Of

course, martingale transforms are σ-martingales and vice-versa. The corollary of
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Proposition D.3 when the σ-martingale Z is bounded from below by a constant,

is sometimes called “The Ansel-Stricker theorem”. The case when Z is a σ-

supermartingale bounded from below with E[Z+
0 ] <∞ is proved in [19].
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[4] Dirk Becherer (2001). “The numéraire portfolio for unbounded semimartingales”,

Finance and Stochastics 5, p. 327–341.

[5] Klaus Bichteler (2002) . “Stochastic Integration with Jumps”, Cambridge University

Press.

[6] Alexander S. Cherny, Albert N. Shiryaev (2002). “Vector Stochastic Integrals and

the Fundamental Theorems of Asset Pricing”, Proceedings of the Steklov Mathematical

Institute, 237, p. 12–56.

[7] Alexander S. Cherny, Albert N. Shiryaev (2004). “On Stochastic Integrals up to

infinity and predictable criteria for integrability”, Lecture Notes in Mathematics, 1857,

p. 165–185.

[8] Freddy Delbaen, Walter Schachermayer (1994). “A General Version of the Fun-

damental Theorem of Asset Pricing”, Mathematische Annalen 300, p. 463–520.

[9] Freddy Delbaen, Walter Schachermayer (1995). “The Existence of Absolutely

Continuous Local Martingale Measures”, Annals of Applied Probability 5, no 4, p. 926–

945.

[10] Freddy Delbaen, Walter Schachermayer (1995). “The No-Arbitrage Property
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Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 52, no 1, p. 9–39.

[29] R. Tyrell Rockafellar (1970). “Convex Analysis”, Princeton University Press.


